Add solution for 5a
This commit is contained in:
parent
58f7e6d199
commit
a340ef443e
14
exam/ex.tex
14
exam/ex.tex
@ -264,7 +264,19 @@
|
|||||||
\item \textbf{(33 points)}
|
\item \textbf{(33 points)}
|
||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
|
|
||||||
\item \TODO
|
\item Let there be an adversary $\mathcal{A}$ which breaks CGI. We can then
|
||||||
|
construct an adversary $\mathcal{B}$ which breaks CGI2.
|
||||||
|
|
||||||
|
Suppose $\mathcal{B}$ is given a CGI2 instance
|
||||||
|
$(\mathcal{G}_a,\mathcal{G}_b)$ where $a\neq b$ and $\mathcal{G}_a$ and
|
||||||
|
$\mathcal{G}_b$ are in the set of $2^{130}$ graphs isomorphic to
|
||||||
|
$\mathcal{G}$. The goal of $\mathcal{B}$ is to find an isomorphism $\phi$
|
||||||
|
with non-negligible advantage such that $\mathcal{G}_a =
|
||||||
|
\phi(\mathcal{G}_b)$. $\mathcal{B}$ will give
|
||||||
|
$(\mathcal{G}_a,\mathcal{G}_b)$ to $\mathcal{A}$ and $\mathcal{A}$ will
|
||||||
|
output an isomorphism $\phi$ which satisfies $\mathcal{G}_a =
|
||||||
|
\phi(\mathcal{G}_b)$. $\mathcal{B}$ can then take this isomorphism and
|
||||||
|
apply it to its own problem to obtain the solution.
|
||||||
|
|
||||||
\item \TODO
|
\item \TODO
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user