diff --git a/exam/ex.tex b/exam/ex.tex index 3b2a9be..ac36f7b 100644 --- a/exam/ex.tex +++ b/exam/ex.tex @@ -300,7 +300,11 @@ $\mathcal{G}_{\mathsf{ch}}$ isomorphic to $\mathcal{G}$ as input and outputs $\top$ if the result matches $\mathcal{G}'$ and $\bot$ otherwise. - \item \TODO + \item Computational binding: Suppose $\mathsf{Comm}(\psi,\mathcal{G}_0) = + \mathsf{Comm}(\psi,\mathcal{G}_1)$. This means that $\psi(\mathcal{G}_0) = + \psi(\mathcal{G}_1)$ and the adversary has found an isomorphism which maps + two different graphs to the same output which corresponds to solving the + CGI problem. \item If $G_{ch}=\phi_{ch}(G)$ and $G'=\psi(G)$, it follows that $G=\phi_{ch}^{-1}(G_{ch})$ and therefore $G'=\psi(\phi_{ch}^{-1}(G_{ch}))$