Add solution for 5h
This commit is contained in:
parent
41d6269347
commit
22f0ec4edd
15
exam/ex.tex
15
exam/ex.tex
@ -290,7 +290,20 @@
|
|||||||
at a soundness error of $1/2^{260}$, which is well below the required
|
at a soundness error of $1/2^{260}$, which is well below the required
|
||||||
$1/2^{192}$.
|
$1/2^{192}$.
|
||||||
|
|
||||||
\item \TODO
|
\item A simulator $\mathcal{S}$ is built as follows:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $\mathcal{S}$ starts $\mathcal{V}^*$ with $G_i$ and
|
||||||
|
$i\in\{0,\dots,2^{130}-1\}$.
|
||||||
|
\item $\mathcal{S}$ makes a guess $\mathsf{ch}^*$ and calculates
|
||||||
|
$G'\leftarrow\psi(\phi_{ch^*}^{-1}(G_{ch^*}))$.
|
||||||
|
\item $\mathcal{S}$ gets a challenge $\mathsf{ch}$ from $\mathcal{V}^*$.
|
||||||
|
If $\mathsf{ch}=\mathsf{ch}^*$, $\mathcal{S}$ outputs
|
||||||
|
$(G',\mathsf{ch}^*,\phi_{ch^*}^{-1}\psi)$. If
|
||||||
|
$\mathsf{ch}\neq\mathsf{ch}^*$, $\mathcal{S}$ rewinds $\mathcal{V}^*$
|
||||||
|
and goes to step 2.
|
||||||
|
\end{itemize}
|
||||||
|
The simular $\mathcal{S}$ is expected probabilistic polynomial-time with
|
||||||
|
$2^{130}n$ time and the protocol is zero-knowledge.
|
||||||
|
|
||||||
\item For completeness see 5e.
|
\item For completeness see 5e.
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user