Prove syntactic char -> semantic char
This commit is contained in:
parent
f1f1e42bc0
commit
b4f23f8247
@ -176,9 +176,9 @@ let rec nsteps n te cs =
|
|||||||
|
|
||||||
val gas: plaincallstack -> Tot nat
|
val gas: plaincallstack -> Tot nat
|
||||||
let gas cs =
|
let gas cs =
|
||||||
match cs with
|
match cs with
|
||||||
| (((gas, _, _, _), _, _)::_) -> gas
|
| (((gas, _, _, _), _, _)::_) -> gas
|
||||||
| _ -> 0
|
| _ -> 0
|
||||||
|
|
||||||
val getDecArgList: (cs: callstack {wellformed cs}) -> Tot (list nat)
|
val getDecArgList: (cs: callstack {wellformed cs}) -> Tot (list nat)
|
||||||
let getDecArgList (cs: callstack {wellformed cs}) =
|
let getDecArgList (cs: callstack {wellformed cs}) =
|
||||||
@ -223,7 +223,7 @@ val nsteps_stop: (n: nat) -> (te:tenv) -> (cs: callstack{wellformed cs}) ->
|
|||||||
Lemma (requires (isFinal cs))
|
Lemma (requires (isFinal cs))
|
||||||
(ensures (nsteps n te cs == cs))
|
(ensures (nsteps n te cs == cs))
|
||||||
let rec nsteps_stop n te cs =
|
let rec nsteps_stop n te cs =
|
||||||
admit ()
|
if n = 0 then () else nsteps_stop (n-1) te (step_simp te cs)
|
||||||
|
|
||||||
(* Prove that if a call stack does not change within one step then it must be final. Formulate first the Lemma and then prove it *)
|
(* Prove that if a call stack does not change within one step then it must be final. Formulate first the Lemma and then prove it *)
|
||||||
(* val progress: *)
|
(* val progress: *)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user