Add solution for 5h

This commit is contained in:
Tobias Eidelpes 2022-06-21 17:30:25 +02:00
parent 41d6269347
commit 22f0ec4edd

View File

@ -290,7 +290,20 @@
at a soundness error of $1/2^{260}$, which is well below the required at a soundness error of $1/2^{260}$, which is well below the required
$1/2^{192}$. $1/2^{192}$.
\item \TODO \item A simulator $\mathcal{S}$ is built as follows:
\begin{itemize}
\item $\mathcal{S}$ starts $\mathcal{V}^*$ with $G_i$ and
$i\in\{0,\dots,2^{130}-1\}$.
\item $\mathcal{S}$ makes a guess $\mathsf{ch}^*$ and calculates
$G'\leftarrow\psi(\phi_{ch^*}^{-1}(G_{ch^*}))$.
\item $\mathcal{S}$ gets a challenge $\mathsf{ch}$ from $\mathcal{V}^*$.
If $\mathsf{ch}=\mathsf{ch}^*$, $\mathcal{S}$ outputs
$(G',\mathsf{ch}^*,\phi_{ch^*}^{-1}\psi)$. If
$\mathsf{ch}\neq\mathsf{ch}^*$, $\mathcal{S}$ rewinds $\mathcal{V}^*$
and goes to step 2.
\end{itemize}
The simular $\mathcal{S}$ is expected probabilistic polynomial-time with
$2^{130}n$ time and the protocol is zero-knowledge.
\item For completeness see 5e. \item For completeness see 5e.