Prove syntactic char -> semantic char

This commit is contained in:
Tobias Eidelpes 2021-06-03 10:37:14 +02:00
parent f1f1e42bc0
commit b4f23f8247

View File

@ -223,7 +223,7 @@ val nsteps_stop: (n: nat) -> (te:tenv) -> (cs: callstack{wellformed cs}) ->
Lemma (requires (isFinal cs)) Lemma (requires (isFinal cs))
(ensures (nsteps n te cs == cs)) (ensures (nsteps n te cs == cs))
let rec nsteps_stop n te cs = let rec nsteps_stop n te cs =
admit () if n = 0 then () else nsteps_stop (n-1) te (step_simp te cs)
(* Prove that if a call stack does not change within one step then it must be final. Formulate first the Lemma and then prove it *) (* Prove that if a call stack does not change within one step then it must be final. Formulate first the Lemma and then prove it *)
(* val progress: *) (* val progress: *)