diff --git a/classification/evaluation/evaluation-end2end.ipynb b/classification/evaluation/evaluation-end2end.ipynb
index a709b08..ce96d60 100644
--- a/classification/evaluation/evaluation-end2end.ipynb
+++ b/classification/evaluation/evaluation-end2end.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "b1e57c8a",
+ "id": "8afbd5e3",
"metadata": {},
"source": [
"# Table of contents\n",
@@ -26,7 +26,7 @@
},
{
"cell_type": "markdown",
- "id": "12921db4",
+ "id": "a6143564",
"metadata": {},
"source": [
"## Introduction \n",
@@ -49,7 +49,7 @@
},
{
"cell_type": "markdown",
- "id": "d46bd91d",
+ "id": "bafcbf96",
"metadata": {},
"source": [
"## Aggregate Model Evaluation \n",
@@ -102,7 +102,7 @@
},
{
"cell_type": "markdown",
- "id": "8bd95ca9",
+ "id": "073ce554",
"metadata": {},
"source": [
"If the dataset already exists because it had been saved under the same name before, load the dataset from fiftyone's folder."
@@ -111,7 +111,7 @@
{
"cell_type": "code",
"execution_count": 3,
- "id": "d9c393d6",
+ "id": "8681fc92",
"metadata": {},
"outputs": [],
"source": [
@@ -121,7 +121,7 @@
},
{
"cell_type": "markdown",
- "id": "5dd071ae",
+ "id": "ab97bece",
"metadata": {},
"source": [
"### Perform detections \n",
@@ -169,7 +169,7 @@
},
{
"cell_type": "markdown",
- "id": "a9294bf2",
+ "id": "39ce167e",
"metadata": {},
"source": [
"### Save detections \n",
@@ -190,7 +190,7 @@
},
{
"cell_type": "markdown",
- "id": "f75ef7aa",
+ "id": "0c9f9304",
"metadata": {},
"source": [
"### Evaluate detections against ground truth \n",
@@ -226,12 +226,12 @@
},
{
"cell_type": "markdown",
- "id": "d1e5e4b9",
+ "id": "9e403f93",
"metadata": {},
"source": [
"### Calculate results and plot them \n",
"\n",
- "Now we have the performance of the model saved in the `results` variable and can extract various metrics from that. Here we print a simple report of all classes and their precision and recall values as well as the mAP with the metric employed by COCO. Next, a confusion matrix is plotted for each class (in our case only one). Finally, we can show the precision vs. recall curve for a specified threshold value."
+ "Now we have the performance of the model saved in the `results` variable and can extract various metrics from that. Here we print a simple report of all classes and their precision and recall values as well as the mAP with the metric employed by [COCO](https://cocodataset.org/#detection-eval). Next, a confusion matrix is plotted for each class (in our case only one). Finally, we can show the precision vs. recall curve for a specified threshold value."
]
},
{
@@ -505,7 +505,7 @@
},
{
"cell_type": "markdown",
- "id": "9997cd3f",
+ "id": "2d48bb3f",
"metadata": {},
"source": [
"### View dataset in fiftyone \n",
@@ -574,7 +574,7 @@
},
{
"cell_type": "markdown",
- "id": "64e89754",
+ "id": "22561d30",
"metadata": {},
"source": [
"## YOLO Model Evaluation \n",
@@ -584,7 +584,7 @@
},
{
"cell_type": "markdown",
- "id": "5782d392",
+ "id": "6f389582",
"metadata": {},
"source": [
"### Load OIDv6 \n",
@@ -625,7 +625,7 @@
},
{
"cell_type": "markdown",
- "id": "9bfbf8a4",
+ "id": "1b509862",
"metadata": {},
"source": [
"### Export dataset for conversion \n",
@@ -666,7 +666,7 @@
},
{
"cell_type": "markdown",
- "id": "065e0dca",
+ "id": "4cbee814",
"metadata": {},
"source": [
"### Merge labels into one \n",
@@ -683,7 +683,7 @@
},
{
"cell_type": "markdown",
- "id": "030e4550",
+ "id": "7edb13a2",
"metadata": {},
"source": [
"### Load YOLOv5 dataset \n",
@@ -722,7 +722,7 @@
},
{
"cell_type": "markdown",
- "id": "a9ea9ba1",
+ "id": "3ab2c225",
"metadata": {},
"source": [
"In case the yolo dataset already exists because it had been saved earlier, we can simply load the dataset from fiftyone's database."
@@ -731,7 +731,7 @@
{
"cell_type": "code",
"execution_count": 28,
- "id": "42b72a2d",
+ "id": "0b86639e",
"metadata": {},
"outputs": [
{
@@ -752,7 +752,7 @@
},
{
"cell_type": "markdown",
- "id": "2ebffbda",
+ "id": "9eb7bb84",
"metadata": {},
"source": [
"### Perform detections \n",
@@ -801,7 +801,7 @@
},
{
"cell_type": "markdown",
- "id": "d0789cc2",
+ "id": "24df56d9",
"metadata": {},
"source": [
"### Evaluate detections against ground truth \n",
@@ -812,7 +812,7 @@
{
"cell_type": "code",
"execution_count": 29,
- "id": "b6b35ed4",
+ "id": "4aaa4577",
"metadata": {},
"outputs": [
{
@@ -832,12 +832,12 @@
},
{
"cell_type": "markdown",
- "id": "124d92a4",
+ "id": "b0df052d",
"metadata": {},
"source": [
"### Calculate results and plot them \n",
"\n",
- "Now we have the performance of the model saved in the `results` variable and can extract various metrics from that. Here we print a simple report of all classes and their precision and recall values as well as the mAP with the metric employed by COCO. Next, a confusion matrix is plotted for each class (in our case only one). Finally, we can show the precision vs. recall curve for a specified threshold value."
+ "Now we have the performance of the model saved in the `results` variable and can extract various metrics from that. Here we print a simple report of all classes and their precision and recall values as well as the mAP with the metric employed by [COCO](https://cocodataset.org/#detection-eval). Next, a confusion matrix is plotted for each class (in our case only one). Finally, we can show the precision vs. recall curve for a specified threshold value."
]
},
{
@@ -1064,7 +1064,7 @@
},
{
"cell_type": "markdown",
- "id": "cfff898d",
+ "id": "def95455",
"metadata": {},
"source": [
"### View dataset in fiftyone \n",