Prove syntactic char -> semantic char
This commit is contained in:
parent
f1f1e42bc0
commit
b4f23f8247
@ -223,7 +223,7 @@ val nsteps_stop: (n: nat) -> (te:tenv) -> (cs: callstack{wellformed cs}) ->
|
|||||||
Lemma (requires (isFinal cs))
|
Lemma (requires (isFinal cs))
|
||||||
(ensures (nsteps n te cs == cs))
|
(ensures (nsteps n te cs == cs))
|
||||||
let rec nsteps_stop n te cs =
|
let rec nsteps_stop n te cs =
|
||||||
admit ()
|
if n = 0 then () else nsteps_stop (n-1) te (step_simp te cs)
|
||||||
|
|
||||||
(* Prove that if a call stack does not change within one step then it must be final. Formulate first the Lemma and then prove it *)
|
(* Prove that if a call stack does not change within one step then it must be final. Formulate first the Lemma and then prove it *)
|
||||||
(* val progress: *)
|
(* val progress: *)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user