diff --git a/classification/classifier/hyp-metrics.csv b/classification/classifier/hyp-metrics.csv index 60c41c8..a3c99e3 100644 --- a/classification/classifier/hyp-metrics.csv +++ b/classification/classifier/hyp-metrics.csv @@ -1,139 +1,139 @@ ,summary,config,name -0,"{'test/epoch_loss': 0.5664619127909343, 'train/epoch_acc': 0.8230958230958231, 'train/batch_loss': 0.33577921986579895, 'epoch': 9, '_wandb': {'runtime': 363}, '_timestamp': 1680692970.2016854, 'test/recall': 0.6170212765957447, 'test/precision': 0.8285714285714286, '_step': 2059, '_runtime': 367.13677954673767, 'test/f1-score': 0.7073170731707318, 'test/epoch_acc': 0.7333333333333334, 'train/epoch_loss': 0.4241055610431793}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.0003}",fiery-sweep-26 -1,"{'test/recall': 0.8222222222222222, 'test/precision': 0.6851851851851852, '_runtime': 341.8420207500458, '_timestamp': 1680692589.503975, '_wandb': {'runtime': 338}, 'test/f1-score': 0.7474747474747475, 'test/epoch_acc': 0.7222222222222222, 'test/epoch_loss': 0.6454579922888014, 'train/epoch_acc': 0.7125307125307125, 'train/batch_loss': 0.7014500498771667, '_step': 1039, 'epoch': 9, 'train/epoch_loss': 0.649790015355375}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0003}",radiant-sweep-25 -2,"{'test/recall': 0.7837837837837838, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.935483870967742, 'train/batch_loss': 0.01956617273390293, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 333}, '_runtime': 336.8275649547577, 'train/epoch_loss': 0.01614290558709019, '_timestamp': 1680692234.39516, 'test/f1-score': 0.8529411764705881, 'test/epoch_loss': 0.34812947780333664, 'train/epoch_acc': 0.9987714987714988}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",blooming-sweep-24 -3,"{'test/epoch_acc': 0.8, 'train/batch_loss': 0.5222326517105103, 'train/epoch_loss': 0.5324229019572753, 'epoch': 9, '_wandb': {'runtime': 327}, '_runtime': 331.57809829711914, 'test/f1-score': 0.7954545454545455, 'test/epoch_loss': 0.5553177932898203, 'train/epoch_acc': 0.8353808353808354, '_step': 529, '_timestamp': 1680691883.3877182, 'test/recall': 0.8333333333333334, 'test/precision': 0.7608695652173914}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.0003}",visionary-sweep-23 -4,"{'test/f1-score': 0.7076923076923076, 'train/epoch_acc': 0.5577395577395577, '_step': 410, 'epoch': 1, 'test/recall': 0.8846153846153846, 'test/epoch_acc': 0.5777777777777778, 'test/precision': 0.5897435897435898, 'test/epoch_loss': 1.5602711306677923, 'train/batch_loss': 0.5083656311035156, 'train/epoch_loss': 0.7508098256090057, '_wandb': {'runtime': 70}, '_runtime': 71.64615154266357, '_timestamp': 1680691538.7247725}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.01}",ancient-sweep-22 -5,"{'test/precision': 0.6885245901639344, 'test/epoch_loss': 0.4844042791260613, 'train/epoch_loss': 0.49390909720111537, '_step': 529, 'epoch': 9, '_timestamp': 1680691453.5148375, 'test/f1-score': 0.8, 'test/epoch_acc': 0.7666666666666667, 'train/epoch_acc': 0.769041769041769, 'train/batch_loss': 0.4559023082256317, '_wandb': {'runtime': 328}, '_runtime': 331.44886469841003, 'test/recall': 0.9545454545454546}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.003}",fresh-sweep-22 -6,"{'test/epoch_loss': 0.26263883135527266, 'train/epoch_acc': 0.9975429975429976, 'train/batch_loss': 0.0031523401848971844, 'train/epoch_loss': 0.018423480946079804, '_wandb': {'runtime': 355}, '_runtime': 358.66950702667236, '_timestamp': 1680691110.042932, 'test/recall': 0.8867924528301887, 'test/f1-score': 0.9306930693069309, 'test/epoch_acc': 0.9222222222222224, 'test/precision': 0.9791666666666666, '_step': 2059, 'epoch': 9}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.01}",pleasant-sweep-21 -7,"{'train/batch_loss': 0.003317732596769929, 'epoch': 9, '_wandb': {'runtime': 329}, '_runtime': 332.6156196594238, 'test/f1-score': 0.8865979381443299, 'test/epoch_loss': 0.3669874522421095, 'train/epoch_acc': 1, 'train/epoch_loss': 0.0014873178028192654, '_step': 279, '_timestamp': 1680690741.3215847, 'test/recall': 0.9148936170212766, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.86}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.01}",fragrant-sweep-20 -8,"{'test/recall': 0.82, 'test/precision': 0.7592592592592593, 'test/epoch_loss': 0.5786970999505785, 'train/epoch_acc': 0.8206388206388207, '_step': 149, 'epoch': 9, '_runtime': 342.05230498313904, 'test/epoch_acc': 0.7555555555555555, 'train/batch_loss': 0.58731609582901, 'train/epoch_loss': 0.5623220165765842, '_wandb': {'runtime': 338}, '_timestamp': 1680690397.165603, 'test/f1-score': 0.7884615384615384}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.001}",treasured-sweep-19 -9,"{'test/precision': 0.8536585365853658, 'test/epoch_loss': 0.6037532766660054, 'train/epoch_acc': 0.7788697788697788, 'epoch': 9, '_wandb': {'runtime': 357}, '_runtime': 360.5366156101227, 'test/f1-score': 0.7865168539325843, 'test/epoch_acc': 0.788888888888889, 'train/batch_loss': 0.5736206769943237, '_step': 2059, '_timestamp': 1680690042.488695, 'test/recall': 0.7291666666666666, 'train/epoch_loss': 0.5984062318134074}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.0001}",desert-sweep-18 -10,"{'_wandb': {'runtime': 362}, '_runtime': 365.3367943763733, '_timestamp': 1680689670.8310964, 'test/f1-score': 0.8333333333333334, 'test/precision': 0.945945945945946, 'train/epoch_loss': 0.3086323318522451, '_step': 2059, 'epoch': 9, 'test/recall': 0.7446808510638298, 'test/epoch_acc': 0.8444444444444444, 'test/epoch_loss': 0.3740654948684904, 'train/epoch_acc': 0.8697788697788698, 'train/batch_loss': 0.5778521299362183}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.003}",celestial-sweep-17 -11,"{'train/epoch_acc': 1, 'train/batch_loss': 0.004256190732121468, '_step': 149, '_runtime': 340.39124369621277, '_timestamp': 1680689237.7951498, 'test/precision': 0.9069767441860463, 'test/epoch_loss': 0.18080708616309696, 'train/epoch_loss': 0.0053219743558098115, 'epoch': 9, '_wandb': {'runtime': 337}, 'test/recall': 0.9285714285714286, 'test/f1-score': 0.9176470588235294, 'test/epoch_acc': 0.9222222222222224}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.01}",cosmic-sweep-15 -12,"{'_step': 2059, '_runtime': 359.0396990776062, '_timestamp': 1680688886.363035, 'test/recall': 0.8222222222222222, 'test/f1-score': 0.8705882352941177, 'test/precision': 0.925, 'train/batch_loss': 0.21692615747451785, 'epoch': 9, '_wandb': {'runtime': 356}, 'test/epoch_acc': 0.8777777777777778, 'test/epoch_loss': 0.23811448697621623, 'train/epoch_acc': 0.968058968058968, 'train/epoch_loss': 0.09628425111664636}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.001}",stilted-sweep-14 -13,"{'epoch': 9, '_runtime': 336.5640392303467, '_timestamp': 1680688517.0028613, 'test/recall': 0.9, 'test/precision': 0.9574468085106383, 'train/epoch_acc': 1, 'train/batch_loss': 0.007201554253697395, 'train/epoch_loss': 0.007631345846546077, '_step': 149, '_wandb': {'runtime': 333}, 'test/f1-score': 0.9278350515463918, 'test/epoch_acc': 0.9222222222222224, 'test/epoch_loss': 0.16714997291564945}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.01}",frosty-sweep-13 -14,"{'test/f1-score': 0.8674698795180724, 'test/precision': 0.9230769230769232, 'train/batch_loss': 0.27152174711227417, '_step': 529, 'epoch': 9, '_wandb': {'runtime': 328}, 'test/epoch_acc': 0.8777777777777778, 'test/epoch_loss': 0.32556109494633145, 'train/epoch_acc': 0.9496314496314496, 'train/epoch_loss': 0.17368088453934877, '_runtime': 331.98337984085083, '_timestamp': 1680688162.2054858, 'test/recall': 0.8181818181818182}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.001}",young-sweep-12 -15,"{'test/recall': 0.8292682926829268, 'test/epoch_acc': 0.7222222222222222, 'test/epoch_loss': 0.5193446947468652, 'train/batch_loss': 0.3307788372039795, '_wandb': {'runtime': 332}, '_timestamp': 1680687816.5057352, '_runtime': 335.6552822589874, 'test/f1-score': 0.7311827956989247, 'test/precision': 0.6538461538461539, 'train/epoch_acc': 0.7469287469287469, 'train/epoch_loss': 0.5277571982775039, '_step': 1039, 'epoch': 9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.1}",sandy-sweep-11 -16,"{'test/precision': 0.8085106382978723, 'epoch': 9, '_wandb': {'runtime': 334}, '_runtime': 336.80703043937683, 'test/recall': 0.9047619047619048, 'test/f1-score': 0.853932584269663, 'test/epoch_acc': 0.8555555555555556, '_step': 149, '_timestamp': 1680687470.9289024, 'test/epoch_loss': 0.4616309046745301, 'train/epoch_acc': 1, 'train/batch_loss': 0.0030224076472222805, 'train/epoch_loss': 0.003708146820279612}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",laced-sweep-10 -17,"{'_step': 422, 'epoch': 7, '_runtime': 265.48077392578125, '_timestamp': 1680687113.1220188, 'test/recall': 0.08888888888888889, 'test/f1-score': 0.14035087719298245, 'test/precision': 0.3333333333333333, 'test/epoch_loss': 11610.708938450283, 'train/batch_loss': 9.74098777770996, '_wandb': {'runtime': 265}, 'test/epoch_acc': 0.45555555555555555, 'train/epoch_acc': 0.5331695331695332, 'train/epoch_loss': 9.16968992828444}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.1}",jumping-sweep-9 -18,"{'test/recall': 0.803921568627451, 'test/f1-score': 0.845360824742268, 'test/epoch_acc': 0.8333333333333334, 'test/precision': 0.8913043478260869, 'test/epoch_loss': 0.3831123087141249, '_step': 529, '_runtime': 330.36346793174744, '_timestamp': 1680686834.80723, 'train/batch_loss': 0.34334877133369446, 'train/epoch_loss': 0.3055295220024756, 'epoch': 9, '_wandb': {'runtime': 327}, 'train/epoch_acc': 0.8955773955773956}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.0003}",dutiful-sweep-8 -19,"{'train/epoch_acc': 0.484029484029484, 'train/epoch_loss': 'NaN', 'epoch': 2, '_wandb': {'runtime': 99}, '_runtime': 99.40804982185364, '_timestamp': 1680686491.634724, 'test/recall': 1, 'test/f1-score': 0.6259541984732825, '_step': 157, 'test/epoch_acc': 0.45555555555555555, 'test/precision': 0.45555555555555555, 'test/epoch_loss': 6.554853016439314e+29, 'train/batch_loss': 'NaN'}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.1}",olive-sweep-7 -20,"{'_step': 279, '_timestamp': 1680686383.3591404, 'test/f1-score': 0.8695652173913044, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.851063829787234, 'train/batch_loss': 0.3707323968410492, 'epoch': 9, '_wandb': {'runtime': 334}, '_runtime': 337.17863941192627, 'test/recall': 0.8888888888888888, 'test/epoch_loss': 0.35141510632303025, 'train/epoch_acc': 0.9103194103194104, 'train/epoch_loss': 0.3219767680771521}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.001}",good-sweep-6 -21,"{'test/f1-score': 0.6601941747572815, 'test/epoch_acc': 0.6111111111111112, 'test/precision': 0.6296296296296297, 'train/batch_loss': 0.7027227878570557, 'train/epoch_acc': 0.5196560196560196, '_step': 149, 'epoch': 9, '_wandb': {'runtime': 342}, '_runtime': 344.80718994140625, '_timestamp': 1680686028.304971, 'test/recall': 0.6938775510204082, 'test/epoch_loss': 0.6818753732575311, 'train/epoch_loss': 0.6907664721955246}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.0003}",summer-sweep-5 -22,"{'_step': 529, '_wandb': {'runtime': 331}, '_runtime': 333.9663326740265, '_timestamp': 1680685671.7387648, 'test/f1-score': 0.9066666666666668, 'test/epoch_acc': 0.9222222222222224, 'test/precision': 0.9444444444444444, 'train/epoch_acc': 0.9864864864864864, 'train/batch_loss': 0.15035715699195862, 'train/epoch_loss': 0.10497688309859292, 'epoch': 9, 'test/recall': 0.8717948717948718, 'test/epoch_loss': 0.22382020586066775}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.001}",firm-sweep-4 -23,"{'_step': 149, 'test/recall': 0.925, 'test/f1-score': 0.6379310344827587, 'train/epoch_loss': 0.6564877619028677, 'test/epoch_loss': 0.6597137530644734, 'train/epoch_acc': 0.5909090909090909, 'epoch': 9, '_wandb': {'runtime': 333}, '_runtime': 335.79468297958374, '_timestamp': 1680685319.453976, 'test/epoch_acc': 0.5333333333333333, 'test/precision': 0.4868421052631579, 'train/batch_loss': 0.652446985244751}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.0001}",genial-sweep-3 -24,"{'test/epoch_acc': 0.7444444444444445, 'test/precision': 0.6271186440677966, 'test/epoch_loss': 0.5467572536733415, '_step': 529, 'epoch': 9, '_wandb': {'runtime': 329}, '_runtime': 331.50625491142273, 'test/f1-score': 0.7628865979381443, '_timestamp': 1680684975.004809, 'test/recall': 0.9736842105263158, 'train/epoch_acc': 0.7899262899262899, 'train/batch_loss': 0.5583129525184631, 'train/epoch_loss': 0.4703364581675143}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.1}",fine-sweep-2 -25,"{'test/epoch_acc': 0.9, 'train/epoch_acc': 0.9987714987714988, '_step': 529, 'epoch': 9, '_wandb': {'runtime': 447}, '_runtime': 450.5545320510864, 'test/recall': 0.8863636363636364, 'train/epoch_loss': 0.007131033717467008, '_timestamp': 1680684633.811369, 'test/f1-score': 0.896551724137931, 'test/precision': 0.9069767441860463, 'test/epoch_loss': 0.30911533037821454, 'train/batch_loss': 0.005764181260019541}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.01}",visionary-sweep-1 -26,"{'_wandb': {'runtime': 83}, '_timestamp': 1680629962.8990817, 'train/epoch_acc': 0.8931203931203932, 'train/epoch_loss': 0.2428556958016658, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.8444444444444444, 'test/epoch_loss': 0.29840316110187104, '_step': 239, 'epoch': 1, '_runtime': 83.58446168899536, 'test/recall': 0.9047619047619048, 'test/f1-score': 0.8735632183908046, 'train/batch_loss': 0.08615076541900635}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.1}",stoic-sweep-14 -27,"{'epoch': 9, '_wandb': {'runtime': 347}, '_runtime': 348.9410927295685, '_timestamp': 1680629872.8401277, 'test/recall': 0.975, 'test/f1-score': 0.951219512195122, 'test/epoch_acc': 0.9555555555555556, '_step': 149, 'train/batch_loss': 0.10338585078716278, 'train/epoch_loss': 0.1163152276517718, 'train/epoch_acc': 0.9803439803439804, 'test/epoch_loss': 0.20102048052681817, 'test/precision': 0.9285714285714286}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.01}",rich-sweep-13 -28,"{'train/batch_loss': 82027960, '_step': 210, 'epoch': 3, '_wandb': {'runtime': 135}, '_runtime': 132.22715950012207, '_timestamp': 1680629513.1781075, 'test/f1-score': 0.6721311475409836, 'test/epoch_acc': 0.5555555555555556, 'test/recall': 0.9111111111111112, 'test/precision': 0.5324675324675324, 'test/epoch_loss': 3.395405118153546e+20, 'train/epoch_acc': 0.5282555282555282, 'train/epoch_loss': 60563307.6520902}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.003}",smooth-sweep-12 -29,"{'_wandb': {'runtime': 326}, 'test/recall': 0.8888888888888888, 'test/epoch_acc': 0.6333333333333333, 'test/precision': 0.5245901639344263, 'train/batch_loss': 0.5836847424507141, 'train/epoch_loss': 0.6072891213970044, '_step': 279, 'epoch': 9, 'test/f1-score': 0.6597938144329897, 'test/epoch_loss': 0.6240786300765143, 'train/epoch_acc': 0.7469287469287469, '_runtime': 327.2181556224823, '_timestamp': 1680629374.0562296}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.0003}",resilient-sweep-11 -30,"{'train/epoch_acc': 0.9717444717444718, 'epoch': 9, 'test/f1-score': 0.8958333333333334, 'test/precision': 0.9772727272727272, 'test/epoch_loss': 0.2657569663392173, 'test/recall': 0.8269230769230769, 'test/epoch_acc': 0.888888888888889, 'train/batch_loss': 0.13025684654712677, 'train/epoch_loss': 0.12745249926751018, '_step': 529, '_wandb': {'runtime': 330}, '_runtime': 332.23273372650146, '_timestamp': 1680629038.456323}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.001}",serene-sweep-10 -31,"{'_step': 1039, '_wandb': {'runtime': 334}, '_timestamp': 1680628699.1189623, 'test/recall': 0.8372093023255814, 'test/epoch_loss': 0.23338710864384968, 'train/batch_loss': 0.11391787976026536, 'train/epoch_loss': 0.2116023584907412, 'epoch': 9, '_runtime': 335.94198656082153, 'test/f1-score': 0.9, 'test/epoch_acc': 0.9111111111111112, 'test/precision': 0.972972972972973, 'train/epoch_acc': 0.9275184275184276}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0003}",cool-sweep-9 -32,"{'_runtime': 327.29265093803406, '_timestamp': 1680628351.790065, 'test/f1-score': 0.7959183673469388, 'train/epoch_loss': 0.6034659886828805, '_step': 529, '_wandb': {'runtime': 326}, 'test/recall': 0.8863636363636364, 'test/epoch_acc': 0.7777777777777778, 'test/precision': 0.7222222222222222, 'test/epoch_loss': 0.5824494547314114, 'train/epoch_acc': 0.7702702702702703, 'train/batch_loss': 0.5777762532234192, 'epoch': 9}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.0001}",lilac-sweep-8 -33,"{'_wandb': {'runtime': 335}, '_runtime': 337.11313247680664, 'test/recall': 0.8048780487804879, 'test/f1-score': 0.717391304347826, 'test/epoch_acc': 0.7111111111111111, 'test/epoch_loss': 0.6369305915302701, '_step': 149, 'epoch': 9, 'train/epoch_loss': 0.618001790392311, 'train/epoch_acc': 0.7199017199017199, 'train/batch_loss': 0.5935282111167908, '_timestamp': 1680628016.5942774, 'test/precision': 0.6470588235294118}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.001}",warm-sweep-7 -34,"{'train/epoch_acc': 0.6498771498771498, 'train/epoch_loss': 0.6663250732773353, '_wandb': {'runtime': 354}, '_runtime': 355.7423675060272, 'test/recall': 0.8, 'test/f1-score': 0.6857142857142857, 'test/precision': 0.6, 'test/epoch_loss': 0.6619265423880683, '_step': 2059, 'epoch': 9, '_timestamp': 1680627667.6215644, 'test/epoch_acc': 0.6333333333333333, 'train/batch_loss': 0.6662057638168335}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.0001}",giddy-sweep-6 -35,"{'test/recall': 0.8163265306122449, 'test/f1-score': 0.7766990291262137, 'test/epoch_acc': 0.7444444444444445, 'test/epoch_loss': 0.6307997491624621, 'train/epoch_acc': 0.7125307125307125, 'epoch': 9, '_runtime': 344.59358406066895, '_timestamp': 1680627305.434523, 'train/batch_loss': 0.6531811356544495, 'train/epoch_loss': 0.6398702088093582, '_step': 149, '_wandb': {'runtime': 343}, 'test/precision': 0.7407407407407407}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.0001}",stellar-sweep-5 -36,"{'_runtime': 335.76391553878784, '_timestamp': 1680626951.0603056, 'test/recall': 0.8461538461538461, 'test/f1-score': 0.9041095890410958, 'test/precision': 0.9705882352941176, 'test/epoch_loss': 0.1906787835785912, 'epoch': 9, '_wandb': {'runtime': 334}, 'train/epoch_loss': 0.02095988139033052, 'train/epoch_acc': 0.9975429975429976, 'train/batch_loss': 0.0006497434806078672, '_step': 1039, 'test/epoch_acc': 0.9222222222222224}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",olive-sweep-4 -37,"{'_wandb': {'runtime': 332}, '_timestamp': 1680626608.419389, 'test/f1-score': 0.8705882352941177, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.8222222222222222, 'train/epoch_acc': 0.984029484029484, 'train/batch_loss': 0.12675245106220245, '_step': 149, 'epoch': 9, '_runtime': 333.64992809295654, 'test/recall': 0.925, 'test/epoch_loss': 0.27919367684258356, 'train/epoch_loss': 0.11751884335528429}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.003}",dazzling-sweep-3 -38,"{'_runtime': 337.19885444641113, '_timestamp': 1680626264.5954974, 'test/f1-score': 0.5977011494252874, 'test/epoch_acc': 0.6111111111111112, 'test/precision': 0.5306122448979592, 'train/epoch_acc': 0.6547911547911548, 'epoch': 9, '_wandb': {'runtime': 336}, 'train/epoch_loss': 0.6389284106085868, 'test/epoch_loss': 0.6708752089076572, 'train/batch_loss': 0.5270536541938782, '_step': 1039, 'test/recall': 0.6842105263157895}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.01}",kind-sweep-2 -39,"{'epoch': 9, '_wandb': {'runtime': 337}, '_runtime': 337.9836483001709, 'test/recall': 0.8636363636363636, 'test/f1-score': 0.853932584269663, '_step': 529, 'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.8444444444444444, 'test/epoch_loss': 0.38614972366227046, 'train/epoch_acc': 0.8746928746928747, 'train/batch_loss': 0.3848239779472351, 'train/epoch_loss': 0.3516608065117782, '_timestamp': 1680625919.9645753}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.003}",morning-sweep-1 -40,"{'test/recall': 0.8653846153846154, 'test/f1-score': 0.9, 'train/batch_loss': 0.05631007254123688, '_step': 2059, '_timestamp': 1680624250.2654595, '_runtime': 347.9354045391083, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9375, 'test/epoch_loss': 0.25786760796585845, 'train/epoch_acc': 0.9975429975429976, 'train/epoch_loss': 0.02368298517580857, 'epoch': 9, '_wandb': {'runtime': 346}}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.1}",valiant-sweep-23 -41,"{'_runtime': 329.4802031517029, '_timestamp': 1680623895.362503, 'test/recall': 0.8936170212765957, 'test/f1-score': 0.8571428571428571, 'test/epoch_loss': 0.490613665845659, 'train/epoch_acc': 0.8243243243243243, 'epoch': 9, '_wandb': {'runtime': 327}, 'test/epoch_acc': 0.8444444444444444, 'test/precision': 0.8235294117647058, 'train/batch_loss': 0.5639374256134033, 'train/epoch_loss': 0.48581602795996887, '_step': 1039}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0003}",earnest-sweep-22 -42,"{'_step': 149, 'epoch': 9, '_timestamp': 1680623556.4586525, 'test/recall': 0.9148936170212766, 'test/epoch_loss': 0.2318242397573259, 'train/epoch_acc': 0.995085995085995, 'train/batch_loss': 0.06110217794775963, 'train/epoch_loss': 0.05107141801451289, '_wandb': {'runtime': 326}, '_runtime': 328.0050995349884, 'test/f1-score': 0.9052631578947368, 'test/epoch_acc': 0.9, 'test/precision': 0.8958333333333334}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.003}",genial-sweep-21 -43,"{'_wandb': {'runtime': 325}, '_runtime': 327.10622239112854, '_timestamp': 1680623221.0825984, 'test/recall': 0.8723404255319149, 'train/epoch_acc': 0.7911547911547911, '_step': 149, 'epoch': 9, 'test/f1-score': 0.780952380952381, 'test/epoch_acc': 0.7444444444444445, 'test/precision': 0.7068965517241379, 'test/epoch_loss': 0.5943129923608568, 'train/batch_loss': 0.6166229844093323, 'train/epoch_loss': 0.5714027147914034}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.001}",lemon-sweep-20 -44,"{'train/epoch_acc': 0.6277641277641277, 'train/epoch_loss': 0.6722187732302879, 'epoch': 9, '_wandb': {'runtime': 330}, '_runtime': 331.60892701148987, 'test/recall': 0.7021276595744681, 'test/f1-score': 0.6470588235294118, 'train/batch_loss': 0.7205827236175537, '_step': 1039, '_timestamp': 1680622885.059607, 'test/epoch_acc': 0.6, 'test/precision': 0.6, 'test/epoch_loss': 0.6746161646313138}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",ancient-sweep-19 -45,"{'test/epoch_loss': 0.24883262103216516, 'train/epoch_acc': 0.9877149877149876, 'train/batch_loss': 0.015468262135982512, '_wandb': {'runtime': 347}, '_runtime': 348.9979507923126, '_timestamp': 1680622545.2735748, 'test/recall': 0.8695652173913043, 'test/f1-score': 0.898876404494382, 'test/epoch_acc': 0.9, 'test/precision': 0.9302325581395348, 'train/epoch_loss': 0.0466749508011656, '_step': 2059, 'epoch': 9}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.01}",smart-sweep-18 -46,"{'epoch': 9, '_runtime': 329.3028633594513, '_timestamp': 1680622188.8210304, 'test/epoch_loss': 0.2015038196825319, 'train/epoch_loss': 0.07856258183731457, '_step': 1039, 'test/recall': 0.8536585365853658, 'test/f1-score': 0.8974358974358975, 'test/epoch_acc': 0.9111111111111112, 'test/precision': 0.945945945945946, 'train/epoch_acc': 0.9815724815724816, 'train/batch_loss': 0.007225348148494959, '_wandb': {'runtime': 328}}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.003}",sleek-sweep-17 -47,"{'test/epoch_acc': 0.8333333333333334, 'train/epoch_acc': 0.828009828009828, 'train/epoch_loss': 0.5808350268101516, 'test/recall': 0.8301886792452831, 'epoch': 9, '_wandb': {'runtime': 321}, '_runtime': 323.3842430114746, '_timestamp': 1680621849.979658, 'test/f1-score': 0.8543689320388349, 'test/precision': 0.88, 'test/epoch_loss': 0.5843977000978258, '_step': 279, 'train/batch_loss': 0.6047794222831726}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.0001}",winter-sweep-16 -48,"{'epoch': 9, '_wandb': {'runtime': 346}, '_runtime': 347.8050694465637, 'test/recall': 0.85, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.85, '_step': 2059, 'test/f1-score': 0.85, 'test/epoch_loss': 0.5281610590923164, 'train/epoch_acc': 0.995085995085995, 'train/batch_loss': 0.001602485659532249, 'train/epoch_loss': 0.029015880939893934, '_timestamp': 1680621511.323635}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.1}",rare-sweep-15 -49,"{'_wandb': {'runtime': 346}, '_runtime': 347.7671456336975, '_timestamp': 1680621147.5604067, 'test/f1-score': 0.9135802469135802, 'test/epoch_acc': 0.9222222222222224, 'train/epoch_acc': 0.9864864864864864, '_step': 2059, 'test/recall': 0.8809523809523809, 'test/precision': 0.9487179487179488, 'test/epoch_loss': 0.22225395898438163, 'train/batch_loss': 0.010366588830947876, 'train/epoch_loss': 0.04606454834343147, 'epoch': 9}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.001}",stoic-sweep-14 -50,"{'_timestamp': 1680620790.920825, 'test/f1-score': 0.6585365853658537, 'train/epoch_acc': 0.6523341523341524, 'train/batch_loss': 0.6023905277252197, 'train/epoch_loss': 0.6673213337211703, '_step': 2059, '_wandb': {'runtime': 351}, '_runtime': 352.6435329914093, 'test/precision': 0.6428571428571429, 'test/epoch_loss': 0.661226307021247, 'epoch': 9, 'test/recall': 0.675, 'test/epoch_acc': 0.6888888888888889}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.0001}",glorious-sweep-13 -51,"{'_step': 149, '_wandb': {'runtime': 329}, 'test/recall': 0.9574468085106383, 'test/f1-score': 0.9782608695652174, 'test/epoch_acc': 0.977777777777778, 'test/precision': 1, 'train/epoch_acc': 1, 'epoch': 9, '_runtime': 330.7649688720703, '_timestamp': 1680620431.024078, 'test/epoch_loss': 0.1352142873737547, 'train/batch_loss': 0.004083937965333462, 'train/epoch_loss': 0.0071195896911716286}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.01}",chocolate-sweep-12 -52,"{'test/precision': 0.8085106382978723, 'train/epoch_loss': 0.5577488642652731, '_step': 149, 'epoch': 9, '_wandb': {'runtime': 328}, '_timestamp': 1680620092.0697718, 'test/f1-score': 0.8636363636363636, 'test/epoch_acc': 0.8666666666666667, '_runtime': 329.12984681129456, 'test/recall': 0.926829268292683, 'test/epoch_loss': 0.5375637359089321, 'train/epoch_acc': 0.800982800982801, 'train/batch_loss': 0.5299303531646729}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.0003}",glowing-sweep-11 -53,"{'_runtime': 324.3058567047119, 'test/recall': 0.7659574468085106, 'test/epoch_acc': 0.7555555555555555, 'test/precision': 0.7659574468085106, 'train/epoch_acc': 0.8611793611793611, 'train/epoch_loss': 0.46212616409072127, '_step': 279, 'epoch': 9, '_wandb': {'runtime': 322}, '_timestamp': 1680619755.0191748, 'test/f1-score': 0.7659574468085105, 'test/epoch_loss': 0.5337554746203952, 'train/batch_loss': 0.5281365513801575}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.003}",different-sweep-10 -54,"{'_runtime': 327.0705659389496, '_timestamp': 1680619423.656795, 'test/f1-score': 0.8602150537634408, 'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.7843137254901961, '_step': 279, 'epoch': 9, '_wandb': {'runtime': 325}, 'test/epoch_loss': 0.5470490535100301, 'train/epoch_acc': 0.8058968058968059, 'train/epoch_loss': 0.5580001385557564, 'test/recall': 0.9523809523809524, 'train/batch_loss': 0.6183260083198547}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.003}",lilac-sweep-9 -55,"{'train/epoch_loss': 0.46969629490990605, '_wandb': {'runtime': 327}, 'test/recall': 0.7551020408163265, 'test/epoch_acc': 0.788888888888889, 'test/precision': 0.8409090909090909, 'test/f1-score': 0.7956989247311828, 'test/epoch_loss': 0.46168507006433274, 'train/epoch_acc': 0.773955773955774, 'train/batch_loss': 0.6300776600837708, '_step': 529, 'epoch': 9, '_runtime': 328.68579959869385, '_timestamp': 1680619089.5332966}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.1}",crimson-sweep-8 -56,"{'_step': 2059, '_runtime': 350.2308712005615, '_timestamp': 1680618753.2361271, 'test/epoch_loss': 0.44089303129391433, 'train/epoch_acc': 0.9938574938574938, 'train/batch_loss': 0.011611333116889, 'epoch': 9, '_wandb': {'runtime': 349}, 'test/recall': 0.8181818181818182, 'test/f1-score': 0.8737864077669902, 'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.9375, 'train/epoch_loss': 0.02176519967463292}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.003}",still-sweep-7 -57,"{'test/f1-score': 0.8607594936708861, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.85, 'train/epoch_acc': 0.9938574938574938, 'train/epoch_loss': 0.02099113287724536, '_wandb': {'runtime': 333}, 'test/recall': 0.8717948717948718, '_runtime': 334.69481587409973, '_timestamp': 1680618396.0194488, 'test/epoch_loss': 0.24035142682841976, 'train/batch_loss': 0.030084805563092232, '_step': 1039, 'epoch': 9}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.01}",charmed-sweep-6 -58,"{'epoch': 9, '_timestamp': 1680618051.044084, 'test/recall': 0.8780487804878049, 'test/f1-score': 0.8674698795180722, 'test/precision': 0.8571428571428571, 'test/epoch_loss': 0.5385394818252988, 'train/epoch_acc': 0.9963144963144964, 'train/batch_loss': 0.001848929445259273, '_step': 1039, '_wandb': {'runtime': 335}, '_runtime': 336.1621870994568, 'test/epoch_acc': 0.8777777777777778, 'train/epoch_loss': 0.010693324584853135}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0003}",restful-sweep-5 -59,"{'_step': 149, 'epoch': 9, 'test/recall': 0.8409090909090909, 'test/epoch_acc': 0.8444444444444444, 'test/epoch_loss': 0.6238909363746643, 'train/epoch_loss': 0.004462716538065481, '_wandb': {'runtime': 333}, '_runtime': 334.4848310947418, '_timestamp': 1680617708.075962, 'test/f1-score': 0.8409090909090909, 'test/precision': 0.8409090909090909, 'train/epoch_acc': 1, 'train/batch_loss': 0.004928763955831528}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",proud-sweep-4 -60,"{'train/epoch_acc': 0.5626535626535626, 'train/batch_loss': 0.6750851273536682, '_step': 149, '_wandb': {'runtime': 337}, '_timestamp': 1680617365.2791553, 'test/recall': 0.75, 'test/epoch_acc': 0.34444444444444444, 'test/epoch_loss': 0.7233364171451993, 'train/epoch_loss': 0.6796711432845938, 'epoch': 9, '_runtime': 338.4922821521759, 'test/f1-score': 0.4778761061946903, 'test/precision': 0.35064935064935066}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.0001}",visionary-sweep-3 -61,"{'_wandb': {'runtime': 132}, 'test/recall': 1, 'test/f1-score': 0.59375, 'test/epoch_acc': 0.4222222222222222, 'test/precision': 0.4222222222222222, 'train/batch_loss': 1.2695436477661133, '_step': 110, 'epoch': 3, '_runtime': 129.48883533477783, '_timestamp': 1680617007.4126654, 'test/epoch_loss': 109.22879723442924, 'train/epoch_acc': 0.5147420147420148, 'train/epoch_loss': 3.225923076601521}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.1}",splendid-sweep-2 -62,"{'_runtime': 373.84231185913086, 'test/recall': 0.8636363636363636, 'train/batch_loss': 0.563504695892334, 'test/epoch_loss': 0.6018742865986294, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 372}, '_timestamp': 1680616870.0621138, 'test/f1-score': 0.8172043010752688, 'test/epoch_acc': 0.8111111111111111, 'test/precision': 0.7755102040816326, 'train/epoch_acc': 0.7727272727272727, 'train/epoch_loss': 0.5949591096554693}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0001}",snowy-sweep-1 -63,"{'test/epoch_acc': 0.6333333333333333, 'test/precision': 0.625, 'train/epoch_acc': 0.5552825552825553, 'train/batch_loss': 0.7118003964424133, 'epoch': 9, '_timestamp': 1678798635.5359335, 'test/f1-score': 0.6024096385542168, 'test/recall': 0.5813953488372093, 'test/epoch_loss': 0.6787986318270366, 'train/epoch_loss': 0.684732110699506, '_step': 529, '_wandb': {'runtime': 327}, '_runtime': 333.6077947616577}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.0001}",comic-sweep-38 -64,"{'_step': 149, 'epoch': 9, '_timestamp': 1678798288.876002, 'test/recall': 1, 'test/epoch_loss': 0.5120628664890925, 'train/epoch_acc': 1, 'train/epoch_loss': 0.001254009526264133, '_wandb': {'runtime': 337}, '_runtime': 342.7867271900177, 'test/f1-score': 0.888888888888889, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.8, 'train/batch_loss': 0.0015535189304500818}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",magic-sweep-37 -65,"{'test/recall': 0.6341463414634146, 'test/epoch_acc': 0.6444444444444445, 'test/precision': 0.6046511627906976, 'train/epoch_acc': 0.6572481572481572, 'train/epoch_loss': 0.659313001562395, '_step': 279, 'epoch': 9, '_wandb': {'runtime': 332}, 'test/epoch_loss': 0.6593369828330146, 'train/batch_loss': 0.6705241203308105, '_runtime': 338.4290623664856, '_timestamp': 1678797929.8979273, 'test/f1-score': 0.6190476190476191}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 32, 'learning_rate': 0.0003}",azure-sweep-36 -66,"{'_step': 1039, 'test/precision': 0.9591836734693876, 'test/epoch_loss': 0.5167779392666287, 'train/epoch_acc': 0.7911547911547911, 'epoch': 9, '_wandb': {'runtime': 343}, '_runtime': 349.1018385887146, '_timestamp': 1678797575.4461255, 'test/recall': 0.8703703703703703, 'test/f1-score': 0.912621359223301, 'test/epoch_acc': 0.9, 'train/batch_loss': 0.5475739240646362, 'train/epoch_loss': 0.542006236622316}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.001}",easy-sweep-35 -67,"{'_wandb': {'runtime': 362}, '_timestamp': 1678797212.2311337, 'test/f1-score': 0.8611111111111112, 'test/precision': 0.8611111111111112, 'test/epoch_loss': 0.27850865055532065, 'train/epoch_acc': 0.9987714987714988, 'train/batch_loss': 4.9947026127483696e-05, '_step': 2059, 'train/epoch_loss': 0.012833298822080874, '_runtime': 367.9372293949127, 'test/recall': 0.8611111111111112, 'test/epoch_acc': 0.888888888888889, 'epoch': 9}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.003}",usual-sweep-34 -68,"{'test/epoch_loss': 0.6554473309053315, 'epoch': 9, '_wandb': {'runtime': 330}, '_runtime': 335.99687933921814, '_timestamp': 1678796827.8409674, 'test/recall': 0.9791666666666666, 'test/f1-score': 0.903846153846154, 'test/epoch_acc': 0.888888888888889, 'train/epoch_acc': 0.9742014742014742, 'train/batch_loss': 0.17918632924556732, 'train/epoch_loss': 0.07036763163974523, '_step': 529, 'test/precision': 0.8392857142857143}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.0003}",polar-sweep-33 -69,"{'test/f1-score': 0.7356321839080459, 'test/epoch_acc': 0.7444444444444445, 'train/epoch_acc': 0.8660933660933661, 'train/epoch_loss': 0.47513497564072105, 'epoch': 9, '_runtime': 336.63737440109253, '_timestamp': 1678796468.9253614, 'test/recall': 0.8648648648648649, 'test/precision': 0.64, 'test/epoch_loss': 0.5271965821584066, 'train/batch_loss': 0.4695126414299011, '_step': 149, '_wandb': {'runtime': 330}}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.001}",still-sweep-32 -70,"{'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9428571428571428, 'test/epoch_loss': 0.2378266812198692, 'train/batch_loss': 0.711412787437439, '_step': 2059, '_wandb': {'runtime': 372}, '_runtime': 378.4032835960388, '_timestamp': 1678796117.3062005, 'test/recall': 0.8048780487804879, 'test/f1-score': 0.868421052631579, 'train/epoch_acc': 0.9705159705159704, 'train/epoch_loss': 0.09577267487700432, 'epoch': 9}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.001}",misty-sweep-31 -71,"{'_wandb': {'runtime': 333}, '_runtime': 336.8808288574219, '_timestamp': 1678795725.918603, 'test/f1-score': 0.8636363636363636, 'train/epoch_acc': 0.9926289926289926, 'train/epoch_loss': 0.05967479737370254, '_step': 529, 'epoch': 9, 'test/recall': 0.8260869565217391, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.9047619047619048, 'test/epoch_loss': 0.27924135790930854, 'train/batch_loss': 0.04936826974153519}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.001}",flowing-sweep-30 -72,"{'_runtime': 339.73244285583496, '_timestamp': 1678795319.518895, 'test/recall': 0.851063829787234, 'test/f1-score': 0.898876404494382, 'test/epoch_acc': 0.9, 'test/precision': 0.9523809523809524, '_step': 279, 'epoch': 9, 'train/epoch_acc': 0.8722358722358722, 'train/epoch_loss': 0.3784469199122024, 'train/batch_loss': 0.4592914581298828, '_wandb': {'runtime': 336}, 'test/epoch_loss': 0.37525106337335373}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.001}",deep-sweep-28 -73,"{'test/recall': 0.625, 'test/f1-score': 0.6849315068493151, 'train/epoch_acc': 0.7899262899262899, 'train/batch_loss': 0.6763702630996704, 'train/epoch_loss': 0.5319552311733255, '_wandb': {'runtime': 377}, '_runtime': 381.0768678188324, '_timestamp': 1678794965.2675128, 'test/precision': 0.7575757575757576, 'test/epoch_loss': 0.5484810524516636, '_step': 2059, 'epoch': 9, 'test/epoch_acc': 0.7444444444444445}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.0001}",glorious-sweep-27 -74,"{'epoch': 9, '_wandb': {'runtime': 334}, 'test/epoch_acc': 0.7555555555555555, 'train/batch_loss': 0.4391788542270661, '_step': 529, '_timestamp': 1678794572.9156363, 'test/recall': 0.813953488372093, 'test/f1-score': 0.7608695652173914, 'test/precision': 0.7142857142857143, 'test/epoch_loss': 0.5729872869120703, 'train/epoch_acc': 0.8968058968058967, 'train/epoch_loss': 0.2699748155379471, '_runtime': 338.11463618278503}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.1}",stoic-sweep-26 -75,"{'_step': 2059, 'epoch': 9, '_wandb': {'runtime': 377}, '_timestamp': 1678794222.848524, 'test/precision': 0.8478260869565217, 'train/epoch_acc': 0.9877149877149876, 'train/batch_loss': 0.025906365364789963, '_runtime': 380.8983037471771, 'test/recall': 0.8863636363636364, 'test/f1-score': 0.8666666666666666, 'test/epoch_acc': 0.8666666666666667, 'test/epoch_loss': 0.3083995895563728, 'train/epoch_loss': 0.04955068614813831}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.01}",vibrant-sweep-25 -76,"{'train/epoch_acc': 1, 'train/batch_loss': 0.0010389955714344978, '_step': 149, 'epoch': 9, '_timestamp': 1678793829.5489533, 'test/recall': 0.9215686274509804, 'test/f1-score': 0.8867924528301887, 'test/precision': 0.8545454545454545, '_wandb': {'runtime': 340}, '_runtime': 343.4739582538605, 'test/epoch_acc': 0.8666666666666667, 'test/epoch_loss': 0.7976957665549385, 'train/epoch_loss': 0.002287556243378495}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",valiant-sweep-24 -77,"{'epoch': 9, 'test/precision': 0.8666666666666667, 'train/epoch_acc': 0.8857493857493858, 'train/epoch_loss': 0.3862068348493272, '_step': 149, '_runtime': 344.0598545074463, '_timestamp': 1678793464.5180786, 'test/recall': 0.8478260869565217, 'test/f1-score': 0.8571428571428571, 'test/epoch_acc': 0.8555555555555556, 'test/epoch_loss': 0.4112878143787384, 'train/batch_loss': 0.3762533664703369, '_wandb': {'runtime': 340}}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.001}",polished-sweep-23 -78,"{'train/epoch_acc': 0.6756756756756757, 'train/batch_loss': 0.7007869482040405, 'train/epoch_loss': 0.6115244123215171, '_step': 529, 'epoch': 9, '_runtime': 339.41979336738586, '_timestamp': 1678793108.7606344, 'test/epoch_loss': 0.6097042110231188, '_wandb': {'runtime': 336}, 'test/recall': 0.8837209302325582, 'test/f1-score': 0.7102803738317758, 'test/epoch_acc': 0.6555555555555556, 'test/precision': 0.59375}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.01}",clear-sweep-22 -79,"{'_wandb': {'runtime': 377}, '_runtime': 381.0477261543274, '_timestamp': 1678792758.596286, 'test/recall': 0.8157894736842105, 'test/precision': 0.9393939393939394, 'train/epoch_acc': 0.9815724815724816, 'epoch': 9, 'test/f1-score': 0.8732394366197183, 'test/epoch_acc': 0.9, 'test/epoch_loss': 0.23743902287549443, 'train/batch_loss': 0.5061427354812622, 'train/epoch_loss': 0.07462231436439994, '_step': 2059}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",sage-sweep-21 -80,"{'test/precision': 0.902439024390244, 'train/batch_loss': 0.24579545855522156, 'train/epoch_loss': 0.12095561367287976, '_step': 529, 'epoch': 9, '_runtime': 335.3731348514557, 'test/epoch_acc': 0.8555555555555556, 'test/epoch_loss': 0.28035063776705, 'train/epoch_acc': 0.9791154791154792, '_wandb': {'runtime': 331}, '_timestamp': 1678792364.5292609, 'test/recall': 0.8043478260869565, 'test/f1-score': 0.8505747126436782}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.001}",olive-sweep-20 -81,"{'_step': 1039, 'epoch': 9, '_runtime': 340.5063774585724, 'test/precision': 0.9534883720930232, 'train/epoch_acc': 0.995085995085995, 'train/batch_loss': 0.0077079650945961475, 'train/epoch_loss': 0.018187719287696302, '_wandb': {'runtime': 337}, '_timestamp': 1678792015.2579195, 'test/recall': 0.9111111111111112, 'test/f1-score': 0.931818181818182, 'test/epoch_acc': 0.9333333333333332, 'test/epoch_loss': 0.17397157057291932}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",autumn-sweep-19 -82,"{'train/batch_loss': 0.4317986071109772, '_step': 1039, 'epoch': 9, 'test/recall': 0.8205128205128205, 'test/f1-score': 0.7804878048780488, 'test/epoch_acc': 0.8, 'test/epoch_loss': 0.4940012666914198, 'train/epoch_acc': 0.8218673218673218, 'train/epoch_loss': 0.4784781006542412, '_wandb': {'runtime': 344}, '_runtime': 347.40152740478516, '_timestamp': 1678791661.9692383, 'test/precision': 0.7441860465116279}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0001}",crisp-sweep-18 -83,"{'test/recall': 0.9090909090909092, 'test/f1-score': 0.9090909090909092, 'test/epoch_acc': 0.9111111111111112, 'test/precision': 0.9090909090909092, 'test/epoch_loss': 0.19624250796106127, '_step': 279, '_wandb': {'runtime': 335}, '_timestamp': 1678791236.6172178, 'train/epoch_acc': 0.9828009828009828, 'train/batch_loss': 0.15555259585380554, 'epoch': 9, '_runtime': 337.956387758255, 'train/epoch_loss': 0.08830470366618558}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.003}",deep-sweep-16 -84,"{'test/epoch_acc': 0.7333333333333334, 'test/precision': 0.7049180327868853, 'test/epoch_loss': 0.6228035251299541, 'train/batch_loss': 0.6377201080322266, '_runtime': 334.2993712425232, '_timestamp': 1678790886.952144, 'test/f1-score': 0.7818181818181819, 'test/recall': 0.8775510204081632, 'train/epoch_acc': 0.7493857493857494, 'train/epoch_loss': 0.6127705679478751, '_step': 279, 'epoch': 9, '_wandb': {'runtime': 331}}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.0003}",confused-sweep-15 -85,"{'_step': 529, '_wandb': {'runtime': 342}, '_timestamp': 1678790542.286384, 'test/precision': 0.7192982456140351, 'train/epoch_acc': 0.8415233415233415, 'train/batch_loss': 0.1340156048536301, 'train/epoch_loss': 0.3545121966840594, 'epoch': 9, '_runtime': 345.0617377758026, 'test/recall': 0.8541666666666666, 'test/f1-score': 0.7809523809523811, 'test/epoch_acc': 0.7444444444444445, 'test/epoch_loss': 0.6144241677390204}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.1}",ancient-sweep-14 -86,"{'train/epoch_acc': 0.7457002457002457, '_step': 529, 'epoch': 9, '_wandb': {'runtime': 344}, '_runtime': 346.86587953567505, '_timestamp': 1678790183.7024884, 'test/epoch_acc': 0.7222222222222222, 'test/recall': 0.782608695652174, 'test/f1-score': 0.7422680412371134, 'test/precision': 0.7058823529411765, 'test/epoch_loss': 0.6392196734746297, 'train/batch_loss': 0.6280461549758911, 'train/epoch_loss': 0.6374555861334836}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.0003}",revived-sweep-13 -87,"{'train/epoch_acc': 0.9987714987714988, 'train/batch_loss': 0.04231283441185951, '_step': 149, 'test/f1-score': 0.9010989010989012, 'test/epoch_acc': 0.9, 'test/epoch_loss': 0.24115624560250176, 'test/recall': 0.9111111111111112, 'test/precision': 0.8913043478260869, 'train/epoch_loss': 0.02119528235872196, 'epoch': 9, '_wandb': {'runtime': 348}, '_runtime': 350.9660577774048, '_timestamp': 1678789826.0085878}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.0003}",swift-sweep-12 -88,"{'_step': 2059, '_runtime': 397.1281135082245, 'test/recall': 0.8333333333333334, 'test/f1-score': 0.7894736842105262, 'test/epoch_acc': 0.8222222222222223, 'test/precision': 0.75, 'test/epoch_loss': 0.5769641452365452, 'epoch': 9, '_wandb': {'runtime': 393}, '_timestamp': 1678789464.8040044, 'train/epoch_acc': 0.757985257985258, 'train/batch_loss': 0.6127220392227173, 'train/epoch_loss': 0.5840219159676929}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.0001}",rosy-sweep-11 -89,"{'train/epoch_acc': 0.9938574938574938, '_wandb': {'runtime': 352}, '_runtime': 355.46944642066956, '_timestamp': 1678789057.5684297, 'test/recall': 0.8076923076923077, 'test/f1-score': 0.8842105263157894, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.9767441860465116, 'train/epoch_loss': 0.06967324825777176, '_step': 149, 'epoch': 9, 'test/epoch_loss': 0.2696530275874668, 'train/batch_loss': 0.11590295284986496}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.003}",deft-sweep-10 -90,"{'train/epoch_loss': 0.6400203514450599, '_runtime': 342.3234579563141, '_timestamp': 1678788683.006292, 'test/f1-score': 0.7959183673469388, 'test/precision': 0.7090909090909091, 'test/epoch_loss': 0.6248881856600443, 'train/epoch_acc': 0.7014742014742015, 'train/batch_loss': 0.5820533037185669, '_step': 279, 'epoch': 9, '_wandb': {'runtime': 340}, 'test/recall': 0.9069767441860463, 'test/epoch_acc': 0.7777777777777778}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.0001}",atomic-sweep-9 -91,"{'train/epoch_acc': 0.7432432432432432, 'train/batch_loss': 0.3377891480922699, 'epoch': 9, '_wandb': {'runtime': 351}, 'test/epoch_acc': 0.6555555555555556, 'test/recall': 0.7954545454545454, 'test/f1-score': 0.693069306930693, 'test/precision': 0.6140350877192983, 'test/epoch_loss': 0.6175267219543457, 'train/epoch_loss': 0.5329857344855841, '_step': 1039, '_runtime': 353.4816448688507, '_timestamp': 1678788328.1196988}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.1}",cosmic-sweep-8 -92,"{'_timestamp': 1678787961.3400052, 'test/recall': 0.8536585365853658, 'test/f1-score': 0.6999999999999998, 'test/epoch_acc': 0.6666666666666667, 'test/precision': 0.5932203389830508, '_step': 2059, '_wandb': {'runtime': 390}, '_runtime': 392.4064960479736, 'train/batch_loss': 0.17200787365436554, 'train/epoch_loss': 0.5631518808058498, 'epoch': 9, 'test/epoch_loss': 0.6419186863634322, 'train/epoch_acc': 0.7186732186732187}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.01}",lunar-sweep-7 -93,"{'test/epoch_acc': 0.9, 'test/precision': 0.9090909090909092, 'test/epoch_loss': 0.24278527200222016, 'train/epoch_acc': 0.9975429975429976, 'train/epoch_loss': 0.03237721893286529, 'epoch': 9, '_timestamp': 1678787557.992564, 'test/f1-score': 0.8988764044943819, 'test/recall': 0.8888888888888888, 'train/batch_loss': 0.04353119805455208, '_step': 529, '_wandb': {'runtime': 343}, '_runtime': 345.9260220527649}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.01}",zany-sweep-6 -94,"{'test/precision': 0.9767441860465116, 'test/epoch_loss': 0.32114719019995797, '_step': 529, '_wandb': {'runtime': 344}, '_runtime': 346.5414688587189, '_timestamp': 1678787192.9954038, 'test/recall': 0.8571428571428571, 'test/epoch_acc': 0.9111111111111112, 'train/batch_loss': 0.21811823546886444, 'train/epoch_loss': 0.2347587838000103, 'epoch': 9, 'test/f1-score': 0.9130434782608696, 'train/epoch_acc': 0.9336609336609336}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.001}",absurd-sweep-5 -95,"{'_wandb': {'runtime': 344}, '_timestamp': 1678786835.7254088, 'test/epoch_loss': 0.22436124781767527, '_step': 279, 'epoch': 9, '_runtime': 345.9469966888428, 'test/recall': 0.8461538461538461, 'test/f1-score': 0.8799999999999999, 'test/epoch_acc': 0.9, 'test/precision': 0.9166666666666666, 'train/epoch_acc': 1, 'train/batch_loss': 0.06225413456559181, 'train/epoch_loss': 0.02646600444977348}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.003}",radiant-sweep-4 -96,"{'test/epoch_acc': 0.8111111111111111, 'test/precision': 0.7446808510638298, 'train/epoch_loss': 0.45506354690476775, 'epoch': 9, '_wandb': {'runtime': 353}, '_runtime': 355.012455701828, '_timestamp': 1678786479.0865147, 'test/recall': 0.875, 'test/f1-score': 0.8045977011494252, 'test/epoch_loss': 0.4459853092829386, 'train/epoch_acc': 0.8341523341523341, '_step': 1039, 'train/batch_loss': 0.5456343293190002}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0003}",sandy-sweep-3 -97,"{'train/batch_loss': 0.026765840128064156, '_step': 529, '_runtime': 344.01046657562256, 'test/epoch_loss': 0.31915653232071134, 'train/epoch_acc': 0.9926289926289926, 'test/f1-score': 0.8450704225352113, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.9090909090909092, 'train/epoch_loss': 0.045762457081668206, 'epoch': 9, '_wandb': {'runtime': 342}, '_timestamp': 1678786112.108075, 'test/recall': 0.7894736842105263}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.01}",pretty-sweep-2 -98,"{'test/f1-score': 0.379746835443038, 'test/precision': 0.42857142857142855, 'test/epoch_loss': 0.7006691349877252, 'train/epoch_acc': 0.4815724815724816, 'train/epoch_loss': 0.7011552195291262, 'epoch': 9, '_wandb': {'runtime': 357}, '_runtime': 359.66486382484436, '_timestamp': 1678785758.376562, 'test/recall': 0.3409090909090909, 'test/epoch_acc': 0.45555555555555555, 'train/batch_loss': 0.7150550484657288, '_step': 149}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.0003}",rose-sweep-1 -99,"{'_timestamp': 1678785370.5563953, 'test/recall': 0.9090909090909092, 'test/f1-score': 0.8791208791208791, 'test/precision': 0.851063829787234, 'test/epoch_loss': 0.5091631063156657, '_step': 74, '_wandb': {'runtime': 181}, '_runtime': 180.05384421348572, 'train/epoch_acc': 0.995085995085995, 'train/batch_loss': 0.0016211483161896467, 'train/epoch_loss': 0.023103852647056927, 'epoch': 4, 'test/epoch_acc': 0.8777777777777778}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.1}",cosmic-sweep-2 -100,"{'test/recall': 0.9166666666666666, 'test/precision': 0.9166666666666666, 'train/batch_loss': 0.0724378228187561, '_step': 279, 'epoch': 9, '_wandb': {'runtime': 344}, '_timestamp': 1678743707.9633043, 'train/epoch_acc': 0.9828009828009828, 'train/epoch_loss': 0.11044558714297244, '_runtime': 347.11417746543884, 'test/f1-score': 0.9166666666666666, 'test/epoch_acc': 0.9111111111111112, 'test/epoch_loss': 0.2461573594146305}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.003}",ethereal-sweep-14 -101,"{'_step': 149, 'epoch': 9, '_timestamp': 1678743349.8008895, 'test/epoch_acc': 0.9333333333333332, 'test/precision': 0.9545454545454546, 'test/epoch_loss': 0.16449517243438297, 'train/batch_loss': 0.05796322599053383, '_wandb': {'runtime': 346}, '_runtime': 349.69085454940796, 'test/recall': 0.9130434782608696, 'test/f1-score': 0.9333333333333332, 'train/epoch_acc': 1, 'train/epoch_loss': 0.043383844352398226}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.003}",northern-sweep-13 -102,"{'test/epoch_acc': 0.788888888888889, '_wandb': {'runtime': 559}, '_runtime': 560.5539684295654, '_timestamp': 1678743376.8770983, 'test/recall': 0.85, 'test/f1-score': 0.7816091954022989, 'test/precision': 0.723404255319149, 'test/epoch_loss': 0.5102662573258082, 'train/epoch_acc': 0.8255528255528255, '_step': 2059, 'epoch': 9, 'train/batch_loss': 0.42048144340515137, 'train/epoch_loss': 0.40511614706651}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.001}",faithful-sweep-12 -103,"{'_wandb': {'runtime': 355}, 'test/epoch_acc': 0.8666666666666667, 'train/epoch_acc': 0.8955773955773956, 'train/epoch_loss': 0.27216847456936755, 'test/epoch_loss': 0.3378064884079827, '_step': 1039, 'epoch': 9, '_runtime': 358.3485324382782, '_timestamp': 1678742986.9751594, 'test/recall': 0.7777777777777778, 'test/f1-score': 0.8536585365853658, 'test/precision': 0.945945945945946, 'train/batch_loss': 0.5923706889152527}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.0003}",zany-sweep-12 -104,"{'test/recall': 0.9166666666666666, 'test/f1-score': 0.7415730337078651, 'test/epoch_acc': 0.7444444444444445, 'test/epoch_loss': 0.615033131175571, 'train/batch_loss': 0.6421169638633728, '_step': 1039, '_wandb': {'runtime': 358}, '_runtime': 362.78373169898987, '_timestamp': 1678742619.1453717, 'test/precision': 0.6226415094339622, 'train/epoch_acc': 0.7481572481572482, 'train/epoch_loss': 0.613342459283824, 'epoch': 9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",ruby-sweep-11 -105,"{'train/epoch_loss': 0.09796744051757808, '_step': 2059, 'epoch': 9, '_runtime': 531.6082515716553, '_timestamp': 1678742643.2100165, 'test/recall': 0.8076923076923077, 'test/f1-score': 0.875, 'train/epoch_acc': 0.9656019656019657, '_wandb': {'runtime': 531}, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.9545454545454546, 'test/epoch_loss': 0.3795760815549228, 'train/batch_loss': 0.07699991017580032}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.001}",fallen-sweep-10 -106,"{'_step': 1039, '_wandb': {'runtime': 359}, 'test/epoch_loss': 0.2956610471010208, 'train/batch_loss': 0.1150113120675087, 'epoch': 9, '_runtime': 361.6978232860565, '_timestamp': 1678742242.6362762, 'test/recall': 0.8076923076923077, 'test/f1-score': 0.875, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.9545454545454546, 'train/epoch_acc': 0.9103194103194104, 'train/epoch_loss': 0.24495647845821825}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.003}",rare-sweep-10 -107,"{'train/epoch_loss': 0.310643073711407, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 471}, '_runtime': 471.6707801818848, 'train/epoch_acc': 0.8869778869778869, 'train/batch_loss': 0.14859537780284882, '_timestamp': 1678742103.7627492, 'test/recall': 0.7906976744186046, 'test/f1-score': 0.8717948717948717, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9714285714285714, 'test/epoch_loss': 0.26282389760017394}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.003}",major-sweep-9 -108,"{'test/recall': 0.6976744186046512, 'test/f1-score': 0.6451612903225806, 'test/epoch_acc': 0.6333333333333333, 'test/precision': 0.6, 'epoch': 9, '_wandb': {'runtime': 341}, '_runtime': 344.49258494377136, '_timestamp': 1678741869.828495, 'test/epoch_loss': 0.6676742302046882, 'train/epoch_acc': 0.5921375921375921, '_step': 279, 'train/batch_loss': 0.6228023767471313, 'train/epoch_loss': 0.6766868150204932}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.0001}",spring-sweep-9 -109,"{'_runtime': 452.4322986602783, '_timestamp': 1678741623.0662856, 'test/recall': 0.9318181818181818, 'test/f1-score': 0.9213483146067416, 'test/precision': 0.9111111111111112, 'test/epoch_loss': 0.16872049139605627, 'train/batch_loss': 0.0022799931466579437, '_step': 1039, 'train/epoch_loss': 0.02303326028314504, '_wandb': {'runtime': 451}, 'test/epoch_acc': 0.9222222222222224, 'train/epoch_acc': 0.9987714987714988, 'epoch': 9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",elated-sweep-8 -110,"{'_runtime': 345.3405177593231, '_timestamp': 1678741511.9070578, 'test/epoch_acc': 0.9555555555555556, 'test/precision': 0.9761904761904762, 'test/epoch_loss': 0.2148759490913815, 'train/epoch_acc': 0.9606879606879608, 'train/batch_loss': 0.11643347889184952, 'epoch': 9, 'train/epoch_loss': 0.1359616077759049, '_wandb': {'runtime': 342}, 'test/recall': 0.9318181818181818, 'test/f1-score': 0.9534883720930232, '_step': 149}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.003}",hardy-sweep-8 -111,"{'_step': 279, 'test/epoch_loss': 0.2181672462158733, 'train/epoch_acc': 1, 'train/batch_loss': 0.042314428836107254, 'test/recall': 0.8048780487804879, 'test/f1-score': 0.868421052631579, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9428571428571428, 'epoch': 9, '_wandb': {'runtime': 342}, '_runtime': 345.1732180118561, '_timestamp': 1678741156.130327, 'train/epoch_loss': 0.008645273717600824}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.1}",sweepy-sweep-7 -112,"{'train/batch_loss': 0.3791900873184204, '_step': 1039, '_wandb': {'runtime': 453}, '_runtime': 454.0593776702881, 'test/recall': 0.6341463414634146, 'test/precision': 0.8387096774193549, 'test/epoch_loss': 0.4768455002042982, 'train/epoch_acc': 0.8292383292383292, 'epoch': 9, '_timestamp': 1678741159.4683807, 'test/f1-score': 0.7222222222222222, 'test/epoch_acc': 0.7777777777777778, 'train/epoch_loss': 0.45283343838825274}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0001}",glorious-sweep-7 -113,"{'test/epoch_acc': 0.9333333333333332, 'test/precision': 0.9333333333333332, 'train/batch_loss': 0.001889266073703766, 'train/epoch_loss': 0.0030514685945077376, 'epoch': 9, '_timestamp': 1678740798.1400597, '_runtime': 348.53755164146423, 'test/recall': 0.9333333333333332, 'test/f1-score': 0.9333333333333332, 'test/epoch_loss': 0.1931780371401045, 'train/epoch_acc': 1, '_step': 149, '_wandb': {'runtime': 346}}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.01}",rural-sweep-6 -114,"{'_step': 2059, 'epoch': 9, 'test/f1-score': 0.896551724137931, 'test/precision': 0.9285714285714286, '_wandb': {'runtime': 560}, '_runtime': 560.7404127120972, '_timestamp': 1678740696.0305526, 'test/recall': 0.8666666666666667, 'test/epoch_acc': 0.9, 'test/epoch_loss': 0.22745563416845269, 'train/epoch_acc': 0.984029484029484, 'train/batch_loss': 0.1385842263698578, 'train/epoch_loss': 0.07075482415817952}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",smart-sweep-6 -115,"{'epoch': 9, '_wandb': {'runtime': 342}, '_runtime': 345.5716743469238, 'test/epoch_acc': 0.8111111111111111, 'test/precision': 0.8636363636363636, 'train/batch_loss': 0.44296249747276306, 'train/epoch_loss': 0.5191410552225183, '_step': 529, '_timestamp': 1678740438.4959724, 'test/recall': 0.7755102040816326, 'test/f1-score': 0.8172043010752688, 'test/epoch_loss': 0.507676590151257, 'train/epoch_acc': 0.7616707616707616}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.1}",giddy-sweep-5 -116,"{'_wandb': {'runtime': 342}, '_runtime': 345.28623247146606, 'test/f1-score': 0.6842105263157895, 'train/epoch_acc': 0.8538083538083537, 'train/batch_loss': 0.4066888689994812, 'test/precision': 0.7027027027027027, 'test/epoch_loss': 0.6657861550649007, 'train/epoch_loss': 0.32492415251837314, '_step': 529, 'epoch': 9, '_timestamp': 1678740073.5443084, 'test/recall': 0.6666666666666666, 'test/epoch_acc': 0.7333333333333334}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.1}",lilac-sweep-4 -117,"{'test/recall': 0.8367346938775511, 'test/f1-score': 0.8913043478260869, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9534883720930232, 'train/epoch_acc': 0.9803439803439804, 'train/batch_loss': 0.01167443674057722, '_step': 1039, 'epoch': 9, '_timestamp': 1678740126.212114, 'test/epoch_loss': 0.2600655794143677, 'train/epoch_loss': 0.08152788232426166, '_wandb': {'runtime': 454}, '_runtime': 454.98564982414246}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.001}",hearty-sweep-5 -118,"{'epoch': 9, '_wandb': {'runtime': 354}, '_runtime': 356.9382667541504, 'test/epoch_acc': 0.788888888888889, 'train/epoch_loss': 0.5079173609724209, '_step': 1039, '_timestamp': 1678739717.8250418, 'test/recall': 0.875, 'test/f1-score': 0.7865168539325842, 'test/precision': 0.7142857142857143, 'test/epoch_loss': 0.4899995631641812, 'train/epoch_acc': 0.8144963144963144, 'train/batch_loss': 0.6180618405342102}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.0001}",silvery-sweep-3 -119,"{'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9142857142857144, 'train/batch_loss': 0.2711101472377777, 'train/epoch_loss': 0.28549219298128414, '_wandb': {'runtime': 453}, '_runtime': 454.2519624233246, '_timestamp': 1678739662.5458224, 'test/f1-score': 0.8648648648648648, 'test/epoch_loss': 0.3028925802972582, 'train/epoch_acc': 0.8968058968058967, '_step': 1039, 'epoch': 9, 'test/recall': 0.8205128205128205}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.0003}",dulcet-sweep-4 -120,"{'_timestamp': 1678739351.1315958, 'test/f1-score': 0.6451612903225806, 'test/epoch_acc': 0.6333333333333333, 'test/epoch_loss': 0.6651701913939582, 'train/epoch_acc': 0.6928746928746928, 'train/batch_loss': 0.6685948967933655, '_step': 529, 'epoch': 9, 'test/recall': 0.7894736842105263, 'test/precision': 0.5454545454545454, 'train/epoch_loss': 0.6479796424544707, '_wandb': {'runtime': 341}, '_runtime': 343.88807487487793}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.001}",glamorous-sweep-2 -121,"{'train/batch_loss': 0.6510805487632751, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 469}, 'test/f1-score': 0.7608695652173914, 'test/epoch_loss': 0.6144020875295003, 'train/epoch_acc': 0.7542997542997543, '_runtime': 469.65283608436584, '_timestamp': 1678739200.083605, 'test/recall': 0.875, 'test/epoch_acc': 0.7555555555555555, 'test/precision': 0.6730769230769231, 'train/epoch_loss': 0.6267796501480684}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",hopeful-sweep-3 -122,"{'_wandb': {'runtime': 353}, '_timestamp': 1678738994.027642, 'test/recall': 0.8409090909090909, 'test/precision': 0.8409090909090909, 'test/epoch_loss': 0.3028163850307465, 'train/batch_loss': 0.0980801358819008, '_step': 279, '_runtime': 357.5890119075775, 'test/f1-score': 0.8409090909090909, 'test/epoch_acc': 0.8444444444444444, 'train/epoch_acc': 0.9975429975429976, 'train/epoch_loss': 0.03763626415181805, 'epoch': 9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.003}",lunar-sweep-1 -123,"{'test/f1-score': 0.7157894736842105, 'test/precision': 0.5964912280701754, 'train/epoch_acc': 0.6658476658476659, '_step': 2059, '_runtime': 529.6096863746643, '_timestamp': 1678738720.9443874, 'test/epoch_acc': 0.7000000000000001, 'test/epoch_loss': 0.5541173484590318, 'train/batch_loss': 0.7896618843078613, 'train/epoch_loss': 0.618659178367118, 'epoch': 9, '_wandb': {'runtime': 529}, 'test/recall': 0.8947368421052632}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.1}",stoic-sweep-2 -124,"{'test/recall': 0.6578947368421053, 'test/f1-score': 0.7575757575757577, 'test/epoch_acc': 0.8222222222222223, 'test/precision': 0.8928571428571429, 'test/epoch_loss': 0.4269479903909895, 'train/epoch_loss': 0.016353931551580648, '_step': 529, 'epoch': 9, '_wandb': {'runtime': 353}, '_runtime': 355.4184715747833, '_timestamp': 1678738469.1834886, 'train/epoch_acc': 0.995085995085995, 'train/batch_loss': 0.0014543599681928754}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.0001}",dark-sweep-2 -125,"{'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.8780487804878049, 'test/epoch_loss': 0.40116495291392007, '_step': 1039, 'epoch': 9, '_runtime': 384.5172441005707, '_timestamp': 1678738101.018471, 'test/f1-score': 0.8470588235294119, 'train/batch_loss': 0.31195682287216187, 'train/epoch_loss': 0.3623260387038716, '_wandb': {'runtime': 381}, 'test/recall': 0.8181818181818182, 'train/epoch_acc': 0.8673218673218673}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0003}",trim-sweep-1 -126,"{'train/batch_loss': 0.6653294563293457, '_wandb': {'runtime': 560}, 'test/recall': 0.9090909090909092, 'test/f1-score': 0.8602150537634408, 'test/precision': 0.8163265306122449, 'train/epoch_acc': 0.7567567567567567, 'test/epoch_loss': 0.6165981186760796, 'train/epoch_loss': 0.6107166709712448, '_step': 2059, 'epoch': 9, '_runtime': 560.7235152721405, '_timestamp': 1678738182.1088202, 'test/epoch_acc': 0.8555555555555556}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.001}",sparkling-sweep-1 -127,"{'_step': 555, '_wandb': {'runtime': 118}, '_runtime': 122.13349413871764, '_timestamp': 1678737059.0375042, 'test/recall': 0.6818181818181818, 'test/epoch_acc': 0.6555555555555556, 'test/precision': 0.6382978723404256, 'test/epoch_loss': 0.6796493821673923, 'train/epoch_acc': 0.5515970515970516, 'train/batch_loss': 0.6759337782859802, 'epoch': 1, 'test/f1-score': 0.6593406593406593, 'train/epoch_loss': 0.6851893525744539}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.0003}",serene-sweep-1 -128,"{'_runtime': 456.3002746105194, 'test/f1-score': 0.8888888888888888, 'test/epoch_loss': 0.45068282733360926, 'train/batch_loss': 0.003167948452755809, '_wandb': {'runtime': 455}, 'epoch': 9, 'test/epoch_acc': 0.8777777777777778, '_step': 1159, 'test/recall': 0.8461538461538461, 'test/batch_loss': 0.1311825066804886, 'train/epoch_loss': 0.032788554922144414, '_timestamp': 1678734250.8076646, 'train/epoch_acc': 0.9914004914004914, 'test/precision': 0.9361702127659576}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.003}",super-sweep-10 -129,"{'train/epoch_acc': 0.687960687960688, 'train/epoch_loss': 0.5984233345387902, '_runtime': 564.230875492096, '_timestamp': 1678733784.6976814, 'test/epoch_acc': 0.7111111111111111, 'test/epoch_loss': 0.5302444166607327, 'epoch': 9, '_wandb': {'runtime': 563}, 'test/recall': 0.7674418604651163, '_step': 2289, 'train/batch_loss': 0.3260266184806824, 'test/f1-score': 0.7173913043478259, 'test/precision': 0.673469387755102, 'test/batch_loss': 0.9658783674240112}","{'gamma': 0.1, 'epochs': 10, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",distinctive-sweep-9 -130,"{'train/batch_loss': 0.007875862531363964, 'train/epoch_loss': 0.1743801347293527, 'test/epoch_acc': 0.9333333333333332, 'test/precision': 1, 'test/batch_loss': 0.1419784128665924, '_step': 2289, '_runtime': 527.6160025596619, 'test/recall': 0.8636363636363636, 'test/f1-score': 0.9268292682926828, 'test/epoch_loss': 0.17092165086004468, 'train/epoch_acc': 0.9496314496314496, 'epoch': 9, '_wandb': {'runtime': 527}, '_timestamp': 1678733210.1129615}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.0003}",winter-sweep-8 -131,"{'epoch': 9, 'test/precision': 1, 'train/batch_loss': 0.04383014515042305, 'test/batch_loss': 0.27116066217422485, 'train/epoch_loss': 0.07730489082323246, 'test/epoch_acc': 0.9222222222222224, 'test/epoch_loss': 0.21558621691332924, 'train/epoch_acc': 0.9791154791154792, '_step': 1159, '_wandb': {'runtime': 452}, '_runtime': 453.52900218963623, '_timestamp': 1678732673.1225052, 'test/recall': 0.8292682926829268, 'test/f1-score': 0.9066666666666668}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.001}",stilted-sweep-7 -132,"{'_step': 2289, 'test/batch_loss': 0.4716488718986511, 'test/epoch_loss': 0.6190193812052409, 'test/precision': 0.6538461538461539, 'train/epoch_acc': 0.7272727272727273, 'train/epoch_loss': 0.5549268187263967, '_runtime': 561.7993631362915, 'test/recall': 0.7555555555555555, 'test/f1-score': 0.7010309278350516, 'test/epoch_acc': 0.6777777777777778, 'epoch': 9, '_wandb': {'runtime': 561}, 'train/batch_loss': 0.48304444551467896, '_timestamp': 1678732212.5530572}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",summer-sweep-6 -133,"{'_step': 1159, '_wandb': {'runtime': 453}, '_timestamp': 1678731639.156168, 'test/precision': 0.945945945945946, 'test/f1-score': 0.813953488372093, 'epoch': 9, '_runtime': 454.3645238876343, 'test/recall': 0.7142857142857143, 'test/epoch_acc': 0.8222222222222223, 'test/batch_loss': 0.5068956017494202, 'test/epoch_loss': 0.4936415394147237, 'train/epoch_loss': 0.5186349417126442, 'train/epoch_acc': 0.8218673218673218, 'train/batch_loss': 0.4434223175048828}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0001}",different-sweep-5 -134,"{'_step': 1159, '_wandb': {'runtime': 453}, '_runtime': 454.26038885116577, 'test/epoch_loss': 0.5482642173767089, 'test/precision': 0.825, 'test/batch_loss': 0.5159374475479126, 'train/epoch_acc': 0.812039312039312, 'train/batch_loss': 0.5655931830406189, 'test/f1-score': 0.8354430379746836, 'test/epoch_acc': 0.8555555555555556, 'train/epoch_loss': 0.5429200196149016, 'epoch': 9, '_timestamp': 1678731176.111379, 'test/recall': 0.8461538461538461}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",wise-sweep-4 -135,"{'epoch': 9, '_wandb': {'runtime': 528}, 'test/recall': 0.775, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.9393939393939394, 'test/batch_loss': 1.7588363885879517, 'train/epoch_loss': 0.02060394324720534, '_step': 2289, '_runtime': 528.9760706424713, 'test/f1-score': 0.8493150684931509, '_timestamp': 1678730714.7711067, 'train/epoch_acc': 0.9963144963144964, 'train/batch_loss': 0.00470334617421031, 'test/epoch_loss': 0.24194780117250048}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.003}",misty-sweep-3 -136,"{'test/f1-score': 0.7536231884057972, 'test/epoch_acc': 0.8111111111111111, '_step': 1159, '_wandb': {'runtime': 454}, 'test/batch_loss': 0.455120325088501, 'test/epoch_loss': 0.4792341656155056, 'train/batch_loss': 0.5347514748573303, 'epoch': 9, 'train/epoch_acc': 0.8329238329238329, 'test/recall': 0.6842105263157895, '_timestamp': 1678730177.1362092, 'test/precision': 0.8387096774193549, 'train/epoch_loss': 0.42904984072326735, '_runtime': 455.41485929489136}","{'gamma': 0.1, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0003}",unique-sweep-2 -137,"{'test/precision': 0.9047619047619048, 'train/epoch_acc': 0.9901719901719902, 'test/recall': 0.8636363636363636, 'test/epoch_acc': 0.888888888888889, 'test/batch_loss': 2.5320074558258057, 'test/epoch_loss': 0.5442472649919283, 'train/epoch_loss': 0.024021292951151657, '_wandb': {'runtime': 527}, 'test/f1-score': 0.8837209302325582, 'epoch': 9, '_runtime': 528.4356484413147, '_timestamp': 1678729705.2001765, 'train/batch_loss': 0.005740344058722258, '_step': 2289}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.003}",polar-sweep-1 +0,"{'test/epoch_acc': 0.7333333333333334, 'test/precision': 0.8285714285714286, 'test/epoch_loss': 0.5664619127909343, 'train/epoch_acc': 0.8230958230958231, '_step': 2059, 'epoch': 9, '_timestamp': 1680692970.2016854, 'test/f1-score': 0.7073170731707318, 'train/batch_loss': 0.33577921986579895, 'train/epoch_loss': 0.4241055610431793, '_wandb': {'runtime': 363}, '_runtime': 367.13677954673767, 'test/recall': 0.6170212765957447}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.0003}",fiery-sweep-26 +1,"{'epoch': 9, '_wandb': {'runtime': 338}, '_runtime': 341.8420207500458, 'test/precision': 0.6851851851851852, 'train/epoch_acc': 0.7125307125307125, 'train/epoch_loss': 0.649790015355375, '_step': 1039, 'test/recall': 0.8222222222222222, 'test/f1-score': 0.7474747474747475, 'test/epoch_acc': 0.7222222222222222, 'test/epoch_loss': 0.6454579922888014, 'train/batch_loss': 0.7014500498771667, '_timestamp': 1680692589.503975}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0003}",radiant-sweep-25 +2,"{'test/recall': 0.7837837837837838, 'test/precision': 0.935483870967742, 'test/epoch_loss': 0.34812947780333664, 'train/epoch_loss': 0.01614290558709019, '_step': 1039, 'epoch': 9, '_timestamp': 1680692234.39516, 'test/epoch_acc': 0.888888888888889, 'train/epoch_acc': 0.9987714987714988, 'train/batch_loss': 0.01956617273390293, '_wandb': {'runtime': 333}, '_runtime': 336.8275649547577, 'test/f1-score': 0.8529411764705881}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",blooming-sweep-24 +3,"{'_wandb': {'runtime': 327}, '_runtime': 331.57809829711914, '_timestamp': 1680691883.3877182, 'test/precision': 0.7608695652173914, 'test/epoch_loss': 0.5553177932898203, 'train/batch_loss': 0.5222326517105103, 'train/epoch_loss': 0.5324229019572753, 'epoch': 9, 'test/recall': 0.8333333333333334, 'test/f1-score': 0.7954545454545455, 'test/epoch_acc': 0.8, 'train/epoch_acc': 0.8353808353808354, '_step': 529}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.0003}",visionary-sweep-23 +4,"{'train/epoch_loss': 0.7508098256090057, 'epoch': 1, '_timestamp': 1680691538.7247725, 'test/recall': 0.8846153846153846, 'test/epoch_acc': 0.5777777777777778, 'train/epoch_acc': 0.5577395577395577, 'train/batch_loss': 0.5083656311035156, '_step': 410, '_wandb': {'runtime': 70}, '_runtime': 71.64615154266357, 'test/f1-score': 0.7076923076923076, 'test/precision': 0.5897435897435898, 'test/epoch_loss': 1.5602711306677923}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.01}",ancient-sweep-22 +5,"{'_step': 529, 'epoch': 9, '_wandb': {'runtime': 328}, '_timestamp': 1680691453.5148375, 'test/precision': 0.6885245901639344, 'train/epoch_loss': 0.49390909720111537, '_runtime': 331.44886469841003, 'test/recall': 0.9545454545454546, 'test/f1-score': 0.8, 'test/epoch_acc': 0.7666666666666667, 'test/epoch_loss': 0.4844042791260613, 'train/epoch_acc': 0.769041769041769, 'train/batch_loss': 0.4559023082256317}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.003}",fresh-sweep-22 +6,"{'test/epoch_acc': 0.9222222222222224, 'test/epoch_loss': 0.26263883135527266, 'train/epoch_acc': 0.9975429975429976, 'epoch': 9, '_wandb': {'runtime': 355}, '_timestamp': 1680691110.042932, 'test/recall': 0.8867924528301887, 'test/f1-score': 0.9306930693069309, '_step': 2059, '_runtime': 358.66950702667236, 'test/precision': 0.9791666666666666, 'train/batch_loss': 0.0031523401848971844, 'train/epoch_loss': 0.018423480946079804}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.01}",pleasant-sweep-21 +7,"{'train/epoch_loss': 0.0014873178028192654, 'epoch': 9, '_runtime': 332.6156196594238, 'test/recall': 0.9148936170212766, 'test/f1-score': 0.8865979381443299, 'test/epoch_acc': 0.8777777777777778, 'test/epoch_loss': 0.3669874522421095, 'train/batch_loss': 0.003317732596769929, '_step': 279, '_wandb': {'runtime': 329}, '_timestamp': 1680690741.3215847, 'test/precision': 0.86, 'train/epoch_acc': 1}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.01}",fragrant-sweep-20 +8,"{'epoch': 9, 'test/recall': 0.82, 'test/precision': 0.7592592592592593, 'test/epoch_loss': 0.5786970999505785, 'train/epoch_acc': 0.8206388206388207, 'train/batch_loss': 0.58731609582901, '_step': 149, '_runtime': 342.05230498313904, '_timestamp': 1680690397.165603, 'test/f1-score': 0.7884615384615384, 'test/epoch_acc': 0.7555555555555555, 'train/epoch_loss': 0.5623220165765842, '_wandb': {'runtime': 338}}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.001}",treasured-sweep-19 +9,"{'_timestamp': 1680690042.488695, 'test/f1-score': 0.7865168539325843, 'test/precision': 0.8536585365853658, 'train/batch_loss': 0.5736206769943237, 'epoch': 9, '_wandb': {'runtime': 357}, '_runtime': 360.5366156101227, 'test/epoch_loss': 0.6037532766660054, 'train/epoch_acc': 0.7788697788697788, 'train/epoch_loss': 0.5984062318134074, '_step': 2059, 'test/recall': 0.7291666666666666, 'test/epoch_acc': 0.788888888888889}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.0001}",desert-sweep-18 +10,"{'_timestamp': 1680689670.8310964, 'test/f1-score': 0.8333333333333334, 'test/epoch_loss': 0.3740654948684904, 'train/epoch_acc': 0.8697788697788698, '_step': 2059, 'epoch': 9, 'test/recall': 0.7446808510638298, 'test/epoch_acc': 0.8444444444444444, 'test/precision': 0.945945945945946, 'train/batch_loss': 0.5778521299362183, 'train/epoch_loss': 0.3086323318522451, '_wandb': {'runtime': 362}, '_runtime': 365.3367943763733}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.003}",celestial-sweep-17 +11,"{'test/recall': 0.9285714285714286, 'test/f1-score': 0.9176470588235294, 'test/precision': 0.9069767441860463, 'train/epoch_acc': 1, 'epoch': 9, '_wandb': {'runtime': 337}, '_runtime': 340.39124369621277, '_timestamp': 1680689237.7951498, 'train/epoch_loss': 0.0053219743558098115, '_step': 149, 'test/epoch_acc': 0.9222222222222224, 'test/epoch_loss': 0.18080708616309696, 'train/batch_loss': 0.004256190732121468}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.01}",cosmic-sweep-15 +12,"{'_timestamp': 1680688886.363035, 'test/recall': 0.8222222222222222, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.925, 'train/epoch_loss': 0.09628425111664636, 'test/epoch_loss': 0.23811448697621623, 'train/epoch_acc': 0.968058968058968, 'train/batch_loss': 0.21692615747451785, '_step': 2059, 'epoch': 9, '_wandb': {'runtime': 356}, '_runtime': 359.0396990776062, 'test/f1-score': 0.8705882352941177}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.001}",stilted-sweep-14 +13,"{'_step': 149, 'test/f1-score': 0.9278350515463918, 'test/epoch_loss': 0.16714997291564945, 'train/epoch_acc': 1, 'test/epoch_acc': 0.9222222222222224, 'test/precision': 0.9574468085106383, 'train/batch_loss': 0.007201554253697395, 'epoch': 9, '_wandb': {'runtime': 333}, '_runtime': 336.5640392303467, '_timestamp': 1680688517.0028613, 'test/recall': 0.9, 'train/epoch_loss': 0.007631345846546077}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.01}",frosty-sweep-13 +14,"{'test/epoch_acc': 0.8777777777777778, 'test/epoch_loss': 0.32556109494633145, 'train/epoch_loss': 0.17368088453934877, '_runtime': 331.98337984085083, '_timestamp': 1680688162.2054858, 'test/recall': 0.8181818181818182, 'test/f1-score': 0.8674698795180724, 'test/precision': 0.9230769230769232, 'train/epoch_acc': 0.9496314496314496, 'train/batch_loss': 0.27152174711227417, '_step': 529, 'epoch': 9, '_wandb': {'runtime': 328}}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.001}",young-sweep-12 +15,"{'_wandb': {'runtime': 332}, 'test/f1-score': 0.7311827956989247, 'train/epoch_loss': 0.5277571982775039, '_step': 1039, 'epoch': 9, 'test/recall': 0.8292682926829268, 'test/epoch_acc': 0.7222222222222222, 'test/precision': 0.6538461538461539, 'test/epoch_loss': 0.5193446947468652, 'train/epoch_acc': 0.7469287469287469, 'train/batch_loss': 0.3307788372039795, '_runtime': 335.6552822589874, '_timestamp': 1680687816.5057352}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.1}",sandy-sweep-11 +16,"{'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.8085106382978723, 'test/epoch_loss': 0.4616309046745301, '_wandb': {'runtime': 334}, '_runtime': 336.80703043937683, '_timestamp': 1680687470.9289024, 'test/recall': 0.9047619047619048, 'train/batch_loss': 0.0030224076472222805, 'train/epoch_loss': 0.003708146820279612, '_step': 149, 'epoch': 9, 'test/f1-score': 0.853932584269663, 'train/epoch_acc': 1}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",laced-sweep-10 +17,"{'_runtime': 265.48077392578125, 'test/recall': 0.08888888888888889, 'test/epoch_acc': 0.45555555555555555, 'train/epoch_loss': 9.16968992828444, '_wandb': {'runtime': 265}, 'epoch': 7, '_timestamp': 1680687113.1220188, 'test/f1-score': 0.14035087719298245, 'test/precision': 0.3333333333333333, 'test/epoch_loss': 11610.708938450283, 'train/epoch_acc': 0.5331695331695332, 'train/batch_loss': 9.74098777770996, '_step': 422}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.1}",jumping-sweep-9 +18,"{'test/precision': 0.8913043478260869, 'train/epoch_acc': 0.8955773955773956, 'train/epoch_loss': 0.3055295220024756, '_wandb': {'runtime': 327}, '_timestamp': 1680686834.80723, 'test/f1-score': 0.845360824742268, 'test/epoch_acc': 0.8333333333333334, 'test/epoch_loss': 0.3831123087141249, 'train/batch_loss': 0.34334877133369446, '_step': 529, 'epoch': 9, '_runtime': 330.36346793174744, 'test/recall': 0.803921568627451}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.0003}",dutiful-sweep-8 +19,"{'epoch': 2, '_runtime': 99.40804982185364, '_timestamp': 1680686491.634724, 'test/epoch_acc': 0.45555555555555555, 'test/precision': 0.45555555555555555, 'test/epoch_loss': 6.554853016439314e+29, 'train/batch_loss': 'NaN', '_step': 157, '_wandb': {'runtime': 99}, 'test/recall': 1, 'test/f1-score': 0.6259541984732825, 'train/epoch_acc': 0.484029484029484, 'train/epoch_loss': 'NaN'}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.1}",olive-sweep-7 +20,"{'_wandb': {'runtime': 334}, '_runtime': 337.17863941192627, 'test/recall': 0.8888888888888888, 'test/f1-score': 0.8695652173913044, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.851063829787234, 'test/epoch_loss': 0.35141510632303025, 'train/epoch_acc': 0.9103194103194104, 'train/batch_loss': 0.3707323968410492, '_step': 279, 'epoch': 9, '_timestamp': 1680686383.3591404, 'train/epoch_loss': 0.3219767680771521}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.001}",good-sweep-6 +21,"{'test/recall': 0.6938775510204082, 'test/f1-score': 0.6601941747572815, 'test/epoch_acc': 0.6111111111111112, 'train/epoch_acc': 0.5196560196560196, '_wandb': {'runtime': 342}, '_runtime': 344.80718994140625, '_timestamp': 1680686028.304971, 'test/precision': 0.6296296296296297, 'test/epoch_loss': 0.6818753732575311, 'train/batch_loss': 0.7027227878570557, 'train/epoch_loss': 0.6907664721955246, '_step': 149, 'epoch': 9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.0003}",summer-sweep-5 +22,"{'epoch': 9, '_timestamp': 1680685671.7387648, 'test/epoch_acc': 0.9222222222222224, 'test/epoch_loss': 0.22382020586066775, 'train/epoch_acc': 0.9864864864864864, '_step': 529, '_runtime': 333.9663326740265, 'test/recall': 0.8717948717948718, 'test/f1-score': 0.9066666666666668, 'test/precision': 0.9444444444444444, 'train/batch_loss': 0.15035715699195862, 'train/epoch_loss': 0.10497688309859292, '_wandb': {'runtime': 331}}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.001}",firm-sweep-4 +23,"{'_step': 149, '_runtime': 335.79468297958374, 'test/recall': 0.925, 'test/f1-score': 0.6379310344827587, 'test/precision': 0.4868421052631579, 'test/epoch_loss': 0.6597137530644734, 'train/batch_loss': 0.652446985244751, 'epoch': 9, '_wandb': {'runtime': 333}, '_timestamp': 1680685319.453976, 'test/epoch_acc': 0.5333333333333333, 'train/epoch_acc': 0.5909090909090909, 'train/epoch_loss': 0.6564877619028677}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.0001}",genial-sweep-3 +24,"{'_step': 529, 'test/recall': 0.9736842105263158, 'test/f1-score': 0.7628865979381443, 'test/precision': 0.6271186440677966, 'test/epoch_loss': 0.5467572536733415, 'train/epoch_acc': 0.7899262899262899, 'epoch': 9, '_wandb': {'runtime': 329}, '_runtime': 331.50625491142273, '_timestamp': 1680684975.004809, 'test/epoch_acc': 0.7444444444444445, 'train/batch_loss': 0.5583129525184631, 'train/epoch_loss': 0.4703364581675143}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.1}",fine-sweep-2 +25,"{'_timestamp': 1680684633.811369, 'test/f1-score': 0.896551724137931, 'test/epoch_acc': 0.9, 'test/epoch_loss': 0.30911533037821454, '_step': 529, 'epoch': 9, '_wandb': {'runtime': 447}, '_runtime': 450.5545320510864, 'train/epoch_acc': 0.9987714987714988, 'train/batch_loss': 0.005764181260019541, 'test/recall': 0.8863636363636364, 'test/precision': 0.9069767441860463, 'train/epoch_loss': 0.007131033717467008}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.01}",visionary-sweep-1 +26,"{'_step': 239, 'epoch': 1, '_timestamp': 1680629962.8990817, 'train/epoch_acc': 0.8931203931203932, 'train/batch_loss': 0.08615076541900635, '_wandb': {'runtime': 83}, '_runtime': 83.58446168899536, 'test/recall': 0.9047619047619048, 'test/f1-score': 0.8735632183908046, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.8444444444444444, 'test/epoch_loss': 0.29840316110187104, 'train/epoch_loss': 0.2428556958016658}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.1}",stoic-sweep-14 +27,"{'_timestamp': 1680629872.8401277, 'test/recall': 0.975, 'test/f1-score': 0.951219512195122, 'test/epoch_loss': 0.20102048052681817, 'train/epoch_acc': 0.9803439803439804, '_step': 149, '_wandb': {'runtime': 347}, '_runtime': 348.9410927295685, 'train/batch_loss': 0.10338585078716278, 'train/epoch_loss': 0.1163152276517718, 'epoch': 9, 'test/epoch_acc': 0.9555555555555556, 'test/precision': 0.9285714285714286}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.01}",rich-sweep-13 +28,"{'_timestamp': 1680629513.1781075, 'test/epoch_loss': 3.395405118153546e+20, 'train/batch_loss': 82027960, 'train/epoch_loss': 60563307.6520902, 'epoch': 3, '_wandb': {'runtime': 135}, '_runtime': 132.22715950012207, 'test/recall': 0.9111111111111112, 'test/f1-score': 0.6721311475409836, 'test/epoch_acc': 0.5555555555555556, 'test/precision': 0.5324675324675324, 'train/epoch_acc': 0.5282555282555282, '_step': 210}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.003}",smooth-sweep-12 +29,"{'test/recall': 0.8888888888888888, 'test/f1-score': 0.6597938144329897, 'test/precision': 0.5245901639344263, 'test/epoch_loss': 0.6240786300765143, '_step': 279, '_runtime': 327.2181556224823, '_timestamp': 1680629374.0562296, 'test/epoch_acc': 0.6333333333333333, 'train/epoch_acc': 0.7469287469287469, 'train/batch_loss': 0.5836847424507141, 'train/epoch_loss': 0.6072891213970044, 'epoch': 9, '_wandb': {'runtime': 326}}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.0003}",resilient-sweep-11 +30,"{'_wandb': {'runtime': 330}, '_timestamp': 1680629038.456323, 'test/epoch_loss': 0.2657569663392173, 'train/epoch_loss': 0.12745249926751018, '_step': 529, '_runtime': 332.23273372650146, 'test/recall': 0.8269230769230769, 'test/f1-score': 0.8958333333333334, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9772727272727272, 'train/epoch_acc': 0.9717444717444718, 'train/batch_loss': 0.13025684654712677, 'epoch': 9}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.001}",serene-sweep-10 +31,"{'test/f1-score': 0.9, 'test/epoch_acc': 0.9111111111111112, 'test/precision': 0.972972972972973, 'test/epoch_loss': 0.23338710864384968, 'train/epoch_acc': 0.9275184275184276, 'train/batch_loss': 0.11391787976026536, 'epoch': 9, '_wandb': {'runtime': 334}, 'train/epoch_loss': 0.2116023584907412, '_timestamp': 1680628699.1189623, 'test/recall': 0.8372093023255814, '_step': 1039, '_runtime': 335.94198656082153}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0003}",cool-sweep-9 +32,"{'_timestamp': 1680628351.790065, 'test/recall': 0.8863636363636364, 'test/epoch_acc': 0.7777777777777778, 'train/epoch_acc': 0.7702702702702703, 'train/epoch_loss': 0.6034659886828805, 'epoch': 9, '_wandb': {'runtime': 326}, '_runtime': 327.29265093803406, 'test/epoch_loss': 0.5824494547314114, 'train/batch_loss': 0.5777762532234192, '_step': 529, 'test/f1-score': 0.7959183673469388, 'test/precision': 0.7222222222222222}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.0001}",lilac-sweep-8 +33,"{'epoch': 9, '_runtime': 337.11313247680664, 'test/f1-score': 0.717391304347826, 'test/epoch_acc': 0.7111111111111111, 'test/epoch_loss': 0.6369305915302701, 'train/batch_loss': 0.5935282111167908, '_step': 149, '_timestamp': 1680628016.5942774, 'test/recall': 0.8048780487804879, 'test/precision': 0.6470588235294118, 'train/epoch_acc': 0.7199017199017199, 'train/epoch_loss': 0.618001790392311, '_wandb': {'runtime': 335}}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.001}",warm-sweep-7 +34,"{'_step': 2059, 'epoch': 9, '_wandb': {'runtime': 354}, '_runtime': 355.7423675060272, '_timestamp': 1680627667.6215644, 'test/epoch_acc': 0.6333333333333333, 'test/epoch_loss': 0.6619265423880683, 'train/epoch_acc': 0.6498771498771498, 'test/recall': 0.8, 'test/f1-score': 0.6857142857142857, 'test/precision': 0.6, 'train/batch_loss': 0.6662057638168335, 'train/epoch_loss': 0.6663250732773353}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.0001}",giddy-sweep-6 +35,"{'test/recall': 0.8163265306122449, 'test/f1-score': 0.7766990291262137, 'test/precision': 0.7407407407407407, 'test/epoch_loss': 0.6307997491624621, 'train/epoch_acc': 0.7125307125307125, 'train/batch_loss': 0.6531811356544495, '_wandb': {'runtime': 343}, '_runtime': 344.59358406066895, '_timestamp': 1680627305.434523, 'test/epoch_acc': 0.7444444444444445, 'train/epoch_loss': 0.6398702088093582, '_step': 149, 'epoch': 9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.0001}",stellar-sweep-5 +36,"{'test/precision': 0.9705882352941176, 'test/epoch_loss': 0.1906787835785912, 'train/epoch_acc': 0.9975429975429976, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 334}, 'test/f1-score': 0.9041095890410958, 'train/batch_loss': 0.0006497434806078672, 'train/epoch_loss': 0.02095988139033052, '_runtime': 335.76391553878784, '_timestamp': 1680626951.0603056, 'test/recall': 0.8461538461538461, 'test/epoch_acc': 0.9222222222222224}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",olive-sweep-4 +37,"{'epoch': 9, '_runtime': 333.64992809295654, '_timestamp': 1680626608.419389, 'train/epoch_loss': 0.11751884335528429, 'train/epoch_acc': 0.984029484029484, '_step': 149, '_wandb': {'runtime': 332}, 'test/recall': 0.925, 'test/f1-score': 0.8705882352941177, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.8222222222222222, 'test/epoch_loss': 0.27919367684258356, 'train/batch_loss': 0.12675245106220245}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.003}",dazzling-sweep-3 +38,"{'test/precision': 0.5306122448979592, '_wandb': {'runtime': 336}, '_timestamp': 1680626264.5954974, 'test/recall': 0.6842105263157895, 'test/epoch_acc': 0.6111111111111112, 'test/epoch_loss': 0.6708752089076572, 'train/epoch_acc': 0.6547911547911548, 'train/batch_loss': 0.5270536541938782, 'train/epoch_loss': 0.6389284106085868, '_step': 1039, 'epoch': 9, '_runtime': 337.19885444641113, 'test/f1-score': 0.5977011494252874}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.01}",kind-sweep-2 +39,"{'train/epoch_loss': 0.3516608065117782, 'epoch': 9, 'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.8444444444444444, 'train/epoch_acc': 0.8746928746928747, 'train/batch_loss': 0.3848239779472351, 'test/f1-score': 0.853932584269663, 'test/epoch_loss': 0.38614972366227046, '_step': 529, '_wandb': {'runtime': 337}, '_runtime': 337.9836483001709, '_timestamp': 1680625919.9645753, 'test/recall': 0.8636363636363636}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.003}",morning-sweep-1 +40,"{'train/epoch_loss': 0.02368298517580857, 'epoch': 9, 'test/recall': 0.8653846153846154, 'test/f1-score': 0.9, 'test/precision': 0.9375, 'test/epoch_acc': 0.888888888888889, 'test/epoch_loss': 0.25786760796585845, 'train/epoch_acc': 0.9975429975429976, 'train/batch_loss': 0.05631007254123688, '_step': 2059, '_wandb': {'runtime': 346}, '_runtime': 347.9354045391083, '_timestamp': 1680624250.2654595}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.1}",valiant-sweep-23 +41,"{'train/batch_loss': 0.5639374256134033, '_timestamp': 1680623895.362503, 'test/recall': 0.8936170212765957, 'test/f1-score': 0.8571428571428571, 'test/epoch_acc': 0.8444444444444444, 'test/precision': 0.8235294117647058, 'test/epoch_loss': 0.490613665845659, 'train/epoch_acc': 0.8243243243243243, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 327}, '_runtime': 329.4802031517029, 'train/epoch_loss': 0.48581602795996887}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0003}",earnest-sweep-22 +42,"{'_timestamp': 1680623556.4586525, 'test/recall': 0.9148936170212766, 'test/f1-score': 0.9052631578947368, 'test/epoch_acc': 0.9, 'test/precision': 0.8958333333333334, 'test/epoch_loss': 0.2318242397573259, 'train/epoch_acc': 0.995085995085995, 'epoch': 9, '_wandb': {'runtime': 326}, '_runtime': 328.0050995349884, 'train/batch_loss': 0.06110217794775963, 'train/epoch_loss': 0.05107141801451289, '_step': 149}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.003}",genial-sweep-21 +43,"{'_runtime': 327.10622239112854, '_timestamp': 1680623221.0825984, 'test/recall': 0.8723404255319149, 'test/epoch_acc': 0.7444444444444445, 'test/epoch_loss': 0.5943129923608568, 'train/epoch_acc': 0.7911547911547911, '_step': 149, '_wandb': {'runtime': 325}, 'train/epoch_loss': 0.5714027147914034, 'test/precision': 0.7068965517241379, 'train/batch_loss': 0.6166229844093323, 'epoch': 9, 'test/f1-score': 0.780952380952381}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.001}",lemon-sweep-20 +44,"{'_runtime': 331.60892701148987, 'test/recall': 0.7021276595744681, 'test/epoch_acc': 0.6, 'test/precision': 0.6, 'test/epoch_loss': 0.6746161646313138, 'train/batch_loss': 0.7205827236175537, '_step': 1039, '_wandb': {'runtime': 330}, '_timestamp': 1680622885.059607, 'test/f1-score': 0.6470588235294118, 'train/epoch_acc': 0.6277641277641277, 'train/epoch_loss': 0.6722187732302879, 'epoch': 9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",ancient-sweep-19 +45,"{'_wandb': {'runtime': 347}, '_runtime': 348.9979507923126, '_timestamp': 1680622545.2735748, 'test/f1-score': 0.898876404494382, 'test/epoch_acc': 0.9, 'test/epoch_loss': 0.24883262103216516, '_step': 2059, 'epoch': 9, 'train/epoch_acc': 0.9877149877149876, 'train/epoch_loss': 0.0466749508011656, 'train/batch_loss': 0.015468262135982512, 'test/recall': 0.8695652173913043, 'test/precision': 0.9302325581395348}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.01}",smart-sweep-18 +46,"{'test/precision': 0.945945945945946, 'epoch': 9, '_wandb': {'runtime': 328}, '_runtime': 329.3028633594513, '_timestamp': 1680622188.8210304, 'test/recall': 0.8536585365853658, 'test/f1-score': 0.8974358974358975, '_step': 1039, 'test/epoch_acc': 0.9111111111111112, 'test/epoch_loss': 0.2015038196825319, 'train/epoch_acc': 0.9815724815724816, 'train/batch_loss': 0.007225348148494959, 'train/epoch_loss': 0.07856258183731457}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.003}",sleek-sweep-17 +47,"{'_step': 279, 'epoch': 9, '_wandb': {'runtime': 321}, '_timestamp': 1680621849.979658, 'train/epoch_acc': 0.828009828009828, 'train/batch_loss': 0.6047794222831726, 'train/epoch_loss': 0.5808350268101516, '_runtime': 323.3842430114746, 'test/recall': 0.8301886792452831, 'test/f1-score': 0.8543689320388349, 'test/epoch_acc': 0.8333333333333334, 'test/precision': 0.88, 'test/epoch_loss': 0.5843977000978258}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.0001}",winter-sweep-16 +48,"{'test/recall': 0.85, 'train/batch_loss': 0.001602485659532249, 'epoch': 9, '_wandb': {'runtime': 346}, '_timestamp': 1680621511.323635, 'test/f1-score': 0.85, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.85, 'test/epoch_loss': 0.5281610590923164, 'train/epoch_acc': 0.995085995085995, '_step': 2059, '_runtime': 347.8050694465637, 'train/epoch_loss': 0.029015880939893934}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.1}",rare-sweep-15 +49,"{'_step': 2059, 'epoch': 9, '_wandb': {'runtime': 346}, '_runtime': 347.7671456336975, 'test/epoch_acc': 0.9222222222222224, 'test/precision': 0.9487179487179488, 'train/epoch_loss': 0.04606454834343147, '_timestamp': 1680621147.5604067, 'test/recall': 0.8809523809523809, 'test/f1-score': 0.9135802469135802, 'test/epoch_loss': 0.22225395898438163, 'train/epoch_acc': 0.9864864864864864, 'train/batch_loss': 0.010366588830947876}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.001}",stoic-sweep-14 +50,"{'train/epoch_acc': 0.6523341523341524, 'train/batch_loss': 0.6023905277252197, '_wandb': {'runtime': 351}, '_timestamp': 1680620790.920825, 'test/recall': 0.675, 'test/f1-score': 0.6585365853658537, 'test/precision': 0.6428571428571429, 'test/epoch_loss': 0.661226307021247, 'train/epoch_loss': 0.6673213337211703, '_step': 2059, 'epoch': 9, '_runtime': 352.6435329914093, 'test/epoch_acc': 0.6888888888888889}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.0001}",glorious-sweep-13 +51,"{'epoch': 9, '_wandb': {'runtime': 329}, 'test/recall': 0.9574468085106383, 'test/f1-score': 0.9782608695652174, 'test/precision': 1, 'train/batch_loss': 0.004083937965333462, 'train/epoch_loss': 0.0071195896911716286, '_step': 149, '_runtime': 330.7649688720703, '_timestamp': 1680620431.024078, 'test/epoch_acc': 0.977777777777778, 'test/epoch_loss': 0.1352142873737547, 'train/epoch_acc': 1}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.01}",chocolate-sweep-12 +52,"{'train/epoch_loss': 0.5577488642652731, '_step': 149, '_wandb': {'runtime': 328}, 'test/recall': 0.926829268292683, 'test/f1-score': 0.8636363636363636, 'test/precision': 0.8085106382978723, 'train/epoch_acc': 0.800982800982801, 'train/batch_loss': 0.5299303531646729, 'epoch': 9, '_runtime': 329.12984681129456, '_timestamp': 1680620092.0697718, 'test/epoch_acc': 0.8666666666666667, 'test/epoch_loss': 0.5375637359089321}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.0003}",glowing-sweep-11 +53,"{'train/epoch_acc': 0.8611793611793611, '_step': 279, 'epoch': 9, '_wandb': {'runtime': 322}, '_timestamp': 1680619755.0191748, 'test/f1-score': 0.7659574468085105, 'train/batch_loss': 0.5281365513801575, 'train/epoch_loss': 0.46212616409072127, '_runtime': 324.3058567047119, 'test/recall': 0.7659574468085106, 'test/epoch_acc': 0.7555555555555555, 'test/precision': 0.7659574468085106, 'test/epoch_loss': 0.5337554746203952}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.003}",different-sweep-10 +54,"{'test/epoch_loss': 0.5470490535100301, 'train/batch_loss': 0.6183260083198547, '_step': 279, 'epoch': 9, '_runtime': 327.0705659389496, '_timestamp': 1680619423.656795, 'test/recall': 0.9523809523809524, 'test/precision': 0.7843137254901961, '_wandb': {'runtime': 325}, 'test/f1-score': 0.8602150537634408, 'test/epoch_acc': 0.8555555555555556, 'train/epoch_acc': 0.8058968058968059, 'train/epoch_loss': 0.5580001385557564}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.003}",lilac-sweep-9 +55,"{'test/f1-score': 0.7956989247311828, 'test/precision': 0.8409090909090909, 'train/batch_loss': 0.6300776600837708, '_step': 529, 'epoch': 9, '_runtime': 328.68579959869385, '_timestamp': 1680619089.5332966, 'test/recall': 0.7551020408163265, 'train/epoch_loss': 0.46969629490990605, '_wandb': {'runtime': 327}, 'test/epoch_acc': 0.788888888888889, 'test/epoch_loss': 0.46168507006433274, 'train/epoch_acc': 0.773955773955774}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.1}",crimson-sweep-8 +56,"{'test/recall': 0.8181818181818182, 'test/epoch_loss': 0.44089303129391433, 'train/epoch_acc': 0.9938574938574938, 'train/epoch_loss': 0.02176519967463292, 'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.9375, '_step': 2059, 'epoch': 9, '_wandb': {'runtime': 349}, '_runtime': 350.2308712005615, '_timestamp': 1680618753.2361271, 'test/f1-score': 0.8737864077669902, 'train/batch_loss': 0.011611333116889}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.003}",still-sweep-7 +57,"{'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.85, 'test/epoch_loss': 0.24035142682841976, 'train/epoch_acc': 0.9938574938574938, 'epoch': 9, '_wandb': {'runtime': 333}, 'test/recall': 0.8717948717948718, 'test/f1-score': 0.8607594936708861, 'train/epoch_loss': 0.02099113287724536, '_step': 1039, '_runtime': 334.69481587409973, '_timestamp': 1680618396.0194488, 'train/batch_loss': 0.030084805563092232}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.01}",charmed-sweep-6 +58,"{'epoch': 9, '_wandb': {'runtime': 335}, '_timestamp': 1680618051.044084, 'train/epoch_acc': 0.9963144963144964, 'train/epoch_loss': 0.010693324584853135, '_step': 1039, 'test/recall': 0.8780487804878049, 'test/f1-score': 0.8674698795180722, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.8571428571428571, 'test/epoch_loss': 0.5385394818252988, 'train/batch_loss': 0.001848929445259273, '_runtime': 336.1621870994568}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0003}",restful-sweep-5 +59,"{'train/epoch_acc': 1, 'train/batch_loss': 0.004928763955831528, 'train/epoch_loss': 0.004462716538065481, '_step': 149, '_runtime': 334.4848310947418, 'test/f1-score': 0.8409090909090909, 'test/epoch_acc': 0.8444444444444444, 'test/precision': 0.8409090909090909, 'epoch': 9, '_wandb': {'runtime': 333}, '_timestamp': 1680617708.075962, 'test/recall': 0.8409090909090909, 'test/epoch_loss': 0.6238909363746643}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",proud-sweep-4 +60,"{'epoch': 9, '_runtime': 338.4922821521759, '_timestamp': 1680617365.2791553, 'test/recall': 0.75, 'test/f1-score': 0.4778761061946903, 'test/precision': 0.35064935064935066, 'test/epoch_loss': 0.7233364171451993, 'train/epoch_acc': 0.5626535626535626, 'train/batch_loss': 0.6750851273536682, 'train/epoch_loss': 0.6796711432845938, '_step': 149, '_wandb': {'runtime': 337}, 'test/epoch_acc': 0.34444444444444444}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.0001}",visionary-sweep-3 +61,"{'test/recall': 1, 'test/f1-score': 0.59375, 'test/epoch_loss': 109.22879723442924, 'train/epoch_acc': 0.5147420147420148, '_step': 110, 'epoch': 3, '_runtime': 129.48883533477783, '_timestamp': 1680617007.4126654, 'train/batch_loss': 1.2695436477661133, 'train/epoch_loss': 3.225923076601521, '_wandb': {'runtime': 132}, 'test/epoch_acc': 0.4222222222222222, 'test/precision': 0.4222222222222222}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.1}",splendid-sweep-2 +62,"{'train/epoch_loss': 0.5949591096554693, '_step': 1039, 'epoch': 9, 'test/recall': 0.8636363636363636, 'test/f1-score': 0.8172043010752688, 'test/precision': 0.7755102040816326, 'test/epoch_loss': 0.6018742865986294, '_wandb': {'runtime': 372}, '_runtime': 373.84231185913086, '_timestamp': 1680616870.0621138, 'test/epoch_acc': 0.8111111111111111, 'train/epoch_acc': 0.7727272727272727, 'train/batch_loss': 0.563504695892334}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0001}",snowy-sweep-1 +63,"{'_timestamp': 1678798635.5359335, 'test/recall': 0.5813953488372093, 'test/epoch_acc': 0.6333333333333333, 'test/precision': 0.625, 'train/epoch_loss': 0.684732110699506, '_step': 529, '_runtime': 333.6077947616577, 'test/f1-score': 0.6024096385542168, 'test/epoch_loss': 0.6787986318270366, 'train/epoch_acc': 0.5552825552825553, 'train/batch_loss': 0.7118003964424133, 'epoch': 9, '_wandb': {'runtime': 327}}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.0001}",comic-sweep-38 +64,"{'test/epoch_loss': 0.5120628664890925, 'train/epoch_acc': 1, '_wandb': {'runtime': 337}, '_runtime': 342.7867271900177, '_timestamp': 1678798288.876002, 'test/recall': 1, 'test/f1-score': 0.888888888888889, 'test/precision': 0.8, 'train/epoch_loss': 0.001254009526264133, '_step': 149, 'epoch': 9, 'test/epoch_acc': 0.888888888888889, 'train/batch_loss': 0.0015535189304500818}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",magic-sweep-37 +65,"{'test/f1-score': 0.6190476190476191, 'test/epoch_loss': 0.6593369828330146, 'train/batch_loss': 0.6705241203308105, 'train/epoch_loss': 0.659313001562395, 'epoch': 9, '_runtime': 338.4290623664856, '_timestamp': 1678797929.8979273, 'test/recall': 0.6341463414634146, 'test/epoch_acc': 0.6444444444444445, 'test/precision': 0.6046511627906976, 'train/epoch_acc': 0.6572481572481572, '_step': 279, '_wandb': {'runtime': 332}}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 32, 'learning_rate': 0.0003}",azure-sweep-36 +66,"{'test/epoch_acc': 0.9, 'test/epoch_loss': 0.5167779392666287, '_step': 1039, '_wandb': {'runtime': 343}, '_timestamp': 1678797575.4461255, 'test/recall': 0.8703703703703703, 'test/f1-score': 0.912621359223301, 'test/precision': 0.9591836734693876, 'train/epoch_acc': 0.7911547911547911, 'train/batch_loss': 0.5475739240646362, 'epoch': 9, '_runtime': 349.1018385887146, 'train/epoch_loss': 0.542006236622316}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.001}",easy-sweep-35 +67,"{'test/epoch_loss': 0.27850865055532065, 'train/batch_loss': 4.9947026127483696e-05, 'train/epoch_loss': 0.012833298822080874, '_timestamp': 1678797212.2311337, 'test/recall': 0.8611111111111112, '_wandb': {'runtime': 362}, '_runtime': 367.9372293949127, 'test/f1-score': 0.8611111111111112, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.8611111111111112, 'train/epoch_acc': 0.9987714987714988, '_step': 2059, 'epoch': 9}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.003}",usual-sweep-34 +68,"{'_step': 529, '_runtime': 335.99687933921814, 'test/f1-score': 0.903846153846154, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.8392857142857143, 'test/epoch_loss': 0.6554473309053315, 'epoch': 9, '_wandb': {'runtime': 330}, '_timestamp': 1678796827.8409674, 'test/recall': 0.9791666666666666, 'train/epoch_acc': 0.9742014742014742, 'train/batch_loss': 0.17918632924556732, 'train/epoch_loss': 0.07036763163974523}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.0003}",polar-sweep-33 +69,"{'epoch': 9, '_runtime': 336.63737440109253, 'test/f1-score': 0.7356321839080459, 'test/epoch_acc': 0.7444444444444445, 'test/precision': 0.64, 'test/epoch_loss': 0.5271965821584066, 'train/epoch_acc': 0.8660933660933661, 'train/epoch_loss': 0.47513497564072105, '_step': 149, '_wandb': {'runtime': 330}, '_timestamp': 1678796468.9253614, 'test/recall': 0.8648648648648649, 'train/batch_loss': 0.4695126414299011}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.001}",still-sweep-32 +70,"{'train/batch_loss': 0.711412787437439, 'train/epoch_loss': 0.09577267487700432, '_step': 2059, 'epoch': 9, '_wandb': {'runtime': 372}, '_timestamp': 1678796117.3062005, 'test/f1-score': 0.868421052631579, 'test/epoch_acc': 0.888888888888889, '_runtime': 378.4032835960388, 'test/recall': 0.8048780487804879, 'test/precision': 0.9428571428571428, 'test/epoch_loss': 0.2378266812198692, 'train/epoch_acc': 0.9705159705159704}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.001}",misty-sweep-31 +71,"{'_step': 529, 'epoch': 9, '_wandb': {'runtime': 333}, '_runtime': 336.8808288574219, '_timestamp': 1678795725.918603, 'test/recall': 0.8260869565217391, 'test/f1-score': 0.8636363636363636, 'test/epoch_acc': 0.8666666666666667, 'train/epoch_acc': 0.9926289926289926, 'test/precision': 0.9047619047619048, 'test/epoch_loss': 0.27924135790930854, 'train/batch_loss': 0.04936826974153519, 'train/epoch_loss': 0.05967479737370254}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.001}",flowing-sweep-30 +72,"{'_step': 279, 'epoch': 9, '_wandb': {'runtime': 336}, '_runtime': 339.73244285583496, 'test/f1-score': 0.898876404494382, 'test/epoch_acc': 0.9, 'test/precision': 0.9523809523809524, 'test/epoch_loss': 0.37525106337335373, 'train/epoch_loss': 0.3784469199122024, '_timestamp': 1678795319.518895, 'test/recall': 0.851063829787234, 'train/epoch_acc': 0.8722358722358722, 'train/batch_loss': 0.4592914581298828}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.001}",deep-sweep-28 +73,"{'_timestamp': 1678794965.2675128, 'test/f1-score': 0.6849315068493151, 'test/epoch_acc': 0.7444444444444445, 'test/precision': 0.7575757575757576, 'test/epoch_loss': 0.5484810524516636, 'epoch': 9, '_wandb': {'runtime': 377}, '_runtime': 381.0768678188324, 'train/epoch_acc': 0.7899262899262899, 'train/batch_loss': 0.6763702630996704, 'train/epoch_loss': 0.5319552311733255, '_step': 2059, 'test/recall': 0.625}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.0001}",glorious-sweep-27 +74,"{'_step': 529, 'epoch': 9, '_wandb': {'runtime': 334}, '_runtime': 338.11463618278503, '_timestamp': 1678794572.9156363, 'test/recall': 0.813953488372093, 'test/epoch_acc': 0.7555555555555555, 'test/epoch_loss': 0.5729872869120703, 'train/epoch_acc': 0.8968058968058967, 'train/batch_loss': 0.4391788542270661, 'test/f1-score': 0.7608695652173914, 'test/precision': 0.7142857142857143, 'train/epoch_loss': 0.2699748155379471}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.1}",stoic-sweep-26 +75,"{'test/epoch_loss': 0.3083995895563728, '_step': 2059, '_wandb': {'runtime': 377}, '_timestamp': 1678794222.848524, 'test/recall': 0.8863636363636364, 'test/f1-score': 0.8666666666666666, 'test/precision': 0.8478260869565217, 'epoch': 9, '_runtime': 380.8983037471771, 'test/epoch_acc': 0.8666666666666667, 'train/epoch_acc': 0.9877149877149876, 'train/batch_loss': 0.025906365364789963, 'train/epoch_loss': 0.04955068614813831}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.01}",vibrant-sweep-25 +76,"{'test/f1-score': 0.8867924528301887, 'test/precision': 0.8545454545454545, 'test/epoch_loss': 0.7976957665549385, '_step': 149, 'epoch': 9, '_wandb': {'runtime': 340}, '_timestamp': 1678793829.5489533, 'test/recall': 0.9215686274509804, 'train/epoch_acc': 1, '_runtime': 343.4739582538605, 'test/epoch_acc': 0.8666666666666667, 'train/batch_loss': 0.0010389955714344978, 'train/epoch_loss': 0.002287556243378495}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",valiant-sweep-24 +77,"{'test/f1-score': 0.8571428571428571, 'test/precision': 0.8666666666666667, 'test/epoch_loss': 0.4112878143787384, 'train/batch_loss': 0.3762533664703369, 'train/epoch_loss': 0.3862068348493272, 'epoch': 9, '_runtime': 344.0598545074463, 'test/recall': 0.8478260869565217, 'test/epoch_acc': 0.8555555555555556, 'train/epoch_acc': 0.8857493857493858, '_step': 149, '_wandb': {'runtime': 340}, '_timestamp': 1678793464.5180786}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.001}",polished-sweep-23 +78,"{'_timestamp': 1678793108.7606344, 'test/recall': 0.8837209302325582, 'test/epoch_loss': 0.6097042110231188, 'train/epoch_acc': 0.6756756756756757, 'train/batch_loss': 0.7007869482040405, 'epoch': 9, '_wandb': {'runtime': 336}, '_runtime': 339.41979336738586, 'test/f1-score': 0.7102803738317758, 'test/epoch_acc': 0.6555555555555556, 'test/precision': 0.59375, 'train/epoch_loss': 0.6115244123215171, '_step': 529}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.01}",clear-sweep-22 +79,"{'test/precision': 0.9393939393939394, 'train/epoch_loss': 0.07462231436439994, 'epoch': 9, '_runtime': 381.0477261543274, 'test/epoch_acc': 0.9, 'test/recall': 0.8157894736842105, 'test/f1-score': 0.8732394366197183, 'test/epoch_loss': 0.23743902287549443, 'train/epoch_acc': 0.9815724815724816, 'train/batch_loss': 0.5061427354812622, '_step': 2059, '_wandb': {'runtime': 377}, '_timestamp': 1678792758.596286}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",sage-sweep-21 +80,"{'_wandb': {'runtime': 331}, '_timestamp': 1678792364.5292609, 'test/f1-score': 0.8505747126436782, 'test/precision': 0.902439024390244, 'train/epoch_acc': 0.9791154791154792, 'train/batch_loss': 0.24579545855522156, 'train/epoch_loss': 0.12095561367287976, '_step': 529, 'epoch': 9, '_runtime': 335.3731348514557, 'test/recall': 0.8043478260869565, 'test/epoch_acc': 0.8555555555555556, 'test/epoch_loss': 0.28035063776705}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.001}",olive-sweep-20 +81,"{'_wandb': {'runtime': 337}, 'test/recall': 0.9111111111111112, 'test/f1-score': 0.931818181818182, 'test/epoch_acc': 0.9333333333333332, 'test/precision': 0.9534883720930232, 'test/epoch_loss': 0.17397157057291932, 'epoch': 9, '_runtime': 340.5063774585724, '_timestamp': 1678792015.2579195, 'train/epoch_acc': 0.995085995085995, 'train/batch_loss': 0.0077079650945961475, 'train/epoch_loss': 0.018187719287696302, '_step': 1039}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",autumn-sweep-19 +82,"{'epoch': 9, '_wandb': {'runtime': 344}, 'test/recall': 0.8205128205128205, 'train/epoch_loss': 0.4784781006542412, 'test/epoch_loss': 0.4940012666914198, 'train/epoch_acc': 0.8218673218673218, '_step': 1039, '_runtime': 347.40152740478516, '_timestamp': 1678791661.9692383, 'test/f1-score': 0.7804878048780488, 'test/epoch_acc': 0.8, 'test/precision': 0.7441860465116279, 'train/batch_loss': 0.4317986071109772}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0001}",crisp-sweep-18 +83,"{'_runtime': 337.956387758255, 'test/recall': 0.9090909090909092, 'test/f1-score': 0.9090909090909092, 'test/precision': 0.9090909090909092, 'test/epoch_loss': 0.19624250796106127, '_step': 279, '_wandb': {'runtime': 335}, '_timestamp': 1678791236.6172178, 'test/epoch_acc': 0.9111111111111112, 'train/epoch_acc': 0.9828009828009828, 'train/batch_loss': 0.15555259585380554, 'train/epoch_loss': 0.08830470366618558, 'epoch': 9}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.003}",deep-sweep-16 +84,"{'_step': 279, '_timestamp': 1678790886.952144, 'test/f1-score': 0.7818181818181819, 'test/precision': 0.7049180327868853, 'test/epoch_loss': 0.6228035251299541, 'train/epoch_acc': 0.7493857493857494, 'train/batch_loss': 0.6377201080322266, 'epoch': 9, '_wandb': {'runtime': 331}, '_runtime': 334.2993712425232, 'test/recall': 0.8775510204081632, 'test/epoch_acc': 0.7333333333333334, 'train/epoch_loss': 0.6127705679478751}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.0003}",confused-sweep-15 +85,"{'train/epoch_loss': 0.3545121966840594, '_step': 529, 'epoch': 9, '_runtime': 345.0617377758026, '_timestamp': 1678790542.286384, 'test/f1-score': 0.7809523809523811, 'train/epoch_acc': 0.8415233415233415, 'train/batch_loss': 0.1340156048536301, '_wandb': {'runtime': 342}, 'test/recall': 0.8541666666666666, 'test/epoch_acc': 0.7444444444444445, 'test/precision': 0.7192982456140351, 'test/epoch_loss': 0.6144241677390204}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.1}",ancient-sweep-14 +86,"{'_step': 529, '_timestamp': 1678790183.7024884, 'test/f1-score': 0.7422680412371134, 'train/batch_loss': 0.6280461549758911, 'test/precision': 0.7058823529411765, 'test/epoch_loss': 0.6392196734746297, 'train/epoch_acc': 0.7457002457002457, 'epoch': 9, '_wandb': {'runtime': 344}, '_runtime': 346.86587953567505, 'test/recall': 0.782608695652174, 'test/epoch_acc': 0.7222222222222222, 'train/epoch_loss': 0.6374555861334836}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.0003}",revived-sweep-13 +87,"{'_wandb': {'runtime': 348}, '_runtime': 350.9660577774048, 'test/recall': 0.9111111111111112, 'train/epoch_acc': 0.9987714987714988, 'epoch': 9, '_timestamp': 1678789826.0085878, 'test/f1-score': 0.9010989010989012, 'test/epoch_acc': 0.9, 'test/precision': 0.8913043478260869, 'test/epoch_loss': 0.24115624560250176, 'train/batch_loss': 0.04231283441185951, 'train/epoch_loss': 0.02119528235872196, '_step': 149}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.0003}",swift-sweep-12 +88,"{'test/recall': 0.8333333333333334, 'test/epoch_loss': 0.5769641452365452, 'train/batch_loss': 0.6127220392227173, 'train/epoch_loss': 0.5840219159676929, 'epoch': 9, '_wandb': {'runtime': 393}, '_timestamp': 1678789464.8040044, 'test/f1-score': 0.7894736842105262, 'test/epoch_acc': 0.8222222222222223, 'test/precision': 0.75, 'train/epoch_acc': 0.757985257985258, '_step': 2059, '_runtime': 397.1281135082245}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.0001}",rosy-sweep-11 +89,"{'epoch': 9, 'test/recall': 0.8076923076923077, 'test/f1-score': 0.8842105263157894, 'test/epoch_loss': 0.2696530275874668, 'train/epoch_acc': 0.9938574938574938, 'train/batch_loss': 0.11590295284986496, '_step': 149, '_wandb': {'runtime': 352}, '_runtime': 355.46944642066956, '_timestamp': 1678789057.5684297, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.9767441860465116, 'train/epoch_loss': 0.06967324825777176}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.003}",deft-sweep-10 +90,"{'_step': 279, '_wandb': {'runtime': 340}, '_runtime': 342.3234579563141, '_timestamp': 1678788683.006292, 'test/recall': 0.9069767441860463, 'test/f1-score': 0.7959183673469388, 'test/epoch_acc': 0.7777777777777778, 'test/precision': 0.7090909090909091, 'test/epoch_loss': 0.6248881856600443, 'train/epoch_acc': 0.7014742014742015, 'train/batch_loss': 0.5820533037185669, 'train/epoch_loss': 0.6400203514450599, 'epoch': 9}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.0001}",atomic-sweep-9 +91,"{'_step': 1039, '_wandb': {'runtime': 351}, 'test/epoch_acc': 0.6555555555555556, 'test/precision': 0.6140350877192983, 'test/epoch_loss': 0.6175267219543457, 'train/epoch_acc': 0.7432432432432432, 'epoch': 9, '_runtime': 353.4816448688507, '_timestamp': 1678788328.1196988, 'test/recall': 0.7954545454545454, 'test/f1-score': 0.693069306930693, 'train/batch_loss': 0.3377891480922699, 'train/epoch_loss': 0.5329857344855841}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.1}",cosmic-sweep-8 +92,"{'epoch': 9, '_wandb': {'runtime': 390}, '_runtime': 392.4064960479736, '_timestamp': 1678787961.3400052, 'test/f1-score': 0.6999999999999998, 'test/precision': 0.5932203389830508, 'train/epoch_loss': 0.5631518808058498, '_step': 2059, 'test/recall': 0.8536585365853658, 'test/epoch_acc': 0.6666666666666667, 'test/epoch_loss': 0.6419186863634322, 'train/epoch_acc': 0.7186732186732187, 'train/batch_loss': 0.17200787365436554}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.01}",lunar-sweep-7 +93,"{'train/epoch_acc': 0.9975429975429976, 'train/epoch_loss': 0.03237721893286529, 'epoch': 9, '_wandb': {'runtime': 343}, '_runtime': 345.9260220527649, 'test/f1-score': 0.8988764044943819, 'test/epoch_acc': 0.9, 'train/batch_loss': 0.04353119805455208, '_step': 529, '_timestamp': 1678787557.992564, 'test/recall': 0.8888888888888888, 'test/precision': 0.9090909090909092, 'test/epoch_loss': 0.24278527200222016}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.01}",zany-sweep-6 +94,"{'_step': 529, '_runtime': 346.5414688587189, 'test/f1-score': 0.9130434782608696, 'train/epoch_acc': 0.9336609336609336, 'test/epoch_loss': 0.32114719019995797, 'train/batch_loss': 0.21811823546886444, 'epoch': 9, '_wandb': {'runtime': 344}, '_timestamp': 1678787192.9954038, 'test/recall': 0.8571428571428571, 'test/epoch_acc': 0.9111111111111112, 'test/precision': 0.9767441860465116, 'train/epoch_loss': 0.2347587838000103}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.001}",absurd-sweep-5 +95,"{'_timestamp': 1678786835.7254088, 'test/f1-score': 0.8799999999999999, 'test/epoch_loss': 0.22436124781767527, 'train/epoch_loss': 0.02646600444977348, 'epoch': 9, '_wandb': {'runtime': 344}, '_runtime': 345.9469966888428, 'test/precision': 0.9166666666666666, 'train/epoch_acc': 1, 'train/batch_loss': 0.06225413456559181, '_step': 279, 'test/recall': 0.8461538461538461, 'test/epoch_acc': 0.9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.003}",radiant-sweep-4 +96,"{'_wandb': {'runtime': 353}, '_runtime': 355.012455701828, 'test/recall': 0.875, 'test/f1-score': 0.8045977011494252, 'test/epoch_acc': 0.8111111111111111, 'test/precision': 0.7446808510638298, '_step': 1039, 'epoch': 9, 'train/epoch_loss': 0.45506354690476775, 'train/epoch_acc': 0.8341523341523341, 'train/batch_loss': 0.5456343293190002, '_timestamp': 1678786479.0865147, 'test/epoch_loss': 0.4459853092829386}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0003}",sandy-sweep-3 +97,"{'_wandb': {'runtime': 342}, '_timestamp': 1678786112.108075, 'test/recall': 0.7894736842105263, 'test/precision': 0.9090909090909092, 'test/epoch_loss': 0.31915653232071134, 'train/batch_loss': 0.026765840128064156, 'train/epoch_loss': 0.045762457081668206, '_step': 529, 'epoch': 9, '_runtime': 344.01046657562256, 'test/f1-score': 0.8450704225352113, 'test/epoch_acc': 0.8777777777777778, 'train/epoch_acc': 0.9926289926289926}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.01}",pretty-sweep-2 +98,"{'train/batch_loss': 0.7150550484657288, 'train/epoch_loss': 0.7011552195291262, '_step': 149, '_wandb': {'runtime': 357}, '_runtime': 359.66486382484436, '_timestamp': 1678785758.376562, 'test/f1-score': 0.379746835443038, 'test/precision': 0.42857142857142855, 'epoch': 9, 'test/recall': 0.3409090909090909, 'test/epoch_acc': 0.45555555555555555, 'test/epoch_loss': 0.7006691349877252, 'train/epoch_acc': 0.4815724815724816}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.0003}",rose-sweep-1 +99,"{'train/epoch_loss': 0.023103852647056927, '_step': 74, 'test/recall': 0.9090909090909092, 'test/f1-score': 0.8791208791208791, 'train/batch_loss': 0.0016211483161896467, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.851063829787234, 'test/epoch_loss': 0.5091631063156657, 'train/epoch_acc': 0.995085995085995, 'epoch': 4, '_wandb': {'runtime': 181}, '_runtime': 180.05384421348572, '_timestamp': 1678785370.5563953}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.1}",cosmic-sweep-2 +100,"{'test/f1-score': 0.9166666666666666, 'test/precision': 0.9166666666666666, 'train/epoch_acc': 0.9828009828009828, 'train/batch_loss': 0.0724378228187561, 'train/epoch_loss': 0.11044558714297244, '_step': 279, '_runtime': 347.11417746543884, 'test/recall': 0.9166666666666666, 'test/epoch_acc': 0.9111111111111112, 'test/epoch_loss': 0.2461573594146305, 'epoch': 9, '_wandb': {'runtime': 344}, '_timestamp': 1678743707.9633043}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.003}",ethereal-sweep-14 +101,"{'_step': 149, 'epoch': 9, '_wandb': {'runtime': 346}, 'test/recall': 0.9130434782608696, 'test/precision': 0.9545454545454546, 'train/batch_loss': 0.05796322599053383, 'train/epoch_loss': 0.043383844352398226, '_runtime': 349.69085454940796, '_timestamp': 1678743349.8008895, 'test/f1-score': 0.9333333333333332, 'test/epoch_acc': 0.9333333333333332, 'test/epoch_loss': 0.16449517243438297, 'train/epoch_acc': 1}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.003}",northern-sweep-13 +102,"{'_runtime': 560.5539684295654, '_timestamp': 1678743376.8770983, 'test/recall': 0.85, 'test/f1-score': 0.7816091954022989, 'train/epoch_acc': 0.8255528255528255, 'train/epoch_loss': 0.40511614706651, '_wandb': {'runtime': 559}, 'epoch': 9, 'test/epoch_acc': 0.788888888888889, 'test/precision': 0.723404255319149, 'test/epoch_loss': 0.5102662573258082, 'train/batch_loss': 0.42048144340515137, '_step': 2059}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.001}",faithful-sweep-12 +103,"{'_timestamp': 1678742986.9751594, 'test/recall': 0.7777777777777778, 'test/epoch_loss': 0.3378064884079827, 'epoch': 9, '_runtime': 358.3485324382782, 'test/f1-score': 0.8536585365853658, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.945945945945946, 'train/epoch_acc': 0.8955773955773956, 'train/batch_loss': 0.5923706889152527, 'train/epoch_loss': 0.27216847456936755, '_step': 1039, '_wandb': {'runtime': 355}}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.0003}",zany-sweep-12 +104,"{'test/epoch_acc': 0.7444444444444445, 'test/precision': 0.6226415094339622, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 358}, '_timestamp': 1678742619.1453717, 'test/recall': 0.9166666666666666, 'test/f1-score': 0.7415730337078651, 'train/epoch_loss': 0.613342459283824, '_runtime': 362.78373169898987, 'test/epoch_loss': 0.615033131175571, 'train/epoch_acc': 0.7481572481572482, 'train/batch_loss': 0.6421169638633728}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",ruby-sweep-11 +105,"{'_wandb': {'runtime': 531}, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.9545454545454546, 'train/batch_loss': 0.07699991017580032, '_step': 2059, '_runtime': 531.6082515716553, '_timestamp': 1678742643.2100165, 'test/recall': 0.8076923076923077, 'test/f1-score': 0.875, 'test/epoch_loss': 0.3795760815549228, 'train/epoch_acc': 0.9656019656019657, 'train/epoch_loss': 0.09796744051757808, 'epoch': 9}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.001}",fallen-sweep-10 +106,"{'test/f1-score': 0.875, 'test/precision': 0.9545454545454546, 'test/epoch_loss': 0.2956610471010208, 'train/batch_loss': 0.1150113120675087, '_step': 1039, 'epoch': 9, '_timestamp': 1678742242.6362762, 'test/recall': 0.8076923076923077, 'train/epoch_loss': 0.24495647845821825, '_wandb': {'runtime': 359}, '_runtime': 361.6978232860565, 'test/epoch_acc': 0.8666666666666667, 'train/epoch_acc': 0.9103194103194104}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.003}",rare-sweep-10 +107,"{'_runtime': 471.6707801818848, 'test/precision': 0.9714285714285714, '_wandb': {'runtime': 471}, '_timestamp': 1678742103.7627492, 'test/recall': 0.7906976744186046, 'test/f1-score': 0.8717948717948717, 'test/epoch_acc': 0.888888888888889, 'test/epoch_loss': 0.26282389760017394, '_step': 1039, 'epoch': 9, 'train/epoch_loss': 0.310643073711407, 'train/epoch_acc': 0.8869778869778869, 'train/batch_loss': 0.14859537780284882}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.003}",major-sweep-9 +108,"{'test/epoch_acc': 0.6333333333333333, 'test/precision': 0.6, 'train/epoch_acc': 0.5921375921375921, 'train/batch_loss': 0.6228023767471313, '_step': 279, '_runtime': 344.49258494377136, 'test/f1-score': 0.6451612903225806, 'test/recall': 0.6976744186046512, 'test/epoch_loss': 0.6676742302046882, 'train/epoch_loss': 0.6766868150204932, 'epoch': 9, '_wandb': {'runtime': 341}, '_timestamp': 1678741869.828495}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.0001}",spring-sweep-9 +109,"{'test/epoch_loss': 0.16872049139605627, 'train/epoch_acc': 0.9987714987714988, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 451}, '_runtime': 452.4322986602783, 'test/f1-score': 0.9213483146067416, 'test/precision': 0.9111111111111112, 'train/epoch_loss': 0.02303326028314504, '_timestamp': 1678741623.0662856, 'test/recall': 0.9318181818181818, 'test/epoch_acc': 0.9222222222222224, 'train/batch_loss': 0.0022799931466579437}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",elated-sweep-8 +110,"{'_step': 149, '_runtime': 345.3405177593231, 'test/f1-score': 0.9534883720930232, 'test/precision': 0.9761904761904762, 'test/epoch_loss': 0.2148759490913815, 'train/epoch_acc': 0.9606879606879608, 'epoch': 9, '_wandb': {'runtime': 342}, '_timestamp': 1678741511.9070578, 'test/recall': 0.9318181818181818, 'test/epoch_acc': 0.9555555555555556, 'train/batch_loss': 0.11643347889184952, 'train/epoch_loss': 0.1359616077759049}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.003}",hardy-sweep-8 +111,"{'epoch': 9, '_wandb': {'runtime': 342}, '_runtime': 345.1732180118561, '_timestamp': 1678741156.130327, 'test/recall': 0.8048780487804879, 'test/epoch_acc': 0.888888888888889, 'train/epoch_acc': 1, '_step': 279, 'train/epoch_loss': 0.008645273717600824, 'test/precision': 0.9428571428571428, 'test/epoch_loss': 0.2181672462158733, 'train/batch_loss': 0.042314428836107254, 'test/f1-score': 0.868421052631579}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.1}",sweepy-sweep-7 +112,"{'_step': 1039, 'test/f1-score': 0.7222222222222222, 'test/epoch_acc': 0.7777777777777778, 'test/precision': 0.8387096774193549, 'test/epoch_loss': 0.4768455002042982, 'train/epoch_acc': 0.8292383292383292, 'train/epoch_loss': 0.45283343838825274, 'epoch': 9, '_wandb': {'runtime': 453}, '_runtime': 454.0593776702881, '_timestamp': 1678741159.4683807, 'test/recall': 0.6341463414634146, 'train/batch_loss': 0.3791900873184204}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0001}",glorious-sweep-7 +113,"{'test/epoch_loss': 0.1931780371401045, 'epoch': 9, '_wandb': {'runtime': 346}, 'test/f1-score': 0.9333333333333332, 'test/precision': 0.9333333333333332, 'test/epoch_acc': 0.9333333333333332, 'train/epoch_acc': 1, 'train/batch_loss': 0.001889266073703766, 'train/epoch_loss': 0.0030514685945077376, '_step': 149, '_runtime': 348.53755164146423, '_timestamp': 1678740798.1400597, 'test/recall': 0.9333333333333332}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.01}",rural-sweep-6 +114,"{'epoch': 9, 'test/recall': 0.8666666666666667, 'test/f1-score': 0.896551724137931, 'test/epoch_acc': 0.9, 'train/batch_loss': 0.1385842263698578, '_step': 2059, '_runtime': 560.7404127120972, '_timestamp': 1678740696.0305526, 'test/precision': 0.9285714285714286, 'test/epoch_loss': 0.22745563416845269, 'train/epoch_acc': 0.984029484029484, 'train/epoch_loss': 0.07075482415817952, '_wandb': {'runtime': 560}}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",smart-sweep-6 +115,"{'_runtime': 345.5716743469238, '_timestamp': 1678740438.4959724, 'test/recall': 0.7755102040816326, 'test/f1-score': 0.8172043010752688, 'train/epoch_acc': 0.7616707616707616, 'train/epoch_loss': 0.5191410552225183, 'epoch': 9, '_wandb': {'runtime': 342}, 'test/precision': 0.8636363636363636, 'test/epoch_loss': 0.507676590151257, 'train/batch_loss': 0.44296249747276306, '_step': 529, 'test/epoch_acc': 0.8111111111111111}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.1}",giddy-sweep-5 +116,"{'_step': 529, 'epoch': 9, '_runtime': 345.28623247146606, 'test/f1-score': 0.6842105263157895, 'train/epoch_acc': 0.8538083538083537, 'train/batch_loss': 0.4066888689994812, 'train/epoch_loss': 0.32492415251837314, '_wandb': {'runtime': 342}, '_timestamp': 1678740073.5443084, 'test/recall': 0.6666666666666666, 'test/epoch_acc': 0.7333333333333334, 'test/precision': 0.7027027027027027, 'test/epoch_loss': 0.6657861550649007}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.1}",lilac-sweep-4 +117,"{'_step': 1039, 'epoch': 9, '_wandb': {'runtime': 454}, '_runtime': 454.98564982414246, 'test/epoch_acc': 0.888888888888889, 'test/epoch_loss': 0.2600655794143677, 'train/batch_loss': 0.01167443674057722, '_timestamp': 1678740126.212114, 'test/recall': 0.8367346938775511, 'test/f1-score': 0.8913043478260869, 'test/precision': 0.9534883720930232, 'train/epoch_acc': 0.9803439803439804, 'train/epoch_loss': 0.08152788232426166}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.001}",hearty-sweep-5 +118,"{'train/epoch_acc': 0.8144963144963144, 'epoch': 9, '_wandb': {'runtime': 354}, '_timestamp': 1678739717.8250418, 'test/epoch_acc': 0.788888888888889, 'test/epoch_loss': 0.4899995631641812, 'train/batch_loss': 0.6180618405342102, 'train/epoch_loss': 0.5079173609724209, '_step': 1039, '_runtime': 356.9382667541504, 'test/recall': 0.875, 'test/f1-score': 0.7865168539325842, 'test/precision': 0.7142857142857143}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.0001}",silvery-sweep-3 +119,"{'_wandb': {'runtime': 453}, 'test/precision': 0.9142857142857144, 'train/epoch_acc': 0.8968058968058967, 'train/batch_loss': 0.2711101472377777, 'test/epoch_loss': 0.3028925802972582, '_step': 1039, 'epoch': 9, '_runtime': 454.2519624233246, '_timestamp': 1678739662.5458224, 'test/recall': 0.8205128205128205, 'test/f1-score': 0.8648648648648648, 'test/epoch_acc': 0.888888888888889, 'train/epoch_loss': 0.28549219298128414}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.0003}",dulcet-sweep-4 +120,"{'train/epoch_loss': 0.6479796424544707, '_step': 529, '_runtime': 343.88807487487793, 'test/f1-score': 0.6451612903225806, 'test/epoch_acc': 0.6333333333333333, 'test/precision': 0.5454545454545454, 'test/epoch_loss': 0.6651701913939582, 'train/epoch_acc': 0.6928746928746928, 'train/batch_loss': 0.6685948967933655, 'epoch': 9, '_wandb': {'runtime': 341}, '_timestamp': 1678739351.1315958, 'test/recall': 0.7894736842105263}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.001}",glamorous-sweep-2 +121,"{'_runtime': 469.65283608436584, 'epoch': 9, '_wandb': {'runtime': 469}, 'test/recall': 0.875, 'test/f1-score': 0.7608695652173914, 'test/epoch_acc': 0.7555555555555555, 'test/precision': 0.6730769230769231, 'test/epoch_loss': 0.6144020875295003, 'train/epoch_acc': 0.7542997542997543, '_step': 1039, '_timestamp': 1678739200.083605, 'train/batch_loss': 0.6510805487632751, 'train/epoch_loss': 0.6267796501480684}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",hopeful-sweep-3 +122,"{'test/precision': 0.8409090909090909, 'train/epoch_acc': 0.9975429975429976, 'train/batch_loss': 0.0980801358819008, '_step': 279, '_wandb': {'runtime': 353}, '_runtime': 357.5890119075775, 'test/f1-score': 0.8409090909090909, 'test/epoch_acc': 0.8444444444444444, 'train/epoch_loss': 0.03763626415181805, 'epoch': 9, '_timestamp': 1678738994.027642, 'test/recall': 0.8409090909090909, 'test/epoch_loss': 0.3028163850307465}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.003}",lunar-sweep-1 +123,"{'test/f1-score': 0.7157894736842105, 'test/epoch_loss': 0.5541173484590318, '_timestamp': 1678738720.9443874, 'test/recall': 0.8947368421052632, 'test/epoch_acc': 0.7000000000000001, 'test/precision': 0.5964912280701754, '_step': 2059, 'epoch': 9, '_wandb': {'runtime': 529}, '_runtime': 529.6096863746643, 'train/epoch_acc': 0.6658476658476659, 'train/batch_loss': 0.7896618843078613, 'train/epoch_loss': 0.618659178367118}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.1}",stoic-sweep-2 +124,"{'train/epoch_loss': 0.016353931551580648, 'epoch': 9, '_wandb': {'runtime': 353}, '_runtime': 355.4184715747833, '_timestamp': 1678738469.1834886, 'test/recall': 0.6578947368421053, 'train/epoch_acc': 0.995085995085995, 'train/batch_loss': 0.0014543599681928754, '_step': 529, 'test/f1-score': 0.7575757575757577, 'test/epoch_acc': 0.8222222222222223, 'test/precision': 0.8928571428571429, 'test/epoch_loss': 0.4269479903909895}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.0001}",dark-sweep-2 +125,"{'_wandb': {'runtime': 381}, '_timestamp': 1678738101.018471, 'test/f1-score': 0.8470588235294119, 'test/epoch_acc': 0.8555555555555556, 'test/epoch_loss': 0.40116495291392007, 'epoch': 9, '_runtime': 384.5172441005707, 'test/recall': 0.8181818181818182, 'test/precision': 0.8780487804878049, 'train/epoch_acc': 0.8673218673218673, 'train/batch_loss': 0.31195682287216187, 'train/epoch_loss': 0.3623260387038716, '_step': 1039}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0003}",trim-sweep-1 +126,"{'epoch': 9, '_runtime': 560.7235152721405, 'test/f1-score': 0.8602150537634408, 'test/precision': 0.8163265306122449, 'train/epoch_acc': 0.7567567567567567, 'train/batch_loss': 0.6653294563293457, '_step': 2059, '_wandb': {'runtime': 560}, '_timestamp': 1678738182.1088202, 'test/recall': 0.9090909090909092, 'test/epoch_acc': 0.8555555555555556, 'test/epoch_loss': 0.6165981186760796, 'train/epoch_loss': 0.6107166709712448}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.001}",sparkling-sweep-1 +127,"{'_step': 555, 'epoch': 1, '_timestamp': 1678737059.0375042, 'test/recall': 0.6818181818181818, 'test/epoch_acc': 0.6555555555555556, 'test/precision': 0.6382978723404256, '_wandb': {'runtime': 118}, '_runtime': 122.13349413871764, 'test/f1-score': 0.6593406593406593, 'test/epoch_loss': 0.6796493821673923, 'train/epoch_acc': 0.5515970515970516, 'train/batch_loss': 0.6759337782859802, 'train/epoch_loss': 0.6851893525744539}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.0003}",serene-sweep-1 +128,"{'_wandb': {'runtime': 455}, 'train/epoch_acc': 0.9914004914004914, 'test/precision': 0.9361702127659576, 'test/batch_loss': 0.1311825066804886, 'train/epoch_loss': 0.032788554922144414, '_runtime': 456.3002746105194, '_timestamp': 1678734250.8076646, 'test/f1-score': 0.8888888888888888, 'train/batch_loss': 0.003167948452755809, '_step': 1159, 'test/recall': 0.8461538461538461, 'test/epoch_loss': 0.45068282733360926, 'epoch': 9, 'test/epoch_acc': 0.8777777777777778}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.003}",super-sweep-10 +129,"{'_wandb': {'runtime': 563}, '_runtime': 564.230875492096, 'test/f1-score': 0.7173913043478259, 'test/batch_loss': 0.9658783674240112, 'train/epoch_loss': 0.5984233345387902, '_step': 2289, 'test/precision': 0.673469387755102, 'test/recall': 0.7674418604651163, 'train/epoch_acc': 0.687960687960688, 'train/batch_loss': 0.3260266184806824, 'epoch': 9, 'test/epoch_acc': 0.7111111111111111, 'test/epoch_loss': 0.5302444166607327, '_timestamp': 1678733784.6976814}","{'gamma': 0.1, 'epochs': 10, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",distinctive-sweep-9 +130,"{'_step': 2289, 'test/f1-score': 0.9268292682926828, '_timestamp': 1678733210.1129615, 'test/epoch_acc': 0.9333333333333332, 'test/epoch_loss': 0.17092165086004468, 'epoch': 9, 'train/batch_loss': 0.007875862531363964, 'train/epoch_loss': 0.1743801347293527, 'test/precision': 1, 'test/batch_loss': 0.1419784128665924, 'train/epoch_acc': 0.9496314496314496, '_wandb': {'runtime': 527}, '_runtime': 527.6160025596619, 'test/recall': 0.8636363636363636}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.0003}",winter-sweep-8 +131,"{'test/f1-score': 0.9066666666666668, '_runtime': 453.52900218963623, 'test/recall': 0.8292682926829268, 'test/precision': 1, 'test/batch_loss': 0.27116066217422485, '_step': 1159, '_wandb': {'runtime': 452}, 'test/epoch_loss': 0.21558621691332924, 'train/epoch_loss': 0.07730489082323246, 'epoch': 9, '_timestamp': 1678732673.1225052, 'test/epoch_acc': 0.9222222222222224, 'train/epoch_acc': 0.9791154791154792, 'train/batch_loss': 0.04383014515042305}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.001}",stilted-sweep-7 +132,"{'_timestamp': 1678732212.5530572, 'test/f1-score': 0.7010309278350516, 'test/epoch_acc': 0.6777777777777778, 'epoch': 9, 'test/batch_loss': 0.4716488718986511, 'train/batch_loss': 0.48304444551467896, '_step': 2289, '_wandb': {'runtime': 561}, '_runtime': 561.7993631362915, 'test/precision': 0.6538461538461539, 'test/recall': 0.7555555555555555, 'test/epoch_loss': 0.6190193812052409, 'train/epoch_acc': 0.7272727272727273, 'train/epoch_loss': 0.5549268187263967}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",summer-sweep-6 +133,"{'test/epoch_acc': 0.8222222222222223, 'test/batch_loss': 0.5068956017494202, 'train/epoch_loss': 0.5186349417126442, '_step': 1159, '_wandb': {'runtime': 453}, 'test/f1-score': 0.813953488372093, 'test/epoch_loss': 0.4936415394147237, 'train/batch_loss': 0.4434223175048828, 'test/recall': 0.7142857142857143, 'test/precision': 0.945945945945946, 'train/epoch_acc': 0.8218673218673218, 'epoch': 9, '_runtime': 454.3645238876343, '_timestamp': 1678731639.156168}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0001}",different-sweep-5 +134,"{'_wandb': {'runtime': 453}, '_runtime': 454.26038885116577, 'test/batch_loss': 0.5159374475479126, 'test/epoch_loss': 0.5482642173767089, '_step': 1159, 'epoch': 9, 'train/batch_loss': 0.5655931830406189, '_timestamp': 1678731176.111379, 'test/f1-score': 0.8354430379746836, 'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.825, 'train/epoch_acc': 0.812039312039312, 'train/epoch_loss': 0.5429200196149016, 'test/recall': 0.8461538461538461}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",wise-sweep-4 +135,"{'test/batch_loss': 1.7588363885879517, 'train/batch_loss': 0.00470334617421031, 'train/epoch_loss': 0.02060394324720534, '_step': 2289, 'epoch': 9, 'test/f1-score': 0.8493150684931509, 'train/epoch_acc': 0.9963144963144964, '_runtime': 528.9760706424713, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.9393939393939394, 'test/epoch_loss': 0.24194780117250048, '_wandb': {'runtime': 528}, '_timestamp': 1678730714.7711067, 'test/recall': 0.775}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.003}",misty-sweep-3 +136,"{'test/batch_loss': 0.455120325088501, 'train/batch_loss': 0.5347514748573303, 'test/precision': 0.8387096774193549, 'train/epoch_acc': 0.8329238329238329, '_runtime': 455.41485929489136, 'test/recall': 0.6842105263157895, 'test/epoch_acc': 0.8111111111111111, 'test/f1-score': 0.7536231884057972, 'train/epoch_loss': 0.42904984072326735, 'epoch': 9, '_wandb': {'runtime': 454}, '_timestamp': 1678730177.1362092, '_step': 1159, 'test/epoch_loss': 0.4792341656155056}","{'gamma': 0.1, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0003}",unique-sweep-2 +137,"{'epoch': 9, '_wandb': {'runtime': 527}, 'test/recall': 0.8636363636363636, 'test/batch_loss': 2.5320074558258057, 'train/epoch_acc': 0.9901719901719902, 'train/batch_loss': 0.005740344058722258, 'train/epoch_loss': 0.024021292951151657, '_step': 2289, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9047619047619048, 'test/epoch_loss': 0.5442472649919283, '_runtime': 528.4356484413147, '_timestamp': 1678729705.2001765, 'test/f1-score': 0.8837209302325582}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.003}",polar-sweep-1 diff --git a/classification/classifier/hyp-metrics.ipynb b/classification/classifier/hyp-metrics.ipynb index 45f1c0a..6579501 100644 --- a/classification/classifier/hyp-metrics.ipynb +++ b/classification/classifier/hyp-metrics.ipynb @@ -99,14 +99,14 @@ " \n", " Unnamed: 0\n", " name\n", + " test/epoch_acc\n", + " test/precision\n", " test/epoch_loss\n", " train/epoch_acc\n", - " train/batch_loss\n", + " _step\n", " epoch\n", " _timestamp\n", - " test/recall\n", - " test/precision\n", - " _step\n", + " test/f1-score\n", " ...\n", " test/batch_loss\n", " eps\n", @@ -125,14 +125,14 @@ " 0\n", " 0\n", " fiery-sweep-26\n", + " 0.733333\n", + " 0.828571\n", " 0.566462\n", " 0.823096\n", - " 0.335779\n", + " 2059\n", " 9\n", " 1.680693e+09\n", - " 0.617021\n", - " 0.828571\n", - " 2059\n", + " 0.707317\n", " ...\n", " NaN\n", " 1.000000e-01\n", @@ -149,14 +149,14 @@ " 1\n", " 1\n", " radiant-sweep-25\n", + " 0.722222\n", + " 0.685185\n", " 0.645458\n", " 0.712531\n", - " 0.70145\n", + " 1039\n", " 9\n", " 1.680693e+09\n", - " 0.822222\n", - " 0.685185\n", - " 1039\n", + " 0.747475\n", " ...\n", " NaN\n", " 1.000000e+00\n", @@ -173,14 +173,14 @@ " 2\n", " 2\n", " blooming-sweep-24\n", + " 0.888889\n", + " 0.935484\n", " 0.348129\n", " 0.998771\n", - " 0.019566\n", + " 1039\n", " 9\n", " 1.680692e+09\n", - " 0.783784\n", - " 0.935484\n", - " 1039\n", + " 0.852941\n", " ...\n", " NaN\n", " 1.000000e-08\n", @@ -197,14 +197,14 @@ " 3\n", " 3\n", " visionary-sweep-23\n", + " 0.800000\n", + " 0.760870\n", " 0.555318\n", " 0.835381\n", - " 0.522233\n", + " 529\n", " 9\n", " 1.680692e+09\n", - " 0.833333\n", - " 0.760870\n", - " 529\n", + " 0.795455\n", " ...\n", " NaN\n", " 1.000000e+00\n", @@ -221,14 +221,14 @@ " 4\n", " 4\n", " ancient-sweep-22\n", + " 0.577778\n", + " 0.589744\n", " 1.560271\n", " 0.557740\n", - " 0.508366\n", + " 410\n", " 1\n", " 1.680692e+09\n", - " 0.884615\n", - " 0.589744\n", - " 410\n", + " 0.707692\n", " ...\n", " NaN\n", " 1.000000e-08\n", @@ -269,14 +269,14 @@ " 133\n", " 133\n", " different-sweep-5\n", + " 0.822222\n", + " 0.945946\n", " 0.493642\n", " 0.821867\n", - " 0.443422\n", + " 1159\n", " 9\n", " 1.678732e+09\n", - " 0.714286\n", - " 0.945946\n", - " 1159\n", + " 0.813953\n", " ...\n", " 0.506896\n", " NaN\n", @@ -293,14 +293,14 @@ " 134\n", " 134\n", " wise-sweep-4\n", + " 0.855556\n", + " 0.825000\n", " 0.548264\n", " 0.812039\n", - " 0.565593\n", + " 1159\n", " 9\n", " 1.678731e+09\n", - " 0.846154\n", - " 0.825000\n", - " 1159\n", + " 0.835443\n", " ...\n", " 0.515937\n", " NaN\n", @@ -317,14 +317,14 @@ " 135\n", " 135\n", " misty-sweep-3\n", + " 0.877778\n", + " 0.939394\n", " 0.241948\n", " 0.996314\n", - " 0.004703\n", + " 2289\n", " 9\n", " 1.678731e+09\n", - " 0.775000\n", - " 0.939394\n", - " 2289\n", + " 0.849315\n", " ...\n", " 1.758836\n", " NaN\n", @@ -341,14 +341,14 @@ " 136\n", " 136\n", " unique-sweep-2\n", + " 0.811111\n", + " 0.838710\n", " 0.479234\n", " 0.832924\n", - " 0.534751\n", + " 1159\n", " 9\n", " 1.678730e+09\n", - " 0.684211\n", - " 0.838710\n", - " 1159\n", + " 0.753623\n", " ...\n", " 0.455120\n", " NaN\n", @@ -365,14 +365,14 @@ " 137\n", " 137\n", " polar-sweep-1\n", + " 0.888889\n", + " 0.904762\n", " 0.544247\n", " 0.990172\n", - " 0.00574\n", + " 2289\n", " 9\n", " 1.678730e+09\n", - " 0.863636\n", - " 0.904762\n", - " 2289\n", + " 0.883721\n", " ...\n", " 2.532007\n", " NaN\n", @@ -391,57 +391,57 @@ "" ], "text/plain": [ - " Unnamed: 0 name test/epoch_loss train/epoch_acc \\\n", - "0 0 fiery-sweep-26 0.566462 0.823096 \n", - "1 1 radiant-sweep-25 0.645458 0.712531 \n", - "2 2 blooming-sweep-24 0.348129 0.998771 \n", - "3 3 visionary-sweep-23 0.555318 0.835381 \n", - "4 4 ancient-sweep-22 1.560271 0.557740 \n", - ".. ... ... ... ... \n", - "133 133 different-sweep-5 0.493642 0.821867 \n", - "134 134 wise-sweep-4 0.548264 0.812039 \n", - "135 135 misty-sweep-3 0.241948 0.996314 \n", - "136 136 unique-sweep-2 0.479234 0.832924 \n", - "137 137 polar-sweep-1 0.544247 0.990172 \n", + " Unnamed: 0 name test/epoch_acc test/precision \\\n", + "0 0 fiery-sweep-26 0.733333 0.828571 \n", + "1 1 radiant-sweep-25 0.722222 0.685185 \n", + "2 2 blooming-sweep-24 0.888889 0.935484 \n", + "3 3 visionary-sweep-23 0.800000 0.760870 \n", + "4 4 ancient-sweep-22 0.577778 0.589744 \n", + ".. ... ... ... ... \n", + "133 133 different-sweep-5 0.822222 0.945946 \n", + "134 134 wise-sweep-4 0.855556 0.825000 \n", + "135 135 misty-sweep-3 0.877778 0.939394 \n", + "136 136 unique-sweep-2 0.811111 0.838710 \n", + "137 137 polar-sweep-1 0.888889 0.904762 \n", "\n", - " train/batch_loss epoch _timestamp test/recall test/precision _step \\\n", - "0 0.335779 9 1.680693e+09 0.617021 0.828571 2059 \n", - "1 0.70145 9 1.680693e+09 0.822222 0.685185 1039 \n", - "2 0.019566 9 1.680692e+09 0.783784 0.935484 1039 \n", - "3 0.522233 9 1.680692e+09 0.833333 0.760870 529 \n", - "4 0.508366 1 1.680692e+09 0.884615 0.589744 410 \n", - ".. ... ... ... ... ... ... \n", - "133 0.443422 9 1.678732e+09 0.714286 0.945946 1159 \n", - "134 0.565593 9 1.678731e+09 0.846154 0.825000 1159 \n", - "135 0.004703 9 1.678731e+09 0.775000 0.939394 2289 \n", - "136 0.534751 9 1.678730e+09 0.684211 0.838710 1159 \n", - "137 0.00574 9 1.678730e+09 0.863636 0.904762 2289 \n", + " test/epoch_loss train/epoch_acc _step epoch _timestamp \\\n", + "0 0.566462 0.823096 2059 9 1.680693e+09 \n", + "1 0.645458 0.712531 1039 9 1.680693e+09 \n", + "2 0.348129 0.998771 1039 9 1.680692e+09 \n", + "3 0.555318 0.835381 529 9 1.680692e+09 \n", + "4 1.560271 0.557740 410 1 1.680692e+09 \n", + ".. ... ... ... ... ... \n", + "133 0.493642 0.821867 1159 9 1.678732e+09 \n", + "134 0.548264 0.812039 1159 9 1.678731e+09 \n", + "135 0.241948 0.996314 2289 9 1.678731e+09 \n", + "136 0.479234 0.832924 1159 9 1.678730e+09 \n", + "137 0.544247 0.990172 2289 9 1.678730e+09 \n", "\n", - " ... test/batch_loss eps gamma epochs beta_one beta_two \\\n", - "0 ... NaN 1.000000e-01 0.1 10 0.99 0.900 \n", - "1 ... NaN 1.000000e+00 0.5 10 0.99 0.900 \n", - "2 ... NaN 1.000000e-08 0.5 10 0.90 0.999 \n", - "3 ... NaN 1.000000e+00 0.1 10 0.90 0.900 \n", - "4 ... NaN 1.000000e-08 0.5 10 0.90 0.990 \n", - ".. ... ... ... ... ... ... ... \n", - "133 ... 0.506896 NaN 0.5 10 NaN NaN \n", - "134 ... 0.515937 NaN 0.5 10 NaN NaN \n", - "135 ... 1.758836 NaN 0.5 10 NaN NaN \n", - "136 ... 0.455120 NaN 0.1 10 NaN NaN \n", - "137 ... 2.532007 NaN 0.5 10 NaN NaN \n", + " test/f1-score ... test/batch_loss eps gamma epochs \\\n", + "0 0.707317 ... NaN 1.000000e-01 0.1 10 \n", + "1 0.747475 ... NaN 1.000000e+00 0.5 10 \n", + "2 0.852941 ... NaN 1.000000e-08 0.5 10 \n", + "3 0.795455 ... NaN 1.000000e+00 0.1 10 \n", + "4 0.707692 ... NaN 1.000000e-08 0.5 10 \n", + ".. ... ... ... ... ... ... \n", + "133 0.813953 ... 0.506896 NaN 0.5 10 \n", + "134 0.835443 ... 0.515937 NaN 0.5 10 \n", + "135 0.849315 ... 1.758836 NaN 0.5 10 \n", + "136 0.753623 ... 0.455120 NaN 0.1 10 \n", + "137 0.883721 ... 2.532007 NaN 0.5 10 \n", "\n", - " optimizer step_size batch_size learning_rate \n", - "0 adam 3 4 0.0003 \n", - "1 adam 2 8 0.0003 \n", - "2 sgd 5 8 0.0030 \n", - "3 sgd 2 16 0.0003 \n", - "4 adam 7 4 0.0100 \n", - ".. ... ... ... ... \n", - "133 sgd 3 8 0.0001 \n", - "134 sgd 2 8 0.0001 \n", - "135 sgd 3 4 0.0030 \n", - "136 sgd 3 8 0.0003 \n", - "137 sgd 7 4 0.0030 \n", + " beta_one beta_two optimizer step_size batch_size learning_rate \n", + "0 0.99 0.900 adam 3 4 0.0003 \n", + "1 0.99 0.900 adam 2 8 0.0003 \n", + "2 0.90 0.999 sgd 5 8 0.0030 \n", + "3 0.90 0.900 sgd 2 16 0.0003 \n", + "4 0.90 0.990 adam 7 4 0.0100 \n", + ".. ... ... ... ... ... ... \n", + "133 NaN NaN sgd 3 8 0.0001 \n", + "134 NaN NaN sgd 2 8 0.0001 \n", + "135 NaN NaN sgd 3 4 0.0030 \n", + "136 NaN NaN sgd 3 8 0.0003 \n", + "137 NaN NaN sgd 7 4 0.0030 \n", "\n", "[138 rows x 25 columns]" ] @@ -517,7 +517,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 6, "id": "00efa25b", "metadata": {}, "outputs": [ @@ -883,10 +883,72 @@ "pd.DataFrame.from_dict(parameters_dict).explode('optimizer').explode('batch_size').explode('learning_rate').explode('step_size').explode('gamma').explode('beta_one').explode('beta_two').explode('eps')" ] }, + { + "cell_type": "markdown", + "id": "0d01bf18", + "metadata": {}, + "source": [ + "# F1-score stratified 10-fold cross validation" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "bb567230", + "metadata": {}, + "outputs": [], + "source": [ + "f_scores_test = pd.read_csv('f1-scores-folds.csv', delimiter=',')\n", + "f_scores_test['epoch'] = np.resize(np.arange(25), 10*25)\n", + "f_scores_test['fold'] = np.repeat(np.arange(10), 25)\n", + "f_scores_test = pd.melt(f_scores_test[['epoch', 'fold', 'StratifiedKFold-ROC - test/f1-score']], ['epoch', 'fold'])\n", + "\n", + "f_scores_train = pd.read_csv('f1-scores-folds-train.csv', delimiter=',')\n", + "f_scores_train['epoch'] = np.resize(np.arange(25), 10*25)\n", + "f_scores_train['fold'] = np.repeat(np.arange(10), 25)\n", + "f_scores_train = pd.melt(f_scores_train[['epoch', 'fold', 'StratifiedKFold-ROC - train/f1-score']], ['epoch', 'fold'])" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "493e415e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAALACAYAAACetAiCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD2A0lEQVR4nOzdd3iT5frA8W+SJt1py16lLFktKiAqBQeCUMAFCsUNKrjBAR4n/g56jgMccDwOUHFLRXFDQVwgRUWGtKVsSlNa6E46svP8/qj0WGZH0nTcn+viapO+7/PeeWjz3nmmRimlEEIIIYRoRrT+DkAIIYQQwtskwRFCCCFEsyMJjhBCCCGaHUlwhBBCCNHsSIIjhBBCiGZHEhwhhBBCNDuS4AghhBCi2QnwdwD+snXrVpRS6PV6f4cihBBCiFNwOp1oNBoGDhxY43NabAuOUgpfrXGolMLhcPisfHE8qfOGJ3XuH1LvDU/qvOEdW+d1uWe32Bacoy03AwYM8HrZFRUVZGRk0KtXL0JCQrxevjie1HnDkzr3D6n3hid13vCOrfPU1NRal9FiW3CEEEII0XxJgiOEEEKIZkcSHCGEEEI0O5LgCCGEEKLZkQRHCCGEEM2OJDhCCCGEaHYkwRFCCCFEsyMJjhBCCCGaHUlwhBBCCNHs+GUlY4vFQlJSEgDTp08/4THJyckAmM1moqOjiY+PP+XzQgghhBBH+aUFJyUlhZKSkpP+3GQykZKSQkJCAomJiSxZsuSUzwshhBBC/J1fWnASEhIwm81YLJYT/jwlJYXw8PCqx+Hh4aSkpGAymU74fF1bcZRSVFRU1OncU7FardW+NjeZe7M4kpNHmDGU0LDQqq9BwYFoNJqTnud2unBa7djKKshM3cOGNRvIyNiP2+2p1fWVUng8Co/Hg8vjwe1x4fZ48Hg8oNFy8giaOA1otRq0p6jjhqIAj7sF1HkjpACU1HtD8nqd/1WIVlv5jUajabD/SwVU7lmpUB5QqP/9wAsiw0J54fOX671n17H3UaXUKe8vJ9IoN9vMysoiMjKy6nFkZCQWi+Wkz9eV0+kkIyOjHpGeWmZmps/K9pe0zRm8/ty7uN3u436m1WoI1Bsw6HVoAKU8eDxunC4XNpcDm9OB3eXA4Xb9749KCCFEs/LxgneInzTCK2X9/T5qMBhqdW6jTHBOxGw21+r5mtDr9fTq1avO55+M1WolMzOTbt26ERwc7PXy/eWPlK0snv8e0ZGR9GvfnqKKcooryjHbyim1WSm1WymxFmNzOaqdp9Vo0Wl0f33VE2oI/N9jra7asYYAHQa9nuBAPYEGA0FBBoICDQQHBxIUGEhQcCDBwUEEBwcTFBxEaFjl9/pAA+XWCqIiI9Ebmsyvda3YKxxYikopKyzFUmihtMiCzVL56Uajg/CoMMJaGzG2MhLe2oixjRF9UGCNy/e4PZSVlFNaZKa0oIzSQjOlRaU4KuwAaAO0hLcOx9jaSHgrI8ERwThw0SoqqtnWeWPkdLgoLjETFRkh9d5AvFrnqrI8p8OF2+HEaXdWfm934nA4cdrduJ0OXPbKY1wOB067G6fTicvuQB3/2bKSBnSGAPSBevQGHTqDAb1Bjz5QR8Bf3wcYdAQEGggwBGAwBBAQqCdAr8cQGIBG5502pLZdOtB/6Nn1LufY++jevXtrXUaj/Ovo2rVrtZaZkpISoqOjAU76fF1oNJp6N6OdSnBwsE/Lb0hbfv2Tx+55mk5Rkew9ksXvWZUtXxogSB9IYIAeLTqMgeG0CTEQqDMQog8k1BBEqCEIY2gIfeJ6MPiSQfQc2BO700V5WQXWChthEeEYW0VibBWJPrB2GfpRFRUVZGRk0K9fv2ZT5zVhK7OSl5nLkQO55B39tyuXI/ZsAEKjwmjfvRPtunekXbeOtO/RkTZd2mEtreBIZi55+4+em0OBKQ/PX92FEe2j6NWnJ+26d6T9X/8iO7RGq/vfsL2WWuf+JvXe8BpTnbscTmxlVuwVNlxOF0GhwQSGBhEYHIhG2/wmRh+9j9a2ewoaWYJjsVgwGo3Ex8czf/78quezs7OJj4/HZDKd8HnhW9s3p3H/LY/QvVN7SgrzMdsq6B4VTaAukKAAAyHBQWg8oEWDXhdAqMFAcEAAbTq24eyLB9Jv+Jl07tO12s1ReEdQWDBd43rQNa5H1XMet4eSw4UcOfC/xCfjl+38+tnPAGi0GpSnsotQH2SgXbcOdO4Xw6BxQ/9KhDoQFNp8Wh6FaE4CDHrCWukJa2X0dyiNnl8SnJSUFDZs2EBpaSnR0dEkJCQAMHHiRFasWEF0dDTjxo0jOTkZs9nMjBkzAE76vPCdHX/uZNbUR+jZI5o2dsW6nIN0MXakW6uO6JSGQIOBsNBglMNFkD6AHgN60jc+jjPO7U/rLm39HX6LpNVpadW5La06t6Xf8DOrnreVW8nLPEz+wcOERoTRrntHojq0apaf+oQQwi8JTnx8/AlbXtauXVv1/dGk51gne1543+70vdx740N07xHNuRGt+c/3KzEGhhFtbE90u7ZgcxAaFkKvc/pyxnn96TWkLyHGUH+HLU4iKDSYrrHd6Rrb3d+hCCGEzzWqLirReOzbdYC7b5hNl5hOTBzQl/9+sRKHy02fNjF0johkyCWD6T/8TGLO6kWAXn6NhBBCNC5yZxLHObgvi7uvn027Dm25+5pLWfbeSjKOZNM1ojMdw6MYc8MYLr3tcn+HKYQQQpyUdL6LarIPHuKu6x4kslUETz58K3+s3sLKHVuICo6gY3gbLhp5LiOnjfd3mEIIIcQpSYIjquRmH+au6x4kODSY51/8Bxkr1vPZll9RQKfw9pzdtxeTHrtZZkMJIYRo9OROJQA4kpvPXdc9iE6nY+Gb/2L/Z9+zZlsq+wqP0Cm8A9Gt2nDHS7MIDAnyd6hCCCHEackYHEFBXiF3X/8gbreb1z56gZwvv+fP9IOs2fknbUNa0SYkkjmLZhPVoZW/QxVCCCFqRBKcFq64sIS7r5+NrcLGa8teomTDZg5mHGL5ll/RaQNoH9aWKbdOoOfA3v4OVQghhKgx6aJqwcwlFu65YQ7mYgv//XABrj2ZZP+5n1V/bifbXEh0REf69unB1fdO9neoQgghRK1IgtNClVnKuPfGh8g/UsB/P1pAoLmUg+u3kLrXxI970+gY1paIYCOPvvGov0MVQgghak0SnBaovKyCmTc/TE5WLq98sIBWOh17v/2Jw4ctLPtjI8EBQbQJbc0tD91Eq7ZR/g5XCCGEqDVJcFoYa4WV+295hAN7D7Lo/efp3CqCnctXYS628fnmzRRWlBIT2Zk+cWeQkDja3+EKIYQQdSIJTgtis9mZPf0JdqXtYeE7z9KzW2d2LPuWcouNLXsO8nvWbrpGdiTQEMQ98+5EK5swCiGEaKLkDtZCOOwOHr7jSbZvTuelt5+hf9wZZCz7loqSMnJzzXyyZSPhgaG0Dm3FVTddRrfeXf0dshBCCFFnkuC0EB8s+YRNKVt54c2nOXtIHLs+W01ZXhElRRV8+NtGyp12BnTrS+v2rUm84xp/hyuEEELUiyQ4LcSWX//k/AvPYciwQexftY6SA9mUma38mLabnfkmBkSfQZnZyoxHbyFIVisWQgjRxEmC0wJ4PB7S/9xJ3MD+HNqwhSPbMrDbXOzLLiQ5YwttQyOJCIti6KhzGXLRYH+HK4QQQtSbJDgtQOa+LMpLy4mODCfr599RWi2F+WUs2/QrLo+L8ePHYrc5uO0f0/wdqhBCCOEVkuC0AGlbM9BoNOj2ZaEL0lN02MIXf2zHZD7CNVdczrb127n+nkTadGjt71CFEEIIr5AEpwVI27qDzh3aEBwUSFGuhd/2HGJT9k56d+2GrcRBtz4xjL82wd9hCiGEEF4jCU4LkLY1g5jWkViKytl3qIi1GdvQaDTcdMsNZO46yF1zZ6AL0Pk7TCGEEMJrJMFp5srLKti/O5MOoaHk5ZXyXdoOjpQX8sS8OXz93koSJl9K7wG9/B2mEEII4VWS4DRzGdt34fF4aBMaxrqMTNLz9jHiwniydxwiOCSIG2dd5+8QhRBCCK+TBKeZS9uaQXBQIKacUjbn7CIkOJibbrmBjWt/55aHbiY0PMTfIQohhBBeF+DvAIRvpW3dQUz71qTmZFFYUcIbb7/ER4uSODv+LC5IiPd3eEIIIYRPSAtOM6aUIm1bBh3CwjhUWkDHyNYc3ptHcUEJdzx2KxqNxt8hCiGEED4hCU4zlpt9hKKCYgwEUGIrpWf3bnz53jdMnjGRjl07+Ds8IYQQwmckwWnG0rbuAKCswonN5cDpUHTo0p4J067wc2RCCCGEb0mC04ylbd1B21YR5JQUA2DJK+XOudPRG/R+jkwIIYTwLUlwmrG0bTvp0iqCgnIzBp2es86JY8CQWH+HJYQQQvicJDjNlMPuYFf6HkK0BkpspYQaQug/qJ+/wxJCCCEahCQ4zdTuHftwOpwopxazrYwgXSB9z+7t77CEEEKIBiEJTjOVvi0DfYCOkvIK3MpDiD6YvmdJgiOEEKJlkASnmUrduoPObaMoKLcA0LNXd4xRRj9HJYQQQjQMSXCaqbStGUQGBmO2lRJiCGbAOTK4WAghRMshCU4zVFRQTI4pF51HR4mtlCBdIP0G9vF3WEIIIUSDkQSnGUrflgGA0wGljoq/xt9IgiOEEKLlkASnGUrdmoExNBiztRyANq1a07l7Jz9HJYQQQjQcv+0mnpycDIDZbCY6Opr4+ON3tk5KSiIiIgKTyUR8fDyxsZXjSGbOnMntt98OwMqVK5kzZ07DBd4EpG3dQZvwMIpKytBptAwacqZsrCmEEKJF8UuCYzKZSElJYd68eQBMmzbtuAQnPT2dDRs2sGjRoqpjli5dCkB2djZTp04lLi6OhQsXNmzwjZzb7WbHnzuJMbbCYi8jxBBM/0H9/R2WEEII0aD8kuCkpKQQHh5e9Tg8PJyUlJRqSU5KSgrR0dHVzktPTyc2NpYZM2aQkJBQ7ziUUlRUVNS7nGNZrdZqXxvS/j2ZVJRbIVRLia2U8MBwuveL8cnrbEz8WectldS5f0i9Nzyp84Z3bJ0rpWrdE+GXBCcrK4vIyMiqx5GRkVgslmrHREdHk5qaWvXYZDJhMpmIjY2tet5sNgOQmJhYpzicTicZGRl1OrcmMjMzfVb2yfyy9jc0Gg3Ko7C5HHQMD8Wptfv0dTYm/qjzlk7q3D+k3hue1HnD+3udGwyGWp3rtzE4xzqarByVkJDAypUrsVgspKWlAWA0Vi5U9/cxN6NGjWLs2LFVP6sNvV5Pr1696hH1iVmtVjIzM+nWrRvBwcFeL/9Uvv7oO1qHh1Jqrxxg3Ld/b84868wGjcEf/FnnLZXUuX9IvTc8qfOGd2yd7927t9Zl+CXB6dq1a7UWm5KSkuO6owAWLVpEeno6cXFxGI1G4uLiSE5OJjU1tSrJMRqNVS07taXRaAgJCan7CzmN4OBgn5Z/IjtTdxOmD6KozIJBp+ec+IENHoM/+aPOWzqpc/+Qem94UucN72id12WijF+micfHx1frfsrOzq4af3M08bFYLMycOZPY2FjMZnNVkhMdHc2wYcOqzrVYLHVKbpqjstJyDuw5iNYTQImtlOCAIPqeLevfCCGEaHn80oITHR3NuHHjSE5Oxmw2M2PGjKqfTZw4kRUrVmA0Ghk2bBjJycmYTKaqGVexsbEkJydXteQcnVklYMf2XSilMOgMFFtLaRfWRnYQF0II0SL5bQzOyWZBrV27tur7kw0ePnquN2ZSNSdpW3dgCAjArZy4lYfOHTvSul0rf4clhBBCNDhZybgZSdu6g4jgEModlVPChwwd7OeIhBBCCP+QBKeZUEqRtmUHegIosZURHBAkO4gLIYRosSTBaSZyTLmUFFsI0QdRZDUTog+WHcSFEEK0WJLgNBOpWysX8gvS67HYK4gINdK1V1c/RyWEEEL4hyQ4zUTa1h2EGAJxuh0AxJ3ZH51O/nuFEEK0THIHbCa2b0olOMBAia0UnUbLeRec4++QhBBCCL+RBKcZsNsc7Nm5/6/xNxaC9cHEDurn77CEEEIIv5EEpxnYlb4Ht9tDeGAwBeVmQvXB9D7T+3tsCSGEEE2FJDjNQNrWHWg1GoL1OuxuJzFdowkJk/1ShBBCtFyS4DQD237bTog+EMtfO4ifN0zG3wghhGjZJMFpBv7clFo5/qbCgl6rZ/CwQf4OSQghhPArSXCauIK8QopLLESFhJJXXkKIIZh+soO4EEKIFk4SnCYu7a8F/lqHhFBsLaWVMZJ2ndv6OSohhBDCvyTBaeI2b9iCXqvD7nLiUYozz4pFo9H4OywhhBDCryTBaeL+WL+ZUEMQRdZSAIaPjPdzREIIIYT/SYLThLndbg5m5RAVEsaRsmKCA4I4c0icv8MSQggh/E4SnCZs/+5MXG437cLDKSg3ExYYQo9+3f0dlhBCCOF3kuA0Yb/+8BsAoXo9ZQ4r3bp2Ra8P8HNUQgghhP9JgtOEbfx+I8EBgRSVlwEw9KJz/RyREEII0ThIgtOE7dmdSavQUI6UF6PTaIkfcb6/QxJCCCEaBUlwmiiLuRRzWTntIowcKS0hWB9M/4F9/R2WEEII0ShIgtNEbViTAkCb4FAKrRbaRkZhjDL6OSohhBCicZAEp4la9+06dBotLrcHp9tF3IBYf4ckhBBCNBqS4DRRO9P3EBkaymFLMQAXJ1zo54iEEEKIxkMSnCbI7XZzpLCY9kYjOZYiDDo95114jr/DEkIIIRoNSXCaoM0/b8HlqVzgL7+8hPDAUDp16+jvsIQQQohGQxKcJuiHL78HIEwfjNleTkx0F7Ra+a8UQgghjpK7YhOUumUHoYGBFFgsKKU4b/gQf4ckhBBCNCqS4DQxbpebnCMFtI+I4JClEA0w+oqR/g5LCCGEaFQkwWli9mzdRbnDRodII0dKiysX+BvU399hCSGEEI2KJDhNzA9f/ABAVGAIRVYLbSOiCAwy+DkqIYQQonGRBKeJ2fLrn+i0WtxORYXTTr/+vf0dkhBCCNHoSILThDjtTrJz82hrDOdQSREAI8Ze7N+ghBBCiEZIEpwmZF/qPkrtVjq1iiTHUoROo2Pk5SP8HZYQQgjR6EiC04T8tjoFp9tFm+Aw8svNGINDadO+tb/DEkIIIRodSXCakE2/bAHAgJ4SWyldO8rqxUIIIcSJSILTRNjKbWSZcgkLCsRcXoHL4+accwf6OywhhBCiUQrw14WTk5MBMJvNREdHEx8ff9wxSUlJREREYDKZiI+PJzY2tsbnNjd7tu2mzGGjc7soss2FAIybPNbPUQkhhBCNk19acEwmEykpKSQkJJCYmMiSJUuOOyY9PZ0NGzaQkJDA9OnTWbBgQY3PbY7SN/xJhdNGO6ORI2XFBOoMnD1UWnCEEEKIE/FLC05KSgrh4eFVj8PDw0lJSanWEpOSkkJ0dHS189LT00lLSzvtuTWllKKioqIOr+DUrFZrta/e8Pu6zXiUIlQTSKG1lDbGSOx2m9fKb+p8Uefi1KTO/UPqveFJnTe8Y+tcKYVGo6lVGX5JcLKysoiMjKx6HBkZicViqXZMdHQ0qampVY9NJhMmk6lG59aU0+kkIyOjTufWRGZmplfKOTr+RqvRoHFpKbNXMKBPb5/G3lR5q85FzUmd+4fUe8OTOm94f69zg6F2q/b7bQzOscxmc7XHCQkJrFy5EovFQlpaGgBGo7FG59aUXq+nV69edTr3VKxWK5mZmXTr1o3g4OB6l7d93Z+V+0+1iuBwaQkKxSVjLqBfv35eiLZ58Hadi9OTOvcPqfeGJ3Xe8I6t871799a6DL8kOF27dq3W6lJSUnJcdxTAokWLSE9PJy4uDqPRSFxcHCaTqUbn1oRGoyEkJKRO59ZEcHCwV8rft3U3VreDbq06YcrNR4OGiTdN9GnsTZW36lzUnNS5f0i9Nzyp84Z3tM5r2z0FfhpkHB8fX637KTs7u2oMzdHkxWKxMHPmTGJjYzGbzVVJzqnOba7Sfk2jwmEnwhBMQbmZ8KAQWnVo4++whBBCiEbLLy040dHRjBs3juTkZMxmMzNmzKj62cSJE1mxYgVGo5Fhw4aRnJyMyWRi3rx5pz23OSrJL+GgKReAQI+eYlspPTp28XNUQgghROPmtzE4CQkJJ3x+7dq1Vd8nJibW6tzmaNfmnZQ7bYQEGbDaHdhdDgaeHevvsIQQQohGTVYybuQyfkvHoZx0aduaQ5bKBf4SrrzUz1EJIYQQjZskOI2YUoqdmzIotVlpHRbO4dISArQ6ho4d7u/QhBBCiEZNEpxGrOhwIUfyCnG4XISip7DCTOuwCPS1XAtACCGEaGkkwWnEDu07RLmjcrXiALeOUns5vWK6+jkqIYQQovGTBKcRy9mbjdVlp12UkYLyUtzKQ/ywIf4OSwghhGj0JMFpxHL2mLC67XRsFUVOaREAl00e5+eohBBCiMavXgnOm2++yX333QfAxo0bKSsr80ZM4i+H9h+i1GolwhBMfnkJoYYgovv39HdYQgghRKNX5wRnwYIFVSsLAwwdOpSUlBSvBdbSKaU4mJWDAvQuHcXWMjq2aoNWJ41uQgghxOnU+W45YMAAJk+eXOd9oMSplZWUYS6vAMDl9lDhtDKgX28/RyWEEEI0DXVOcLKzs4977u97RIn6OZyZi83lwBgSzJHSEgAuGX2Bf4MSQgghmog6b9XQv39/Jk6cSFRUFCkpKaSkpDB79mxvxtaiHdqdhc3lICo8lCNlxWg1GoYnXOjvsIQQQogmoc4tOEOHDmXhwoX069cPpRRPPfUUQ4cO9WZsLVrO3iwcbifBOj0FFRaiQsKJ7NTO32EJIYQQTUKdW3Cuvvpqbr/9dmm18ZFD+3OwOh3oCaDUXs6Z3Xug0Wr8HZYQQgjRJNS5BScxMZHRo0dXe27jxo31DkhUyso8BIDL7cbhdnLukLP8HJEQQgjRdNS5BUej0fDkk0/StWtXoqOjMZvNJCcnSzeVFzjsDvKLzACYbeUAXDLmIn+GJIQQQjQpdU5wFi9ezNChQykuLqa4uBiAkpISb8XVoh3JOoLV5SBIr6ewohSDTk/fc8/0d1hCCCFEk1HnBGfevHnHtdZIF5V35OzKxOZyEBkawoH8HDpERBHaJtLfYQkhhBBNRp0TnKFDh1JWVsaqVasAGDt2rHRPecmh3Vk43C4idEGUO60M7d4fjUYGGAshhBA1VecEx2QyMWvWrKqVjJcsWVI1bVzUT+6ByhlUbrcHj/Iw5Nyz/R2SEEKIJkgphcvlwu12+zuUGtHr9eh0Oq+UVecEZ82aNaxYsaLacy+88IIkOF5wcH8OHuXB4XYCMHDoID9HJIQQoqlxOBzk5uZSUVHh71BqTKPR0KVLF7Ta+u+7WOcEp0uXLsc9FxcXV69gBHg8HnLzCgBwuFwA9DpbkkYhhBA15/F4OHDgADqdjk6dOmEwGBr9UAelFPn5+WRnZ58wx6itenVRHetE+1OJ2ik6XEi53Y5ep8PucmLQBRDRobW/wxJCCNGEOBwOPB4P0dHRhISE+DucGmvbti2ZmZk4nc56l1XnBCc+Pp5bbrmF2NhYANmLykuydx7A5nLQyhhGXkkRIYFBjT7rFkII0Th5o6unIXnzflfnV96/f3/++c9/opSSvai8KGdXFjaXk1ZhodicDiKNRn+HJIQQogVISUlh7ty5zJ07l+Tk5FMem56ezrRp0xg1atQpj5s7dy5DhgwhJSXFm6HWSJ1bcEpLS1mzZg133HEHYWFhbNy4kbKyMsLCwrwZX4uTs/8QdreDMH0QdreDDh1kg00hhBC+N23aNDZt2kRaWtppj42NjWX69OnMnTv3lMfNmzevRuX5Qp1bcFatWlW1gjFUrovjjwytuck+kIPT7SZAaXG6nUR3q/9AKyGEEOJU0tPTiY6Oxmg0Eh8fT3x8/GnPiYiIaIDI6q7OLTiRkZFMnjzZm7EIIDs3HwCPW+FWHs6I6+3niIQQQrQExmY2JKLOCc727duJj4+v1iWVmpp63A7joubKS0opKatAo9Fg/WsEeZ8BffwclRBCiOYsPT2dpKQkTCYTS5YsITo6moSEBICqx1A5e3r69OmnLW/JkiUYjUa/t/DUOcFJTExkwoQJdO3alfDwcHbs2ME///lPb8bW4pgy9mNzOWgdEUapzQpAt+7Rfo5KCCFEcxYbG0tiYiIpKSnVEpiZM2cyZcqUqu4qk8nEtGnTWLp06UnLmj9/Pl27diUxMREAi8XCrFmzfPsCTqLOY3Cio6NZsWIFY8aMYcCAAbz99tsyi6qeDu06iM3loF1UBKWOygSnfcf2fo5KCCFES5Oens7GjRurjcWJjo7GbDafdLytxWLhzTffrEpuoLLb6+hyMg2tzgnOggULSE5OZuzYsWzYsIEFCxawZs0ab8bW4hw+kIPd7SQiOIQKh41AvYGgoEB/hyWEEKKFSUtLq+qa+rsuXbqwYcOGE56TkpLSqMbx1DnBGTBgAJMmTeKTTz4hNjaWl19+mZKSEi+G1vIcOpCL3eUkRKOnwmnHGB7u75CEEEK0QBaLpU7n+Xvczd/VOcE5mqWtXLmScePGAY3rhTVFWdmHAQjSBGBz2Wnbvo2fIxJCCNESxcfHn3RLpgEDBpzwnNjY2BOe4y91TnBMJhMbN27EZDLRr18/TCZTnTM+AQ6rnfziyvrTE4DD7aJjpw5+jkoIIURLFBsbe9z6dunp6QBVM6yOFR0dTWJiIklJSVXPWSwW0tPT/ZIf1DnBGTt2LOnp6Xz22WeUlpaSlJQkCU495O46gNXpwBgajMPlrlzkL0YW+RNCCOFb6enpvPHGG5hMJubPn1+VyCxatIgNGzaQlJREUlISK1euZMWKFSc856h58+ZhsVhITk4mJSWFtLQ0YmNjWbx4cYMvBlznaeLh4eHcdtttVY9lo836yd6Vic3loH37SMrsVtzKTY8zuvk7LCGEEM1cbGwsixYtOuHP5syZU+tzjl0r52hS1NC8ss3offfd541iWrTcfYewu520NRoptlYASIIjhBBC1FGdW3D+ri6Dio7uVGo2m4mOjj7hvhfH7mZ6tN9v5syZ3H777UDlIOeTZZhNSe7Bw9icDsL1gRyyFQLQqUtHP0clhBBCNE1eacGpLZPJREpKCgkJCSQmJrJkyZLjjrFYLJhMJhISEkhISKjWd5ednc3UqVNZsGBBVaLT1GVlHUYBIQRULfInO4kLIYQQdeOVBKe208NTUlII/9saL+Hh4ccNPjIajSQlJVUNdvr78TNmzGDTpk0sXbq0US0qVFduh5PcghIAgrT6ykX+DAZCQkP8G5gQQgjRRHmli+rtt9+u1fFZWVlERkZWPY6MjDzhDKzZs2czceJEYmNjeeedd6qeT01NBSq7t4Bqy0LXhlKKioqKOp17KlartdrX08nfm0WZzUaQQU8AWqxOOxERRp/E1lzVts5F/Umd+4fUe8NrinVut9vxeDy43W7cbre/w6kxt9uNx+PBZrMB/6tzpRQajaZWZXklwTlqzZo1dd5N/Giy8nepqamsWLGCBQsWMHXq1KqR2H8fczNq1CjGjh1bp5Ycp9NJRkZGneKticzMzBodd/iPXZV7ULWKwOX2/DXYuI1PY2uualrnwnukzv1D6r3hNbU6DwgIwG63+zuMWrHb7bhcLnJycoDqdW4wGGpVltcSnLKyMlJTU2uU4HTt2rVai01JSclxe14kJyczbNgwYmNjWbp0KXPnziUlJQWLxUJqampVkmM0GjGZTHXazEuv19OrV69an3c6VquVzMxMunXrRnBw8GmPN/2Qis3loEdUOyqcTpxuJ926d6Vfv35ej625qm2di/qTOvcPqfeG1xTr3G63k5OTQ2BgIEFBQf4Op1YCAgJo164dOTk5VXW+d+/e2pdT0wMnTpx4yhaFo81HDz744GnLio+Pr7YwUHZ2dtUsKovFgtForJpd9fdzIiIiiIiIqNZaY7FY6rxTqUajISTEd+NcgoODa1R+fnY+dreTyMBgKiqcOD1OuveM8WlszVVN61x4j9S5f0i9N7ymVOdarRatVotOp0On0/k7nBrT6XRotdqqpOxonde2ewpqkeA8/fTTAPTv3/+kxyxYsKBGZUVHRzNu3DiSk5Mxm83MmDGj6mcTJ05kxYoVVbOr0tLSgMqBzEcTmeTkZJKTk0lNTWXp0qU1fQmNlungYdweD2E6A/n2MlweNz3O6O7vsIQQQgivqskSMd5S4wSnf//+rFmz5pQJzrBhw2p84ZPtZbF27dqq749dDfHYc09WRlPidjg4lFcMQKjOwO6/FvmLjunsz7CEEEI0M0oplI8GHGt0utO2shxdImbevHkATJs2zf8JTmlpKVOnTuXdd9895XFDhw71SlAtiSU3j5KycnQ6LUE6PRZ75Yjxjp3a+zkyIYQQzYVSirxfN+IoKfZJ+YaoKNqdN/SUSc7JlojxVZJTo3Vw0tLSWLhwIWFhYVXPLV++/Ljj1qxZ473IWohDOw9gdTloExmOUoryo4v8yU7iQgghvKn2w1i8qqZLxHhLjVpw4uLiePzxxznzzDOrBvgmJycfF1hKSkqdp4m3VDl7D2FzOege2Ra3R1HhtGEwGAgLC/V3aEIIIZoJjUZDu/OG+rWL6kROtESMt9QowQkPD+fpp58mJSWlat8ppRRKqWrHFRf7pumrOTuSdRi720lUSChutwer00GrqCh/hyWEEKKZ0Wg0aAK8uvxdrdRkiRhvqvErDQ8PZ8yYMVWP4+Pjjxtw7MvBQs3Voaw8nG4XxgADDrcbp9tJpw6d/B2WEEII4VWnWiLGF+qcyp1oNtWpZliJ47ntdrIPFwAQpjNQbq1cA6dzZ9lFXAghRPNyqiVifKHGs6jmz59PREQE48aNkxV2vaSioJi8klIAQgMCyXdacbhdxPTwXZOdEEII4S8NubxLjcfgHJ23/sknn/Dxxx8TExNDYmJitZlVonYO7zmI1WEnMiyEAJ2Ococdl8dFTI+u/g5NCCGEaNJq3UU1efJkJk+eTGlpKcuWLcNkMjFs2DCZPVUHOftMlZtsto1AKUVxeTkAHWWKuBBCCFEvdR6DEx4ezm233QbAjh07WLBgARqNhvj4eFnwr4YOZx7G5nbSOiwMpRRl9srt4WWRPyGEEKJ+vDJfrH///lUDjFevXs3cuXOJiYnh1ltv9UbxzVauKQ+7y0mEPhA0UFa1yJ8kOEIIIUR9eH1C/JgxYxgzZgylpaXeLrpZcVltZOcWAhAWEAhaDVanHYPBgNEYfpqzhRBCCHEqNdqqoaays7Orvv/7fhPiePbiEg4XVS54FG4IxOXxYHM5aN0qqk6rQQohhBDif+rVgpORkUFJSUnV46SkJF5++eV6htQyFJlyKbVaCQk0EBigp8Rhw+l20qWD7CIuhBCi+bFYLCQlJQEwffp0n1+vzgnOrFmzKC0trdZSk5GR4ZWgWoJDe7KwuRy0iaisvwqnG6fHRedoWcVYCCFE85OSkkJJSUm1DTd9qc4JzrBhw5g8eXK151avXl3vgFqKwwdyKzfZDGsNQLndjtPtJKanrIEjhBDC+5RSKJePNtsMOP1mmwkJCZjNZp/uIP53dU5wTrRBVteucnOuCaUUhw8VYHc7iTAEo9frsJRZK1twusg2DUIIIbxLKUXmt2uw5uX7pPzgdm3pNn50oxpDWucEx2QykZSUxIABA4DKylu1ahWfffaZ14JrrlwVVrJzC/AohdEQSECAFnPFX4v8dZQp4kIIIUR91TnBWbZsGfHx8Silqp77+/fi5OwlJeQWmAEwBgWD7n9r4HTsLKsYCyGE8C6NRkO38aP92kXV0Oqc4MyZM+e4FYt9ue15c1KWV0BRaTn6AB3BAQY0Gih32AHZpkEIIYRvaDQaNHqvL3/XaNX5lZ5oOwaj0VivYFqK3D3Z2JwOWoWFodFo8HgUVqcNvV5PRKTUoRBCiOYnJSWFDRs2UFpaSnR0tM93Fq9xgrNmzRri4+Ordg9fvnx5tZ9bLBZSUlJ46623vBthM3Q4Mweby0FM61YAWD0Kh9tJmzatGl0TnxBCCOEN8fHxDdrTU+OVjF9//XVSU1OrHn/88ceYzeaqf0opiouLfRJkc6KU4ogpD5vbQVRQCHpDABabA6fHRQcZYCyEEEJ4RY1bcFasWFHt8dNPP121weZRMgbn9Jzl5eTkleD2eIgMCiYwWI+lxIzD7aRLV1nFWAghhPCGOu9FdWxys3Hjxmp7UYkTsxeXcCivsqXLGBiEQa/FUlaBy+MiOkYSHCGEEMIb6jWces2aNZhMJqCy6yUtLY3Ro0d7JbDmylpYQn5JKVqNhlBDEPoADaVlVpxul8ygEkIIIbykzgnOggULsFgsmM1moqOjsVgsJCYmejO2Zqng4CHKHXYiQoLRabVotRrKbFYUStbAEUIIIbykzglO165dmTx5MiaTCY1GQ5cuXdi4caM3Y2uWcg/kYnM6aBdZucmmRynKnJWL/MkgYyGEEMI76jwGJzo6mkOHDhEdHS2bbNaQ8njIy87H5nbSOiSEAEMAbo32b4v8SYIjhBBCeEOdW3DMZjOjRo1i06ZNFBcXc+uttxIeHn7CBQBFJWdZOYfzSnC6XUQGhxAcFozVDTaXg4CAAFq1jvJ3iEIIIYTPJCcnYzabSU9PJyEhwaezr+uc4CQkJFStQjh79mw2btxIXFyc1wJrjuzFJWTnlQAQERxMcKiBnJIynB4nbdq2lkX+hBBC+IxSCo/T5ZOytfqA097D0tPTAUhMTMRisTBy5Eg2bdrkk3igHgnO1Vdfze233141a0pabk7PVlzCkSILAMbAYPQ6KLFU4HQ76dKpi5+jE0II0VwppUh77wtKsw/7pPzwLh2Iu+mqUyY5ZrOZlJQUEhISMBqNREREkJ6eTmxsrE9iqnOCk5iYeNyU8I0bN0qicwrm3HwsFRWEBgYSoNWhVW5KSstxelxEyyJ/QgghmrFjt2owm80+S26gHgmORqPhySefpGvXrkRHR1NSUsLq1aslwTmFw/sPYXU5aBUSAkCgQUdpaTlu5aZTl45+jk4IIURzpdFoiLvpKr92Uf3d3Llzeeqpp3wSy1F1TnAWL17M0KFDKS4urtqDqqSkxFtxNTvK4yHvUD42p4PubaPQ6XWggfIKGw6XQ2ZQCSGE8CmNRoPOoPd3GCQnJxMfH994dhM/1rx5845rrZF1cE7OYSklv7AUu9tJVEgooZFhOF2KMqcNj1J0kARHCCFEM5eSkoLRaCQ+Pp709HSMRiPR0dE+uVadE5y/B1RaWsrGjRuP259K/I+9uATT4cqWrqjgEEKMIbi1HsrtNkDWwBFCCNG8mUwmZs2aVfXYYrGwa9cun12vzgnOxo0bmTRpEgDh4eGMHj2a5cuXVz13OsnJyQBVWz2caC780WOOOtqcVZNzGxt7iZncQjMA4UEhBAbqsLqgwlm5yF+HjrJNgxBCiOYrOjrap9PCj1WrBKe0tJRVq1ah0WjYsGHDcT9PS0urUYJjMplISUlh3rx5AEybNu24JMVisWAymZg+fTpQOSApISGhRuc2RuUFRRRZyggMCCBQqyNAqzCX2XB6nOh0Otq0beXvEIUQQohmo1ZbNRxdqTg1NZWsrCwOHjxY7d9tt91Wo3JSUlIIDw+vVm5KSkq1Y4xGI0lJSVULAx09vibnNkZHMnOxOh1EhoSg0WjQuJwUmctxup20bdsarbbOu2YIIYQQ4hi17qKKjo5m3rx59VrzJisri8jIyKrHkZGRWCyW446bPXs2EydOJDY2lnfeeadW59aEUoqKioo6nXsqVqu12lfldpOXnYfN5aBDZCs0Oi0BGkVxSSlOt4uuHTv5JI6W5Ng6F74nde4fUu8NrynWud1ux+Px4Ha7cbvd/g6nxtxuNx6PB5utcnxq1X1UqVqv9l/nMTjeXu/GbDYf91xqaiorVqxgwYIFTJ06lRUrVtT43JpwOp1kZGTU6dyayMzMBEBjtVFUXI7N5aB1aCiG8CA0Gg1FRWZcykWYMcSncbQkR+tcNBypc/+Qem94Ta3OAwICsNvt/g6jVux2Oy6Xi5ycHKB6nRsMhlqVVecEpz66du1ardWlpKTkuGliycnJDBs2jNjYWJYuXcrcuXNJSUmp0bk1pdfr6dWrV91exClYrVYyMzPp1q0bwcHBlB00sepIMR6liAoLI7JtFEo5qKiw4VJuevc5g379+nk9jpbk2DoXvid17h9S7w2vKda53W4nJyeHwMBAgoKC/B1OrQQEBNCuXTtycnKq6nzv3r21L8cHsZ1WfHw88+fPr3qcnZ1dNVDYYrFgNBqrZkj9/ZyIiAiio6NPem5taTQaQv5aVdgXgoODCQkJoazCSk5BZVIWERRCaHgwyqWwOZw4XA6iu3b2aRwtydE6Fw1H6tw/pN4bXlOqc61Wi1arRafTodPp/B1Ojel0OrRabVVSdrTO67IZtV8SnOjoaMaNG1e1bfqMGTOqfjZx4kRWrFhBYmIiS5YsIS0tDYCIiIiqPStOdm5jZSsqIb/Ygk6jIUgbgMGgw4WBCqcdt8dDx04yRVwIIUTzl5ycTHR0dNW9PTEx0WfX8kuCA5x0iea1a9dWfX90inhNz22sig4docxmJSI4BK1GQ4DGg10TQLmjchCVrGIshBCiubNYLCxevJgVK1YQHR3NkCFDmmeC01J4XC7ysvMrZ1BFhIMGcNixWMHucgCyirEQQgjfU0rhdjh9UrbOoD9tN5LRaKyaLGQymXy+hp0kOD5mLzFTXFKBzeWkrTGcsDaRuK02ioqdOD0utFotbdu18XeYQgghmjGlFCkLP6b4QI5Pyo/q3pn4WVNqNFYmKSmJDRs2sHDhQp/EcpSsLudj9hIzufkWXB43rcONGNtGAFBUbMHhdtK2XZsmNQBMCCFEU1X7gbq+kJiYyJQpU1iwYIFPryMtOD5mLzaTnV8CQHhQECERoWC2UlxkweVx0a1LjH8DFEII0expNBriZ03xaxcV/G+mdHx8PLNmzSIhIcFnXVWS4PiYvaSEw0WVCxGGavQEhQSiKgIwF5fi0cgMKiGEEA1Do9EQEFi7xfK8KSkpiaysLObMmQNUzo6OiIjw2fUkwfGx0iMFlJSWEx4UhE6rxaDX4gkLpdxqxaXcMoNKCCFEizB27FhSUlJISUlhw4YNJCYmVi3/4guS4PiQx+kiP6cQm8tBVGjl4lA65cKpN2BzurA57DKDSgghRItgNBqrlnnx9QwqkEHGPuW0WP6aQeWgXYSR4MgwXOUVuDQ6rC4HLreLDh0lwRFCCCG8TRIcH3KYLeQVleJwu2hjDCeyYxvsJaVYHR4q/lrkT1pwhBBCCO+TBMeHnGYL2Xl/7UEVHEp4uwiUx0NhkQWnxwVABxlkLIQQQnidJDg+5DBbyPlriniIJoAQYygAhQUlON1OtFot7drLIn9CCCGEt0mC40P2YjOFZgvBej0GrY6gYD3wvwSnTdvW6PV6P0cphBBCND+S4PiK201JfgkVDjuRIZUzqPQBGgzGMIoLzZVr4HSW7ikhhBDCFyTB8RGtzU5RiRWby0HbCCOGkEA8NhuBkeFYzKV4NIqOMoNKCCGE8AlJcHxEY7NTWFyO3eWgXWQEEZ3aYi8pRRMYhM3pxKVcssifEEKIFik5OZmUlBSfXkMW+vMRrc1Odr4ZBUSGhBLZuQ32kkIMxggcLhdWuyzyJ4QQouEopXDZfbMXVUBgzfaigsr9qBYvXsyMGTN8EktVTD4tvQXT2Oxk5xUDlXtQGdtGUZGfg3J5sDodOJwOmSIuhBCiQSil+OafS8nbY/JJ+e17RzN+7rQaJTmrVq1i7NixPonj76SLyke0Njv5RWYCtFoCNVpCwoMAKCkpx+6uzKA7SYIjhBCigdSwgcWn0tPTG2SbBpAWHJ9w2+3YymyUWa1EhYai0WgI/GuKeF5eMc6/EhwZgyOEEKIhaDQaxs+d5vcuKpPJVLUfla9JguMDTnPlHlRWl4OYVq3R6QPQejwEBAWSvycfx18JTvsO7fwcqRBCiJZCo9GgDzL47fpLliwhOjqa5ORkUlNTMZlMREdH+2xHcUlwfMBhtlBYXI7N5aR9VCQRHVtjt5QSGGmkMG8XbuWmTdvWGAyyyJ8QQoiWYfr06VXfp6amMmDAAJ8lNyAJjk84zRay8y14lIeosDAiO7fFVmwmKMpISbEFdLLJphBCiJYpJSWFjRs3YjKZiI2NJTo62ifXkQTHB5yWUky5RQCEavVEdmqD7VAWwe3aUF5uxaNRMoNKCCFEixQfH8+KFSt8fh2ZReUD4Wf0JK/YjFajIRgdxo6tcFjKcGu0ONwunB6nrGIshBBC+JAkOD5gaN8Oc1kFxuBgtBoNIWHBADjcYHe5qLDbZAaVEEII4UOS4PhAwaECbC4HbYzhlaPW9ZXVXFpmw+5yYbPZ6CQbbQohhBA+IwmODxzJzMXmctAuKoLw9lE4yyrQaLUcyS3A6flrDRzpohJCCCF8RhIcH9i3bQ9Oj5s2RiORnSpnUAVGhnPYdLhqkT+ZRSWEEEL4jiQ4PrA7bQ8AYTrDX5tsWgiKNFKQU4jT4wKgvbTgCCGEED4jCY4PHM7NAyDIo/1rDRwLQVERFBWWgBZatY4iKCjQv0EKIYQQDWzmzJmkp6eTnp7O/PnzfXotWQfHB0LD9ESGBqPX6Yjo2JrCjRbantkHi7kUAqBDe2m9EUII0fJkZ2czdepU4uLiWLhwoU+vJQmOD1S4XbRrFQlAaGQYHqcL9AbsDicejUfG3wghhGhwSimcPtpsU1/DzTZnzJghm202ZcZWYXSINBISFY7bagXA7lbY3S4cbicdZYq4EEKIBqSU4t3Z/yU746BPyu/Svxs3z7/rtElOamoqAGazGYDExESfxAOS4PjEg3dfw6/fbMUQGoatxAJARYUDh8tFudUqqxgLIYRoeDVoYfG1OXPmVH0/atQoxo4di9Fo9Mm1JMHxgbA+fSn/aCNtesVgK7agDw0hLzsPt/JQUVEhqxgLIYRoUBqNhpvn3+XXLqrk5GRSU1Orkhyj0Vi14aYvSILjC3oD9pIKjB1aYy+2EBRlZFdmDk535RTxjrLRphBCiAam0WgwBBn8dv3o6OhqrTUWi8VnyQ3INHGfKMsrBqWI6NgaW0llgpOXnVe1yJ+04AghhGhpYmNjsVgsJCcnM3/+fJYuXerT6/mtBSc5ORmoHGgUHR1NfHz8ccfMnDmTp59++rj+uZkzZ3L77bcDsHLlymp9eo2BJbcQAGPHVuT/bCayexcK8opw4wagQ4d2/gxPCCGE8IujM6gaYiaVXxIck8lESkoK8+bNA2DatGnHJTgmk4nVq1ezceNGoLIpa/bs2UyfPr1B59HXhTm3EF2QnoBAPc5yK4FRRszFFrR6LRGRRkJCQ/wdohBCCNGs+SXBSUlJITw8vOpxeHg4KSkp1ZIck8nEpk2bqlpvkpKSqqaTNeQ8+rqw5BYR1DocZ2k5AAFhoZSVV0AAdGwj3VNCCCGEr/klwcnKyiIyMrLqcWRkJBaLpdoxf092kpKSGDt2bNVjb82jV0pRUVFRp3NPpbzIQnCbcErzKruqysptOFxu3Hho176dT67Z0ln/Wm/o6Ffhe1Ln/iH13vCaYp3b7XY8Hg9utxu32+3vcGrM7Xbj8Xiw2WzA/+pcKVWjhQT/rtHMojqarBzLZDJhsViqjcPx1jx6p9NJRkZG7YM9jbYX9kYXqOdIZhbotGTs2IXD7aLCbiUwSO+Ta4pKmZmZ/g6hxZE69w+p94bX1Oo8ICAAu93u7zBqxW6343K5yMnJAarXucFQuxlgfklwunbtWq3FpqSkhOjo6BMeu2zZMoYNG1b12Jvz6PV6Pb169ar1eadjtVrJzMwkOMCALSoCZQjD5fFgc9jp268P/fr18/o1W7qjdd6tWzeCg4P9HU6LIHXuH1LvDa8p1rndbicnJ4fAwECCgoL8HU6tBAQE0K5dO3JycqrqfO/evbUvxwexnVZ8fHy1XUSzs7OruqSOba1ZvXo1U6ZMqXrszXn0Go2GkBDfDfh1l1kJaRVBlikPj/JQWlpGdEwXn16zpQsODpb6bWBS5/4h9d7wmlKda7VatFotOp0OnU7n73BqTKfTodVqq5Kyo3Ve2+4p8NM6ONHR0YwbN47k5GSSkpKYMWNG1c8mTpxYrXXHaDQSERFR9bih59HXh8NcRmBUBIezDv9tkT8ZZCyEEEL4mt/G4JxsFtTatWurPV6xYsVJz23MM6mUUjgtZQRFGsnPLcClKhf5kwRHCCFES7ZkyZKqYSm+vI83mkHGzY7VgfJ4CIoyUlxYgjagsrGsg2zTIIQQwg+UUjhsDp+UbQgy1Kgbadq0aSxcuBCj0cjEiRMlwWmKlLVy5HpgZDgWcxlavZZwYzhhYaF+jkwIIURLo5RiwR3z2Z+6zyfl9zyzJw++NueUSU56enrVGnjp6ekn7KHxJtmLykdUhQ00GjxaHTaHAwI00j0lhBDCb+owTter0tLSyM7OxmQyATB37lyfXk9acHxEVdjRh4dQVlRaucifwUPHjh39HZYQQogWSKPR8OBrc/zaRWWxWIiIiKia+ZyWlkZ6errPdhSXBMdHlNVOYEQ4xYcLcbhd2J12acERQgjhNxqNhsDgQL9dPzo6utqadxEREXVex64mpIvKR1SFDUNEODn7c1BAaXk5HSTBEUII0ULFx8dXdU9B5U4Fx2607U3SguMjqqKyBSdn+w6UUpSUmOnYURIcIYQQLZPRaCQxMZGkpCQsFguzZ8+u0zZLNSUJjg+4bHZwuQmMDCfvUB5OjwullEwRF0II0aI15Pp10kXlA46SUgAMEeEU5hXi0XgAWeRPCCGEaCiS4PiA3fy/BKek2II+sHIfkI6dpQVHCCGEaAiS4PiAw1wKeh0anZbycitag47Q0BDCw8P8HZoQQgjRIkiC4wN2cxma4CDKikqxu1wQoKFDp/Z12g1VCCGEELUnCY4POEpK0YQEYikwVy7yp/HI+BshhBCiAcksKh8w9uiCrcxMQXYebuXB5rDToaOMvxFCCCEairTg+EC7wbHo2kWRcyAHALPFIi04QgghWryZM2disVga5FqS4PjQkew8lFIUFRXLKsZCCCFaNJPJxOrVqxk5ciRDhgyhT58+LFmyxGfXky4qHyo4XIhLufF4PHSSRf6EEEL4kVIKu9Xuk7IDgwNPO5HGZDKxadOmqtWLk5KSSExM9Ek8IAmOT5UUmgkwVK6BIy04Qggh/EUpxcM3zWXntl0+Kb/fwD488+68UyY5f993KikpibFjx/oklqOki8pHlFKUlpYTEFSZQ3aUFhwhhBB+1FhWKjGZTFgsFp/uQwXSguMzTqsDm92BLlxHUHAQEZG+/Y8UQgghTkaj0fDMu/P82kV11LJlyxg2bJhP4vg7SXB8xGauwOF2gT6Ajh1lkT8hhBD+pdFoCAoJ8ncYrF69milTpvj8OpLg+Eh5URkOtxud0sj4GyGEEOIvRqORiIgIn19HEhwfKcopBKDcZqVbnxg/RyOEEEI0DitWrGiQ68ggYx8pOlwMQInZTIeO0oIjhBBCNCRpwfERc74ZpRSFhYV07CwzqIQQQoiGJC04PmIpKUUboMHlcssUcSGEEKKBSYLjI2WlFeiD9QDSRSWEEEI0MElwfMDtcmO12tBXLfInCY4QQgjRkCTB8YGyIgt2lxtNoA6DQU+r1lH+DkkIIYRoUSTB8QFLfgkOtwulq9yDShb5E0IIIRqWzKLygTxTHh6lcCkXHTrKAGMhhBACIDk5udrjhIQEn11LEhwfyNmfA0BZRQW9+/X0czRCCCFE5SbQNqvNJ2UHBQedtrfCYrFgMpmYPn06AHPnzpUEp6nJO5QHQElJibTgCCGE8DulFNOvmcn2zek+Kf+sc+JYvHzhKZMco9FIUlIS8fHxxMbGEh4e7pNYjpIExwcKjxShAfLzC2UGlRBCiEahMYwHnT17NhMnTiQ2NpZ33nnHp9eSBMcHysut6IP0OB1O2WhTCCGE32k0GhYvX+jXLiqA1NRUVqxYwYIFC5g6dapP96WSBMcHImPaEWI3Q6asgSOEEKJx0Gg0BIcE++36ycnJDBs2jNjYWJYuXcrcuXNJSUkhPj7eJ9eTaeI+UFJYgsZQWbUyBkcIIYQAs9lMRERE1eP4+Phqj73Nby04R6eKmc1moqOjT5jBzZw5k6effhqj0Vjrc/3pipvG8/W3qwjYpKNN21b+DkcIIYTwu8TERJYsWUJaWhoAERERxMbG+ux6fklwTCYTKSkpzJs3D4Bp06Ydl6SYTCZWr17Nxo0bgcrpZbNnzyYhIeG05/rb4AsGsuKrr2jXoR1arTSSCSGEEEDVFPGG4Je7b0pKSrXpYeHh4aSkpFQ7xmQysWnTpqp/8+bNY/r06TU6tzEoLCimQ8d2/g5DCCGEaJH80oKTlZVFZGRk1ePIyEgsFku1Y/7eKpOUlMTYsWNrfG5NKaWoqKio07mnYrVaKSwookuXTj4pXxzParVW+yp8T+rcP6TeG15TrHO73Y7H48HtduN2u/0dTo253W48Hg82W+Vsr6N1rpSq9TT3RjOLymw2n/B5k8mExWI5bhxOTc49HafTSUZGRp3OPZ3CgmJ6ntHdZ+WLE8vMzPR3CC2O1Ll/SL03vKZW5wEBAdjtdn+HUSt2ux2Xy0VOTuWOAH+vc4PBUKuy/JLgdO3atVqrS0lJCdHR0Sc8dtmyZQwbNqxO556OXq+nV69edTr3VCoqKigqKOKMPr3o16+f18sXx7NarWRmZtKtWzeCg/03DbIlkTr3D6n3htcU69xut5OTk0NgYCBBQUH+DqdWAgICaNeuHTk5OVV1vnfv3tqX44PYTis+Pp758+dXPc7Ozq7qkjq2tWb16tVMmTKlRufWlkajISQkpE7nnkpxUQkOh5Po6M4+KV+cXHBwsNR5A5M69w+p94bXlOpcq9Wi1WrR6XTodDp/h1NjOp0OrVZblZQdrfO6rMLslwQnOjqacePGkZycjNlsZsaMGVU/mzhxIitWrKhKcoxGY7V58qc6t7E4nFu5F1V7GWQshBBC+IXfxuCcbAfRtWvXVnt8omWcfbn7qDccOXwEQGZRCSGEEH+TlJREREQEJpOpatNNX5FFWnzgcG4eWq2WNm1b+zsUIYQQolFIT09nw4YNJCQkMH36dBYsWODT6zWaWVTNyZHcPFq1jmxS/Z5CCCGaN6UU1grfTHUPDgk+7TiZlJSU4yYFpaen+6wVRxIcHzhyOI/WbWSLBiGEEI2DUoprxt/I5k3bfFL+OecOZPk3750yyYmOjiY1NbXqsclkwmQy+SzBkS4qHzicm0erNlH+DkMIIYSoUpeZSN50dPysxWKp2oHgVGvc1Ze04PhAh07tad020t9hCCGEEEBlcrP8m/f82kUFsGjRItLT04mLi8NoNBIXF+eTeEASHJ/494K5soKxEEKIRkWj0RAS6r91fCwWC48//jiLFi3CZDJVJTm+IgmOEEIIIXzOaDQybNgwkpOTMZlMzJs3z6fXkwRHCCGEEA0iMTGxwa4lg4yFEEII0exIgiOEEEKIZkcSHCGEEEI0O5LgCCGEEM2Ux+Pxdwi1opTyWlkyyFgIIYRoZgwGA1qtlpycHNq2bYvBYPD7Qn+no5QiPz8fjUaDXq+vd3mS4AghhBDNjFarpXv37uTm5pKTk+PvcGpMo9HQpUsXtNr6dzBJgiOEEEI0QwaDga5du+JyuXC73f4Op0b0ej06nY6Kiop6lyUJjhBCCNFMHe3u8UaXT1Mjg4yFEEII0exIgiOEEEKIZkejvDknqwnZsmULSikMBoPXy1ZK4XQ60ev1jX7UenMhdd7wpM79Q+q94UmdN7xj69zhcKDRaBg0aFCNy2ixY3B8+Uuq0Wh8kjiJk5M6b3hS5/4h9d7wpM4b3rF1rtFoan3fbrEtOEIIIYRovmQMjhBCCCGaHUlwhBBCCNHsSIIjhBBCiGZHEhwhhBBCNDuS4AghhBCi2ZEERwghhBDNjiQ4QgghhGh2JMERQgghRLMjCY4QQgghmh1JcIQQQgjR7EiCI4QQQohmRxIcIYQQQjQ7LXY38a1bt6KUQq/X+zsUIYQQQpyC0+lEo9EwcODAGp/TYltwlFL4aiN1pRQOh8Nn5YvjSZ03PKlz/5B6b3hS5w3v2Dqvyz27xbbgHG25GTBggNfLrqioICMjg169ehESEuL18sXxpM4bntS5f0i9Nzyp84Z3bJ2npqbWuowW24IjhBBCiOZLEhwhhBBCNDuS4AghhBCi2ZEERwghhBDNjiQ4QgghhGh2JMERQgghRLMjCY4QQgghmh1JcIQQQgjR7EiCI4QQQohmRxIcIYQQQjQ7kuAIIYQQotmRBEfUyv59mdw7Yw5rV//k71CEEEKIk2qxm22K2qkor+CVlxaz5NV3cDpdFBcVM2rMxfUq0+1yk7Epg/7n9kerk1xbCCGE90iCI05JKcXqb9cy7/HnKCgo4q77phMcHMwLzyyivKyC0LC676z7yUtJrPv8Z2545EaGXT7ci1ELIYRo6eRjszipA/sOcnPiHdwx7X769DuD79Z/wf0P3U3C+FE4nS42rP+1zmX/8tUvrPv8Z9p2bsu3b32D0+70YuRCCCFaOklwxHGsFVYW/HsRYy68iv37Mlny/n94+6NXieneFYBuPbrSo2c3fly7vk7l70/bT9ILH3PBhAu558V7MRea+XnFT158BUIIIVo6SXBEFaUUq1d+z6hhV7D41Xe4Y+atrP3lSy5NGIFGo6l27MWjLuCntetQStXqGuYCM4sffZ2YfjFMvi+RdtHtib9sGMnvrcJabvXmyxFCCNGCSYIjAMjcn8W0a+/i9ptncUafXqxZ9wUP/OMegoKDTnj8iFEXkJtzhF0Ze2p8DafDyeJHXwc0TP/X7QToK4eAjb9lPA6rg7Uff+eNlyKEEEJIgtPSWSusvPjsK4y+4Er27N7HG+8uZOnHr9KtR9dTnnfu0HMIDgmuVTfVJy8uI2tXFrc/cwcRrSOqno9sG8XFk0bw/bK1WIosdX4tQgghxFGS4LRQSinWrPqBUcOv5PX/vMXt99zC2l++ZMy4kcd1R51IYKCBYReeX+MEZ/0X6/jlq1+4ds51dI/tftzPx9yYgFarJfm9VbV+LUIIIcSxJMFpIZRSWCtsABw8kMUt193FjJtm0rNXd1av+4IHH7mX4JDgWpU5YtQFbP59K2bzqVtd9m3fS9KLy7j4mouJv2zYCY8JNYZy6XWjWf/5OgpzC2sVhxBCCHEsSXBaiLeef5c7LpvJ808v5NILrmL3zr28/s7LvJv0Ot17xtSpzItHXoDb7eaXnzae9JiS/GIWP/oGPeJ6cM3Myacsb8TkSwgJD+Hbt76uUzxCCCHEUZLgtABF+cV8+t4XbNyxiTdeeZvpd97Md798ScL4UTXqjjqZzl060qffGSftpnLanbzxyOvoAnTc9vQMdAG6U5YXFBLE2Knj+DX5V3IP5NQ5LiGEEEISnBbgo9c+YV9hJqGGQM7s3I+775tBSGjdVyD+u4tHXcBP36/H4/FUe14pxbIXPiZ7bza3P3MHxlbGGpU3/MoLaNW+FV8t/tIr8QkhhGiZZKuGZs5cbGHJm++i1Wh4cPIkPvvud1YsXsEN91/vlfIvGXUhb/znbdJTMxhwVmzV8z+v+ImUbzZw8xNTienX7bjzMvdmsfy9z/l+5TqcjuqrGLucLhxbfmfZ19+i1dYsB1co3G4POp0WDXVvlfK24JAgrrnxKhKnTaj1GKeWInXLDha/tJSg4CCeXvQEgUEGf4cEwMoVa3j7lQ+YdNNVTLj2MgyBjSMubziSk8ebi94jfdtOJt10FZdPSqhatsFfbDY7n33wFUlLP6O8tMIrZUa1ieTmO65l7MTRBJymBbklUkqx7rsU3n31I1q1bcXtD0zljH49/R2W10iC08w9cs+TmK0W7r1qAonz7mb3vhy++mAlV069nPComrWqnMqgIWcRbgznx7XrqxKcPVt3s/zlT7gkcSTnjx1adazb7Sblp9/55J0V/LZ+M1GtIxl/9WiiWkdWK1N5FN8nfU9gcCAXXHVBjeJwOpwcycujfbt26A36er8ub8nOzGHxy++wbOln3DrzRq6aMr5RxedPe3fu5/UFb7NubQrdz4ghx3SYR+7+P5577Z9+r6Pvvv6RebOf54x+PXhp3qt8tGQ50++fytgJo9Dpmu6NsriwhHde/YjP3v+SkLAQ4gb245lHX+SDxUnMuH8ql14+osYfKrzF5XTxzafJvLnwPQrzixg3cTTdep16mYqaStuawVMPzef9N5K4Y/YtjEi4oF7d8s3JppQtvPb8W6Rty2DQeWexb9d+bhg3g9FXXMLtD0ylS0xnf4dYf6qF2r59u9q+fbtPyi4vL1d//PGHKi8v90n5NfV7yh+qW5s4NSY2QR3ZsV8ppdT+zRlqwpmT1cJ7n/fade665QF15ZhrlVJKFR4uVLPHPqhevPsF5XK6lFJKWUpK1QdLPlFXXXCdGhIzQt18xR3q289WK7vNftIyt63bpu4YOkPt+H1HjWJoLHV+ItlZOerJ+59R53a7RF0x7Fr1zaerlcvl8ndY9VbXOs8+eEg9Metf6txul6irLrhOrfr8O+VyudTGn39X8WeMVv+480nldPqvfn5a/Ys6v+coNff+fyu326327T6gHrp9rhoSM0JNHjlV/bDqZ+XxePwWX13qvdRSpt54cam6qP84dXHseLXk5XdVqaVMKaXUrvS96r5pj6ghMSPUtWNuVevWpjTI63O73Wr1l9+riRffqIbEjFCP3TNPZe7L8vp10v/cqe65YY4aEjNC3XjZ7Wrjz7/X+vU15veX2krbukPddd2DVe/Fv63/QymllNPhVJ++/6UaO+QadX7PUerfj7yojuTm+S3OY+u8LvdsSXB8oDH8MVgspWpQnwtUv46D1VdPvl7tD/qFe55VV5+VqPb/nuaVa33y0eeqW9s4lXvosPr3tKfVoxMeUZYii9q7a7965tEX1QV9x6qhvS5Vj898WqVuqVnC4vF41PPTn1XPTPtXjd6MGkOdn87eXfvVnBlPVN4oR01VP6xa59cbZX3Vts7zDuerZx97SZ3fc5QaO+Qatfy9L5TD7qh2zLrvNlQmF/f9S7ndbl+EfUopP1UmWQ/f9X/HJVnp2zLUPTfMVkNiRqibLr9D/bpuk1/+/2pT71arTX2wOEmNOvtKNeyM0erlp19VxYUlJzx226ZUNWPSLDUkZoS67ep71eZft3k7dKVU5d/2Lz9sVNePna6GxIxQ9019WO1K2+OTa/3dHylb1bSr7lZDYkaoOxLvV3/+UfP3v6bw/nI6NX3/sVZY1Xuvf6xGnnWlGt57jFr479dVcdGJf2d8SRKcemjOCY7H41F33zZb9Wg3QN154TR1JH1ftZ8X5RWrq8++Vv3fhAeV1VxW7+sdOZyvYtrEqvuum63uuegutfztFerOax9QQ2JGqIRzrlaLX3pH5R8prHW5u7bsUncMnaE2/7D5tMf6u85rI23rDnX39bOP+wTV1NS0zkuKzWrRv99Qw/skqJFnXqHefe1jZa2wnvT4NV//qM7rPlL96+EFDZpA/JGyVQ3vPUY9cOujxyVef7dpwxY17cq7Km+UU+5X2zenN1iMStWs3p0Op1rx4ddq/HmT1Pk9Rqp/P/yCOpxz+k/jHo9Hpfz0u7px/Aw1JGaEuvfGh1RG6i6vxb7ltz/VbdfMVENiRqjpk2aqrb/75j34ZDwej1r33QZ17Zhb1ZCYEeqBWx9VezL2nfa8pvT+cqy6tiCXmkvV6y+8rS7sN1ZdHHeZenPhe6qstOFevyQ49dCcE5xPPvpcxbSJVRf2Gq2+mvvaCW8Sbz+3VF191hT1/fz3lcdd/5vI8LNGq7O7DFVjBk1QQ2JGqFsm3K2Sv1h7yhtFTSy6f6F6MvGJqu6uk/F3ndfF7xs2q6lX3KmGxIxQd177QI1btxqL09V5eVmFenPRe+riuMvUhf3GqtcWvKUsJaU1KvubT1erITEj1IIn/9MgSc6ff6SpC/uNVffcMFvZrCfvOj3K4/Gon9f8oqaMvkUNiRmhHrz1MbV3536fx6nUqeu9qtvnohsqu33ufUplHciu9TXcbrda++1P6poRN6khMSPUP+58Uh3Yc7DOMe9M3a1m3vQPNSRmhLph3HSV8uNvfm29dLvdatUXa9WEC69X53a7RD0+82llyjx5PTXF95f8I4Xq+SdeVkN7XarGDJ6oPnn38zq9HxfmF6kX/vmKij9jtBo9aIL66M3lNfobqS9JcOqhuSY4e3bvU32jB6vzel2sHhh5hzqcuveEx5mLLWrykBvUY+PuVXvW/Frn6+3esVfNufVx1b/juapbmzj1xKx/qfQ/d9a5vGNl7Tyo7hg6Q234+pdTHtcU34CUqrxR/rT6F5V46TQ1JGaEmj398Qa7UdbXyercbrOrZW9/psYMnqjizxitXvi//6iCvNq34H32wVdqSMwI9cqzi316M8xI3aVGxF2mZkyadcqWpRNxuVxq1effqasuuE6d2+0SNfe+f6nsg4d8FGmlE9W7x+NR67/fqK5LuE0NiRmh7r/lEbUr/cR/+7XhdLrUl0kr1WVDE9V53UeqeXOeV7nZh2t8fua+LPXIXf9UQ2JGqKtH3KjWfP2jX7oeT+bYcSfPPPqiyjucf9xxTen9xVxiUf99bom6oO9YdcmAy9U7//1QVZRX1Lvc3OzD6qmH5qvzuo9Ulw1NVF8s+9anY+UkwamH5pjgWK02NeaiCeq82BFqfP+r1YpH/3vKG8MH/1mmJp49RX1y579V0f6avyk7nS619tufqvrrh/Ucra4Zdr2KaROr/vhtizdeSjVLHl+sHrnyH8phO/mnj6b0BnQiLpdLffvZanXl8L9ulPf/2+c3yvo6ts6dTpf6Kmmlujz+fzfDHFNuva7x0ZvL1ZCYEerNRe95I+Tj7N25X406+0o17cq76tX87rA7qt0on33spRPeKL3h2Hrf/Os2ddvV96ohMSPUjEmz1LZNqV6/pt1mVx+/9akaPWhCVdJamF900uMPHzqinnpovjq/x0g1/vzJPr8Z1tfpxp00hfeXivIKtfSVD9UlAy5XF/Qdq/773BJlLrF4/TqZew+qh+/6PzUkZoS6ZsRN6rtvfJO0SoJTD80xwXnioafVGZ0HqsRhN6qZI2ao3O2nHrhXai5TU86/Wf1z8j/U2v97QznKT//pdcMPv6oJF16vhsSMULdOvEfdmXCPemTCw6qksESd3XuYmv+vhd56OVWOZB1Wdw2/Q639+LuTHtMU3oBqwmF3qOXvfaESzrlaDe11qXru8ZdV/pECf4d1QkfrvKysTK399ic16ZKbvdKdcay3X/lADYkZoT5YnOS1MpWqbF0YM3iiun7sdK/dCKwVVvXuax+rkWdeoYb3SVCL/v2GKik2e6Xso47W+9ZNf1Z1+9w4foZK+an2s4Nqq6y0/Lhux1Lz/7odiwqKq7ozLh14VYN1Z3jLycadNOb3F4fdoZLeWaHGDJ6ohva6VD0/d2GdxjzW1o7tu3za7eiNBEejlFL+nqruD6mpqQAMGDDA62VXVFSQkZFBv379CAnxzorBp5P87VrumHofN900hT/XbOeGccO55tl7T7vmQ9Lrn/LJ4hVcd8EgYs46g8HTrjjhOUdy83lp3n/5YdU6hgwbxL2PzCDl0/X8uW4bcxb/gy69unDfnf9gz679fPvDcq+/vg+f+4CtP23hqU//RXDo8Qvm+aPOfclaYeWTd7/g/deXYbc7SJw6gSsSxxEQ0HiWrrLarPzyUwrfffEzu9P3cv6FQ7hzzq30G9Db69d6bcFbLH3lQx56ahbX3Hhlvcs7ZMrl9kmzCA0P5fVlLx23FlN9lVnK+GDJJ3z81qdodTpumDGZMVdcglZb/zV0jhzO440X32bLxu3E9IiuWt+lIdevKSk2897ry1j+zucEBgdx851TsJbb+Oit5Wi0Wm6YPpkpt1xNaFjT/FssKiiuXC/og68ICw/luumT6NC1Db3O6EVwUONZsHPLb3+y5OV3OZKTx9gJl3LbfTfRObpjg8fw6vNvsn1zOmefO4C7H5rOWefE1bvcY9/T63LPlgSnGSQ4h7JzGXvx1Zw/bAi6fA/achuPL5pDx7NOf6OpKKtgRsI9DDynP30UDJh8KTHDzqr6ucvlJumdFSx56R2CQ4K57/E7GX3FJXz/8Vo+e+VTbntqOoNHngPAl599y6w7/sFvqT/QvkM7r77Gkvxi5k56gtE3jOGy2y4//nU0swTnqFJzGR8sSeLjtz7DZrX5O5wTij27L/c+fDuDzj/r9AfXkVKKl59+jY/f+pQnnp/D5ZPH1rmsI7n5zJg0i4AAHW988jJt2rX2YqTVFeYX8e6rH/HZh18ft2J3fUS1iWT6rJu46trL/bpCb/6RAt5a9D5fJq0kQKdj0s1XcdOd1xIZFeG3mLzp8KEjvLnofb5ZnnzcdjSNxYiEC7j9wWn0OKOb32JQSrHhx994bf5b7Nt1gFWbPq33hwZJcOqhuSQ4LpeLKVdOIzfnMPP++RiLHnuVxEvP59oF96PR1mzFzs/e+oKPXkli1p2TKNudxfAHrsfYqS3bN6fz7GMvsW/XAa656UrufPAWwoxhZGzK4D/3L+TS60Yz4a6JVeUUF5UwqO8FPPfSP5l8/cRTXLFuPnvlU9Z/sY6nlv+L8Kjwaj8rNVtI/30L3bv3ICgoqF7X0WggrH1rtI1oaff83DzSfk31dxjVOBwOSsrNXJZ4OaGhoT6/nlKK5x5/mc8/+oZ5Lz/KmCtH1rqMgrwi7phyX+VGsJ+8TIfO7X0Q6fFyDh5i15adXinL5XYRFKKjd+/e9f5d95aCgiJ0Oh1RXkhstDotYR1aN6oVh/ft3s/GX36ja9cYgoIC61WWzVyG2+HySlwdYzrSd1B/r5TlDR6Ph/3pe+nlhVZcbyQ4jae9W9TJwvmvsXXzdpZ9sZQPn/+IDpHhXHzT+BonNwDjrk3gy/e+YVvWYc5qE8kvr3/KFlsZX32yir4DerP0y1fpf2YfoPIm88G/36Pv4L5ceftV1cqJahXJwHPO5Me1632S4Iy5MYFfvlxP8nurmDRrctXz+Tsz+XPZamzFpRTwh1euFda+FWdeO4ZW3f2/XPmRtH2kfvIdNnOZv0M5TiiwU/8jA64ehSHEtzdbjUbDQ0/Nwma1838PPIMh0MCIhJpt5QFQUmTm3hvnYC23Nlhyo5Ti0B8ZpH/+I85yq9fKtQObVm/zWnmNTete0Zw5ZTShbaP8HQoAHbt0oN9Zvev1odVRVkH6ih/J25zhtbj26f5Ee6SEXpee5/cPZDZLOemffU/un7uJfvouAhtB96QkOE1YyvrfeOWlxTz48D3oPQEc2JPFxBHn0PHM2mXPwSFBXH3LVSx98X1Cb0zg/WVfojQwZ95MJl5/ebW9d7L3ZFN0pIgbH7sJre74Pv8RIy/kjVfexul0otd7dz+hsIgwLr1uNKveWcklk0cSbgxhxxc/kf17OlE9OxN6bi+6n9Gz3p9qXVYHO79ZT8rCj+k2fCB9L7uAAD9sAGkvLSf9sx/I2bqLqN5d6TflUkLDfd9SUlM2m43dm7aTt20/P+9eStzVI+l4tvfH3/ydVqvl8efn4LA7eOzep3hhydMMvfjc055Xai5j5k0PUVxYwuvLXmqQfXYqisykfrKW/IwDdBrUl+4XDUajq3+rhM1mI/NAJt26d2s0LTjeZCsuZccXP/Hzc+/Se2w8PS4+54TvNU2FUoqczTtJX/EDSinOnDIaYxfvdOEf3r6XPWt+JXfbLs68dgxR3Tp5pdzaUEqR/VsaO778GY1Ww6CbLmsUyQ1IgtNkFeQXMuuOfzB0+LncOes2HrnhCdqEhzLq5str1XpzVJ9BvSmxl/LGK+8zfNhgzg2LJD6u73EbC6Zu2E5QSBC9zjrjhOWMGHUBLzz7H/74fStDh53+xlNblySO5KdPf2T5/A/pERyAcrs589oxtB7Qg507d2Ls3M4r3YLD7ruWA+u2suvb9RxO3cuAyZfSPraHF17B6SmlOLRpB+mf/wgaDe4BXXn4tbcofH4+t915M9Pvnkp4eFiDxHIqFRUVhFo6M2DE+ez9NoXNS7+iw5lnEHfNSIIifBdfQICOeS8/ysN3/ZOHbp/LS0uf4Zz4gSc9vrysgllTHyYn+wivffyC1zZyPBnl8ZD5yzZ2fr0efXAgQ6ZPoH2c93ZorqioQG8p9NrveqMT3YE2fWLYvXIDO79eT+6Wypt3hJeSgoZkLbKQuvw78nYcoOPAPsRNvIRAo/c+pERGd6DT2X348+NkNrz8Ed0vHESf8cMJCGyYD2TlBSWkJn1Hwe6DdBnSn/4TRmA4wSQQf2m6aXEL4HF7WPf5z8cNTvR4PMy+93E8Hg8vvfoMu7fvYVfaXoae3ZtOA/vU6hrWCiv/eWYx0ybcTXBYMK1DI7j/qVn0jj+L1GVrKC8oqXZ8akoq/c/rT4D+xLlx/wF9aduuDT+tXV+rOGpKOZzE9u7Cn7+mo2ll5KJHptH1/AFe76/XaLX0uHgwFz08jfAOrdm0eAVb3vsWe1mFV69zrIpCM7+//hnbPlxFePdO/FhxhFmPzCMyMpJhw87n9Vfe5qIhY3nr9fex2x0+jaWmAiPCOOfWKxk09XKK9h/ip2eWkrVxOzUd3ud2e9i49jd++mY9TmfNxiYE6AP49ytPcPa5Z/LgbY/x5x9pJzzOZrXx4K2PcWDvQRa99xxn9PNeonEipYcLSFm4jPTPfqDLkP5c9Og0ryY3JYVmkj/5jtzMw14rszEKCDTQf8IIht9/HR6Ph19eeJ+Mr9fh9uJAbV9SHkXm+q389OxSzIfyOee2qxg89XKvJjdHGTu3Zdj919P/yos5mLKdn599h7yMA16/zt8pj4f9P/7Bz8++Q3lBMefecTVn3zCuUSU3IAlOo7YvdR8fz/+ILT9srvb8W6+/x0/fr2fBf/5F+w7t+Gjhx0SFBjNm6hVoajFV9Oc1G0i8dBqfvLOC22bdxPIf36Vjxw588vpnDEi8FENYMFve/QaPyw2ApcjCwR2ZxA0786RlarVaLh45nB+9nOAoj+LgL9v4+ZmltA/RE9nayP7CMp+2FACEtI746493LPkZB/j530vJ/mNHjW/eNaU8Hvb/tJmfn32H0sOFuAd2Z85rr/HV56u4bfpNGIp15KUeYXD3M+nTqxf/enI+lwy9jM+SvsTtdns1lrrQaDR0GtiHix+dRocBvdi+bA2//vcTyvOLT3qOy+nih69+5t6rHuDZ+1/gpUf+w53jZ7Jy2WocNUjeDIEG5i+eR78Bfbhv2iPs2L6r2s8ddgdzZswlI3UXC995pmocmS94XG52J6ew/vn3cVRYGTpzCgMmX4q+ngNSjyo8UsSbz73D9IS7efeFD1nyf+/y3P0vsnPbbq+U31hFxnTkgtk30HvsMA78uJl1z79H4V6Tv8M6pdLDhaQs+pi0T7+nyzn9ufiRyr8JX9LqtPQYcQ4XPTyV0DaR/P76Z2z9YCUOL477OspyKJ9fXvqIHV/+REz8mVz08FTa9evu9et4gyQ4jVj2nso/5D/X/Vn13J9bU3nuqZeZcfdURoy6gH079rN9cwbnDTiDLuf0q1G5udmHefC2x5gz4wl6nNGNZd+9za333khYeBiTZ0xkfXIKOaYjDLr5MizZeez89hcA0n9NByD2/NhTlj9i1IXs3rmXbFNOXV72ccryitj4ShKpy9fScWAfRj52K1feNZFtP20lc4dvP6lA5c27y5BYLn50Gm36xLDt/ZX8/sYKrEUWr5RfmlvAhpc/ZscXP9LqzJ6sLjIxa86TdO8ZwzPPPMnWVVsZfMFAFn46n/MvHIIt28qg7gOICo/gwXseY/wl1/DDmp+9nnTVhSE0mLOvH8t5d15DRaGZn597l73f/47H/b8ptk6Hk9XL13LX5fex8LH/0rlbJ+Z/9G8WrVhAv7P7sOSZt5kx9l6+fPcbbBWnnhofFBzEC2/9i+69Yph540PsydgHVCZPj949j22/b2fBm09z5uD6r8txMsWZuayf/x57Vv9Kj0vO4cKHbqZ1zy5eKfvIoTxee2oJM8beww9f/szEaVfw+qpFTJhxGfk5Bfzjxsd54rZ5bP89rVH8//uCVqfjjNHnc+E/biIwPISN/0lie9J3OK12f4dWjcflZvfqjax//j0c5VaG3ptYmeQGeyfJrYnQNpGcd9ckzrp2DHlp+/jp329zaMtOr/xuuJ0udn77C+sXvI/H4WTYfdcRO/GSBusOqwu/TRNPTk4GwGw2Ex0dTXx8/HHHJCUlERERgclkIj4+ntjY2BqfezpNYZr4+8+8R8rXGzAEGZi/6gVsdjuXjZxEVFQky795H4NBz9N3/JtdWzJ4etFDxJx/6tfidDj56K1PeXPhe0REhvPAk/cwIuGCat07TqeLuy6fRc/+PXj4xQfZ98MmMr78mXPvuJovP1hDUV4x/1jy8CmvY7GUMrD3cP757KPcMDWxzq/f43az/4c/2J2cQlBkOGdOGU2bM7r+9TMPT9/0FMbWRu5bdH+DTs0/OqvJabPT97IL6DZ8YJ3GPbldLvau+Y29a38jtE0klq5R/Pv5VygrLeOxeXPoENmORU+8yrDR53Pfv+6p6hY8kp3HZ29/wfef/4hD46JMW8GBgwc59/zB/GPu/QwecraXX/GJna7OXXYHu1duYP/PW4jo3I4+E0bw22/b+fztryjKLyZ+9PlMmj6B7n26VTvvUGYOn731BT99s57Q8BCuuHE846YkEBp+8v/XUnMZd133APlHCvnvRwt4a+H7/LTmFxYsfor4Eed5+6VXvb5d327gwLrNRHRpz1nXjsHY2TvjRA5l5vDpm1/w0zfrCDOGcuVNlzNuymhCwkKq6r1Pnz5s35jGJ4tXcGBnJn3P7sPkGRMZNPzsRjXF2puUR3FwwzYyvl5HQFAgAyaN8nnrCJz+d734YC7bP15N2ZFCel5yLmckDEV3km78hlI1q2nbbtrF9mDA5EsJjgw//YknULQvm+1JlUMWzrj0/AaZtdVk18ExmUwsWbKEefPmATBt2jSWLl1a7Zj09HTeeOMNFi1aVO2YmpxbE00hwfnX1Kc5kJPNkZx8zr7obDb9uZX9BzK56cZriYyMwFJSyncrfqBbhzYMGht/yjc1peCXHzaStd/E5KkTmXH/1JOuMrr28x/4z9zXeWn583TvHcPvi1dQfDCH5N/3MPqGMYybNv60sSdeWTkQ9s0PXqnTay8xHWb7x6spzS2gx4hz6J0Qj85QfVbWn+u28frDrzFz4X3ExMY06EJ/TpudnV+t4+CGP4nq3okzp4whvEPNF4wrPpDDn8tWU55XTPv4WD788Uc+X/4NF10ynGdefJK0jem8Om8JI6+6mLuevB3dCWaRFBwu5It3vyb5kzWUOioo8Vg4kpfHpWMv4aHHZnFGH9+ON6np73lOxgE++vfb/LFjH3aXmwvHDmfSjIl06XHqmUxHDuXx+dKv+G7FDwQGGRh/3Vguv2EcxpO8SZcUmbljyv1kHchGeTz8+79P1moaeW3k78xke9Ia7KUV9Bk3jO4XDfbKTJ/M3Vl8+uYKfkneSGSbSCZOu4LRV48k6G9T8I+td6UUm9dvJemNz9i9fQ89+3Vn0u1Xc96Icxp0deOGZC22kPrJWvJ27Kfj2b2Ju3qkT8a3HHWy33WX3cGulRs48FcS3xgHQx/evofU5Wtx2530veJCYuLPqvEHMqfNzs6v13Pwl21EduvIWVPGEN6xjY8jrtRkE5ykpCSysrKYM2cOADNnzmTKlCnVWmKWLFlCSUlJ1THTpk1j9uzZpKWlnfbcmkhNTUUpRa9e3s/+rVYrmZmZdOvWjeDgug26crvdTL3gNg5ZCggyBFLhtJJnyadb565EGSvXhigpNOOw2mnVJrJG05g7dG7PnXNuoVffU88GcrvczE58lM7dOzF7wSwcZRV8839vsWHbfu5/7QG6nBF92mu99fp7vPrym6Rs+47AWoxDcDucHPh+E1nr/ySsQ2v6XT2C8M5tT3isUor/zFyIx+1hxoI7OHjwYL3qvC5KDuSwc8VPWIstdBtxDjEXDTzlJxuX3cn+1b+S/Wsqxs7tONImiOfm/xe73c7Dcx/gqmvGk5z0He+99BGjJ43k5geuP+1NqqTQzKplq1m9/HvyLYUUOUsoLSvjyqvHc88DM+jYyTfrvZzu97zMUs7qT9ayKmkNtgobgwb1padeT7tObel79QiiutdsSmtRfjHffpjM2hU/otFquPTqSxh/3RgiT7BSamF+Mc8++iLjJo5mxFjvJzfOcht7vt3A4a27iOrZmT4TLiakdf0Xt9uXcYAvln7NHz9voU3H1lxx03guGj8cwwma/09W70op0v/I4PO3v2LHlp106dGZq6ZeztBR5zbpadYno5Qib/tedn/9C8rj4Yzxw+gwqI9PWq9OVOdFe0zs/PxnHKXldL/0XKKHndVo69lptbMveSM5v+8goltH+k68+LRrDBXszGTXFz/jstrpMeZ8upwfV6sxnvV1bJ3v3bsXjUbT+BOc+fPnExkZyfTp0wGYO3cu8fHxJCQkVB2TnJzMypUrq1pwRo0axezZs0lNTT3tuTWRmpqKw9E4ZqGcyMGMLJ5/4hWGxA+kfasoliYlcdGlw7j7gdsAKM4r4ZV/LCY+tgeXPDDR679421PS+WLxN9w69yY69+jIL+/9SOa2A1w5dQThZ55+QFlWZjb33/EYT/xrNmcPrtkvpD23GPOvu3CX2wk/qxuhsdGnfV05e3JYuegbRt46iu5nN8w07mMpt5uy7QcpS8siICKEiKF9MLQ9/qZnO1SI5dddeOxO6NWej7//kV9+/pXB553N7ffeTOs2rfjlm4388Ok64sedx8hJF9XqzdpaZuW37zbz65rfyS3Ko8BWhMvjZtwVo5iYeDnhxoaZWl5uqeDXNZvYtHYLHreHQRefRfzYczG2MuIsKce8cRfOfDMhvTsRPqgnWkPNmvKPK/eisxg69lwiWht9/Ioqb6a2zDwsm/agPArj4F4E9+pQ75tp1p5s1n+Vwr7UA7RqH8Xwy4YyYGh/dPVs/s/ak80vX29k7/b9f5V7PgOGxta73MbIY3Ng+WMv1v1HMHSMIuL8PgSE++5DjsfurLzevsMYOkRWXs/YNKbr2w8XY9549D02htDYrse9x7ptDiy/78GWmUdgp1YYz+9DQFjjWG/JYDA0zZWMzWZztccJCQmsXLkSi8VCWlrlFFCj8cRvZMeeW1N6vb7RtuC8/fyHaDVa7nlkOrffcj9B+kDuvG0a/fpVDiR+7eM3CAzQcdmtV9It9tSDfuuiT+8+/L5mM398t5VRL1/CFzkr6Nk/hvLtB+l93kAiu516Q7e+ffvSodMiMvdlc+0Nk094TOGRIjav28LAoQMo+G0HRX9kENm9E32nX0xI28gaxdmvXz/2pexl++o/iRnQjR49ezRoC06VuDhKcwvY+dmPFCZvITr+THqMPg+dQY+j3MqebzZQvG03Ub26kB2m5fnnX8HpdPHsS//k8gmVyfnyN1bww6fruGb6BCbeeuJNT09n0JBB3DzzBr777Hu+fH8lmYcPsuqr7/l+9Xqm33UzN94yheBg77xZHft7/veWFq1Oy5hJoxh37Rgij2nhUOcN5tBvaexL/hXXYTN9rryQtv1rNgvjnPMGUzbrfy1Dm3/axkXjh3PFzeNp76XxL8eymcvY/eU6SjIyaRvXg96XX1Cv7pBjW1qie3bh3qfu4PyRNWtpqcn7S79+/RhzxaXsz8jk86Vf8dVbq0hZ+TtX3Dieiy47cctQkzbwLAp3ZbHzi58o/OYPeow+j+j4AV774Ge1Wjlw4ADhFZC5ejPK5abvxIvpeE6/pjXeqR+4h5/Lge83YVq/DXXYQt+JIzB2aYdSisNbd7P328pZu/0nj6T92b399vpO1IJTW35JcLp27YrF8r8ZKCUlJURHH9/tsWjRItLT04mLi8NoNBIXF4fJZKrRuTWh0Wh8Ol4jODi4TuWnbc1g02/b6Bvdjfff+4ScnMOM7HcemdszGTLiXAqPFLFh7W+c168HfUcMQavzzaey6+5OZMGcl9m27k8KDhVwzb2TKNuSQcYnaxl865Wnve4F8eeybu0vzJl1e7XnHQ4nqz79nq/+mg78QYCOwT2jmXRPIj0vHFTrAbsT776aZ6b9iz2/7yY2LtZvi5+F9OxK2wdv5MDPm9m1cgMFGZnExJ/F/p/+QHkUXccP5bVln7Lq6+8YM34kTz33BO3at0Epxdvz3+Or979l6oM3MGHqFfWLIySEa++czISbr2DNZ9+zbMmn7D64j0ULXuf9t5bxwCP3eGUgstVq5eBeE20i2rD8tc+rxspMmHYFl10/9qRjZQB6jzyP6IH9SF3+Hanvr6rVImghISHcOPNarr71KpKT1vDFu9/w0zfruXDccK657SoCggIwl9R/hpvH7SF/+z6sf+5DF6hn8C1X0vEkC1zWxNGxMp+88Rm7tu+hZ/8ePPLybM6t5VgZi7kUj8dTo/eXuMH9iRvcv2pszzsL3ufzpV8zYerljLlmVLWxPfVhNlvIPeTntXkCtXSacAEH1m3l5w+/Ifz7jfQYcQ4BXpjFZCks5sjmXYSWOuh0Vm+fL2Z5OkopCvILKSwoqtP5hr7RtI8MYVdyCrv+tYQu5/THiBbz3kN0GtyP2IkjGs1qxEd/z+uSaPltkPH8+fOrup8mTpzIihUrALBYLBiNRiwWC48//jiLFi2qNrD4VOfWRmMdZOzxeLht4r0cOpDD+YPP5t2vl/PUc4+jL1akbkjl6c/+xev/9wY/fPUzTy14gL4jh3g9/r/Hct81D+F2utCVuliQ/CLuChvr5r+H8zTTdwG2Z2exeN0PzL1sIu2MRpRSHCwo4dc9WZTZHcR1aU9sl/bsq7CyOW0vHbq059aHbuacCwfVOtY3Hn2dtJRUrrj9SkYmjvL74MryghK2L1tD4Z4sOpzdmyyDm6fmvYBGo+GfzzzKZVcloNFo8Hg8vPGvt0j+5Dtuf+xWxk0Z4/VYHHYH33/5Ex+8uoz0fbsosdWtxfNkjIHh9OzYjetvn8zYxDGnnO10rGOXsY+9+hI6D67dp2K71c6aFd/z4WtJ7Dq4l2Ivv75eHbpy7Y2TCatHF59Sil9/2FQ12ynx9qsZOOys2nVBVlhZ8Mx/ePuN9+narQsPPX4f4y4fXasyjp2hdsmVFxNSj8XZrDYb6zdsZH3Kxkbd5e8tOp2O6K6d6dK1E12iO9MluhNduv7va7v2bb3y3nM0gck25ZCddajyq+kQ2Vl/fTXlYLd5d5p8sCGQi4cOZfjFwwkIqHvbR5gxjNGTRqGv5yyyJjvIGKpP9Y6IiKgaQzNq1ChWrFiB0WisNk386JibU51bG401wVm5Yg3/98CzDOzRG32HYH5M2cDW3RvY9+deFs16mZkL7+OJGU8xsFcXHvn4GZ9P1dv4/e88e98CzjlnAE8sfQIAe1kFFQWnv4lUVFi5eNTV3DdzOhfFD+WjJStI37aLuEF9ue62iXSKbo/OEEB4xzZk7TXx5nPvsP23NAYPH8gtD91MlxoOQgUoKiji/effY+cvGZwxsDc3PnITbbuceHByQ1FKcXDnfv797ELWrPyB8VeOYd6zj9G6TSugcjD3f558jZ+/Wc/d/3cHoyaM8Gk8LqeLn7/9hY8XL6eosG6f/KByuQGHzQEaDS6Nm0NFudhcdkZcPJwnn3uUbj1qvxWCvayict+tLTtpH9eTuEmjajyl9XDuERa98DqffPg5oaEhdG3TGb2q25urAhxWO06HE41GQ4XbRnZxLgadnt6detA6olWdygWIOaMr10yfQNw5/Wv9afS3lD/4x31zyc09wi0zbmDdTxtI376TgeecxZzHZhE/vHbbohydofbbj5tQntrfAtweN4cKD5NVcAiPx0Pn1h1oY2yNNzoz7DYHDruDM8+N5ZIrL6ZTHfdXUm435fnF1PUOV5xfwhfvrSQnNw+38uD2uHErN5HtIunQswOHDx8h25RDUeH/FrPU6wPo3KXTaROg2iYwxghjZRnRnTAEGMjdl0thThHh4WH1TiQA3B4Ph4uPcMRcQJA+kG7tomkf2bZOrSahxlCeeXfeKVtwa6JJJzj+1hgTnIpyK9eMuInYs/pSlp7HAW0eMb268sY7C3G73MwZP5uQtuFkpO3mqedm0X/MUK/HfqxySzk3X3gb7bq0579fv1TrX/hrJ9zCkew8IpxhtOvUllsfupkhFw0+YTlKKX79/nfeXvAeRUeKuOyGcSTefjUhNWgqffuN9/j2q9UkXjOR7d9uwVJo5so7rmLENZf4ZWaD3e7gg6VJLHrhNfT6AJ567gnGXn5p1c+dThcvPbyIjd//zv3P3MuFY4c1eIy1lX8onw+eeZ/dW3Yx/MoLSJg2lkxTJq3CWvHUfc+wYesfOJWLSVOu4v6H76ZDx9rP3qqa0up0EXvVxXQ5L+6kv3NFhcW8tuhN3n3rY0JCgrlr1m3cdMu1BNVxjNH+Lbt458k3yS+0MGBgL27+1x2ERoazaf0fzJz+ELmFeQwdNJhXPniJ1m3rnujURnlZBc8//TLvvvURQ84bxHML59GhYzt27NhBSWEpixa8zvZt6Qy/6HxmPzqLswd5//3s7xwOJ0kffMaiF16nuKiEKTdezb0P3E77Dt4b/+SwO/jxq3WsePtLDmcfYdCws7lm+gRiB9dsIdP6KjWX8fr/LSblh9/xeDycdW4c181KJO3PNH5a/gumA4cw6AMYPyWB6++/DqfDwaHs3JMmKn/vRtLrA2jbrg2FhcXVEpiISGNlQnSCxKhzdCfCwkL59fvf+XTJ5+zLOMAZcT255rYJte7ePJ1dGXt48blXWP3t95zRpycPPnwPY8aP8ss4HG8kOKgWavv27Wr79u0+Kbu8vFz98ccfqry8vFbn/ff5N9Xw3mPUz1+vV7ecO011bzdAffze8qqfv/HY6+qqAZPVkxMeVC6n09thn9AfazepqUOmqiviJqmtKX/W+DyXy61WL/9OjYgdq7q1jVMfvpqkHHZHjc61We1q2WvL1TXnXK9uuug2tfbzH5Xb7T7p8Zs3bVM92p+p4nqcp2LaxKrbrr9H/efRV9Sd8ber52c8p3Izc2scd325XC716bIvVPzAS1X3dgPUP+6bq4oKi6sdY7fZ1VN3P6MmDrxW/fr97w0WW1253W71fdL3auaIe9RjEx9RGZt2KKWq/557PB61Nuk7NX7AleqMDmerXh3PVk898bwqyC+s9fXsZRVq6/vfqq9nzle/vrpcVRSaq/3cYilVLz73iuofM0T1jxmiXnzuFWWxlNb59TlsDvXhk0vUXfG3q9kj71V/fLvhuGOcTqd65M65qkfbAap/53PUh28sq/P1auqXnzeqYYNGq75dz1Fvv/F+1d/AsfW+6pvv1KXDr1QxbWLV9JvuVTt37PZ6LEd/r4cNGq26tY1T99/1sDp4IMvr16l2TadL/fztenXvhAfVFXGT1D9ufFxt+nmz8ng8PrlecUGJev2pJWrCWVPUFXGT1H1XzVb7Mw4oparX+aafNqtbL7lDXRE3SSUOuVEtX7xCWcutJy23vKxc7d65V/2w5mf13lsfq+efflm9/cb7as2qH9SOtJ3KbLac9FyHw6m+W/GDuvOyWeqKuEnq8Vv/qbZt3O6zOjhq6+bt6oZrblMxbWLV5aMmq59/+MXn1zzWsffRutyzpQWnkbTgHMrKIXHUNG6641q6te/I4hff4o+sHfy6/fuqT8Iv3v8iP6/9lQcfupkLbzz9Ynve8M68pZj2mDC7bWg1Gp774GlKC0pw2J1oTtIgvSd9Hx+9vpyDe030G9KHZV9/zksL/82FF9auxakov5hP3vqc33/eTPc+MVx/52R6HLPqbWlpGddNmU5Uq0geeHAGB/Yf4q03P+DIkXxGXDQMY0UQrlIHIyePJP6y+ON2R/cWpRTr123klVfeZN/eA1xyyQXcdc9tdO9evbvGbrPzn3mL2ZO+j3vnziBucH+fxOMtBTkFrHhtBVm7sjhvzHmMvn501bpGNpuVffv20bNnT4KCKsdxlBSU8Mkry/l+/XqySg+jCwjghhsncf0Nk2q9A3rB3ix2r9yA2+6k58hzierfjeWffMk7b3+E1WplcuIEpk67jqiouq9Dc+DP3Xz2ymeUmMuJPbMHV903heBTtBimbd3BIw/NI6fgCAP7xfHsy/9Hm3Y1X+CxJkpLy1i08A1WfPYN5wwZyBNzZ9Oly/+6aU5U7263m9XJP/D6a0vJyTnM2HGjmHH7zURHn3oxxdNRSvHjD+t57dW32b//ICMuuYA77pxGr14Nt/eQUoo/f0/j26TV7Ms4QHSPzoybNJohFwzySutswZFCkj9dy8+rNuDxeGhlNHLdPZMZOPzsqmOOrXOlFN9/9gNffbiKMpuV4JAgxlw9ipGXX1SrMWgnY7c5WL86heTP1lKUX8zAoWcybvJoevZt2D2fNm3ayquvvMX27ekMHnwWd91zK2effep7piEkkPBW9V+6Qbqo6qGxJTgP3T6XHdt3sfz7d/j4+Y9Y9tUX6IwGVv30GVA5kHLqRbehccPU+69n9A21H3dUWx63h39cPofzx5xPcFggb7z8AUPO6IHG5uZEvzQOlwuTuZiiigpC9AZioloRajCwPHUdnY1tGNatbtPZS202DpYUYXU6aRMSSpfIKPQ6HUopfti3jWxLARNjhxEeWFnXbo+bjLwstuXuw+l206t1Z7oYOxJqCCQqJBi9l5Ocw6VFbMrezZGyYjqGt2JIlz60C4s87ji3x8Pu/DwqnA7OaNMOY1DjWFviRJRSlNkdWGx2dFoNUSHBBNZw4KFSigqHk/yyUvYXH+JgSS4BWh1ndexB/3YxBNSy/t0eD7sLstmasxery0GfNl0Y2KknoYa6D45VSlFqd1BqsxOg1RIVEoShhq/P4/Gw/XAmW3P2oNcFMLRrf3q2PvWyCTVlMufzy4E0HG4n50b3pW/b6Fp1D5y4rnoRaqjd75pSikOWAv7I3kNBhZnOxtYM7tz7hL/XDaXy/8xObqkZi81GYEAAHcONtA4NQ1uHLhSr00muxUxhRTlajYZQfSBtQ8OICg2pcXluj4f80nKKrOVUOO1oNBrahYXTPjwcg672Y2NcHg95ZaUcKbXg8nhoHRJKR6ORYL3/pvUrpTCZ8/kjezdF1lKiI9pyTpfetA45cRKj0WqZ9d5jhNUzyfFGgtNo1sFpyX7fsIWfVv/CUwsfIzgkmKzdJg4VHObmiddXHfP1O19jtdkZcmY/tm9I9WmCYy+3kptxkO0/bKaspIzsddvQ67QYg4JIz8xm/KXDqDiUj7FDK4ZMGYXSaPhx5S+s+fJHAgMNXDvjas67cHBV33DxfwJISfmdG569o859uR6Ph5QffufbT9aQUZxPwoSRlKlyDvyRzJNzH2LY0HM4ePAgMTExBAZWvpmXl1eQtPwLPvnkC0zlBfRuH4PD04oLL7+Q8xPOq3drzr79mSx583027txEr17dmT19FkPOGXjC11heVsFrz76NO0DDrMfupPsZtR+I21AKcgr49t2VWA7mMmTkOVx41YXoj9kmA8Butx1X539XWlLK6g/XkLYlnUJdGZsP7GGfNZ+bbpjM+HGXotcfX+bfud1uvv9hHUvf+Zjcw0cY1K0no/rGMXD0cDqeeQbU8Xcpc/seVr67ilKbnX5x3Rk7/UoMddj1e8+u/fxz7nP8uH8beZoK/vn0w7RtX7dl7EtLy3jl1bdYvekPhpwzkDkP3kP79iceJH+6egew2ex88eVKPvz4U/ZnbGDiVeO59tqriYw4/U0nLS2DJW+9z7bdacT278tjt85h0MAz6/S6fCVrfzZrv/qZPzelUYyLEeMuYNjIc2u0anrW/my++/JH0v/YQVBwIJEhoXRo14bLpo6na+8T/12eqs6VUuzYlMGqD5MptVZQZLdSYKvgvAsHM/KyC2nT/vQtfBZzKT+t/IX1a3/F7XJz/iXnMvKyC2ndrmHGetWEx+Phx59+4e13PuLz9A1cMuICbpl63XGthEFhQfVObrxFWnD83ILjcrm5cfwMwsJDWbx8IS6Hi5uHTSXl4J8s//o9hpw/CKfDyS0XT6dTpJHLb5/ER89/yLNfP4/RS79Ejgo7h3ceJHfHAXIzMik8eBgU5NkcHC4yM3T4WezbsgdtZDC/bs/g0YVz6BbdgeRnP6BUB9uzDlFwpJDLrhtL4h3XHNdE+9P3vzB1yh1898uX9d4fqdRcxsevfsKKD75id8F+RlxyAW99/N9T1nl+XgH/fWkxH777CcFBwXQNac95Awcx9YlpRPeu/RpK2aYcXnz2FT5f/jVdY7rw4KP3ctmVCScd7FdSaObJGU9TlF/EP994nB79GraZuabcLjdrPlzNyre/pXXH1tz42M30HHDy/6+a/J4rpdi05nc+eSmJcoeN8ggn6zf8Speunbn/obu48urxxyWaSilWr/yeF599hd079zJ63CU8+PC99OweQ8bX6zj4yzZa9ezCmVPGENbu1MvN/53DauejJ5fw+4ZUjGHB3PDwjcSNGFzj80/E4/Hw7MMLWPreR+i0Oh544C5mzL61VmV8l/wjj82eh9Vq44l5c5h03YRTfhCozfuLxVLKW6+/x5uvvotGo+G2u27m1jtuOmF3YXrqTl54ZhE/fLeOvrG9mfPoTC65tHaraTe07AM5rHi7ctp7SGgwl10/lvHXjSX8mDVqlFKk/bGDT5d8zraN22nbsQ3GoBCsBaWMTBzJFbdfheEU293UpM4tRRaWLfiYzT9uxtilFbmH8ykvLeeChHiuvvUqYk7woebobLbvv/gRXUAAYxNHc8WN44lqE1mvevEll8vFpx9/wcIFr5F3pIBrplzJzNl30rmLd1oxj5IuqnpoLAnOp+9/yfy5i3jnq9foN6A3B3ce5NYr7+Cwo4htezYQEBDA1+98zZsvvM8jj99G3Jh4HrpsNtc9dAPDrxhep/icNgdHdmWRs+MAuTsyKTyQi1KK0FZGOvbv9te/7jx/x/M4Sq20Cg3mohvHcO6Vw5k742nKzGU88OxMXvvnYnZs20Xndq15cOFsesad+GZos9o4u89wHvjH3cy4e1qdYj62vHEjrqHwSBFdQztx7kXncN29kykpLz5lnWdlmnjxuVf48rOVhAeH0jOyC1PvuoHxt1xWtVP3qRQWFPHKS4v58J0kjBFGZs2+k8QbrsZwgtaNqnOOFDF3+lOUl5Yzb8kTdO1Vt0UpfS17j4n3/v0e2Xv+v707D2/yOhO//5Xk3Za8YGwDlm128MKeENuQlQRDmqQhbdzpkoZpk3SbtDMl83ZNp6TT6W+gnSHTWZqkJV2Dm4ZmBZOQkgCWSVi94ZjVWMb7JsnWLj3vH8YKBq+yZYG5P9eVK0h+lqODsG6dc59zG7n7s/fwiS/dR2j40CMso3mfm9pN7Pj5S5x47zgzFqVx1nSRfXv3967U+O4/sHb9XQAcfL+UrT99lrLjlay67Ra+/d0nWbq8/+hB2+k6yl/ag93cw/z1+cy6ffmwO9ZW7jvKH372e8zdNm5etYjP/suXCRuHDeD61FSe4qtf+Bbn6uvImjuf//vDNvSzUoc8p6O9kx9//2e89spb3Hn3rfz05z8a0cozf6bA29s6+L//+jW//fVLREdH8bVvfpkvbPwMEZERnDtbyy9+9kvefLWYmbPS+cfvfH3IgP1a1NrYxqu/fYO3X3kXtUpFwcN3c/8jnyA+MY7D7x/jlRf+Sk35aTLmpTNnXgY1JVUkTk8cNojvM5o+P/q3o+zY+hIet5vZK+dz/IMKWhvbuPn2FXzqy59k/uJ51J2t55Vfv8r+XQeJ0UVz3+fvZf1n1hITwIKh481ud/DHF//M/2x7HovZwuceLeTr33qMxKnjk5MmAc4YXAsBjqnLzEO3P8Lta1fxg/+3CQDDmyV89SvfJv+ePP7nN7/A4/bwpTseZ0pUBP/+xn+iCQvlF1//OeERYXz95/8w4jZ11DVz7lAljSdraT3XgOLxEhkXw7SFvQHN9MyZaJPjUalUmFq7eO0XRZS+f4yFOXN4ZPOXiUvu/aZ88thHfPeLT6NSqUhOTeLhR++nYe8xYhLjWPfdLxAxSILd33/2a9hsdl76629G0ZMD++E//4SiP+3ktT0v0dnQyfatv6e9pYN5S+YwJTFh2E2qWtvbKTn8ARfqjUSHRjJnWgYrVi4nJnbgXy5Op5NjleUcqyhHhYrlixazJDuHsGGmWKC3v7xeL8+88DTT08f3G854cLvcFP92N7t/u4vktBQe+f4XycjMGNG5/nzQ9v3yV7xelt63gt379nHw/VIWL80mMiqSQyWHe/d2+d6T5K1eOXi7HU5q3jrI+f3HiEufxuK/Kxiwmru928Yfnn6Oo4dOEh8bzRe+/0UWrlo8oraOltfr5Rc/2savnv9tb5mVbzzGP3z/qwMeu+v1t3n6Oz/B5XLzLz/9Lp/81CdGPFIyln22Ghua+K9f/Io///GvTElM4KZblrH7jXdISk7km5u+yqf+7pNj2uQt2EwdZt74wy527SjGYXcydVoijXVNZC5bwO3rV3Nk9wdcPFPP3X93N/d++b4Rl6wYbZ93d3VT9B87OPLOYbJys8hYOofdf36H+vMXSZ01g/pzF5mSPIUHN97H3Q/eOW47SgdDT7eV7c/9nl/994t43G6+/LUv8o///PUxj/xJgDMG10KAs+VHz7Lrlbf5y77f+fbV+PUzv+aZZ/+DX/z3T9nw8P28vWMP//2vv2bTP3+R1ZdWTv2t6F3++j872bLr50RED/4PQ1EUGirPUfFWKRcrzhKhjWJa5kzfKE3stCn93oRej5cjb5Tw3u/30ONy0dZh5t93bSX6im8Vv9/2J6Jiorj/C/cSGhZKh7GF3T/9HZG6aNZ97wtEDrCF+e9/s4Mff/9nHD91cNSraS5X/NZevvLot3jm33/AFzZ+BuhdcfDyCzv58L3DREVHoVGPLLemub2VY1XldJg70YXHsDBjHrNmz0R9qVSEx+vlzIVzVJyuxuV2MS9jNllzFhARNvJv/tHaKL78nY0kTQ/upoMDufDRBX7/09/ReL6BgkfWUfDFdQPm2gzG3w9aS6eFP/9nEUfeOUxOfg5zb1vI87/6HXa7nSc3fZW77hn5tEjHuYuUvVSMrd3MvHV5zLrzJt/KmrK3P+CPW/9ET4+D3DuWUvjDjYROQA2msx+d46uf/xanLpxj/szZ/N8ftjFzXgbQO136o+/8lF1vvN2vXMdojCXA6VN7ro7/+Pf/5sTRch750mf53KMPE+FHHtK1ytptZXfR21w4XceaB++kruK8X0G873p+9nnZ/hP8acsfcTlcPPSNT6GKDOFgsYFlq5Zy2ydWj8smfdeKrk4Tv/rlb3jr9T28WvwSCVNGPn08EAlwxiDYAc7ZmvN8fv1jfP3/e4zPP17oe/6x9V/hncMHOXLyfRKmxPP4XV8hSq3mF7ueJeTSL+f2xjZ+8ND3+fIzj7H8rhVXXdvj9nCutJLKXaV01DUzJSOFzHtuJmXONHQzUgZsT+Ppenb91ys0nr3IintzOX26DrfLzT/+8tsjes1dDW3s/tffEhoVwbrvPUJ0fP9dLI0X6lm9ooD/2/4fFHzi7kGuMrSL9Y2sv+Mhbsm/if/b/p/9PgT9/QWkKArFb+7lx9/5N5paWshImsG//Pv36LJZ+PnPfslFYwMPFd7Pt/756+M+xxwsLoeLt7a/yTt/fJvps2bwyPe/6Fcu0lg/aC//5f+pJz9N7r15fn3r8zhd1Ow2cG7fEWJTk5h3/628+stXOHGkhoT4GB59+u+Zu3L8C9IOxev18st//V9++T8vgAJPPPEos3Nm8+Pv/+yqch2jNR4Bzo3i8iB+7RcKWPfo+lEF8X3G0uc95h7+8uzLHNpVysKbM/n8d75AQsq1kzx8rZIAZwyCGeAoisI3Pv8UTQ0t7Njza98/OEVRWDVvDaHaMN47tpvj+4/xL1//GV//h0Luefyhftf46aM/ITk9hS/9+Mu+55xWOx/97ShVxR9g7bSQumQuOetzmZaZwZnX/0Zr5Slm5C5Ff9vHBTqdNgfv/X4Ph18/yNT0FO79h08xNSOFTQX/xP2PP8Caz448GDE1tbP7X3+HJjSEdd9/hJgrqkivyb+fZSsW8+/bnhnxNfu43W7+7pN/z8X6Bnbte4W4K/Y+GesvfY/Hw69/+Tue/fn/0m2zApCakMyi9AXERY9ty/FrjcPqwGFzsH7jvaz9QgEaP8t9jMcHbY+5h5e3/ZkPdh9CN0Xnd1sAvG4Prh47Tpcbr1dh1T0r+NR3vjhsLlEgXThbx1c/9y1Onj0FQFridFbMziIi1P/REsWr4HK7CA0JHXVh2huNqc3E9FnTeeR7X0Q/3/+Vi+PxXq80VPDH//cHekw9xMQHr1BnoEVpo/nHX/7TVSP/oyXLxK9T+98xcLjkGL/4zU/7fZtoqW+m2dzGwwWfBODQnlIiQ0PIf+iuq66x+NYl7H3pHdwuN7aubqr2fMCpfcfwuD3Myc8he30u8am926e7emy0VZ9Blz6di4dOYDY2Mu/Bu7lw8gLF//sqVnMPdz66nps/uRpNiIaKknJcThfZ+aML/mJTpnDvDx9l17/+ll3PvMi6738R7dQ438/vWLOaV//yFoqijPqb67M//z+OHj5B0WsvXhXcjAeNRsPj39zI579UyLaf/DfRoZHMTLt2l3KPhUqlYukdy5gxe2ybwI2HaF00j/5wIyvXruRM2ZkxX8/r9dLd0EruA7cya9n8cWjh2KTPTmPXoZ1sf/Z3NF1oInvBgjFf0+Vy0dbWRmJi4rBL7W90sYmx5N+3akyB83jJzsvh6T/+Cwde24/DOr6FMq8lUdoowscxgX8sJMCZYA67k//8yf+Qe9vN5N/RP4ny3bfew+31sP6TvRWlT3xYSVpyAlEJV3+gL7ltKW++8AYv/+jX2IzNhEaGk7n2ZjLvvpmoK6aHmss+AlTM37AWW0cX5X96i9/+wy9oabUwe8UC1n39QeKSPx4yrSipYGpqEslpo68lpE2K594fbmTXT3/LW89sZ/33voju0nDsHWtu5fn/+S1VFR+RvWjkdWUOlRzml794jm/989e46ZbRVxofjaiYKL77s6fGfB1LaxflbxykvuwMs3KzyV53y4C5SRPJZXf6RvjeOVg+Ltf0er1UqIvH5Vqx0xNZdF8+M1dmBn0FT9fFVspeP0hzTR1zb1tC5j0rCR8i3204G598ZMxtcvTYOfn2B9S8d5zEqTHk3nMT0+YENwj3er2c/+AklbtK0YRoWHTfKvRL5wZ9aXnb+UbKXjtA80cXOBkexoI7lxM6xDLwiRIZE8k9n1s75uu0nK7nxGsHaKg6x4C7rvoheZ6exQ+sZlpmRtD//saLBDgTbMdv/kJTQwu/+M1Pr3oTvffuQcJDQsm9fSWtjW00NbVz85039ztO8SrUl5+h/M0SwkM0nKk6z0Nf38DcW5cM+A9Y8XppPlZFYtYcNOFhfHT0DIZD51CpIHt+EktuzyT2slEWRVGoKCln2Z0DF8QciZjEWO79waPs/unveOsnL7Lue48QNz2RFSuXER0dxXt79484wOns6OJbX/0ON+cu5+vfemz4E4Ksq6GN8tcPcqaknPCYSPSL51L9zmGqij9g/p3LWHRvPtFTJnYTLEePnep3PqRy9yGcNgdz8hcxJWPgXKzRcDldNDU3kZKc4ldeQz8KGMtO894vX+H4K++x6L585uQvQj3B37zbahspe+0gtYdPEh3fu21C2WsHqXjTQOY9N5O17hYiJ3gpr83cQ9XuQ5x8+0O8Hi/65fO4WHmOXf+ynYwVC1n8ydUkZkxsfpjX7eFMSTnlb5RgamxnRs5s3E4X7/z8JRLSkln8wGoybl444YFqc00dJ149QH35GXTJCSTOms7hHXspe+0A2etuYeHdN48pUA0mRVFoPFlL2WsHaKg6T+z0RJZtuB1N2Ng/xr1uD2cNFez+6e9ImpvK4gdWo18S/EB1rCTAmUCtzW385pd/4NOPfJKZc9Kv+vmJ8gpmpaaj0Wg4euA4KpWKnBW9gYDH5eZsSQUVu0rputjK1NkzWLRqMTUVZ1iwZvCKsp1njThMFsJnTGf7P/0XjWcusnz9Ldz+SAEdlTVc2PcB3fXNzP3kGsJ1MdSfrqertYucUU5PXSk6Qcf6S0HOrktBTnxqEqtuz2Xf3gN845+eGPYaiqLw1JM/wOFw8J//+7OA1ZEaD+21TZS9foDzH54kKk7LzZ+7hwV3LCckPJSVX1jLyT0fUll8iI/2HmHO6sUsvn8VuuTAJhraLVYq+z4Y3W7m3baUnE/k95s2HAur1Yqnupp545TsmlWwktZzDZS9doADz73O8Z3vk/OJfObdtpSQcfglPpTmU0ZOvHaA+hOn0SbHs+pL9zFn9WI0IRpu/uzdVOwq5eTbvX+HC+5cTs76vIAHqj0dZireMvDR346iVqtZsGYFOetzUULVVFVWEdHpoXrPh7z2/edIXTKXJQ+sJtmPZPHRcDvdnHr/OBVvltDdZiJ9xQJu+9oGps7qrZXVWH2BE6/uZ99//YXYaVNYfP8qZuflBDRQ7VsteuK1AzRVXyA+NYnbv76BmSuzUGvUrGi9i4q3DJx4dT/llwLV7HW3DLqlxbVGURTqy85w4tUDtJw2kpCewp1PfpqMmxaOaw5W9vpc333e2foSUzJSWHz/6nG/z0SSJOMJTDL+8bf/HyX7DvHKvt9ftdNmY0MTuYvX8PkHH+Inz/2Yn3z9Z9SXn2bTj56gu8fByT0fYDP3kLZsPjn35pE8T8/Z8rP8/KtbeOpX/8ysQTarOrnjLRwWK0fLL+Kw2nlg02dIXZjh+7nZ2Mipv76D1+Nh7v13cehAJW//YQ9bdv98RJvfDcdm7qH4336PtdNCwXe/wDv7D/K9TZs5Wr2f+IS4Ic/d/twf+PH3f8YLf/gla9bePuSxwVpZ0jdUbDx+Cu3UOBbdv4q5qxejGaDvnDYHH717hMpdpdjNVmblZbP4/lW+XKnx0tNpoeItAzV/OwrAgrt6PxivnLocq0D2eYexhbLXDnD+UBURsdHkrM9lwV0rxnWaQVEUGqvOc+K1AzSerCVuxlQWP7CKWbdkD1jE0dFto2rPB1QVf4Db4WTubUtYdN8qdKPYTXkkzC2dlL9xkNP7ywgJCyWrYCVZa1cSHtNbe+vyfo8Ij+DcoUrKXjtI18VWpmVmsOSB1UzLmjmu375ddicfvXuEil2l2E09zMrNZtH9q0jQD/zebT17kROvHqDuWA0xU+NY9Il85t66ZFwDVUVRqDt2irLXDtB69iKJs6az+IHVpC+bP+AHsrXTQuXuUqr3HgFg/p3Lybk376oVnwMJxu8XxatQe7iastcP0F7bNGEjK4qi0HQpUO0bKfIFquNQ3HSkZBXVGEx0gFN1opqNn/w63/3pP/HgZz9x1Tm/ff6P/Oh7/8YL//uf3HrfrXwu/+9ZPCOJtKlJeN0e5q5eTNa6W4ib/vGeGV6Pl+/c/8/krs/lwa8/dNU17Z1mjv3PH7HFTaV014ds/MU3mDHASgKX1cbp196l65yRd8svkjw7lcd/+pVx6w+7xdpb1qG1k+VfWsf6T3yWbb/6dx7YsH7QcyrLq9mw7rN89osP8y8//e6w95jIX0BXDhXHTU9k8QOrmZU78AfjldxOF6feO075myX0tJtJX7GAJZ9cTeLM6cOeO5S+vJ9T758gJCyEzLW9H4yB+qY6EX1uamqn/I0STh8oIywynKyClWPOh1EUBePx05x4dT+tZy8yJWMaSz65mvTlC0b0TdVpdVD97mEqdx3C0W1lVm7OpUB1bHsd9eX9nDVUEB4TRfb6W1h4102ERfVP2Byo3xWvwoWjH3Hi1QO01zYydfYMlnzy1jHnw/Tl/VQVf4DL5ugdfbxvlS+vbjgddc2UvX6Qc4cqiYqNIfvevDHnw/Tl/ZS9doBOYwvJ89NY8slbmZEza0Sv1W6xUrXnA07u+QC30828S4HqUCObE/n7xevxctZQQfnrB+lqaGNa1szeoDUIuTFXfYG7rzdQHegL3HiTAGcMJjLA8Xq9fHnDP+BwOPndm/834FTLZx/4e6qPfcQbfyuitbWDf3niX7l/WSa4Vdy/+ctMHWTFyx/+7fecPnGKf9mx+ao3f+3fSrlQWsYHR43k3LWcdV/fMGibFUXh1NsG/vPHv+POOxbxwHceJUw7frkGjh47e/7fHzA1tvG7KgPZSzL5j//52YDH9nRbuW/Nw0RERvDX4j8RPoLN2SbiF5CiKBhPnKbstQO0nK4nIT2FJZ9cTcYK/4ZwPW4PZw6WUf56CebmDlIXzWHxJ1eTMsrlrF0Nbb0fjCXlhEdHXso1uImwAO+OOpG/9LvbTFS8VULNvuOoNWq/8mG8Xi+1H1ZT9toBOuqaSZ6n7/1gXDTbrw8Ot8NFzb5jVLxloKfT7Hc+TFttI2WvHqD2SDXR8Tpy7s1j/h3LCBlkeftQ/a4oChfLz3Li1f00nzL6nQ9zZd7P/DuWknNvPjGJ/q1gNDW2U/bGQc4cLCcsMtyvfJir8n4WzWbJA6tJWXD1dP9IOK12qt85TOXuQzh6bMzJX8Si+1f1+xLZZyLe6x6Xm9MHyih/owRLSyf6pfNY8sBqkuYOXfJjIrRfaKLstYOc/7CKqDit7z0ayMRtWSZ+nSh+dS+VJ6r5vx3/MWBw43A4OXr0BDN100nJmMbuV/YSGxtDYmIcbU0mYoYovLbktiWUvHGQptpGpl02AuB1u2k58RG1zVbCIsO549F1Q7ZRpVLR4VGjUkGKLpyyX7/M3PvvIm7W+Mzph0dHUPCdL/D21j8xrSqSfe/sx+PxDNgfP/ruT2lqbOaNd/88ouAm0AYaKr7nqc+SunjOmL5RaUI0zL99GXNXL+H8B1WceO0Ab23eTsrCdJY8sJrp2UN/I70q7+ez9wT8l06wxCTGkvvF9Sx+4FYqR5kP05dAWfb6QUyN7UzPnsX6H3yRlAXpY/r7CwnvnT5acNdyzhwsp+z1g6PKh+mX95N0Ke9n1aIxfTtWqVSkLp7DjEWzafroAidePTCqfJiedjMVuy7L+7lrBdnrc4mKG9sKwNhpU7j18QdY+uBtVLxZclk+zE1kFQwdqA6Y9/PVBwf90jdSYVERLH5gNZlrV/oC1dMHy5h5cyaLH1jNlPSxJ+KPhNvh4qN9R6l404C1y8LMmzO565sPj8tCgPEyJT2FO5/8FF0Nt1P++kE+/NPblL12gKx1t5A5AV+m/CUBToBZe2z88mfPc9e9t7HsloFr4Bw+dBSHw0nm/HmEhIZw9MBxZqUmE66NgWYT4drIQa8/f/kCwqPCOfH+iX4BTlv1WZoutmM808yG73yeiOjBr9GnsqSc9MyZrPzGZznz+t84+dKbpK5ajn71in7FDN12Bx6Hf/s43P7EfZxtqGf/K1W8/ac3uPP+O/v9/I3X3+YvO17l3/7f90mdOgWHyTyi67psNvB4/GrTYK4cKp6eNZN133tkVEPFbruDkGG2wFdr1MzOy2HWLdlcOFZD2WsHKP7ZH0icNZ0ln7yVtKXz+o0QXTlsnP/3nxg072ewNvn793c5l80GLteYrzMaUXEx3PzZu1l0Xz4n93xA1Z4PqX7ncL98GLfNjsfp7E3ML62i6p0j9LSbSV00i9wv3EPipQ8Op9kybu3KWDaHtMWzuHC0hso9H/Lmj39D8txUstetJGW+3vd+URSFphojlcUf0nzKSOy0BPIfLSB9+XzUGjVuqxX3MPdy2WyoHA5cZgsO1+BHJ0xP4M6vPUBbbROVxR+w/1evcfQv+8i6ewWzc7P6vV8sbV1UvX2Ec6VVhISFkrlmOQtuX3op78c74n+HwwkLU7N8w2oW3rWU6r3HqCr+gMrdh5i7ahGZa5b3C6RcdienD5Rz8t2jOCw20pfP47Yn7id+Ru8Iy3i1CWBuXiazbprHuQ9OUrXnMK9+71fMyJ5J9rqVTJ05bcR9PhpOm4NT75dR/bdjOK12Zt60gKy1NxN7afpvPF/feImMDmPl391J1t3LqXrnCMd3vk/5GyXMv30JC+5YSkRMJOrQEEKvkR22ZYoqwFNUL/73S7z0wssU7X2R6fqBI/JnfvjvvPTiyzz12Fe555ECvnbft/hE7iJmzk6n6Vwjn//VPw95vxd++BxtF9v4zm++53vu2Asvs29PGdMXZPCZzV8a9gPZ7XLz1Lpvc/fn7mH9xnt7h7pLjlG3/zC6tGnMXn8bjvYOTOfO09PQBGN42zidbv7umWe5ST+Hrzy0hrgpvf8YGts7+ca27axcOIenPnPfqL9dK2o1iSuWkpS1YEzfzD0uN6f3n+gdKm7t8muo2G2301R6GPP5C8QvnEfyiqWoR7gpm6IoXKw4y4lXD9BcU0e8PonFD6wmUhfdb4noaBP/FK+X9qpqWo+VoXi8I34tQ14TiJ0/h+krV6AOQpHGK/NhZixIJT5Gwdxpo+FCFy6nhylJMczIiCNaOzGbjymKQkdrDxdrO+mxOInRhTMjIx6VCurPd9JtdhCtDWNGRjwJU6MnLK+ix+LgYm0X7S3dhIZpmJ4ehy4ukkZjF23N3YSGaJiWFktyaiwhIROTTOpyeWisM9FUb8Lr8ZI0XUfyDB2dbT001pnweLwkpmiZkRFHZNTEjEwqXoW25m4u1nZis7qIjY9kRkY8uviIcfm7Gug1T0+PIyLy+tu00elw01DXRXO9GVSQPEPH9PR4sh95mJCo4b9UD0WmqK5xDcYm/vT8n/nCVz4zaHADsG/vfhIj49DP1XP0wHFCw0JJDAuFkJARJYguXr2E3/zLr+lo7iAhOYHuxlYqD9XgdLop+NqDI/pHeabsNHarnZy83jePSqViRu4SNOEa6vYd5sSvdhAVF0Fs+nSm5d5MWNzYdhO+7eARTh6vpvpEI2qNGo/Xw28OvUuEJoxbEhfw4fu1o7qeAuBVYO9pUKnG9ItI8SooKMy8OYu7/rFw1EPV5to6Gg0fguIlIWsBnTWn6a5vYPrqXKJTht88UaVSkbpoDqmL5tBYfYGy1w7w3i9fAfB7iajDZKJhfym21jYSsheiTRv71KPDbsdYXY359Dnsjc1MvzWPqKSJLSoaFhXO4vtWMfvm+Rz73ZtcqG6g3uFGpVaTsXweC+9aim6clsWPRgawVFFo/KiOk3uPUVPeBEBiRgrLHl7GtAVpfr9HHXY7Fy5cID09nfCI0U0NZALm1i6q3z1O7dFTKN52ImOjWfZAPrNWLiRkrPsZ+WEOvaMZZwxV1LxfRvPFetQhGmavzGTBHUtGtMppvGUAy70K9RXnqNp7jJPHG3p/r6hVjDXE8Xq9aEJDmJOXzfzbFxMV5A1Ax2ouvSsMaw6Uc/pgJa1NVhZ8TrkmgotroQ2T1v9u+TVxU+J45CufGfSYC+frOHemlqXTFpA6V89Lz/2F+VmzCL2UmxIxgiTK7LwcNCEayg+Ucfun7qB6jwFjo4nbvlBA/LQpI2prZUkFsYlxzJibSk9TM6az5zGfr8PrdBI/Mwlrh5Weti4SsuKJmze735SVP+65/x6K97xHzmfuQBsZyQt/LKK528zPf/w95s+eNerrOZ1OmpqaSIiIoueCEcWrEDsrnYjEKYz+c0TFtMyMAZMNh+JxOGg6dBjT2Vq0aalMy1tJSFQkCQvnc/GAgQu73iEhcwFJK5aMeLRj2sJ0pi1Mp+18A06rY9QrKRSvl46TNbQcPUFodBQZ995DVPL4LEtXWa242xNJX7KYjsPHqX3rbaZkZzJ16cRt0Kd4vbRXnKT1eDkzZiey7Av30l7fQUJ6yrjt9zMWc6clM+f2FbScrgcgaW7qmEcBVFYr3vZWIpIS/Up4jU5JYlrOPCytXXRcaCJ18ZwJWRUzZJuAm2bqWfLQnVysOEvSXP2Y837Gw4Lpycy/5xbOHa3mTHk1KSkphIWNbSRJrdGQtnz+hG8YGUjRQO6cdJY9fDfNNRd8WxoEmwQ4AfJR+WkO7C3lmW3fJ3KIobr33j2IRqMhMSqWxBmJVB45yf2fvB1VVzdut2dEIziRMZHMXz6fE+8fJ6/gFkp3HyF2Siy5D9024vaWHyhjzrxpnHn5Vdw9VkJjoolfMJfY2TOJiI9D8XqpLzmG8cARzMZGUpZnj/jaA8nR9/6iP3mmhikJcbzyZjHf/NpGVt92k1/XczgdOLAyIzWV0EWz6Kw5g7W5EY3GRfyCuWhG+UvJYzbTbh75HLitrZ3Oj06heL3EzZtDZEoyprpG38+1s+agCo2k+UQV7dVniM9cQHjsyDeKUwHhGuioOT/ic9w2Gx0na3CYTGhTU4mdk4GtsxtbZ/eIrzEUh9OBp7kDa2gUurnzUIUZaTpSTlvVaRKy5hOmDew3b5fVSkfVRzgt3WjT9MTOSsfR1U1MTBjO9g7a2zsCev/R6PtFO5q/v8H09XtX6AVsYWObdouJCaPrbN2Y2zSetNpwbE0t2Jpagt0Un8gwFfEpOqamJhA+xj4HsDY0Y20Yh4Zdg2ITgh+Y9pEAJwDcbg8vb3+d7GWZ3HNFEu2V9u09wOz0dBKTEzlbfR63y016UgKqsDC6LFZiRrjkdMltS9nx85fY+9xOzBY7n33qc8N+K3N2d2M+W8v5I5W0NrSRu2Q6Wv0MYmfNJDJ5ar9vmiq1Gv3qFej00zj12l5qXtkzonYNZVbSVP78u79Q39HBovQ0bgqNHPN1a4/3L9ho7ayn/dK354nS3XpimCOsmBpKJ6IpH9+x8wzNFWMvZjmQK/scrJguGgJyr8FYO0/RXHZqQu8ZbFf3uwg06fPhqUM0LPv65wmLCX6isQQ4AfDmy8U0Gpv50c+/M+RwtM1qo7TkQ3Kzl5F6Kf9mesY0Qu0uIqdPpenoaSJ0I3uTLFq1mJe2/AlD8REWZqUza8XAVYvddgfm2guYzp7H1tyKSqOhrsFMSGgId/7j3xM+zGqr2IwZLP/G5/E4x7565l6Vi2f/4zkSp07hVzufJ3HqyKbTBmKz2ThVc4p58+cRGfnxa/DYHDQfPorFeBGtfgbJNy1HM06Vbnsammg6dASvy0XyiqVoZ41s2bHi9dJZfYq28kpCY2JIueVmIqeOT9kGV3cPTYcOY21uJW7ubJKW5qAKUMXpwfpc8XrpqKqmraKa8FgtKbk3E5EwPrv9Os0WmkoPY2trJ37BPKYuzkIVhOTmYBqs30XgSJ+PnFqjQROEXK6B3Fi/GSZI2eFKbivIY37WnCGPO1RyGIfdQZQ7lBmzZ/D6K2+Td/dKLI2tJGfNwm4pI2KEm+3FJsai1UVhszm5+/H7r/q509JN06HDdNf3jotGT5/G9Fvz0KXrKf7H/2LBigXDBjd91BoN6six51jc++A6fv/bP/Mf//NvTEsb254WLsWLKiyEkIhwQiM/TrwMjYwgfe2dmM5doKn0Qy4Uv820vJXoMvyvwuxxOmn+8Bhdp84QPWMa0/NvITRmdPPpySuWEDc7g4sHDNS/u48pOZdyV/yst6UoCl01p2n+8Bia8HAy1q8hZnpgCzAO1ucAKTcvJ272TC7uN2B8+29MXZJD4uJsv3O3FEXpzSU6cpyQqEhmfWItUSnjW+LiejFUv4vAkD6/PkmAEwA/2LKJmpqaYY/bt/cAM1Kn4+12ExYTTntzOzlL59P6VglRU+NwO1wj3mb/7NEacLixu93EZlwdLHRUVWNraSVl5Qp0M9MJufSP1NZt40zZaR7+VuHoXuQ4mL9wLkdOvj8hRTRjZ6UTPS2JxpIPqf/bfnSzMki55aZh96i5UvfFRhoOluJ1OJmWv5K4ef5v9hceH8fMTxTQdilJtruunum35hGZOLqRLFd3Dw0HD9HT0Ejc/Dkk37Rs1DlHgRAxJYFZ96+jtayS1hMVWOqMTF+dN+rRHKfZQsPBUqxNLSRkzidp+VLUQU6KFUJc+ya2lv0NQqPRDPuhpygKf9u7n2VLclCpVLQ0txMRGc6MS1MVfWUSRjJF5XK42PVfr5CcEIPXq1D9YfVVxzjNFiKTppKQOd8X3ACc/PAkXo+X7Lzx3w9oJCayQnhIZCSpd93KjNvy6a5v4Nxf38BSZxzRuV6Xi0bDh9TteZcwnY5ZD36C+PljL3qnUquZujibWfevQ6VWc/6NYlqOlaGMYNNCRVHoPHWGs399E0eXibR77mR6/i3XRHDTR6XRkLRsMTPvK0DxeDn3+m5ayypRvMPvw6MoCh3VNZx99S1c3T2kr1tDyi03SXAjhBgR+U0RJGfPnKe+7iIbCtZx4cJZPio/xeJbcrC3dRESGY5y6YNzJFNUB3fsxdJuYuWKdLrDwig7cIIlty3pd4zTbCFGf/XITkVJOTNmz2DKCJeTX+9UKhWxs2cSNS2ZxpIPMO59n9g5s0hZuRxN+MCjOT2NTTQcKMVtt5OSexPxC+aN++ZsEQnxzLx/HW2+0Y56ZqzOI2LKwKMdrh4rjSWH6K5vIG7ubJJvXo7mGihrMZjIxCnMfGA9rcfLaT1WhuWCkRmrcwmPjxvweKelm4aDh7A2NhG/YB7JN418o0QhhAAJcIJm3zv7CY8IJ0YVSXJ6MoePVfDVHz6GuaEV3bREHBYbwLBTVK0Xmih95X1mZiQyc2U23SkdHPjrfjxuD5pLe5EoXi/O7h7CdP2X7Xo9XqpKK8m/f1VgXuQ1LDQqCv2a2zGdOUfTB0foaWhkWv4taC8LAr0uNy1Hj9NxsoaolCTSC9Zc1YfjSaVWM3XpImL0M2g4UMq513cxdWkOiYs+zl1RFAXTmfM0fXAYtSYE/Zrb0aYFvxjfSKg1mt5k7DQ9DQcMva9v2WKmZC3s9/q6Tp2h+YOjaMLDSVt7FzEzAptLJISYnCTACZJ9ew+Qm38zLReaCYkJx+tVWLZqKVUvvkHCrBnYLVZg6Ckqxetl1y93oo2PQZ8UTfKyLDQZ3RT/djdnys4wf/l8oPfbPl7vVfuS1J48T3dXNzn5iwL3Qq9hKpWKuLmziZ6eQsPBQxjf2UfcvN7REEdHFw0HS3H1WEleuYKEzPkTtqV+ZOKU3tGcExW0Hq/AcqE3NyckPJwGwwd019UTO3smKbesGHTU6VoWlZTIrAfW03KsjJbDx7Fc6M3NUWs0NJQcoudiI3Hz5pB887WRSySEuD5JgBMEFks3hw8d5bs/+jZH/2BAm55Ixrx0EhLj6G7uIH3VErotPYSEhw65dfqJd45grDpP/p3ZxCXHEp00haipCcQnx3Pi/eO+AKevqOCVow8VJRVEx0YzM3Nm4F7sdSA0Opq0e+7sHTn48BiWuno8dgeRSVPR333HqDbkGy9qjYak5UvQpqVy8UAp51/bhSokBJVaTepdt6FLH58q78GiDgkh5ebl6NL1vaNVr76FSq1GHRqK/u47+o2kCSGEPyTACYKS/YdwudxkzZ3Hh+4D1J2rZ13h3XQ3d6B4veimJdJ2sWbI6akeUzd/+81bZOZnE+6wkrI8H+gdlVi8egllB07w8D8WolKpcFosoFJdtZS5wlBB1i3ZIy7WOJmpVCri588lesY0Wg4fJzJxCglZC8ZckmKsIqcmMuv+9bSdqMBts5F001JCRll/6FoWlZzErE/eS+uxMrwuN0krll7TuURCiOuHBDhB8N7eA8yaMxOvzYPb66XH2sPy1cswN7YCoJ2WiN1yfMg6VHtfeBOABQtn0FNXT8L8j0dhFt+6hPf+so+6mjrSF6TjNFsI08b0+7DuaO7g4pl6Ch4pCNCrvD6FxcSQesfqYDejH3WIhqQVS4LdjIBRh4SQfPPyYDdDCDHJyFf3CaYoCvv2HuCONasxnjaijgolRhfN/EVzsTS0ERmvJTQqArvFOugIzvkTZ6h49yh3PLIWy9lakpdk9tsgbu6SuURpoyjbfwIAl7mbkOgoHJ0f1+apNFSg1qjJXJkV0NcrhBBCBIMEOBOsuqqG5qYW7lizmotn6rG7nCzNX4wmRIOlsRXttKkA2M09AwY4bpeb3f+9E33WTKYl6/C43CQvy+x3jCZEQ86qRZx4/wQATosFr8NOyweHcHT0BjkVJRXMWTyHqBFuJCiEEEJcTyTAmWD79h4gKiqSFSuXUfvRBUwmC8tXLwPA3NCGdnoiwKAjOIY//42u5g7WfWMDzcerSJibQbju6uqtS25dSuP5BprrmnCazShuJ5qwcNpPHMNmslBz5CNy8m7M1VNCCCEmPwlwJth7ew+w6vZcrF09dJnMqFSwLH8JLqsde5cFXd8IjsV6VQ5Oe30rJUV/I/eh24hQK1hbOkhZPvAUU+bKTELDQzn+7hEUj5fQmBiS8vJRFIUjO4txOV1k5wdn92IhhBAi0CTAmUCmLhNHD5/gjjW3Un/GiN3tYub8mcQm6DA3tgGgnZ6I1+PF0W3rN4KjKAq7/3sn2sRYVn1mDU1HK4lIiCV25sCbvIVFhJG5Movj+44CEDtnDiEREUxZvJTqo6eZkhRHclpy4F+0EEIIEQRBC3CKi4spLi6mqKgIg8Ew5DF9//V58sknqaqqoqqqii1btkxUk8ds/z4DXq+X2+9axYWP6nB63Ky8cwUAloZWVGo1MUkJOLqv3sW44m/HqC07w7pvbEBxuWivPkfKsqwhN59bvHoxdWca6LE6iUlPByB8yhTO1XYwKyMBR3t7AF+tEEIIETxBCXCMRiMGg4GCggIKCwt5/vnnrzrGbDZjNBopKCigoKCgXxBUX1/Po48+ytatW3niiScmsuljsm/vARZkzWPa9BQqP6zCqyisuLV3eaylsY2Y5ATUIRrslh4A3xSVzWJl7wtvkHnbEmYvm09LWTUqtZqkRQuGvN/c+dNRqVRcaDSjuVSg8OKZekwdFhYun0t72XE8dnsAX7EQQggRHEHZB8dgMKC9rGyAVqvFYDCQl5fne06n01FUVEReXh5ZWVn9jn/88ccpKBj7/i2KomC1Wsd8nSvZbLZ+/wfwer289+4BNhTej9Vq5WzNeSIiwklJT8JqtdJV30xUUnzvn1t7VzopISqsVitvP/caHpeH1Z9fQ093N41Hq4ibn4FT8eAcpP2KouBsvEBqajznLnT4Xuex944RHhnOwoJb6Sk/QcuxI+gWL0Glur5nKwfqcxFY0ufBIf0+8aTPJ96Vfa4oyqjL5QQlwKmrqyMuLs73OC4uDrPZfNVxmzZtYsOGDWRlZfHiiy/6nq+oqADAZDIBUFhY6Fc7XC4X1dXVfp07ErW1tb4/n6k5R0d7J+mzZlB2vIzOLhP6uanU1NSgKArmhja8CVFUV1fTdaoBgAuNRszHK6h89xhZ962grqkeT3knbksPFl34kG0Pc9iJ6+4mIyORkpLTlB0rIywyjKP7jjBt/nTO1l0gNCqauK4OjEeO0BMTuCKSE+nyPhcTQ/o8OKTfJ570+cS7vM/DRlmb7prZybgvWLlcRUUFO3fuZOvWrTz66KPs3LkTgKeeesp3zJo1a1i3bh063ejrBYWGhjJnzhz/Gz0Im81GbW0tGRkZREZGAvBu8QG0uhgeePATlJdU4PZ6WbU2j4ULF2LvstDkcjNz0QISF2RwutnOBbWKhdlZ/PG3/8e0eanc84V7UanVnK1+B09KIvNuWTHo/RVFwXT0MMTGMid9CgcOnMJr8pA6M5XWC608/Om7WLhwYW9bjXWozp0lZdZswqZMGfe+mCgD9bkILOnz4JB+n3jS5xPvyj4/c+bMqK8RlAAnLS2t34hNV1cXen3/4oHFxcXk5+eTlZXF9u3befrppzEYDJjNZioqKnxBjk6nw2g0kpU1+h15VSoVUVGB2+guMjLSd/2S9w9x6x356HQ6jl3agG/NhruIiorCcr4RgKkZqURGReG1u4nQRlF75BTt9a18+b++RXRMDLYOE5YLDcy5744h221taMDT08OUpcvo+qiWGTNTqD5UjVqlQVEUlt22zHd+5Lz5eLst9NRUE5O/mpDr/B/v5X0uJob0eXBIv0886fOJ19fno52egiAlGefl5fmmmaA3abgv/6Yv8DGZTMTGxvY7JzY2Fr1eT35+vu95s9nsV3AzkVpb2ig7Xskda24F4OSJj9BGRxE3pff1WRraCIkMJyK+d5rIbrESHhPFoZ37mXPTAlJm91ZWbj5WRUhkOFMWDj7qpHi9mM6cImLqVFD3xq+L8nOoKq3k+HvHyMjMQJfw8WiXSqUiIWcxqpAQ2k8cQ/F6A9IHQgghxEQKSoCj1+tZv369b5n4448/7vvZhg0bMJvNFBYWYjAYKCoqoqioCICsrCyysrIwm80UFxezZcsWtm/fHoyXMCr795UAcNud+TjsTpobW0ib9fGIlbmhFW1Koi9CtVusuBSFlvONrHzwNgA8LjctZR+RtHiBb0XUQKwNDbh7eoidOx+n2QLAsjU3Y7faqThYTk7+1bsXa8LCmLJkGU6Tia6aj8btdQshhBDBErQcnMFWQe3du9f358cee2zIc8djJdVE2Lf3AIuWZDE1KZEj+4/h9SosXpnt+7mlsY2EWTN8j+3mHtqaO0meNZ2MxbMBaD95BrfdQcqywUer+kZvIpOTCYuNpetsLSGREcyYq2dqahKt9S3k5A28e3F4XBxxCxbSVX2S8Ph4olKmjdOrF0IIISbe9b02+DrgdrvZv8/A7WtWA3Cw2IBGpSYntzfQ8Lo9dDd3oJ0+1XdOV0snXW0mbnnoNt+oTtPRKuJm6YmIj736Jpf01NfjsdnQzZ0HgMtiIVSnRaVScdPdN5E4PZHUefpBz49JzyAyJYWOinLcPT1jfu1CCCFEsEiAE2DHj5RjNpm5Y82tKIrCCUM54SGh6Of2BhrdLR0oXi+6aYm+c1oa2omIjiBz9WIALA0tdDe2kLI8e8B7ACgeD+azp4maNp0wbW+OjdPcTZiuN69n/cZ7+d5vfzBkopZKpSIhexGasDDaThxD8XjG/PqFEEKIYLhmlolPVvv27idhSjyLlmRxsbaRzvYuUpOT0V5KKLY0XKpBdSnAMbebsHTbyF61CE2IBoDmo1WE6WKIn5M26H26jXV47HZ0c+b6nnOaLcToe6e+NCEaIkOGXyGlDg1lytJlNJca6Kw+SUK2FOT0h6IoWC9exHzu7KRN3FYUL1OcLjo/6KLrOt8o8noynv2uCQ8jbmEW4ZftSxZM9vY2uj6qxutyB7sp/ch7feTUoaFMvelmNKPcsyYQJMAJsH17D3DbnfloNBqO7j+GWq1iXvZs38/Nja1ExGkJjYoA4MO/HkAFLMjtzbVx2ey0nTxN6qoVqNQD/8PyejyYz54lakYqoTExAHgcTjwOh28EZzTCdLHEZ2bRWVlBeEIC0dNnDH+S8PE4HHRWVmBraSYyOYWQ6OjhT7oOuVwuLO3tRE+ZQmhoaLCbc8MYz363t7XRcsiAbtZsdHPmDvo7JtC8Hg+mmo/ovlBLeHwCEYlThz9pAsl7feTUoaGoNZpgNwOQACegmptaqK6q4avf/BIARw4cJzI8gvT56b5jLA2t6Kb3jt447U6O7/mAqPBQdEnxALSW16B4FZKWDF53qvtCLV6Xk9jLR28svSuo/AlwAKJT9Tg6OuisrCBMF+sLnMTQrE2NdFZWAjBl6bJJnaxttVqpczhJmzVb9gaZQOPZ78pcL+azZzCfPYOttYWERUsI007sruaOrk46ysvw2GzELcwkJj3Drz1PAkne69cnGWsLoAP7DKjVam69PR9rj42qoyfReCF1bqrvGHNDG9ppvd9Wyt85jNPmICo8lAhtFIqi0HS0iikLZxMWPfA/Kq/bjeXcWaJT9YRc9g+vb4l4mNa/wESlUhGflY0mIpK240fxSj7OkLwuF+1lJ2g/fozw+HhSVt86qYMbMTmo1Gpi584jOTcfxeulueRg77SqogT83orXi+lUDS2lBtQhISTnr0abMfOaC27E9UsCnADav8/AshWLiYuPpexQBR63h4iQUFLn9CYYu6x27F0WtNMT8Xq8fPDqAdKzZhKiUROhjcJ84SL2ThMpywdfGm6pPY/X7UE3u//mf06zBU14GJrwcL/brw4JIXHpMjw2G51VlX5fZ7Kzt7XSdHA/tpZmEnIWM2XZ8jH1uxATLSw2lpS8VWgz0jHVfETLB6UBXUnptJhpNpRgPncW3dx5JN2SJ6PEYtxJgBMgLpcbw8EPuePS8vCjB44RlxBLZGQESfokoHf/GwDd9KmcOlRFZ2M7c5b2TjNFaKNoKa8hIiEWbWrKgPfwulxYzp8jJi3tqhILLks3oeMw1Byq1RKflY31Yj3d9cYxX28y8brddFZV0nr4Q0Kio0lZdSvRqanyDVRcl1QaDXELMpm68hY8djtNJQforrswrqM5iqJgPnuW5pISFMVLcm4+sUHM/RGTm+TgBMhHVaew9li5/dLy8KMHjjMlMZ7k+HjUmt5/zObGNlRqNTFJCRz6eRFp2bOIio4kLCocxeOh/aNzpOYtG/QD03L+HHi96GbPvupnTrPF7/ybK0XPSMXR0UFXVSVhuljC/ChsOtk4Ojt68wbsduIys4hJS5fARkwKEQlTSFl1K10fVdNZVYmtuZn4nEWERESM6bqunh46KspwdnainTmL2LnzUF0jyahicpKwOUCOfljG1KREMrPnc77mAh0tnYR4VaTO+Tj/xtLQSkxyAg2njdRXX+CWDbdit1iJ0EbT/tE5vC43U3PmDXh9j9OJpfY8MekZaMKv/sUzngEOQFxmFiHR0bSfOIbXfW0t4ZxIisdDV81HtBwqRR0WRvKq1WivwaRIIcZCHRJCQnYOictvwmkx03TgfXoaLvo1mqMoCt0XLtBccgCP3UHSylziFiyU4EYEnAQ4AXLscBm33pGHSqXi6IFjRERF0NNmZsZlCcaWxja00xI5tHM/CTOmMvfmhb0Bji6KlooaYjNmEB47cJBiOXcWAO2sq0dvvC43bpttXFdDqDUapixdhsfeuwR6IpIQrzVOs5nm0hIs588RO28+SStzCY2WvAExeUUmJZGy6lYipybRUXaC9hPH8TidIz7fbbPRduRDOk9WEjV9BimrVhOekBDAFgvxMQlwAsBYd5GLxkZuvaO36vnRA8eZnzMXr8fr28FYURTMjW2ooyKpKa1k5YOrUanV2M09hEaEYb7QwNSc+QNe3+Ow032hFm3GzAE3UxrrEvHBhEbHkJCTg7WxgbYjH2I6fQpbSzMeu31c73OtUby9S2mbDQcBSM5bhW72HMkbEDeE3mK8S5myZCmO9jaaDvQm1A9FURR6Ll6k6eB+XBYLiStuIiE7B3WIZEWIiSPvtgA4sM+ARqMhd9VNmLss1JSdYu2Dd9F6sp4Zs3tHcOydFtw2B+dP1RMZE8Wiu1b0Pm+xEhaqQh0ewpQFswa8vvnsWVCr0c4c+Oe+JeLjHOAARE2bjtflxtrUeGn/HRcA6vDw3vyc2Fjf/zVjnLO/Frh6eugoP4GzqwvtrNm9CZEytC5uQFHTphMen0BHZTltR48QnaonbsFC1FdsfOdxOC7l7jQRNW06cZlZ18SutuLGIwFOAJTsP8TC7HnEaGM48l5v9fCosHASpycSEd37oW9ubMXt8XLqSA23PHQboeG9vyTsFiuqUIUpS3LQhF29Y6bbZqO7ro7YOXOu+sXSx2mxoA4NRRMRmKXKMWlpxKSloSgKHpsNp9mE02TCZTYNGfSExsaiCQ+/LvJVFEWhu+4Cpo+q0UREkHRLLuHxMrQubmyaiAgSl99ET72RruqT2NvbSMhZTMSUKQDYmpvpqCwHRWHKkmVETZO9oETwSIATAGsK7sDj7f2QP7L/GDMXZNDR2N6vkreloY3OHider8KKT+T7nreZuomMDSdpkOkp89kzqEM0xGTMHPT+TrOFMG1MwAMJlUpFSFQUIVFRvk3tFEXBY7f7Ah6nyUR33QW8l+bt1WHhhMXqfAFPmFY3LlM9XocDtceD1+HAM8bred0uOk+exNHeRkxaOrHzF8jQuhCXqFQqYvRpRExJpKO8jNYPDxGTMRPF5aLnYj0RU5NIyMkZcPGDEBNJfmsHwIOf/gTV1dV4PV6OlZSx9lNrKNt9mDsevtN3TFd9C61dVhbdtZzouEv1o1xu3A4XEdo4dOnTr7qu22qlp95I7Lz5Q37guszdhAZgemokVCoVIZGRvfvypPTu3+MLeswmXCYTTrOJbmMd3rMjT1YciUSgs72VznG4liY8gqkrbiZi6rVVE0eIa0VIVBRTV95Cd+15uk7V9O5+nr1I9oIS1wwJcALo7MlzWLoszM+Zg6HoPVLnfjyCc67sLE6Hi5UP3up7rqfTDEDCnLQBf0GYzpxGHRZGTHrGkPd1Wizopg59zETqF/Qk9w96XN3doIy92rbD4cBoNKLX6wkf8y7CKsLj4wedAhRC9FKpVGhnziIyOQWVWj0p8u7E5CEBTgAdLylDGxtDeGhvgl3fHjgel5u62mZmzJ5O4qVdjQFaKs8AkJQ956prubq7sV6sJ25h5pCVWr0eD67unoAkGI+nfkHPOFCsVpwtrYRNSSRSiuEJMaFC5N+cuAbJOtcAOmEoZ2neYhrOXiRSG0VCSm+S6sn3jmF3ull+b26/4/sCnLjU5KuuZT5zGk1EBDH6tCHv6bJ0A/4X2RRCCCEmAwlwAsTS1c35mgssX72U+jP1pM75eF768OsGIsNDmL96se94p6UH08XevSUidNH9ruW0mLE2NqCbPfwS5UDtgSOEEEJcT8YU4Lzwwgt861vfAqC0tJTu7u7xaNOkcKb8HCqVimWrllB/2uibnmo+30DD2YvMmDGF8OiPp2daK0/h9YI6RENIeP/cD/PpU2gio4hOTWU4TnM3Ko1GhoyFEELc0PwOcLZu3YpOpyMvLw+A3NxcDAbDuDXsenem/CxzsmYRHhFOa30rqZdKNHzw1/2ER4SRkZXuO1ZRFFrKawiN1RGpi+6XYOw0mbA1NxM7d2QVdydqibgQQghxLfM7wMnJyeHhhx9Gr9cPf/ANxu1yc7ayliX5i7l4trdAXepcPZZ2E5XvnSBlqpbYGR/n2fQ0tmJr6yQkJpoIXf+RF9PpGkKio4maPmNE93aaLUFbIi6EEEJcK/wOcOrr6696rqKiYkyNmSxqyk7jtDtZmreI+tNG1Bo10zKmcfgNAyGhIehC1WinJ/qObymvITQmCgU14TEfBzjWpkbsra3Ezpk34hEZl8UyrkU2hRBCiOuR38vEMzMz2bBhA/Hx8RgMBgwGA5s2bRrPtl23ThjKiImNJn1eGmXvHic5LQXF6+XYrlIW3pKJqr4B3bTeDeS8bg9tJ0+TtHghLaU1RMfrgN5ApaO8jMiUFCJHuN254vXitHRLgrEQQogbnt8jOLm5uWzbto2FCxeiKArPPPMMubm5w594A6g7U8/8ZXNRq9VcPF2Pfm4qZe8cxmF1MCszHZVaTUxy75LxzjMXcNscJC2aj91sJUIXhdflou3YUUIio0jIWTzy0ZvuHlAUCXCEEELc8Ma00Z9er5dRmwF845mvcL72HF6vl4tnL7Jo9WI+ePUAmasX4e2xEpMUjzqkd7l3S3kN0SlTiZqagN1iJTwmkvayE3icDpLzVo2qBpJvibjsgSOEEOIG5/cIzkMPPcTbb789nm2ZNLSxMYSGhdLe0I7D5kBxuelq6uCWDbdhaWxDO713esrVY6PrbB1Ji+ajeBUc3Vaw92BvbWHKkqWERkcPc6f+nGYLqFSExozuPCGEEGKy8XsEp7CwkHvuuaffc6WlpTJNdZmGcxcBqDt2mrScWaTMmUFZYxtJmbMAaK06DUBi1hwcPTYUr4LH3EHszbcQOTVp0OsOxmnu7l0iPg7VuYUQQlz/FEXB7Xbj8XiC3ZQRCQ0NRTPMhrYj5XeAo1Kp+NGPfkRaWhp6vR6TyURxcbEEOJdpONNAdGw0LecaKPzRRuxdFtw2B9ppvSuoWstriJ+bTmhUJKYzdQDETEtCO2u2X/dzWiySfyOEEAIAp9NJY2MjVqs12E0ZMZVKRWpqKupx+KLud4Dz3HPPkZubS2dnJ52dnQB0dXWNuUGTScO5i4SHhjIlZQpzblpAS3UtANrpifS0tNPT3IZ+9Qq8LhfNR48DkLRkkd+b9LnMFqKmpYxX84UQQlynvF4v58+fR6PRMH36dMLCwq75DWAVRaG1tZX6+npSR7Bz/3D8DnA2b9581WhNaWnpmBs0mdSfrsfb7WDlV29FpVZjaWglJCKMyHgdF94tJSQqgtjZetrLTmC39EbYkXH+jcAoioLTYiFu/tzxfAlCCCGuQ06nE6/Xi16vJ+o6Kt0zdepUamtrcblcY76W3wFObm4u3d3d7N69G4B169bJ9NRl7D12zO1mUhLjyLlzOQDmxrbe6SlFobXyFFOz5tJ9/jz2lmbCpqaA6hThMZHDXHlgbqsVxeMlTCcrqIQQQvQaj6meiTSeo0x+v3Kj0cgjjzzCwYMHOXjwIBs2bKC6unrcGna9aznXBMCyu28i9FLxTEtDK9ppU+k8a8TVY0OXmoj5zCl0c+fhIYSImCi/34xOs1QRF0IIIfr4PYLz9ttvs3Pnzn7P/fznP2fhwoVjbtRkcO6D06iA2z53NwBej4fulg7S8xfTWlFD5JQ4rPW1RCYlo5s9B3vpWcK1/g8j9gU4oTEygiOEEGL0DAYDxcXFAOTl5VFQUDDosVVVVWzduhWj0cjevXsHPe7pp59m9+7dbNu2zVece6L4PYIzUAJQdnb2mBozWbhdbppON6KN16JLiAWgu7kDxeMlakosHafOE6kLIyQigoRFvTsV2y02IsYU4HQTGhONepyW1wkhhLixbNy4kU2bNlFQUIBOpxvy2KysLB577LFhr7l58+agFeX2ewTHaDRe9dxABThvRB8dqMDhcJK5Yr7vOUtjGwCOLhOKx0ukLoLEZStQh/ZOX9ktPUTq/N+gzylFNoUQQvipqqoKvV6PTqcb8UhLbGxsgFs1Nn4HOHl5efz93/89WVlZAFJs8zI1hgrcXoVZiz7ez8bS0EZEnJa28moidBEk3bSi33SS3WwlZpb/bxaX2ULk1MThDxRCCCEGMNyozfVmTNXEf/zjH1NUVATAM888Q2Zm5rg17HqWs/ZmDO8dZ/rs6b7nzA2tROqisLWbSL0lm8jk5H7n2C1WIrT+jeAoioLTbEE3O2MszRZCCHEDqqqqoqioCKPRyPPPP49er/fl3/Q9ht6Zm5FMSz3//PPodLqgj/D4HeBYLBbefvttvvKVrxATE0NpaSnd3d3EjDDJtS+RyWQyodfrBxwS6zumT1+Hj+TcYDJ39Sb8Tpt5eYDTQlgohIVqmHHrLVedY7f0EKHzLwfHY7fjdbtlikoIIcSoZWVlUVhYiMFg6BfAPPnkk3zmM5/xfcYajUY2btzI9u3bB73Wli1bSEtLo7CwEACz2cw3v/nNwL6AQfidZLx7927fDsbQuy+OwWAY0blGoxGDwUBBQQGFhYU8//zzVx1jNpsxGo0UFBRQUFDgu/ZIzg22hnMNaKdoiby0p43D0oO9qxvF7SExay6aS3k3fVx2Jx6n2+8kY6e5G5Al4kIIIcZHVVUVpaWl/QYQ+soyDfZZbzabeeGFF3zBDfROe/Wlskw0v0dw4uLiePjhh/0612AwoL1stEGr1WIwGPp1pE6no6ioiLy8PLKysnzHj+TckVIUJSA1OupP15MwYwo2mw1FUWjc3/tmUKEQu2DmVffsaTf1/jxM41d7utt6E5jdIf6dPxnYbLZ+/xeBJ30eHNLvE+967HOHw4HX68Xj8Yyo0KbX6wXwHVteXk5qaupV586YMYODBw+ycuXKq845ePAgOp3uqnMURRlxOzweD16vF7vdDnzc54qijHoTQL8DnPLycvLy8vpNSVVUVFxVYXwgdXV1xMXF+R7HxcVhNpuvOm7Tpk1s2LCBrKwsXnzxxVGdOxIulysgmxOmzE9Bm6ijtraWqJ5u7PXNAIToIrnQ1YbK1N7veGtTFwANbc10VdtHfb+QplZCQkKoOX16zG2/3tXW1ga7CTcc6fPgkH6feNdbn4eEhOBwOEZ0rMPhQFEUX2DR0dHRL9Do4/V6cbvd2O32q85xuVzodLoBz3G5XFc9P1g73G43DQ0NQP8+DwsLG9Fr6eN3gFNYWMiDDz5IWloaWq2WkydP8uMf/9jfy2Eyma56rqKigp07d7J161YeffTRqzYWHOrckQgNDWXOnDl+nTuUjIwMamtr0cfF4WhpwuINQROiJmVpFikDJGI3uM9xCliQk0l0wuiz2Fs7LbjjY5l5A2+yaLPZqK2tJSMjg8hI/8pdiNGRPg8O6feJdz32ucPhoKGhgfDwcCIiIoY9Pjw8HJVK5Tv21ltv5cUXX7zq3IaGBu69914iIiKuOmfx4sXU19dfdY5arSY0NHRE7YDewCwpKYmGhgZfn585c2ZE5/a7zqjPuESv17Nz5052796NxWJh06ZNI67+mZaW1m/Upaur66qNgIqLi8nPzycrK4vt27fz9NNPYzAYRnTuSKlUqoAVIdO43TjPnSFi6lSsx5vRaFTMWJZF+AD3U5y9w3bxSYmEhI3+r8RjtREZH3ddFVQLlMjISOmHCSZ9HhzS7xPveupztVqNWq1Go9GgGcEGsH1lgvqOzcnJITc3lw8++MCXAlJVVYVKpWL9+vUDnpORkUFhYSF/+ctf+iUZnzx5kp6enhG1Q6PRoFarfcFQX5/7U6PK7yTjrVu3UlxczLp16ygpKWHr1q28/fbbIzo3Ly+PiooK3+P6+npfB/YFLyaTqd8Ss7y8PGJjY4c891qheNzEmrpQhYaSsGgJPW1dRE+NIzx24CRgu8VKaESYX8ENgMtiIVQSjIUQQvihqqqKX/3qVxiNRrZs2UJVVRUAzz77LCUlJRQVFVFUVMSuXbt8MylXntNn8+bNmM1miouLMRgMVFZWkpWVxXPPPTfihUjjxe8RnJycHNauXcuvf/1rsrKy+Pa3v82f//znEZ2r1+tZv349xcXFmEwmHn/8cd/PNmzYwM6dO30rpCorK4HeHRP7MrEHO/da0XPuHGqvB23WMiyNbSgeL4kLZw16vN3c43cdKo/DgcfhJEwrNaiEEEKMXlZWFs8+++yAP3vqqadGfc6Ve+UMll4SaH4HOH07Hu7atYuf/OQnwOi2bR6siNflRbsG21BoqAJg14JQnY4mq5Wp0dGc33cAgOkrBq/T1bvJn79LxKWKuBBCCHGlMdeiMhqNLFy4EKPR6PdqpskmPDkFV0cniqLQVlOLWqMmJjlh0OPtFisRftahclou7YEjm/wJIYQQPn7n4Kxbt46qqipeeeUVLBYLRUVFEuBcoaehBYfFSkxywpAJUnbz2EZwNBHhaMJHt3xOCCGEmMz8HsHRarV8+ctf9j2WQptX6zh5Fq+iIi5j+pDHObqtRGhHtgLtSk6zVBEXQgghruT3CM7lvvWtb43HZSYVxeOhs+Y8HpcH3fSpQx5rM/tfh8ppthCmkwRjIYQQ4nLjEuD05eOIj3mbO3HZnCiKgnZa4uDHuT04e+x+T1G5LBZCZQRHCCGE6GdcAhxxNc/FNkIuLd3WDjGC4+jprbMRoR19krHX5cJts8sKKiGEEOIK4xLgjGZ5+I3A2d2D0m4mJDqaiNgYwqIG357aZu4tjunPFJVUERdCCCEG5neS8eV+85vfjMdlJo3O6nOgVuF2e9BOH3x6Cno3+QP8mqJyWi7tgSNTVEIIIa4DxcXFQG+1Ar1eH9BKBOM6RTXSUg2TXbexCXVyAtaWrmETjB3dl0Zw/JiicpotqEND0USE+9VOIYQQNw5FUfC63QH5T1GUYe9vNBoxGAwUFBT4qhUE0riM4AB0d3dTUVHBPffcM16XvG6l3ZNPTc0p7GV1aKcNt4LKikqjJixq9EFK7woqrV9FyIQQQtw4FEWh5VApzq7OgFw/LD6epJW5Q34eGQwGtJfNOGi1WgwGQ8BGcUYc4GzYsIHq6upBf64oCiqVim9/+9vj0rDrWWhMFJ7u3uRh3QimqCK0/lVKdVoskn8jhBBiZIL8Xbiuro64uDjf47i4uIBuEDziAKev3lRmZuagx2zdunXsLZokXJ09qNQqooco0QB9m/z5vwdO5NShAyghhBBCpVKRtDIXxeMJzPU1Gr++qJtMpgC0pteIc3AyMzOpr68f8pj8/PwxN2iycHf1EJUYhyZk6BjSZvavDpXX7cHdY5URHCGEECOiUqlQh4QE5L+RBDdpaWn9Hnd1daHX6wP1ckcW4FgsFh566KFh58lyc3PHpVGTgbuzm+iUKcMeZ7dYiYgZ/QiOq1uWiAshhLh+5OXlUVFR4XtcX18f/FVUlZWVbNu2jZiYj0sCvPzyy1cdJ6uoeimKgqurh5iUoaenABwWq5974FxaIi4BjhBCiOuAXq9n/fr1FBcXU1RUxOOPPx7Q+40oByc7O5sf/OAHLFq0CJ1OB/SuZb8yOchgMMgqKsBh7kFxuolJGT4/pi/JeLScZgsqjYaQyEh/miiEEEJMuIKCggm714hGcLRaLT/5yU9ITU3FZDJhMplQFOWq/zo7A7P87HrT09QOQPQwIziKovROUfkZ4MgScSGEEGJgI15FpdVqWbt2re9xXl7eVSuqAjmXdj3pbmpHFaohIm7o6SOXzYHX4/UrydhpscgOxkIIIcQg/N7JeKDl4kMtIb+RdDe1ExIXPezoir2vDpXfIzgxwx8ohBBC3IBGNIJjsVjYsmULsbGxrF+/noULFwa6Xdc1p8VG6JThR1dsFv/qUCleL67uHkIlwVgIIYQY0IgCHK1Wy+bNmwH485//zEsvvUR6ejqFhYX9VlaJXpmFazhz/uywxzksfZXERzdF5eruAUWRKSohhBBiEKOuRfXwww/z8MMPY7FY2LFjB0ajkfz8fFk9dZlwbRTq0OG71jdFFTO6lVCyRFwIIYQYmt/FNrVaLV/+8pcBOHnyJFu3bkWlUpGXlycb/o2QzdJDWFQE6hDNqM5zmi2gVhMa7V+JByGEEGKimc1mioqKAHjssccCfr9xqSaemZnpSzDes2cPTz/9NOnp6XzpS18aj8tPWn5v8mexEBYTjUrtd464EEKIG4yiKCjuANWiChm+FpXBYKCrq6tfwc1AGpcA53Jr165l7dq1WCyW8b70pGM3W4nQ+rFE3CxVxIUQQoycoijUvvU2tpbWgFw/MmkqGffeM2SQU1BQgMlkCmgF8cv5PQRweeFNi8XCnj17+j2nlQTYYdn83eTP0i0BjhBCCDEEv0dwSktL+fSnPw18vAngyy+/7HtODM9hsRKvTxrVOYrXi8tsIWzB3AC1SgghxGSjUqnIuPeeoE5RTbRRBTgWi4Xdu3ejUqkoKSm56ueVlZUS4IyCP3Wo3FYbitdLqIyQCSGEGAWVSoVqBCt8J4tRvVKtVktubi7PP/88dXV1pKam9vt536oqMTL+1KGSJeJCCCHE8EYdyun1ejZv3kxpaaksBx8Dt9ONy+4c9SZ/TosFVCrCYkafnCyEEEIEi8FgoKSkBIvFgl6vD3hlcb/HqkpKSqivr2fdunV885vfRKvVsn79etnwb4R8uxj7MYITGh2NSjO6vXOEEEKIYMrLy5vQotx+r6LKycnh05/+NDt27GDhwoX853/+J11dXePYtMnN3zpUUmRTCCGEGJ7fAY5OpwNg9+7d3HvvvQDExsaOT6tuAP7WoZI9cIQQQojh+T1FZTQaff9fuHAhRqNxwjbvmQx8dahGMYKjKApOSzdxc2YFqllCCCHEpOD3CM66des4efIkO3fuxGKxUFRUJAHOKNgsPWhCQwgJDx3xOR6bHcXtlhEcIYQQYhh+BzharRZFUdi6dStarZb8/HwKCwvHs22TWl8dqtFsjNS3RDxUAhwhhBBiSH4HOFu3bkWn0/kyonNzczEYDOPWsMnOnzpUzkv1vcK0kmQshBBCDMXvHJycnBzWrl1LaWnpeLbnhuHvJn8hUVGoQ26cnSiFEEJMHsXFxZhMJqqqqigoKAjosnG/PykvL6zZp6KiQvbBGSG7xUr0FN2ozpEl4kIIIa5XVVVVABQWFmI2m7nrrrs4fPhwwO7n9xRVZmYmGzZs4IUXXuDnP/85Dz300KgiseLiYoqLiykqKhp0auvJJ58cMHH5ySefpKqqiqqqKrZs2eLvSwgqf+pQOS0WwqQGlRBCCD8oioLH6QrIf4qiDHt/k8nk+7zX6XTExsb6gp5A8HsEJzc3l23btlFUVISiKDzzzDNkZmaO6Fyj0YjBYGDz5s0AbNy48argyGg0smfPHt8UmNlsZtOmTTz22GPU19fz6KOPkp2dzbZt2/x9CUHl3xRVN7r0tAC1SAghxGSlKAqVv3sVS31TQK6vTU0h+5FPDrlw5sqdjE0mE1lZWQFpD4xxikqv17Np0yYsFgsGgwGdTndVAc6BGAwGtJeNRGi1WgwGQ78XbjQaOXz4sG9DwaKiIt8qrccff3xcalgoioLVah3zda5ks9n6/f9KXq8XR7cNdUToiO/vcTjxOp0o4WEBafP1brg+F+NP+jw4pN8n3vXY5w6HA6/Xi8fjwePxoCgKCsOPsvhLQcHj8Yx4ZfCPfvQjfvzjH+PxePo97/F48Hq92O124OM+VxRlVKuOYQwBTmlpKZ/+9KeB3gBl7dq1vPzyy77nhlJXV0dcXJzvcVxc3FVTUZcHO0VFRaxbt873uKKiAuiN/gC/l6e7XC6qq6v9OnckamtrB3zebXOiKAqtXe24Rnh/ldVGBGBsbUXpsYxfIyeZwfpcBI70eXBIv0+8663PQ0JCcDgcvsezHroHr9sdkHupr7jXUPbu3ctNN93Ebbfd5gtk+jgcDtxuNw0NDUD/Pg8LCxtVm0YV4FgsFnbv3o1KpaKkpOSqn1dWVo4owBlIX7Bypb4dkvtGcgCeeuop35/XrFnDunXr+v18pEJDQ5kzZ87oGzsMm81GbW0tGRkZREZGXvVzU2M7lcDsBfNImjf8iBdAd62RttO1zFuUjTp05JsD3iiG63Mx/qTPg0P6feJdj33ucDhoaGggPDyciIiIYDfHx2AwkJCQQF5eHidPnkSr1aLX6/sdExISQlJSEg0NDb4+P3PmzKjvNaoAR6vVkpuby/PPP09dXd1V01Ff/vKXR3SdtLS0fiM2XV1dV73APjt27CA/P9/3uLi4mIqKCl+Qo9PpMBqNfs3jqVQqoqJGlwczGpGRkQNe3+xqBSAuKWHE9+9xONBEhBMj9b6GNFifi8CRPg8O6feJdz31uVqtRq1Wo9Fo0Gg0wW4O0Dtg8U//9E++x2azmZqamn7HaDQa1Gq1Lyjr6/PRTk+BH1NUer2ezZs3U1paSm5u7qhvCL3TT5evfqqvr/dNSV05WrNnzx4+85nP9Lv/5T83m80BTVIKBLtl9HWopMimEEKI65lerw/osvArjWkVlb/0ej3r16/3bfjz+OOP+362YcMGdu7c6Qti+paS9cnKyvItMa+oqGD79u1+tyNY7OYeVCoV4dEjH+p0WrplibgQQggxQkHbEnewVVB79+7t93jnzp2DnjseK6mCwW6xEq6NRKUeXR2qmBnTAtgqIYQQYvLwe6M/4b/ePXBGXofK43TisdtlikoIIYQYIQlwgqC30OYo8m8s3QCEyhSVEEIIMSIS4ATBaHcxdpkvVRGXERwhhBBiRCTACQK7pYcI3ehWUKnDQtGEj26TIyGEEOJGJQFOEIx+iqq3yKY/+wAIIYQQN6KgraK6USmKMuokY9kDRwghxGRQXFyMXq+nsrIS8L/U0khIgDPB3A4XHpd7dFNUlm6ikpMC2CohhBCTnaIoeJyugFxbExY67CyD2WzmueeeY+fOnej1em666SYJcCYTu7kHGPkuxl63G3ePVTb5E0II4TdFUTBse4nO8w0BuX78zBnkffMzQwY5Op3Ot7ed0WjsV1Q7ECTAmWAfl2kY2RSVb4m4TFEJIYQYk2sjj7OoqIiSkhK2bdsW0PtIgDPBfAHOCKeoPl4iHhOwNgkhhJjcVCoVed/8TFCnqPoUFhai1+vZunUrmzdvDkh7QFZRTbjRTlE5LRZUIRpCIkdet0oIIYS4kkqlIiQ8LCD/jTS4MZvNQG/R7d27d2MwGAL2eiXAmWB2i5XQiDA0oSMbPHOau2WJuBBCiOteUVERv/rVr3yPY2Nj+xXTHm8yRTXB7BYrETpZIi6EEOLGsm7dOgwGAwaDgZKSEgoLC8nKygrY/STAmWB2c8/oNvkzW9DNTAtgi4QQQojA0+l0FBQUAAR8BRXIFNWEs1tsIw5wFI8HV0+PLBEXQgghRkkCnAnWW4dqZFNU1pZWUBSZohJCCCFGSQKcCdZbpmH4FVFuq42L75cQmTSVqBTZxVgIIYQYDQlwJlhvoc2hR3AUr5f6fQdAUUi9czUqtfw1CSGEEKMhn5wTyOv24LTah93kr/nDo1hbWkm981ZCo0aekCyEEEKIXhLgTCB7tw0YepO/rjPn6DhZQ8otK6TAphBCCOEnCXAm0Me7GA88RWVr76Cx5ANi584ifsG8iWyaEEIIMWGKi4sDuosxSIAzoYaqQ+W2O6h/933C42KZlnuz7FwshBBiUjKbzTz33HO+sg2BIhv9TaCPK4n3D3AUr5eL7x3E63aTvv5u1CHy1yKEEGJ8KYqC2xGYYpsh4SMvtrl7927WrVsXkHZcTj5JJ5Dd3INaoyY0Mrzf8y1Hy+hpbCJ97V2ExUjVcCGEEONLURTe/PF2Wk4bA3L95Hl67n1647BBTlVVFXl5eRQXFwekHZeTKaoJ1FeH6vI3gPn8BdorqkhasZTo6SlBbJ0QQojJ7FrIfDAajej1+gm5l4zgTKDeTf4+np5ydHZx8UApupnpTMleGMSWCSGEmMxUKhX3Pr0xqFNUzz//PHq9nuLiYioqKnzBTqAKbkqAM4F6N/nrDXA8TifGd98nTBvD9FW5klQshBAioFQqFaERYUG7/2OPPeb7c0VFBTk5OQGtJi5TVBOorw6VoihcfL8Et92O/q7bUIdKnCmEEOLGYDAYKC0tZdeuXRiNgckJAhnBmVB2i5X41Km0naig23gR/d23SyFNIYQQN5S8vDx27twZ8PvICM4EslusqLweWo+XM3XpIrT61GA3SQghhJiUJMCZIIqiYDdbsTVcJCYtlcQlOcFukhBCCDFpSYAzQeymbhSvl4iYSGbcmidJxUIIIUQASYAzARRFoe693pob029ZjiYseFnsQgghxI1AApwJ0F5ZTde53kxx3QypEC6EEEIEmgQ4Adbd0EjLkeNEzJgBXF2HSgghhBDjT5aJB5C7x0rjvoNET0vBHhYHQHiMBDhCCCFEoMkITqB4vbQcPIQ6NIQZt6/C3m0jPCYStUa6XAghxI3pySefpKqqiqqqKrZs2RLQe8kITgAoikJofRMus4WMTxQQEhF+VR0qIYQQYiIpioIrQLWoQkdQiwqgvr6eRx99lOzsbLZt2xaQtvSRACcAus+eJ6TTxJRbVhA5JQG4utCmEEIIMVEUReG3m/6b+uoLAbl+amYGX9zytWGDnMcff5yCgoKAtOFKQQtwiouLATCZTOj1evLy8q465sknn+QnP/kJOp1u1OcGk9NkxpU0hZiMNN9zdnNvHSohhBAiKK6B/dcqKiqA3s9vgMLCwoDdKygBjtFoxGAwsHnzZgA2btx4VZBiNBrZs2cPpaWlAJjNZjZt2kRBQcGw5wbblOVLaKmu7vec3WIlIS05SC0SQghxI1OpVHxxy9eCPkX11FNP+f68Zs0a1q1bd9UgxngJSoBjMBjQaj8uMqnVajEYDP0CFaPRyOHDh30vvKioiMLCQoqKioY9d6QURcFqtY7hlQzMZrP1+z+AzdRDSGRYQO4nBu5zEVjS58Eh/T7xrsc+dzgceL1ePB4PHo/H97wmVBOQ+3m93mGP2bNnD5WVlXz7298Gej+/L1y4QGZmpu8Yj8eD1+vFbrcDH/e5oiijrgAQlACnrq6OuLg43+O4uDjMZnO/Yy4PWIqKili3bt2Izx0pl8tF9RUjLeOptrbW92ebuZsuqyWg9xP9+1xMDOnz4JB+n3jXW5+HhITgcDiC3QyfpKQkVqxY4QtezGYzs2bN8j2G3sDM7XbT0NAA9O/zsFFWAbhmkoz75uOuZDQaMZvNQw5hDXbucEJDQ5kzZ45f5w7FZrNRW1tLRkYGkZGRuJ0uTrg8pM3OYObCheN+P3F1n4vAkz4PDun3iXc99rnD4aChoYHw8HAiIiKC3RwAli5dyp49e3j//feprKzk17/+9YBtCwkJISkpiYaGBl+fnzlzZtT3C0qAk5aW1m/UpaurC71eP+CxO3bsID8/369zh6NSqYiKCtzKpsjISKKioui29QZgsYnxAb2f+LjPxcSRPg8O6feJdz31uVqtRq1Wo9Fo0GgCMy3lj/Xr1/f7/5U0Gg1qtdoX+PT1uT8FqoOy61xeXp4vkxp618X3TUldOd20Z8+efgHMUOdeq+zm3rybCN318Q9DCCGEuN4FZQRHr9ezfv16iouLMZlMPP74476fbdiwgZ07d/qmpHQ6HbGxsSM691plt/QGOFKmQQghhJgYQcvBGWyjn7179/Z7vHPnzhGfe62yW3oAiJR9cIQQQogJIYWRJoDdbCUkPJSQ8NBgN0UIIYS4IUiAMwHsFqtMTwkhhBATSAKcCWC39BApCcZCCCHEhLlm9sGZzOxmKxFayb8RQgghnn/+ed/q6EDm1MoIzgSwW6yESyVxIYQQN7iNGzdSWFhIQUEBzz33XEDvJSM4E8BusZI4a3qwmyGEEOIGpigKTrszINcOiwgbdjO+qqoqXy3JqqqqAVdJjycJcCaA3dxDpIzgCCGECBJFUdj6lS2cqzgbkOvPXjSbb//vU0MGOZWVldTX12M0GgF4+umn2bx5c0DaAzJFFXBerxdHj02mqIQQQgSVH9UOxpXZbCY2NpasrCyysrKorKykqqoqYPeTEZwAc3TbQIEI2eRPCCFEkKhUKr79v08FdYpKr9f3K70UGxuL0WgkKysrIG2SACfA+upQyRSVEEKIYFKpVIRHhgft/nl5eRQVFfkeG43GgNaSlAAnwHx1qCTAEUIIcQPT6XQUFhZSVFSE2Wxm06ZNvrqTgSABToBJHSohhBCi10TWkpQk4wCzm62o1CrCoiKC3RQhhBDihiEBToD11aFSqYOcvi6EEELcQCTACTC7pYcIqUMlhBBCTCgJcALMbrYSKXWohBBCiAklAU6ASR0qIYQQYuJJgBNgdotVpqiEEEKICSYBToBJHSohhBBi4kmAE0CKouDolikqIYQQAuDJJ5/EbDZPyL1ko78AcjtceFweqUMlhBAi6BRFwWFzBOTa4ZHhw9aiMhqN7Nmzh9LSUgDfbsaPPfZYQNokAU4AOSxSh0oIIUTwKYrCdx55mo9O1ATk+guXzufffrt5yCDHaDRy+PBhX3mGoqIiCgsLA9IekAAnoBzdNkDqUAkhhAi+YQZYAu7ywppFRUWsW7cuoPeTACeA+gptyhSVEEKIYFKpVPzbbzcHdYqqj9FoxGw2B7TQJkiAE1AOS+8IToSM4AghhAgylUpFxDVQF3HHjh3k5+cH/D6yiiqAHN1WQiPD0YRogt0UIYQQ4pqwZ88e9Hp9wO8jAU4AOSw22eRPCCGEuIxOpyM2Njbg95EpqgCyd1uJkDpUQgghhM/OnTsn5D4yghNAzm6b5N8IIYQQQSABTgBJHSohhBAiOCTACSCHRUZwhBBCiGCQACeAHDJFJYQQQgSFBDgB4vV4cdkckmQshBBCBIEEOAHisTkBJAdHCCGECAJZJh4g7r4AR6aohBBCCACKi4v7PS4oKAjYvWQEJ0B8AY7UoRJCCCEwm80YjUYKCgooKCjAYDAE9H4yghMgbmtvQTMZwRFCCHEtUBQFu80ekGtHREYMW2xTp9NRVFREXl4eWVlZaLXagLSljwQ4AeK2OVGHaAiNCAt2U4QQQtzgFEXhsU89SfnRqoBcf/GKbJ57eduwQc6mTZvYsGEDWVlZvPjiiwFpSx+ZogoQt81JeEzkiMvHCyGEEIF0LXweVVRUsHPnTmJjY3n00UcDeq+gjeD0JRqZTCb0ej15eXkDHvf888/7qo72JSM9+eSTPPHEEwDs2rWLp556agJaPDpum5NwmZ4SQghxDVCpVDz38ragTlEVFxeTn59PVlYW27dv5+mnn8ZgMAz6+T9WQQlwjEYjBoOBzZs3A7Bx48YBX+DGjRvZtm0bOp2ODRs2+AKc+vp6Hn30UbKzs9m2bduEtn2kPJdGcIQQQohrgUqlIjIqeJ9LfQMaffLy8gJaVTwoAY7BYOiXXKTVaq+K4qqqqnzHVFVV9as++vjjj4/L0jJFUbBarWO+zpVsNhtuq5OY5JiAXF9czWaz9fu/CDzp8+CQfp9412OfOxwOvF4vHo8Hj8cT7OYA8KlPfYpf//rXlJeXAxAbG8uCBQv6tc/j8eD1erHbe0ea+vpcUZRRT7EFJcCpq6sjLi7O9zguLg6z2dzvmMrKSurr6zEajQA8/fTTvhGfiooKoDcaBCgsLPSrHS6Xi+rqar/OHY7b5sTuDdz1xcBqa2uD3YQbjvR5cEi/T7zrrc9DQkJwOBzBbkY/n/vc5/o97gtk+jgcDtxuNw0NDUD/Pg8LG92inWtmFVVfsNLHbDYTGxtLVlYW0BvwVFVVkZWV1S/nZs2aNaxbtw6dTjfqe4aGhjJnzpyxNXwANpuNSts7JE5LZuHCheN+fXE1m81GbW0tGRkZREbK1OBEkD4PDun3iXc99rnD4aChoYHw8HAiIiKC3ZxRCQkJISkpiYaGBl+fnzlzZvTXCUDbhpWWltZvxKarq6vfvByAXq/v91xsbCxGoxGj0UhFRYUvyNHpdBiNRl8gNBoqlYqoqPFPBFa8Cm6bk5h4XUCuLwYXGRkpfT7BpM+DQ/p94l1Pfa5Wq1Gr1Wg0GjQaTbCbM2IajQa1Wu0Lyvr63J8VYEFZJp6Xl+ebZoLepOG+/Ju+wCcvL883PQW9icl5eXno9Xry8/N9z5vNZr+Cm0By2uygKERor49IXwghhJhsgjKCo9frWb9+PcXFxZhMJh5//HHfzzZs2MDOnTvR6XQUFhZSVFSE2Wxm06ZN6HQ6srKyKC4upri4mIqKCrZv3x6MlzAkh6U3KSo85vqI9IUQQojJJmg5OIOtgtq7d++wx/Q9H8giXWPh6O5dORUuIzhCCCFEUMhOxgHgG8GRjf6EEEKIoJAAJwAc3b0BTlj09ZW5LoQQQkwW18wy8cnEbrGiiQhFrZb4UQghhOhTVFTkWxXdV1U8UCTACQCHxUpIVHiwmyGEEEL4KIqCzRqY3Zgjo4YvLl1VVUVJSQnPPvss0FuOKZALhSTACQBHt42QyNHtuCiEEEIEiqIofOreL3D08ImAXH/FzUt5+c3fDRnkGAyGq/a869vANxBkDiUAJMARQghxrfFns7zxpNfrr9rf7vLH401GcALAabUTEi0BjhBCiGuDSqXi5Td/F9QpqoKCAnbt2oXZbKayshLArzJLIyUBTgAs2XAbDe1NwW6GEEII4aNSqYiKDu72Jc8++yxVVVVkZ2ej0+nIzs4O2L1kiioAkubrCY+PCXYzhBBCiGuG2WzmySefJCsrC5PJ5AtyAkVGcIQQQggRcDqdjvz8fIqLizEajWzevDmg95MARwghhBATorCwcMLuJVNUQgghhJh0JMARQgghxKQjAY4QQggxSSmKEuwmjMp4tlcCHCGEEGKSCQ0NBcBqtQa5JaPjdDoB0Gg0Y76WJBkLIYQQk4xGoyEuLo6WlhYAoqKigr6T8XC8Xi+tra1ERUVJgCOEEEKIgaWkpAD4gpzrgVqtJi0tDbfbPeZrSYAjhBBCTEIqlYpp06aRlJSEy+UKdnNGJCwsDLVaLQGOEEIIIYam0WjGZcrneiNJxkIIIYSYdFTK9baGbJwcO3YMRVEICxv/qt+KouByuQgNDb3mk7omC+nziSd9HhzS7xNP+nziXdnnTqcTlUrFsmXLRnyNG3aKKpBvUpVKFZDASQxO+nziSZ8Hh/T7xJM+n3hX9rlKpRr15/YNO4IjhBBCiMlLcnCEEEIIMelIgCOEEEKISUcCHCGEEEJMOhLgCCGEEGLSkQBHCCGEEJOOBDhCCCGEmHQkwBFCCCHEpCMBjhBCCCEmHQlwhBBCCDHpSIAjhBBCiElHAhwhhBBCTDoS4AghhBBi0rlhq4kHSnFxMQAmkwm9Xk9eXl6QWzT5PfnkkzzxxBMA7Nq1i6eeeirILZqczGYzRUVFADz22GO+5+U9HziD9bm85wOruLgYk8lEVVUVBQUFvve0vNcDZ7A+H8t7XQKccWQ0GjEYDGzevBmAjRs3yj+ACVBfX8+jjz5KdnY227ZtC3ZzJi2DwUBXVxdxcXG+5+Q9H1gD9TnIez6QqqqqACgsLMRsNnPXXXdx+PBhea8H0GB9DmN7r8sU1TgyGAxotVrfY61Wi8FgCGKLbgyPP/44hw8fZvv27eh0umA3Z9IqKCggLS2t33Pyng+sgfoc5D0fSCaTyfce1ul0xMbGUlVVJe/1ABqsz2Fs73UZwRlHdXV1/b5pxcXFYTabg9egG0RFRQXQ+48Eer8FiIkh7/ngkPd84OTl5fUbmTGZTGRlZbFr1y55rwfIYH0OY3uvS4ATYH1/KSJwLp+TXbNmDevWrZNvtUEk7/nAk/f8xHj66ad55plnBv25vNfH35V9Ppb3ukxRjaMrh5K7urrQ6/VBas2Nobi4mC1btvge63Q6jEZjEFt0Y5H3/MST9/zEKC4uJi8vj4KCAkDe6xPhyj4f63tdApxxlJeX5xtOg97kKElCCyy9Xk9+fr7vsdls9g1tisCT9/zEk/d84BkMBnQ6HQUFBVRVVWE0GuW9HmAD9flY3+sqRVGUQDT2RnX5MsLY2FhfJCoCp6/PKyoq+MxnPiPfqgLEYDCwY8cOLBYLhYWF/b5lgbznA2G4Ppf3/PgzGo1s2LDB99hsNlNTUwPIez1QRtLn/rzXJcARQgghxKQjU1RCCCGEmHQkwBFCCCHEpCMBjhBCCCEmHQlwhBBCCDHpSIAjhBBCiElHAhwhhBBCTDoS4AghbkgGg4ENGzZQVFQU7KYIIQJAAhwhxA0pLy+P3NzcYDdDCBEgEuAIIW5Yl1eHFkJMLhLgCCGEEGLSCQl2A4QQ4nIGg4Gqqir0ej0VFRU89dRTGAwGnn76afLy8sjLy8NkMlFVVcWmTZvQ6XQAVFVVYTAY0Ov1GI1GCgoKfHVrjEYjO3bsICcnB5PJxLp163znmc1mDAYDRqORkpISnn322aC9diHE+JEARwhxzTAajWzdupWdO3cCvUUNn3/+eR577DHWrl1LXFxcv4KT3/zmN9m+fbvvvO3bt/uutWHDBl588UUANm7cyM6dO9HpdGzZsoWioiIee+wxoLeIX9+fi4uLqaqqkurcQkwCEuAIIa4ZO3bsIDY2FoPB4HuuoqLC9+e+UReAgoICvvnNb2I2m9mxYweZmZn9rpWamsru3bsB0Ov1vnOfeOKJfsfl5OT4/qzVajGZTOP3goQQQSMBjhDimpKZmUleXp7vcWFh4ZiuZzab0Wq1vseXB0lCiMlLkoyFENeM9evXU1pa2u+5y0dzzGaz78/FxcXk5eWh0+kGPO/kyZOsW7eOgoICTp48Oeg1hRCTk0pRFCXYjRBCiD4Gg4GSkhLf1FFfELNlyxYsFgsFBQWYzWYqKip44oknfCMyVyYnr1+/3pdLM9A1jUYjP/zhDwF45plnfHk8mZmZPPXUU74EZSHE9UkCHCHEdWHLli2kpaWNecpKCHFjkCkqIYQQQkw6EuAIIa55BoOB0tJS3zJuIYQYjkxRCSGEEGLSkREcIYQQQkw6EuAIIYQQYtKRAEcIIYQQk44EOEIIIYSYdCTAEUIIIcSkIwGOEEIIISYdCXCEEEIIMelIgCOEEEKISef/B5iNG1dEGsRTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(2, 1, figsize=set_size(width, subplots=(2,1)), sharex=True)\n", + "sns.lineplot(x=\"epoch\", y=\"value\",\n", + " hue='fold',\n", + " palette=sns.cubehelix_palette(10, light=0.8, gamma=1.2),\n", + " linewidth=1,\n", + " data=f_scores_train, ax=ax[0])\n", + "\n", + "sns.lineplot(x=\"epoch\", y=\"value\",\n", + " hue='fold',\n", + " palette=sns.cubehelix_palette(10, light=0.8, gamma=1.2),\n", + " linewidth=1,\n", + " data=f_scores_test, ax=ax[1])\n", + "ax[0].set_ylabel('train/f1-score')\n", + "ax[1].set_ylabel('test/f1-score')\n", + "fig.tight_layout()\n", + "fig.savefig(fig_save_dir + 'classifier-hyp-folds-f1.pdf', format='pdf', bbox_inches='tight')" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "9f163a6c", + "id": "2c642d40", "metadata": {}, "outputs": [], "source": [] diff --git a/classification/classifier/train.ipynb b/classification/classifier/train.ipynb index eeb309c..0609af6 100644 --- a/classification/classifier/train.ipynb +++ b/classification/classifier/train.ipynb @@ -29,7 +29,16 @@ "execution_count": 1, "id": "b88ce481", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zenon/.local/share/miniconda3/lib/python3.7/site-packages/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.13) or chardet (5.1.0)/charset_normalizer (2.0.4) doesn't match a supported version!\n", + " RequestsDependencyWarning)\n" + ] + } + ], "source": [ "import torch\n", "import torch.nn as nn\n", @@ -132,7 +141,7 @@ "class_names = dataset.classes\n", "\n", "num_epochs = 50\n", - "batch_size = 4" + "batch_size = 64" ] }, { diff --git a/classification/evaluation/detection.py b/classification/evaluation/detection.py index e042ac9..251228d 100644 --- a/classification/evaluation/detection.py +++ b/classification/evaluation/detection.py @@ -95,9 +95,10 @@ def classify(resnet_path, img): batch = img.unsqueeze(0) # Do inference - providers = [('CUDAExecutionProvider', { - "cudnn_conv_algo_search": "DEFAULT" - }), 'CPUExecutionProvider'] + #providers = [('CUDAExecutionProvider',{ + # "cudnn_conv_algo_search": "DEFAULT" + #}), 'CPUExecutionProvider'] + providers = ['CPUExecutionProvider'] session = onnxruntime.InferenceSession(resnet_path, providers=providers) outname = [i.name for i in session.get_outputs()] @@ -184,9 +185,10 @@ def get_boxes(yolo_path, image): img['image'] = img['image'].unsqueeze(0) # Do inference - providers = [('CUDAExecutionProvider', { - "cudnn_conv_algo_search": "DEFAULT" - }), 'CPUExecutionProvider'] + #providers = [('CUDAExecutionProvider',{ + # "cudnn_conv_algo_search": "DEFAULT" + #}), 'CPUExecutionProvider'] + providers = ['CPUExecutionProvider'] session = onnxruntime.InferenceSession(yolo_path, providers=providers) outname = [i.name for i in session.get_outputs()] @@ -204,6 +206,7 @@ def get_boxes(yolo_path, image): # Apply NMS to results preds_nms = apply_nms([outs])[0] + #preds_nms = outs # Convert boxes from resized img to original img xyxy_boxes = preds_nms[:, [1, 2, 3, 4]] # xmin, ymin, xmax, ymax diff --git a/classification/evaluation/eval-test-model.ipynb b/classification/evaluation/eval-test-model.ipynb index dc55425..f3682f2 100644 --- a/classification/evaluation/eval-test-model.ipynb +++ b/classification/evaluation/eval-test-model.ipynb @@ -30,7 +30,16 @@ "execution_count": 1, "id": "ff25695e", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zenon/.local/share/miniconda3/lib/python3.7/site-packages/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.13) or chardet (5.1.0)/charset_normalizer (2.0.4) doesn't match a supported version!\n", + " RequestsDependencyWarning)\n" + ] + } + ], "source": [ "import fiftyone as fo\n", "from PIL import Image\n", @@ -57,7 +66,7 @@ "metadata": {}, "outputs": [], "source": [ - "name = \"dataset\"\n", + "name = \"dataset-new\"\n", "dataset_dir = \"dataset\"\n", "\n", "# The splits to load\n", @@ -110,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 9, "id": "63f675ab", "metadata": {}, "outputs": [ @@ -118,7 +127,7 @@ "name": "stdout", "output_type": "stream", "text": [ - " 100% |█████████████████| 640/640 [5.8m elapsed, 0s remaining, 2.2 samples/s] \n" + " 100% |█████████████████| 640/640 [8.7m elapsed, 0s remaining, 1.4 samples/s] \n" ] } ], @@ -128,7 +137,7 @@ " for sample in pb(dataset.view()):\n", " image = Image.open(sample.filepath)\n", " w, h = image.size\n", - " pred = detect(sample.filepath, '../weights/yolo.onnx', '../weights/resnet.onnx')\n", + " pred = detect(sample.filepath, '../weights/yolo-final.onnx', '../weights/resnet-fold-7.onnx')\n", "\n", " detections = []\n", " for _, row in pred.iterrows():\n", @@ -142,7 +151,7 @@ " bounding_box=rel_box,\n", " confidence=int(row['cls_conf'])))\n", "\n", - " sample[\"predictions\"] = fo.Detections(detections=detections)\n", + " sample[\"predictions_yolo_resnet_final\"] = fo.Detections(detections=detections)\n", " sample.save()" ] }, @@ -158,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 3, "id": "68cfdad2", "metadata": {}, "outputs": [ @@ -167,17 +176,17 @@ "output_type": "stream", "text": [ "Evaluating detections...\n", - " 100% |█████████████████| 640/640 [2.0s elapsed, 0s remaining, 314.2 samples/s] \n", + " 100% |█████████████████| 640/640 [2.2s elapsed, 0s remaining, 278.4 samples/s] \n", "Performing IoU sweep...\n", - " 100% |█████████████████| 640/640 [2.2s elapsed, 0s remaining, 285.3 samples/s] \n" + " 100% |█████████████████| 640/640 [2.4s elapsed, 0s remaining, 270.2 samples/s] \n" ] } ], "source": [ "results = dataset.view().evaluate_detections(\n", - " \"predictions\",\n", + " \"predictions_yolo_resnet_final\",\n", " gt_field=\"ground_truth\",\n", - " eval_key=\"eval\",\n", + " eval_key=\"eval_yolo_resnet_final\",\n", " compute_mAP=True,\n", ")" ] @@ -194,7 +203,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 4, "id": "86b90e80", "metadata": {}, "outputs": [], @@ -207,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 5, "id": "e34a18f4", "metadata": {}, "outputs": [], @@ -230,7 +239,40 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 10, + "id": "b14d2b25", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\\begin{tabular}{lrrrr}\n", + "\\toprule\n", + "{} & precision & recall & f1-score & support \\\\\n", + "\\midrule\n", + "Healthy & 0.841 & 0.759 & 0.798 & 663.0 \\\\\n", + "Stressed & 0.726 & 0.810 & 0.766 & 484.0 \\\\\n", + "micro avg & 0.786 & 0.780 & 0.783 & 1147.0 \\\\\n", + "macro avg & 0.784 & 0.784 & 0.782 & 1147.0 \\\\\n", + "weighted avg & 0.793 & 0.780 & 0.784 & 1147.0 \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\n" + ] + } + ], + "source": [ + "results_df = pd.DataFrame(results.report()).transpose().round(3)\n", + "\n", + "# Export DataFrame to LaTeX tabular environment\n", + "print(results_df.to_latex())\n", + "# YOLO original with Resnet original and new dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 8, "id": "900e9014", "metadata": {}, "outputs": [ @@ -242,14 +284,15 @@ "\\toprule\n", "{} & precision & recall & f1-score & support \\\\\n", "\\midrule\n", - "Healthy & 0.824 & 0.745 & 0.783 & 662.0 \\\\\n", - "Stressed & 0.707 & 0.783 & 0.743 & 488.0 \\\\\n", - "micro avg & 0.769 & 0.761 & 0.765 & 1150.0 \\\\\n", - "macro avg & 0.766 & 0.764 & 0.763 & 1150.0 \\\\\n", - "weighted avg & 0.775 & 0.761 & 0.766 & 1150.0 \\\\\n", + "Healthy & 0.674 & 0.721 & 0.696 & 662.0 \\\\\n", + "Stressed & 0.616 & 0.543 & 0.577 & 488.0 \\\\\n", + "micro avg & 0.652 & 0.645 & 0.649 & 1150.0 \\\\\n", + "macro avg & 0.645 & 0.632 & 0.637 & 1150.0 \\\\\n", + "weighted avg & 0.649 & 0.645 & 0.646 & 1150.0 \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", - "\n" + "\n", + "0.49320073714096757\n" ] } ], @@ -257,12 +300,14 @@ "results_df = pd.DataFrame(results.report()).transpose().round(3)\n", "\n", "# Export DataFrame to LaTeX tabular environment\n", - "print(results_df.to_latex())" + "print(results_df.to_latex())\n", + "print(results.mAP())\n", + "# YOLO original and Resnet final with old dataset" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 51, "id": "24df35b4", "metadata": {}, "outputs": [ @@ -287,12 +332,58 @@ "# Print a classification report for all classes\n", "results.print_report()\n", "\n", - "print(results.mAP())" + "print(results.mAP())\n", + "# YOLO original and Resnet original with old dataset" ] }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 8, + "id": "a6bb272a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " Healthy 0.66 0.64 0.65 662\n", + " Stressed 0.68 0.54 0.60 488\n", + "\n", + " micro avg 0.67 0.60 0.63 1150\n", + " macro avg 0.67 0.59 0.63 1150\n", + "weighted avg 0.67 0.60 0.63 1150\n", + "\n", + "0.44258882390400406\n", + "\\begin{tabular}{lrrrr}\n", + "\\toprule\n", + "{} & precision & recall & f1-score & support \\\\\n", + "\\midrule\n", + "Healthy & 0.664 & 0.640 & 0.652 & 662.0 \\\\\n", + "Stressed & 0.680 & 0.539 & 0.601 & 488.0 \\\\\n", + "micro avg & 0.670 & 0.597 & 0.631 & 1150.0 \\\\\n", + "macro avg & 0.672 & 0.590 & 0.626 & 1150.0 \\\\\n", + "weighted avg & 0.670 & 0.597 & 0.630 & 1150.0 \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\n" + ] + } + ], + "source": [ + "# Print a classification report for all classes\n", + "results.print_report()\n", + "results_df = pd.DataFrame(results.report()).transpose().round(3)\n", + "\n", + "print(results.mAP())\n", + "print(results_df.to_latex())\n", + "# YOLO final and Resnet final with old dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 9, "id": "da05e2ba", "metadata": {}, "outputs": [ @@ -306,7 +397,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAACoCAYAAADtjJScAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtfUlEQVR4nO3dfXAT95kH8K8Bg43RC8FACF4VHN78opaXMo3F3DSZ41LZnQvBLYiZ0okdYjzT5uCOM71eUjsEMr27mjYll3aSKMTthEyspPEd6QxWCJm20yB3IDYktmwCGaCSCDEljSSDbeyUvT98u9Fakr3W+8v3M8ME7Yv0WHifPPvb30uOKIoiiIiIiDLItGQHQERERBRrLHCIiIgo47DAISIioozDAoeIiIgyDgscIiIiyjgscIiIiCjjsMAhIiKijDMj2QHE05kzZyCKInJzc5MdClFWGB0dRU5ODtasWZPsUBKGeYYocaaSYzK6BUcURaiZx1AURYyMjKg6NhkYX3RSPT4g9WNUG5/aay6TMM8kBuOLTqbEN5Uck9EtONIdldFonPC4wcFB9PX1YdmyZZg9e3YiQpsSxhedVI8PSP0Y1cbX3d2dwKhSA/NMYjC+6GRKfFPJMQkvcPx+P2w2GwCgrq4u5DF2ux0A4PP5IAgCTCZTwuIjovTHPENECX9E5XA44PV6w+53u91wOBwwm82wWCywWq2JC46IMgLzDBElvAXHbDbD5/PB7/eH3O9wOKDRaOTXGo0GDocj4rsrURQxODg44TFDQ0Po7u7G6dOnMXPmTHm7VqvFokWLMDIygkuXLgWdt3LlSgCAy+XC0NCQYt+iRYug1Wrh9XrR39+P+fPn4+///u8j+hmk9x7/GamC8UUv1WNUG58oisjJyUlESBPKtjwT+HMsW7Ysop8hU34Hk4XxRSceOSbl+uC4XC7o9Xr5tV6vD5uk1BgdHUVfX9+Ex3i9Xjz88MNx73z17LPP4p577on4/MuXL8cumDhgfNFL9RjVxBf4P+9Ulcl5pq2tDQaDIeLzM+F3MJkYX3RimWNSrsAJxefzRXxubm7upHc0Q0NDeOmllzA8PByXFpyjR4/CarUiPz8fJSUlU/4ZhoaGcPnyZSxZsgT5+flTPj/eGF/0Uj1GtfF99NFHCYwqttI1z1y9ehU7duxAU1MT9u/fjwULFjDPJAHji048ckzKFTgGg0FxJ+X1eiEIQsTvl5OTo6rHuNFoRElJSdhj77vvvrDnbtiwYcL39nq9sFqtmDVrVlS91/Pz81Oy97uE8UUv1WOcLL5UeDylRiblma6uLgDAihUrAET/O5Tuv4PJxviiE8sckzLz4EjJxmQyKYaBeTyetB/dUFBQoPgvESVHJucZIlJKeAuOw+HAyZMnMTAwAEEQYDabAQDV1dVoa2uDIAioqqqC3W6Hz+fDzp07Ex1izEnPw6N5Lk5E6mVjniEipYQXOCaTKeSd0okTJ+S/S8koU/ztb39T/JeI4iub8oxGo8H999/PFmKicVKuD04mOn/+PADgrbfewvTp06d0rkajweLFi+MRFhFlgOXLl+Ott96S++IQ0RgWOAkg3Vk1NjaisbFxyue///77sQ6JiDLE3/72N9y8eZMtxETjsMBJAKnvzYEDB3D//fdjxowZcLvduHHjhuK4BQsWYN68efD7/bhy5QouXbqExsZGvPfee9BqtfLQzzNnzmDOnDlYvnx5wn8WIkot77//PtatW4cjR44kOxSilMICJwGkGVMbGxtRX1+P+fPnY9++ffjtb3+rOO6nP/0p9uzZg9dffx3bt2+Xt+/YsQMrV65EVVUVAOCee+7ByMgIzp8/zyKHiIgoBBY4CbB8+XKcP38eAwMD8uypTz/9NPbt26c4Tuprs3HjRnR2dqKvrw/bt29HU1MTCgoKcObMGeTn5+OJJ57A448/DpvNhk2bNsFoNOLPf/4zPv30U8X7LVy4kP13iLLMZDMqB9JoNLxJoozFAidBxieRu+++O+yxc+fOxdy5c+WWn/3794c8TurTc/78efzXf/0XDh8+rNj/wx/+EI899hguXLig2J6bmwuj0QgA8syRRJTepL5+ga2/arAlmDIVC5wUJrX8XLt2LWgKa5fLhZ6eHjQ2NuLUqVPYvHlz0Cyo8+bNw6uvvor6+nrF9sWLF8Pj8eAvf/kLVq9ejdOnTzPBEaU5g8EgtxSrIbUQqz2eKN2wwElxy5cvx+LFi5GXl6eY4n3t2rUoKytDY2PjlO/YnnvuOQCA2+2Gz+fDqVOnMDAwgOXLl0Oj0eDKlSvo7+9XnDNv3jx86UtfwtDQUFAT+PDwMGbNmgVgLGmOXy9n6dKlmDt3Lvr7+3HlyhXFPp1Oh7vvvhujo6OKmWUlX/nKVzB9+nRcuHAhKBELgoD58+fjr3/9Kz799FMWaZSVjEYjrl27Br1ej9zc3GSHQ5QyWOCkscC+PWpId2w+nw9dXV1wuVwAvmjS/t3vfod7770Xzz77LP7zP/9Tce6OHTvw4osv4uLFi1i3bp1i38yZM+FwOAAA3/nOd3DmzBnF/tdeew1btmzBK6+8gn/9139V7PvHf/xHvPnmm/B6vUHvC4wtgKjVavHoo4/i+PHjin3PPvssvv/97+PXv/419uzZg6NHj6KoqAgFBQXyAoVEmU4qasbfICxevBgLFy7EZ599FrSIZ+BihufOnQPwxWKHw8PDWLt2bUouyEg0FSxw0txUWi2kPj3hWnx0Oh0A4NFHH8WWLVsU++bNmwcAKC4uRmdnp2Lf8PCw/PdXXnklZAsOMFb83HvvvSE/U6/XB70v8EW/gmeffTZkCw4AecbaTZs2ARgbZdbR0SFPfBaYuNetW4e8vDxcunQJn332meL9Fi1ahEWLFsHv9wetWDtr1iyUlZUFxUeUbNeuXcO2bdvwu9/9TrFdGpV54sQJbN26VbFvzZo1ePHFFwEADz30ED7//HPF/p6eHsyZMwcjIyNsGaW0xQIni4Rr8ZFadnp7eyGKIoDwoyvy8/Oxdu1axbbBwUH5sZU0V08oCxcuxMKFC0Puy83NDXrf8bGH87WvfU3xc0lFUagWoQsXLmDZsmVobGzEK6+8otj3xBNPYN++fejo6Aiaxv/uu+/GRx99hL/85S9wu92KfStWrMCcOXPg8Xhw7do1xb7CwkKuQUZxtWDBAjz//PNB1/X4UZmB8vPz5RuRffv2YcmSJbh16xY+/vhj3HXXXbh9+zYOHDiAw4cPsxMypS0WOFkmVKIK17IjPfKRjknlJBcqNimpSy04S5YskX+eAwcOYM+ePYrjFy1aBACoqKgI+h/CrFmzcOnSJZSWliparICxhR0rKirws5/9DE8//bRi3/e+9z384he/iO6HI5rERNemNCpzPGl05Y9+9KOQ5x0+fBiHDx/GqVOnMHv2bCxevBgDAwMTjsrs7u7G6OhoyucLyg4scCioZcfj8WDTpk3yIx9JYMEjSeW1sqQWocHBQbmTdl5eHoCxx2bSo7PxtFpt2NakDz74IOhOecWKFQCAPXv2BBWJBQUF6OrqwqpVq+QO4kSpYPx1L90I3Lp1Czt27MAdd9wBYOzG54c//CH+4z/+A52dnUGjNaVRmQBQWVkpDyQ4evQo7rvvvogGLuTk5GDNmjUAvhi4EPioubS0dEoDF1hwZScWOARAeQe4du1aVQWP5LXXXsPIyAiGh4fljomZmlAm+pmKioqCCsCuri6sW7cOnZ2dEz6CI0qGwN9n6UZAaqG8efMm/ud//gc3b97EvHnz0NXVhenTpwctCTFjxgxcuHABy5cvR3t7Oy5duiTni2gGLty6dQtA7AYuHD16FN/85jcxffp09Pf3h31cTpmDBQ6FNFHBI5EKn/EdGCWhWnwkmVoAEaW7yQYjhHP+/HkYjUYYjUY5X0jX+FQHLuTk5Mh/lwYuBD5qLi0tBaBu4ELgDZrP58OtW7dQXV2Nf/u3f0NJSQnzUAZjgUOqhEoCUuEzfiLCyVp8JBMVQBIWQkSJtWzZsoimnzh16hSAsVwx/ppdvHhx2EfZoQYuBJIGLgQ+apYe96oZuBB4g1ZQUID+/n44HA45P508eVIeiUmZhQUORSXURIThWnwkagsgydGjR3mnRZRA0Uw/kYrXa2AsUt+jvr4+bNq0CcePH8eqVatw+fJlxTmB82lJU04EKi0tVUw5EdhHqLi4WB60QMkT0wLH4/FMekdO2WGi5DZZASQZXwipafEJJTDxTDZ5WaxbjKZNmwaNRoNp06bF7D2zGXNM6hlfMIS6XlOtJVZqZTp//jz0ej2OHTuG7373u4pjpPm0gMimnNizZw/efPNNFBUVQavVAki97yHTRVXg9PX1wev1yq9tNht+/vOfRxkSZQM1F7lUCI1PnPEWy75Dq1evht/vj1VoWYc5Jj0EFgzhrtdUbtmpqqoK6gckzacFIOQkpOOnnAjsI1RcXIz+/v6gomnhwoU4deoUvF5v0OSK0nxaFDsRFzi7d+/GwMCA3DwJIGioH1G0AhNnpIsCBiaeiVpwIu07xLuy+GCOST+hrtfx11UqThx4xx13yMPiQ5moj5A05USoPkLj85a0ft66detw/fp1xftI82lR7ERc4GzYsCFo9Mxbb70VdUBEoUSTEEMlnlCi6TsUrtXn4sWL+MEPfoCf/OQnKC4uBsCCSC3mmPQVahTmqVOn5M7I46+xTL0mwv1M77zzTlALTkFBAfbs2YM9e/bwMWyMRFzgSOsABeKU9JTuptp3SG2rz/ghsuP7J6TqZInJxByTOQKvq3DDzyfrYxfYl27BggVpXRB9+ctfDtrW1dWFp59+Gtu3b2eBEyMRFzhutxs2m02eolsURbS3t+ONN96IWXBEqWZ8Up2s1UcaQnvkyBGUlJSELYjef//9uMWcrphjMku4R81THVUp4TxbNJmIC5zW1laYTCZ5cUYAir8TZQs1ibSkpCRoTg7giwJoYGBAXkaCxjDHZJ6J5tOarI+d1IIzc+ZMbN26VVVfuVTr1EyJFXGBs3fv3qAOUZwsiWhyTLjqMMdkDzXXRGBfuqn0leOEotkr4gKnoqICN27cQHt7O4CxRdak6bOJaExxcTGOHj0qdzAm9ZhjKBw1feWmOr1EpPNsAbHpR1dYWIjvfe97KCwsjOp96AtR9cHZvXu33BHQarXi0KFD8rTaRDS2Hs4DDzyQ7DDSEnMMRWoq00tE2gdovGgXHTYYDPjFL34RVQykFHGBc/z4cbS1tSm2/fSnP2XyIQrwySefoKWlBbW1tbjzzjuTHU5aYY6haE1lQtFI59lSs+iwmr5Ag4ODOHfuHFatWjXhdBakXsQFTqimvPLy8qiCIco0H3/8MR577DF84xvfYIEzRcwxlCjR9L9Ru+hwqEdggS08586dw7p169DZ2TnhxIKkXlSPqMbzeDxRBUNEJGGOoXQx0aLDk/UFkgofztIdexEXOCaTCQ8//DDKysoAjE0z3dDQELPAiCi7McdQupuoL1C4vj9/+MMfOKorRiJe4ri0tBRPPvkkRFGEKIo4cOAA19EgophhjqFMsXz5cnkeLOnPAw88gPPnz6OzsxOdnZ342c9+BgDYs2cPVqxYgQsXLiQ56vQX1WrigiAo7qg8Hg+nmCYKoNfr8e1vfxt6vT7ZoaQl5hjKZIGtNNOmTUNBQQEee+wxPP744xF3eqYvqC5wjh8/DpPJJC/n/vrrryv2+/1+OBwOHD58OLYREqWx4uLioGuFQmOOoWy2evVq3LhxA11dXXj88ceTHU5GUP2I6rnnnkN3d7f8+tVXX4XP55P/iKKIzz77LC5BEqWrkZEReDwejIyMJDuUlMccQ0SxpLoFZ/x8FE899VTQrKKcRp1Iqaenh0M/VWKOoWzW29uLLVu24Mknn0x2KBkj4k7Gx44dw+uvv44bN25gx44d+Od//mcO4SSimGGOoWwyPDyM3t5e3Lp1K9mhZIyICxyj0YgtW7agtbUVJSUl+PnPfw6v1xvD0IgomzHHEFE0Ii5wtFotAKC9vR3f/OY3AQA6nS42URFR1mOOIaJoRD2TsdvtRklJCdxuN/x+f8wCI6LsxhxDRNGIuMCprKyEzWbDG2+8gYGBAdhsNsydO1fVuXa7HQDg8/kgCELIjoO7du1CfX09gLFn8Xv37o00VKKkWb16NYaHh5Gbm5vsUNJONDkGYJ6h9FJcXIyjR4+ylTKGIi5wNBoNHnnkEfl1Q0ODqg6AbrcbDocD+/fvBwDU1taGTDwejwc1NTUoLy/HoUOHIg2TKKmmTZuGWbNmJTuMtBRpjgGYZyj96PV6PPDAA+jq6kp2KBkj4RP9ORwOaDQa+bVGo4HD4QhKPjt37oTZbFYbXliiKGJwcHDCY4aGhhT/TTWMLzrJjO/ChQv4p3/6J/z3f/93yLVlpJhu3bqFvLy8tP8ORVFETk5ORJ8Ry4n+mGemjvFFJ9r4PvnkE7z88stYs2aN/D6T/U4lMr54i0eOUV3gPPfcc9BoNPJaMK+++iqqqqoUx6iZhMvlcimmrdfr9SGfq0sTfvl8PgCAxWJRG6rC6Oio6lVaL1++HNFnJArji04y4jt37hz++Mc/oqenB59//nnYmK5evQqdTpcR3+HMmTMjeu9Y5RiAeSYajC86kcZ37tw57Nu3DwcOHJDfJy8vL4aRQX7fVBbLHJMSE/1JySVQ4LPwjRs3orKyUh5VMRW5ublYtmzZhMcMDQ3h8uXLWLJkCfLz86f8GfHG+KKTzPiGh4cBAEuWLEFJSUnY/YsWLZKPS+fv8KOPPor4M+I90R/zzMQYX3SijU/KBXfddReA8DkjWfHFWzxyTMR9cARBwOHDh2GxWDBnzhx0dHTAaDROep7BYFDcSXm9XgiCoDjGbreju7tbTj5arRZutxtlZWVTjjMnJwezZ89WdWx+fr7qY5OB8UUnGfFJF2q4z5b2S/100v07jPTxVCiR5hiAeSYajC86kcaXqFyQ7t/fVHJMxPPgtLe3K5qLKyoq4HA4Jj3PZDIp1pvxeDzyXZmUkARBwIYNG+Rj/H5/REmHiNJXpDkGYJ4hoihacPR6PbZu3Trl8wRBQFVVFex2O3w+H3bu3Cnvq66uRltbG8rKymC32+U7rJaWlkjDJEoqg8EAq9UKg8GQ7FDSTqQ5BmCeofSj1+vx7W9/W9E5nqITcYHzwQcfKEY8AGMd9u6///5Jzw03auHEiRNBx8RihANRshQWFiqGOpN60eQYgHmG0ktxcTFef/11DhOPoYgLHIvFgs2bN8NgMECj0aC3t5eroBKNc/36dfzv//4vHnzwQRQWFiY7nLTCHEPZZGRkBNeuXcPo6GiyQ8kYEffBEQQBbW1t+MY3voHy8nIcPnxYHt5JRGNcLhfq6urgcrmSHUraYY6hbNLT0wNBEKIaiUhKERc4AGCz2eBwOPDII4/A4/Hgxo0bsYqLiIg5hogiFnGBc/DgQWi1WnlkwlRGOBARTYY5hoiiEXGBYzQasXXr1qC5JYiIYoE5hoiiEXGBE2rRu8B5J4gImDNnDr7+9a8rRgKROswxRBSNiEdRlZaWorq6GnPnzoXD4YDD4UBDQ0MsYyNKeytWrMDvf//7ZIeRlphjKJusXr0aw8PDLOJjKOIWnIqKChw6dAglJSUQRREHDhzgCAeicW7fvo1bt27h9u3byQ4l7TDHUDaZNm0aZs2ahWnTohr7QwEi/ia/9a1voa+vDw0NDWhoaAhaFI+IgLNnzyIvLw9nz55NdihphzmGssn58+dx77334s9//nOyQ8kYERc4FoslaEbRjo6OqAMiIgKYYyi73LhxA3/4wx8wODiY7FAyRsR9cHJycvDEE0/AYDBAEAT4fD7Y7XY2IRNRTDDHEFE0Ii5wXnjhBVRUVOCzzz6TV/z1er2xiouIshxzDBFFI+ICZ//+/UF3Umw+jo1du3bhmWeeUWy7dOkSXnrpJVy9ehUWiwXA2DIAGzZskCdCm4jdbgcA+Hw+CIIQ9hyr1SrPOxK4AGG47aE4nU48//zz8Hg8aGhogMlkgt1uR2NjI7Zu3Yr6+npotdpJYw58v927d6OtrS3keU6nEzU1NXjnnXem9L6U2phj4itZeWbXrl2or68HABw7dgx79+6V9zHPUCxNqcDp6+vDsWPHYDAYsGXLlqD9bDqOnt1uR0dHB9xut2KCs6VLlyI3NxednZ1y4gGAlStX4sSJExNOhuZ2u+FwOLB//34AQG1tbcjEU1tbi0OHDkGr1aK6ulpOMOG2h1NWVoYNGzbA6XTKn2M2m3Hw4EFs27ZtysmhrKxM8fPZbDbFd1BWVoby8vIpvWeilJeXw+12Y8GCBckOJS0wxyRGMvOMx+NBTU0NysvLcejQIXl7tucZg8EAq9WKO++8M26fkW1UdzLu6OjA5s2bYbfb0dzcjH/5l3+JZ1xZy+fzYevWrWhtbVV1vFarhd/vn/AYh8MBjUYjv9ZoNEFT3judTvkYp9OJtra2Cbcnk81mS3YIqs2cORNFRUWYOXNmskNJecwxiZOsPAMAO3fuxOnTp9HS0iIXIcwzQGFhIR555BHMnTs3oZ+byVQXODabDadPn8bbb7+NU6dOYfHixSFnGqXI+f1+CIKAbdu24bXXXpv0eJvNhoqKCpSVlQEANm7cGDIJuVwu6PV6+bVerw86rqenBx6PB263GwDQ1NQ04XY13G437Ha7/Mfn8yn2Nzc3w263w2q1wul0ytscDgeam5vlzwzkcDjg9/vlRRjH77Pb7di1axeAsbvU9evX409/+hMAYO/evWhublYdfyxcvHgRW7ZswcWLFxP6uemIOSYxkplngLHZqO12O2w2m1xEMM8A169fx4svvij3N6PoqX5EVVRUpKjO6+vr0dHRgaKiorgElmjXr1/HmTNnkJ+fL2+bO3culi5diuHhYfT29gads3btWgDAhx9+iJs3byr2LVmyBHfccceUYnA4HHKzrCAIcDgcQU28PT098nNuk8mkaEIN9+w4lPFJwO/3Q6fTyUmsp6cHTqcz7Hbp9UQEQVA0Mx88eFD+u81mg16vVzwGa2lpgV6vl39mq9UqN3dLTCYTtFqt4ueWSAszSgnPbDYrktM999yD7373u5PGHUterxe/+c1v8O///u8J/dx0lOk5BmCeAaDoc7Nx40ZUVlYyz2CsQKyrq8ORI0emfC6FprrAMRgMitcajQaiKCq29fX1oaSkJDaRJdgbb7wBq9Wq2Pad73wHR44cgcfjwbp164LOkX7+mpoauXqXvPzyy9i+ffuUYgicoru8vBytra1BiaeoqCjss+lwScdgMCjupLxeb9CzdEEQFNt0Op38fD7UdjWJZyJSk7SUGAKn4LfZbPD7/VMeMROqf4DFYsEvf/lLPPzww+wYmOIyPccAzDN2ux3d3d1ykaPVaplnKG5UFzhutxs3btxQbPN4PPI2r9eL1tZWPPnkk7GNMEG+9a1v4aGHHgq6swLGLvbOzs6w5/7qV78KeWc1FU6nE9u2bVOMIFi/fv2U3sPv94e8uEwmk6LJ1OPxyAlNOsdkMimeObvdbvmYcNvDfZ4aZWVlcLlc8ns5nU7YbDZ4vV7U1dXB6XSiu7s77F2c3+9X3IkCY0kx1OdcuXIF77zzDh566KGIYqXEyPQcAzDPCIKgONfv98ude5lnKNZUFzhWqxUvvviiYpsoinJzoCiKyMnJSdvkU1hYiJKSEsyePTtoX15entxMHMrKlSuj+myHw4GDBw/CYrHITaLSs+KmpiZs374d/f39OH78OK5evRqySRkAqqurQzYfC4KAqqoq+fn0zp07Q55jsVjku5qGhgb5fcJtr66uxv79+7F69WrF57ndbpw8eRIej0eOVfrs1tZW1NfXw2KxwGq1wmazQafTQRAElJeXw+l0Kpp7pefjbrcbNpsNdXV1cjxSQnI6nfJ+i8Uid3aUmpnvv/9+dHd3Kx5/UOrJ9BwDMM+UlZXJfWW6u7vR0tICABPmH+YZipioUmNjo+j3+8P+8fl8YnNzs9q3S4gPPvhA/OCDDyY97ubNm+J7770n3rx5MwFRTV0qx3fy5MmUjk8URfG9994TW1pakhLf1atXxR//+Mfi1atXQ+7v7OwUAYjvvvtuSn+Hav+N1V5zoaRjjhFF5plEyIY88+GHH4pf//rXxba2NhGA2NnZGdP4Uv37i0eOUd2Cs23btkkr06qqqijLLUonTqdzwnkxkk3qANjb2wuj0ZiUGO688052MFaJOYZCyZY8s2LFCvz+979HV1dXDKPLbqqHiatZyZer/WaX8ZOEpRpplEMyfy+9Xi/efPNNLjGgAnMMhZIteeb27du4desWbt++HaPIKOLVxIkmm2k02erq6mA2m5M66ubixYvYtGkT58EhilC25JmzZ88iLy8PH374YYwiIxY4RERElHFY4BAREVHGYYFDREREGYcFDlEc5eXlobS0FHl5eckOhYgoq6geJk6Js2vXLjzzzDOKbZcuXcJLL72Eq1evypN0uVwubNiwIeRkXONJ68r4fD4IghD2HKvVqpjlVIqnvr4eAHDs2DHFWjLhBM5KqtPp4PP5Qq7rkmhutxu7d+9GQ0ODqu8tWqWlpfJkakSpJFl5Jlw+sdvtEAQBPT09AKAqX2RSnikvL4fb7caVK1fiHF32YIGTYux2Ozo6OoKGRi5duhS5ubno7OxUXMArV67EiRMnJhxG6Xa74XA45AXlamtrQ150tbW1OHToELRaLaqrq+UCx+PxoKamBuXl5Th06NCkP4O0SGddXZ38+a2trfJ+aSbQZBAEARUVFUn5bKJUkcw8Eyqf+P1+vPDCC2hra4MgCFi/fv2kOSLT8szMmTNRVFSEa9euxSmq7MNHVCnG5/Nh69atigt1IlqtVrHAXSjSlOKSwMXnJNKidNLf29ra5H07d+7E6dOn0dLSompNGJ/Pp1jQTxAEbNiwQX4deNeV6c6ePQutVouzZ88mOxQiWbLyDBA6n2i1WjnnBK5DNdnPkEl55uLFi9iyZQs8Hk+yQ8kYbMH5fx6PB8PDw4pF8GJBr9ejuLhY1bF+v19u1q2urp70UZDNZkNFRYW8VsrGjRtDrhHjcrmg1+sVMY1PVj09PfB4PPKaLE1NTfKdmJREfD4fgMmbjk0mE6xWK9avX4/KykpYLBY5YTkcDvj9fthsNvlndTgc8udZrVa5Fam5uRlGo1GR8NxuN7RaLex2OywWi+K1FO/485YuXYrf/va36O3txfz589Hb26tIhPF0+/ZtDAwMcPIuAsA8A0ycT2w2G06ePKmqpTjT8ozX68VvfvMbPPjgg6rPoYmxwAFw/fp1VFdXx+V/QtOnT8cnn3yCwsLCSY8NXLVWEISQi9319PTIz7lNJpMiOYRKOuFIyUXi9/uh0+nkJNbT0yOvsBuYADdu3IjKyspJP6elpUVe0E56Fm02m+WF6QLjlrbpdDo56dhsNuj1evn7qK2tRWlpKQwGA0wmE3Q6HY4dO6Z4DSDkeQ8++CD6+/vxgx/8ALNnzw55V0kUb8wzYybKJxaLBYIg4ODBg3IhMRHmGZoICxyMrfDb1taGwsLCuNxZqUk6ABTNreXl5WhtbQ1KPEVFRWFn9gyXdAwGg+JOyuv1Bj1LFwRBsU2n08HtdsPtdqO7u1tOSlqtFm63Wy6EQpEKI+lPXV0damtrJ52RNPA9pUdmUpJoaGiQE5/VakVpaSmeeuopxetnnnkm5HmvvPIKli5dKr83V/ulZGCegbyKeKh84vf7odVqYTKZsHv3brlQCYd5hibDAuf/FRUVoaSkBLNnz07K5zudTmzbtk0xgmn9+vVTeg8pQYxnMpnQ3Nwsv/Z4PHLiCEwqgc+spWZXqWk28DOkBBHu89xuN3w+nyI5jb/Y/X6/4k5yvLKyMrhcLvk9nE4n2tvb5bu6pqYmHDlyRPFaSpTjz/va176GP/7xj/J7DwwMhPxMonjL9jwjCELIfGKz2eByueTCR6fTya0lzDMUKXYyTgEOhwONjY2KJk1paHFTUxM8Hg/6+/tx/PhxeDyesE2f1dXVIZ95C4KAqqoq2O122Gw27Ny5M+gcqTnXZrPBarWioaEBWq1WvrOy2+1obm5GS0uL4txwsUgL0NlsNjQ3N+Opp56S90mfIyUtp9MJt9utKLAsFgv0ej1sNpvcVO5yuWC32+XhpDdv3lS8FgQh5Hn/8A//gDlz5uDtt9+G3W4PGm0RT6tWrUJnZydWrVqVkM8jCicV8ky4fFJZWQmj0QiHw4Hm5mZYLBb5Ripb8sxdd92FH//4x5g/f77qc2hiOaIoiskOIl6kptjJlrAfHBxEX19fUu+sJpLK8TkcDqxevTpl4wNS+/vr6urCunXr8O677yIvLy8lYwTUf4dqr7lMwjwTf9mUZ6Sc0NnZibVr16ZcfPESjxzDFhyKmNPpnHBeDBq7G/z+978Pl8uV7FCI0lK25Bmv14s333yTj7ZiiAUORWz8JGEU7Pr16/jlL3+J69evJzsUorSULXnm4sWL2LRpE+fBiSEWOBSxyUYrEBFFi3mGIpWUUVRq1itRu3YSEVEozDNE2S3hLTjSeiVmsxkWiwVWqzWiY4iIwmGeIaKEt+CEW68k8M5JzTFqiaKIwcHBCY8ZGhpS/DfVML7oJDM+jUaDRx99FNOmTcPJkycV+2bMmIHPP/8cAHD8+HHk5ubi9OnTmDlzJoCxOVMKCgpw/fp1fPrpp4pztVotFi1ahJGREVy6dCnoc1euXAlgrJPz+J970aJF0Gq18Hq96O/vV+wrKChAUVERbt++jQsXLsjbR0ZGkJeXhyVLlkz484qiiJycnAmPSQTmmaljfNGJNj5RFFFSUiK/Pnr0qGINuy996UvIy8tDf38/vF6v4tw77rgD8+fPx9DQUNCAhunTp2PZsmW4desWTp06pcgxQOrkmXjkmIQXOGrWK1G7pokao6Oj6OvrU3Xs5cuXI/qMRGF80UlWfDU1NThz5gwefvhhxXa9Xo+XXnoJAFRNS59sOTk5ePvttxXXZiiByTNZmGcix/iiE018L7/8slygpENOiLVY55iUmMk41HolkRwTSm5uLpYtWzbhMUNDQ7h8+TKWLFkS8ynUY4HxRScV4hMEAe+++65i24wZM2A0GvH+++/jvffew8cff4zCwsKUbsFZvXr1hN/hRx99pOLbSA7mmYkxvujEKr6SkhLYbDbcuHFDsT1WLTh6vT6lW3BimWMSXuCoWa9EzTFq5eTkqJ7UKD8/PyUnQJIwvugkM77Zs2djwYIFIfd9+ctfxrJlyyKehOu+++4Luy+aVdP/7u/+Tv67NAnXZN9hKjyeAphnosH4ohOL+LZu3RqjaL4wODgInU4X8UR/8c4z8cgxCe9kbDKZFIu9jV+vZLJjiIgmwzxDRElZqiFwaKZOp5PnOdi4cSPa2tqg1WrDHjMVXV1dEEVx0ud1oihidHQUubm5KXMHGojxRSfV4wNSP0a18Y2MjCAnJyemU8xHinlmahhfdBhfdOKRYzJ6LaozZ85AFEXk5uYmOxSirDA6OoqcnBysWbMm2aEkDPMMUeJMJcdkdIFDRERE2YlLNRAREVHGYYFDREREGYcFDhEREWUcFjhERESUcVjgEBERUcZhgUNEREQZhwUOERERZRwWOERERJRxWOAQERFRxmGBQ0RERBmHBQ4RERFlHBY4RERElHFmJDuARLPb7QAAn88HQRBgMpkiOibZ8fl8PjidTpjN5pSLL/BYrVabkvFZrVYIggAAMJvNKRWfdIwkUfH5/X7YbDYAQF1dXchjknltpAvmmMTEGHgs88zU48uKPCNmEZfLJTY2Nsqva2pqIjomXtR8dk9Pj9je3i6Koij6fD7xq1/9akrFJ/H5fOLmzZvlWBNBbXw1NTWiz+cTRVEUN2/enJDYRFFdfD6fT3zhhRfk14HHx1t7e7v4k5/8RPH5gZJ5baQL5pjoMc9Eh3nmC1n1iMrhcECj0civNRoNHA7HlI9JZnw+n0/eptVqodPp4HQ6UyY+SXt7OyorKxMSl0RNfE6nUz7G6XSira0tpeLTarWw2Wzyv2ng8fFmNpthMBjC7k/mtZEumGMSE6OEeSay+LIlz2RVgeNyuaDX6+XXer0efr9/ysckMz6TyYT9+/fLr30+H8rKylImPmDsgk7Gows18fX09MDj8cDtdgMAmpqaUio+AGhoaEB1dTWqq6tRX1+fsPgmk8xrI10wx0SPeSb+8QHZkWeyqsAJxefzxeSYeJnos5uamnDgwIEERhMsVHxut1t+7pxs4+Pz+/3Q6XQoKytDWVkZenp6Enp3Ol6o76+7uxttbW3Q6XSoqalJfFBTkMxrI10wx0SPeSY62ZpnsqrAGd8s5vV6gy4QNcfEy1Q+2263w2QyJbTjmpr4rFarHF93dzccDkfCLmw18QmCoNim0+nku6xUiM9ut2PDhg0oKytDS0sLysvLU+YxUDKvjXTBHBM95pn4x5cteSarChyTyYTu7m75tcfjkZs4pSawiY5JhfiAsWeUWq0WZrMZTqczYReOmvjq6upgNpthNpvl3u+Jat5W++8b+H253e6U+vf1+XzQ6XSKcwJfJ0MqXBvpgjkmMTEyz0QXX7bkmRxRFMWYRJcmAoef6XQ6+e5k48aNaGtrg1arDXtMKsTn8/lQXV0tH+/3+/Hhhx+mTHxarRbAWII8ePAgioqKsHfv3oTdoar99/X5fPD7/RAEIaX+fbVaLaxWq/w9JvL3z+FwoLW1FQMDA7BYLCl3baQL5pj4x8g8E3182ZBnsq7AISIiosyXVY+oiIiIKDuwwCEiIqKMwwKHiIiIMg4LHCIiIso4LHCIiIgo47DAoZhyOp1oamrCypUr0dzcDKvVCqvViqamprjNpeFwOFBdXS2vUDv+NRFlFuYZUoPDxCnm/H4/1q9fj9OnTyvmq9i9ezfeeecdeVssSXM6WCyWkK+JKLMwz9Bk2IJDCWEymeD3+1NmOnAiyjzMMxSIBQ4lhLROTCJXJSai7MI8Q4FmJDsAylzSejZOpxNerxcnTpxQTKUuLZAnCAK6u7uxd+9eAGPrtrS2tsJoNMLn86GyslKevlur1cLtdsPlcsnHE1H2Yp6hcNiCQ3FjMpnkPx0dHYrF3NxuNw4ePCgvmmcwGGC1WuH3+1FbW4v6+nqYzWa4XC65E9/u3bshCAIsFgsGBgbk9UqIKHsxz1A4bMGhuCsrK0N5eTkOHjyI/fv3AwBaW1uh0+kUz8q7u7uh1WohCILcQbC+vl7eL3UmdLvd8Hq9CV3hmIhSG/MMjccChxJCo9HgrbfeUmwrLS2FyWSSX1ssFlitVmg0Gnlb4EiI559/Hnq9HmazOWGrBhNR+mCeoUB8REUJYTAY5Dshp9OJqqoqdHR0KI5xOBwwm83o7e0N2u5wONDb24u6ujoIgoCBgQF5n8Tv9yvOG/+aiDIb8wwF4jw4FFNOpxPHjh2D2+2G0WiEyWSSRzTs2rULRqNRnjfC4XDg5MmTMBqNAMaepWu12pDbAeBHP/oRtm3bJn9Wa2srqqqqIAgCGhsbAQAHDhwAAMVrjqggyizMM6QGCxwiIiLKOHxERURERBmHBQ4RERFlHBY4RERElHFY4BAREVHGYYFDREREGYcFDhEREWUcFjhERESUcVjgEBERUcZhgUNEREQZhwUOERERZRwWOERERJRxWOAQERFRxvk/0sGuUPNxtPcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAACoCAYAAADtjJScAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxZUlEQVR4nO3de3BT55kG8McQA75JghiIi48DDobYshMwoV3LuylsaFd4trA4jcVs6A6kMe7SGbwl0G3Z4iQmk83ETilM2lmiJEy3zay12TiQTLHCpSEztczN3GzZ4bZ2JHEztEgy2OayaP9wz6mOLrasu+XnN8OApE/Sa8nn5T3f+S5JLpfLBSIiIqIEMi7WARARERGFGwscIiIiSjgscIiIiCjhsMAhIiKihMMCh4iIiBIOCxwiIiJKOCxwiIiIKOE8FOsAIunkyZNwuVxITk6OdShEY8K9e/eQlJSE+fPnxzqUqGGeIYqekeSYhO7BcblcCGQdQ5fLhbt37wbUNhYYX2jiPT4g/mMMNL5Aj7lEwjwTHYwvNIkS30hyTEL34IhnVEVFRUO26+vrQ2dnJ2bPno3U1NRohDYijC808R4fEP8xBhpfW1tbFKOKD8wz0cH4QpMo8Y0kx0S9wHE6nTAYDACAyspKn22MRiMAwOFwQBAEaDSaqMVHRKMf8wwRRf0Slclkgt1u9/u41WqFyWSCVquFTqeDXq+PXnBElBCYZ4go6j04Wq0WDocDTqfT5+MmkwkZGRnS7YyMDJhMpqDPrlwuF/r6+oZs09/fj7a2Nhw7dgwTJkyQ7lcoFMjKysLdu3fR1dXl9by5c+cCACwWC/r7+2WPZWVlQaFQwG6349q1a9L9qampKCgowOzZswP+GcTX9nyPeMH4QhfvMQYan8vlQlJSUjRCGtJYyTN5eXlYsGBBUDH7is/973jD+EKTKPGNJMfE3Rgci8UClUol3VapVH6TVCDu3buHzs7OIdvY7Xa88MILURt89eSTT+K9994b8fO6u7vDH0wYMb7QxXuMgcTn/p93vEqkPLNr1y50dnbiW9/6FiZPnhzy6yXC72AsMb7QhDPHxF2B44vD4Qj6ucnJycP2lvT39+P999/HwMBARHtwvvrqK9TW1uJf//VfMWPGDKSlpWH8+PHD/gz9/f3o7u7GzJkzkZKSMmz7aGN8oYv3GAON78KFC1GMKrxGW54R88mDBw/w5ptvYtmyZcjPzw/6Z0iU38FYYXyhiUSOibsCJycnR3YmZbfbIQhC0K+XlJQU0IjxoqIi5Ofn+227ePFiv88tLS0NKJYTJ05ICSkrKwutra0oLi4O6LkAkJKSEpej30WML3TxHuNw8cXD5alAJEKeEfPJxIkTAYTvd2e0/w7GGuMLTThzTNysgyMmG41GI5sGZrPZOLuBiMKCeYZo7Ih6D47JZEJzczN6e3shCAK0Wi0AoLy8HI2NjRAEAWVlZTAajXA4HFi7dm20QySiUY55hoiiXuBoNBqfZ0oHDhyQ/i0mIyKiYIylPJOWloZvf/vbsllhRBSHY3DGAnEg4XCzLoDB6aszZsyIdEhENErl5OTgs88+i3UYRHGHBU4UiWdYW7ZsAQCsWrUqoOf993//N+7evYuBgQFMmzYNeXl5EYuRiEaX//u//4PT6Qx4VibRWMECJ4ry8vJw7tw59Pb2BtTeZrNh+fLlqKiokN2/Z88eZGdny+7LyMhg4UM0Bp07dw5f//rXRzwrkyjRscCJsry8PFy8eBE/+tGPUFVVhaysLADAjBkzMH36dNy8eRNdXV3IyMjAsmXLcO7cOfT09KC7uxsTJkxARUUFli9f7vO13QsfFjxERDSWscCJgQcPHuDTTz/Fp59+Kt331ltvYcOGDThw4IDUY3Pu3Dnk5eVhxowZmDRpEvLz8332AIk9PZ6Fz549e5Cfn89Ch4iIxhwWODHg61KVOJB4yZIl+O1vf4tVq1b5vJTlq1gpLi6WvZ5nwSMWSkRERGMFC5wY8VdwTJ482Wu59VOnTqGrqwsDAwPSEtb5+fmy5azdX08seI4ePeq3UCIiIkpkLHDikDh+Rlw6fvHixbh7966sTXt7O9Rqtd/XyMvLkwob9+noHJtDlFjy8vLQ09Mj2zyUiFjgxKW8vDz8/ve/x9SpUwEAn3/+Obq6umSbkCkUCpw4cUJ6jq/CRZyW7jkdnZesiBLHQw89JOUKIvoLFjhxyn0a+Lx58zBx4kRpk74//elPWLduHQwGg9Rm3Lhx+PLLL/HII4/g/PnzUsHjPjans7MTq1atwtGjR/1etmIPD9HoYrVa8corr2Dbtm147LHHYh0OUdxggTMKTZkyBVu3bsWPf/xjAIODivfv3w+VSoXW1lZpR2LPnhp/PTqeON2caPS4desWPv30U7zyyiuxDoUorrDAGaU8BxUvWrQICoUCCxYs8DsLa7iFBjndnIiIEgULnAShUCgADPa4eM7Camtrw6RJk5CXlzdkkTLcdHP27BAR0WjBAicBZWRkQKlUSrOwli5dikuXLgU0uNjXdPPOzs4he3a4GSgREcWbcbEOgMIvLy8Pp06dkmZWbNu2DQBkg4udTmfAryVuGdHa2orW1lbs2bMHALB8+XLMmTMHv/vd72CxWCLwkxDRcKZNm4a33nqLJxpEHljgJKiZM2dK/543bx6AwcHFra2tuH79Ov7t3/4N58+fD/j18vLyUFxcjOLiYqngEQudiooKlJeX48KFC+H8EYgoAA8//DA2bNiA6dOnxzoUorjCAmcMEAcXt7a2YsGCBbBarfjVr36Fo0eP4sSJE/jqq68AAP39/QEXPe49O++99x4A4Pjx4yMqmogodE6nEx9++CFu3rwZ61CI4kpYx+DYbDbZ+i0UPzyniz948ECaLv79738f7777Lo4cOYLFixePaNZUXl4e+vv7pdcBOBiZIoc5xtulS5ek3tnJkyfHOhyiuBFSgdPZ2Qm73S7dNhgM+MUvfhFiSBRpntPFH374YQCD6+sA8Nqks7OzUypifBUss2fPRmNjI+7fv4+Kigqfg5FZ8FAwmGOIKFhBFzjV1dXo7e2VFo8D5HseUXzzVWQ88cQTsllT4t42zz//PE6ePCm1O3LkCL7+9a/LnpuTk4P8/Pwhp5mLWPBQIJhjiCgUQRc4paWlqKiokN332WefhRwQxZa4Vs758+elWVgffPAB+vv7pYLl+PHjePTRR3Hp0iUAg2N3uru7MXHiRBQWFkqvNdy6OiIuJEi+MMcE5+TJk3C5XAB4AkFjW9AFjrjGirucnJyQgqH4MXv2bOnf4sKBYsGSmZmJXbt24aWXXpI9p6ysDLt370ZbW5uUWH2tqxPIQoIiJuixizkmMFevXoUgCLh58yZOnDiBb3zjG7h//770+Mcff+z3c+PxRYks6ALHarXCYDCgqKgIAOByudDU1ISPPvoobMFR/BGT4fPPP49FixYB+EsPzpNPPgm73Y4FCxYA8N0zM5KFBEXc/XxsYo4ZmnjpbuPGjQCAJUuW+Gy3YsWKIV+HC3ZSogq6wGloaIBGo5G6QgHI/k2Jbfr06dK6G319fZg0aRJyc3ORnJyMPXv2yAqWc+fOAYDXHliCICAvLw8PP/wwPv74Y9y+fVt6LCUlBf39/Vi1ahUMBgNmzZoFAEhLS0NOTg4KCgowadIkdHV1eU2PzcrKQlZWVsR+dooO5pihDbe33MDAAC5duoQZM2bgzTfflNatEj377LP46KOPpOP09OnTEY+ZKJqCLnA2bdqEkpIS2X0ajSbkgGh0S05OltbHsdvtmDJlCmbOnImysjLs27dP1vbtt9/GD3/4Q+zduxff+973ZI/91V/9Ff7zP/8TALBlyxav99m/fz+WLFmCLVu24IMPPpA99vLLL2PDhg3SwoP9/f3o6enx2qOL4htzzPAC7dncvn07ampqZPelpaXhH/7hHzAwMIDKykocP34ckydP5nFCCSPoAqekpAS3bt1CU1MTgMH9jgoKCsIWGI1unon37bff9tmDAwyO3WltbZU9lpaWJp2hHj16FADQ09ODDRs2AAC+9a1v4dy5c9i6dat0nygrKwstLS3QarWy+0+fPo0nnngCZ86ckcYocAxC/GKOCZ9HH30Ujz76qOy+EydO4Hvf+x7q6+sB/GUdK/E4IRrtQhqDU11dLf0npdfrsX37dlb/5NNQRcSUKVOkNXh8Pc/9uX//93+Po0ePYtWqVejt7UVxcbF0+cpdWlqaVDRdvHgR//zP/wylUgkAeOaZZ3Djxg2p7YkTJzB//nzYbDb09/ez4IkTzDGR5TmG5/XXX8fmzZtx/PhxpKSk8DigUS/oAmffvn1obGyU3ffWW28x+VBE5eXl+R1z4E6hUKC4uBgA8Pjjj+PXv/61NO394MGDuH//vjSLy2q1Yv78+fj5z3+Obdu2cVBznGCOiSyxh7SzsxP/9E//JF0OdF+RnMs30GgWdIHja7l09zVQiOLJI488Iv1b7H4XZ3GJA5LLysqwbdu2gAooijzmmMgTe0hPnTqFnp4eTJkyBT/96U+xadOmIZdvEPESL8WzkC5RebLZbCEFQxRt7snZ32Uyig3mmOiZOXMmLl26hD/96U+YMmUKPv74Y9y5cwcrV670u3yDiD2eFK+CLnA0Gg1eeOEFqNVqAIDJZJKu5RIRhYo5JrrEMTniJarPP/98yGnonZ2dWLVqFY4ePSq1YY8OxZOgC5yCggK8+uqrMBgMAICtW7dyhgONapmZmVi3bh0yMzNjHQqBOSbaxE1zp02bhpSUFKSlpeH999/HkiVLkJOT41W4iAXRqlWrZPdz7A7Fi5B2ExcEQXZGZbPZ/F6rJYp3OTk5+OUvfxnrMMgNc0x0iZvmpqam4vz583jjjTfwxhtvAPC+FOW50KCvrVdY6FAsBVzg7Nu3DxqNBunp6QCADz/8UPa40+mEyWTCe++9F94IiaKkr68PX375JR5//HGkpqbGOpwxhzkmvrivQyUuy+Crjcjf1issdChWAi5w/uM//gMZGRnSVML/+q//QllZmayN55L5RKPJl19+iQULFqC1tVWaYk7RwxwTf8SiRKfTYerUqTh06BCSk5ORkpICAEhKSsL8+fNl7d2nn7PQoVgKuMDxXI/itdde87oezmXUiShYzDHxKS8vD7/61a/wxz/+EYsXL5Y9NmHCBNy5cwfXr1+H1WqVBhmz0KF4EPQYnL1798JsNmPp0qWorq5GRkYGysrKOAiQiMKCOSZ+iKuNe86qSkpKgs1mw9/+7d/i/PnzAORjdYYqdDi9nCJtXLBPLCoqwnPPPYeGhgbk5+fjF7/4Bex2exhDI6KxjDkm/uTl5aG4uFj6M3/+fGRnZ+N3v/sdfvvb3wIALBaLz+eJm/CK7Y4ePSoVRUSREHQPjkKhAAA0NTXhtddeAwBprx+i0WjcuHHIyMjAuHFB1/0URswxo4d7T8zZs2dRWFiIS5cuydoolUpZO3F6OS9ZUaSEvJKx1WpFfn4+rFYrnE5n2AIjirZ58+bxdziOMMeMLuKlqMzMTOzatQsvvfSS7PHvfOc7+OSTT4Ycm+O5BAAXDqRQBF3gLF26FAaDAR999BF6e3thMBgwefLkgJ5rNBoBAA6HA4Ig+Bw4uH79elRVVQEYvBa/adOmYEMlolEolBwDMM/EgliMPP/881i0aJHssbS0NHR0dKC3txfJycnIzs7Gxx9/DABYsWKF3y0hOFaHghV0gZORkYEXX3xRur1x48aA9omxWq0wmUyora0FAKxZs8Zn4rHZbFi9ejUKCwuxffv2YMMkClhHRweee+45fPjhhxzIGgeCzTEA80ysTZ8+HdOnT5fdd/78eTz++ONebR0OBw4fPowLFy7I7nc6nVi3bp20FUR/fz+6u7sxMDCAadOmseihYUV9oT+TySQt8Q0MJjGTyeSVfNauXQutVhtoeH65XC709fUN2aa/v1/2d7xhfP7fb7jv1rP9UG7evImOjg7cvHkzoNcNp0T5jl0uF5KSkoJ6j3Au9Mc8M3KRjm/GjBk4ffq014KB169fx7/8y7/g8OHDsvt/+tOfAvDeCkJ0+vRpAINbTMSDsf79hioSOSbqC/1ZLBaoVCrptkql8nldva2tDcBgdQ8MLjQVjHv37qGzszOgtt3d3UG9R7QwPvn7dHd3Y9KkSSN+XrhfN5wS4TueMGFCUK8dzoX+mGeCF+n4PI8tu92OH//4x14F4vTp09HX1+fVs5adnQ2bzYbm5masW7cOb731FmbNmoWcnJyIxh2osf79hiqcOSYuFvoTk4s792vhS5YswdKlS6VZFSORnJw8bIUvdn3OnDlTWqEznjA+uYGBAQDAzJkzkZ+fP2z7QOMb6euGU6J8x56XGUYi0gv9Mc8MLZbx+TveHn/8cTz33HMAgDt37uDKlSu4f/8+Vq9ejSlTpgCANJj56NGjUKvV6O7ulgrhjIyMqPXw8PsNTSRyTNBjcARBwHvvvQedTof09HS0tLSgqKho2Ofl5OTIzqTsdjsEQZC1MRqNaGtrk5KPQqGA1WqFWq0ecZxJSUkB7yuUkpIS13sQMb6/vE8w7zdc+2BfN5xG+3cc7OUpX4LNMQDzTCjiKb7U1FRpZlVfXx86OzulExHP2Vj3799HamoqXn/9dXzwwQfSa0R7kHI8fX6+jPb4RpJjgl7wo6mpSdZdXFJSApPJNOzzNBqN1C0MDA7yE8/KxIQkCAJKS0ulNk6nM6ikQzQSubm52LNnD3Jzc2MdCiH4HAMwz4wV7gsIintibd26Fa2trdKCgr42CaWxIegeHJVKhYqKihE/TxAElJWVwWg0wuFwYO3atdJj5eXlaGxshFqthtFolM6wdu3aFWyYRAFTqVRYtmxZrMOgPws2xwDMM2ONew/NrFmzMGvWLGRlZeHll19GVlZWDCOjWAq6wDlz5oxsxgMwOGDv29/+9rDP9Tdr4cCBA15twjHDgSgQV69exa5du7BmzRo88sgjsQ5nzAslxwDMM2NdVlYWXnnllViHQTEUdIGj0+mwYsUK5OTkICMjAx0dHXj11VfDGRtRVF2+fBmbN2/G3/3d37HAiQPMMRQKp9OJlpYWlJSUBDVwnEa/kAYZNzY2oqmpCU6nEy+99JLXID4iomAxx1AoLly4AK1Wi9bWVhQXF8c6HIqBkHYVNBgMMJlMePHFF2Gz2XDr1q1wxUVExBxDREELusCpr6+HQqGQZiaMZIYDEdFwmGOIKBRBFzhFRUWoqKhglzElDJVKhe9+97uyFXApdphjiCgUQRc4vja9c193gmi0yc3NxYcffsh1cOIEcwyFYuLEiXjssccwceLEWIdCMRL0IOOCggKUl5dj8uTJMJlMMJlM2LhxYzhjI4qqu3fvoqenB9OmTQt6PyUKH+YYCoVarQ5p6xAa/YLuwSkpKcH27duRn58Pl8uFrVu3SpvkEY1G7e3tEAQB7e3tsQ6FwBxDRKEJugfn2WefRVVVFc+oiCgimGMoFGfOnMEzzzyDgwcP4oknnoh1OBQDQffg6HQ6rxVFW1paQg6IiAhgjqHQ3L9/Hzdu3MD9+/djHQrFSNA9OElJSXj55ZeRk5MDQRDgcDhgNBrZhUxEYcEcQ0ShCLrAeeedd1BSUoKbN29KO/7a7fZwxUVEYxxzDBGFIugCp7a21utMit3H4bF+/Xrs2LFDdl9XVxfef/99XLlyBTqdDgBgsVhQWloqLYQWDkajEQDgcDggCILP116/fj2qqqoAAHv37sUPf/hDAMD+/fsxMDAAs9kMrVYbVFxmsxnV1dVobGyM+v4x8+bNw8DAAJKTk6VYdu7cCZvNho0bN0Kj0cBoNGLLli2oqKhAVVXViGIc7mfr6upCVVUVfv/733PvHDDHRFq85xmj0Sgb9P+d73wHANDX14fJkyfjk08+CXoLhljmGV+xRDPPdHZ24gc/+AEOHjwY85890kZU4HR2dmLv3r3IycnBc8895/U4u45DZzQa0dLSAqvVKlvgbNasWUhOTkZra6uUeABg7ty5OHDgQFgWQ7NarTCZTKitrQUArFmzxmfisdlsWL16NQoLC7F9+3YAg4kxOTkZOp0OTqcTzzzzDI4dOzbiGNRqdcwWdhs3bpxszQy1Wo3S0lKYzWbpc9Bqtaivr8fKlStHnBw8fzaDwSD7LmfNmoWCgoIQf4rRjTkmOuI9zzidTrzzzjtobGyEIAhYuHChVOB0dHRg/Pjxw77PnDlzYDKZMGfOHK/HYplnPEU7z+Tn56OwsDA8wce5gAcZt7S0YMWKFTAajairq8OPfvSjSMY1ZjkcDlRUVKChoSGg9gqFAk6nMyzvbTKZkJGRId3OyMjwuTT+2rVrcezYMezatUs6+G7duoUjR45IMSmVSpjN5rDEFS3nzp3DokWLcO7cuai8n8FgiMr7jBbMMdET73lGoVCgsbERwGBB5F4APfXUU7h3796w75Oeno6SkhKkp6eHJe7RaiznmYB7cAwGA44dOyb9YtbX18NmsyE7OztiwY01TqdT6q4tLy/Hpk2bhmxvMBhQUlICtVodlve3WCyybQpUKpXPpCauJutwOAAMdh2Ly+qLHA5HQHEZjUbpdZRKJbRarezxuro6lJaWorm5GStXroQgCOjq6kJ6ejra2tqwe/du1NbWwmw2w2q1QqFQwGg0SmeHI3Hr1i188cUXXhs6Wq1WqUvd/ed2j7GoqEhKxGq12mfc7kwmE5xOJwwGAwRBwLx582SPAYOX/3bs2CF1V2/fvh0ajQbr16+HIAjD/n6MNswx0TFa8oz43s3NzVJP8UjYbDb8/Oc/x4YNG9De3j7iPOMrp4Qjz/gT6TwzdepUKJVK2WNAYueZgAuc7OxsWdVdVVWFlpaWhEk+NpsNAwMDSElJCevrqlSqgJf+N5lM0oEnCAJMJpNX1217e7t0EGg0GlnXo8jpdGLnzp1+38fXgeCP50EGQPYLv2TJEixatEj2eE1NDbZu3Trsa5vNZungslqtqKur80o8KpVK+gz0ej1qa2vR0tKC8ePHIzc3F0899RQASJc1NBqN7CAW3b59G9u3b8dDD/n+lV+5cqXfOAVBkMVVX18v/dtgMEClUkmPr1mzBrt27fIZtzuNRgOFQiF9f319fdJj4gaTYsLTarWyM9zS0lKf3/tol+g5BmCe8cdXngEGlwoQBAH19fX4yU9+EtBriXp6erBt2zaUlpbiiy++GHGe8ZVTwpFn/H0mkc4zfX196OzslB4bC3km4AInJydHdjsjIwMul0t2X2dnJ/Lz88MTWRTduHED5eXlePDgQdhfe/z48bh69SoyMzOHbeu+z05hYSEaGhq8Ek92drbXwelJoVAEVXXn5OTIzqTsdrvXwWg0GtHW1ia9vkKhkO0ZZDQaodFoho0RGEwWpaWlAAYPbs8BjyKDwQCn0ynNoFm+fDl+85vfYPPmzZg/fz527NiBqqoq1NfXQ6/Xo6CgwOu10tLSUF1djdTUVL/xXL9+fdiYPZnNZlkXu/uidJ5xB8pXAtTpdNi5c6ffxJoIEjnHAMwzokDyDDBYQIn/CVdXV2PRokVB/e63tLQElWd85ZRw5JlgMM8EJ+ACx2q1enXd22w26T673Y6Ghga8+uqr4Y0wCjIzM9HY2IjMzMyInFkFknTMZrOsutdqtVi4cGFQ7xnsmZVGo0FdXZ1022azSYlPTDaCIMgGvTmdTuTn56OzsxOHDx+WEpLZbJbai8/1pFKpYLFYZK/l3s5gMMBut6OyshJmsxltbW0wm804fPgwenp60NTUhN27d3sNWqypqfEaPBlKD85Q1Go1LBaL9DmZzWa/cfvq4nc6nTCZTHj66ael+3wlFrVaDZvNBoPBgKVLlwYVa7xL5BwDMM+IAskzBoMBFotFKqCUSuWw/+H6yzPp6elB5Zn29navnBKOPBPM4OZw5JnPP/9c1hs6FvJMwAWOXq/Hu+++K7vP5XJJ3WgulwtJSUmjNvlkZ2cjPz8/7JV3IEwmE+rr66HT6aQuQXGAbk1NDVatWoVr165h3759uHLlis8uZXfBnlkJgoCysjJpXMzatWulx8rLy9HY2Ai1Wg2j0Sj15OzatQsAcO3aNdTU1CApKQnA4AF19uxZ6bm1tbVeMVdWVqKurg56vR6CIEgHvtVqhcFgkAol925Tq9WKa9euIT09HUeOHJGeZ7FYpC5199cSBXJmlZKSAr1eL/UkWK1WNDc3w2azSZ+5+Nk0NDSgqqoKOp0Oer0eBoMBSqUSgiCgsLDQZ9zuP1tlZSV0Oh0MBoOUkLq6unDp0iVp1oM4GFPsZl66dCnMZvOo7zb2J9FzDMA8AwSWZ5YuXSptsNrc3AydTiedSJnNZqSmpqKtrU26tCI+11eeWbZsGQ4ePDjiPOMrp4Qjz3iKVp557LHHAAz2goqPJ3yecQVoy5YtLqfT6fePw+Fw1dXVBfpyUXHmzBnXmTNnhm13+/Zt1/Hjx123b9+OQlQjlwjxNTc3h+39WltbXQBcra2tAbWP98/P5Qosxvb29rB+jiMR6GcY6DHny2jMMS4X80y0iPH94Q9/8Hv8ux8fX331lWvdunWur776KqrxxfvnN1x8scozkcgxAU8TX7lyJTIyMvz+USgUKCsri1wlRqOW2WyOmzUnhnLjxg28++67uHHjRqxDkRHPGNvb28O62Fq8YY6hUHjmmZycHPzyl7/0GttFviVingm4wAlkAbKxvkgZ+eZ5nTpeWSwWVFZWyq7XxwNxlkOiL87FHEOh8MwzfX19OHHihGyGIvmXiHkm6K0aiAIVyIwq8q+ysjLWIRDFPc888+WXX2LBggVobW0NekuHsSQR80zAPThEREREowULHCIiIko4LHCI/iw9PR3f/OY3x/zeNUREiYBjcIj+bM6cOTh06FCswyCiMBg3bhwyMjIwbhzP48cqFjhxaP369V5LgHd1deH999/HlStXpAWYLBYLSktLwzqlT5wq6HA4pA35hmqrUChkG0WKi2kBwQ0uNpvNqK6uRmNjo89VSSPpwYMHuHfvHpKTk6Wk6L4Tr1KphMPhiIsFsKxWK6qrq7Fx48aEmdJJ0RXveUZc7M5sNkOr1Up55tChQ0hPT8cnn3yCiRMn+t0EdN68eX438YxlnvGFeSYyWODEGaPRiJaWFq8pj7NmzUJycjJaW1tlv/hz587FgQMHwjIN23Mp8jVr1vj9pXY6nXjnnXdkq5D+4Ac/wNtvvw2FQoHy8vKgChy1Wh2zKeWnTp2Szbowm81wOp3S7AKr1YqGhgapvbgSaCwIgoCSkpKYvDeNfvGeZ8QVlnU6HZxOJ5555hl88cUX6OrqQkdHB27duoVly5ahvr5eWk19JGKZZzwxz0QO++7ijMPhQEVFhewXfCgKhcLvWcpIiUt2i9w3d/PU1NQk26ukq6tLeq7ZbEZjY2NYYoolh8Mh25hQEARp0z5AftZFNJrEe55xOBzSfQqFAkqlEp2dnWhvb8fUqVNlbcViyFNHRwfUajU6OjrCEnekMM9EDntw/sxms2FgYCAim+Dl5uYG1NbpdErdteXl5cPu82IwGFBSUuK3i3akLBYLVCqVdFulUvlMamazWdovRfS///u/uHTpkrQXSk1NjXSGNhSxGxoY7Jr17PWpq6tDaWkpmpubpY3qurq6kJ6ejra2NuzevRu1tbUwm82wWq1QKBQwGo0BvfdwNBoN9Ho9Fi5ciKVLl0Kn00lnmiaTCU6nEwaDQfrOTCaT9HPr9Xps374dCoUCdXV1KCoqgtVqlZ7vGWtnZyeOHDkCh8OBQ4cOoba21ut5arUaer1eSvgdHR2yREjxj3kmsDyj0WhkvToOhwP5+fk4cuQIzp8/L91vtVphtVp9xjYwMICOjg4MDAwElWd85ZTRnGd+8pOfoKurCzabDVOnTpXiT+Q8wwIHg0v0l5eX48GDB2F/7fHjx+Pq1asB7fRrMpmkA08QBJ+b3bW3t0uFhUaj8dl1Gewuv76IScGd1Wr1ShB9fX1QKBRSomlvb/e7s63IbDZj79692LFjB6xWK+rq6rxeV6VSSZ+BXq9HbW0tWlpaMH78eOTm5uKpp54CAOzduxc5OTnQaDQ+d8kNdjfxXbt2SRvaideitVqttDGd++cv3qdUKqWkYzAYoFKppJ9rzZo1KCgo8Ip13759GD9+PNRqNaZPn+7zeTqdDlarVUqq/nrXKD4xz/jnK8+IampqsHXrVgDAN77xDTQ3N2PcuHFSr8dwY2i6urrwxRdfjDjP+Mop4cgzvj6TaOWZw4cP48knn8TixYuhVCoTPs+wwAGQmZmJxsZGZGZmRuTMKpCkA0DWTVlYWIiGhgavxJOdnT3s2JZgd/nNycmRnUnZ7Xavg1EcRCzuJm61WjF16lRMmzYNd+/eldoplUq/Z1aivXv3SmcGgiB4DXgUGQwGOJ1O2O12AMDy5cvxm9/8Bps3b8b8+fOxY8cOVFVVob6+Hnq9HgUFBV6vFcguv9evX5fdFgs08U9lZSXWrFkz7Ofv/jObzWZZF/zGjRshCIJXrC+88AJeeeUV/OM//iPUajVUKpXX89x3Hgcg6+an+Mc8MyiQPCMyGo3QaDTQarXSlgvr1q3DRx99hNzcXCgUimG3FmhpaQkqz/jKKeHIM56ilWfeeOMNLFu2DEajEb/+9a9RUFCQ8HmGBc6fZWdnIz8/f0S/mOFkNptl1b1Wq8XChQuDeq1gz6w0Gg3q6uqk2zabTUp8TqcTCoVCtpx3W1sbioqKkJ+fj9u3b+Pw4cPSY+7dpOJzPalUKtm+T57tDAYD7HY7KisrYTab0dbWBrPZjMOHD6OnpwdNTU3YvXu316DFmpoar8GTgZxZFRYWwmq1Ytq0adLP4HA4ZMnf82B3Op2yM2JParUaFotFeg2z2YympiavWA8dOoQXX3wR+fn5eOONN/DII4/g9u3bsudpNBrZf069vb0+35PiF/NMYHkGGOw5UCgU0Gg0MJvNSE5Oxu3bt7Fz507cuXMHt27dQmFhodTeX55JT08PKs+0t7d7HafhyDOen0m08ozNZsPhw4fxs5/9DKmpqaipqUn4PMMCJw6YTCbU19dDp9NJXZHiwLmamhqsWrUK165dw759+3DlyhWfXcrugj2zEgQBZWVl0vVq9xlS5eXlsimVJpNJmoWRm5uLtLQ0PPvss9JZ0MaNG6W25eXlqK2t9Yq5srISdXV1Uq+QeOBbrVYYDAYpsbl3kVqtVly7dg3p6ek4cuSI9DyLxSJ1qbu/lijQM6vs7GzZbXEDOofDAYvFgtdee016TKfTyc52xOvz7rMedDod9Ho9DAYDlEql31htNht6e3ths9kgCAIqKyu9nqfVaqV4xNh8nX0T+TKa8ozD4UB1dbV0v9PpxMmTJ9Hb24uCggLp+HcfA+OZZ3Jzc7Fnzx48/fTT0Ov1I84zvo7TcOUZT9HIM9nZ2ejp6cH+/fsxceLEsZFnXAnszJkzrjNnzgzb7vbt267jx4+7bt++HYWoRi4R4mtubg7b+7W2troAuFpbWwNqH+jnd/HiRdd3v/td18WLF8MR5ogkwnfscgV+zCUS5pnoEOP7wx/+4Pf4D2eeGanR8vmN9vhGkmM4TZwizmw2x82aE0Ox2+34n//5H+kaPBGNHp555urVq/j3f/93XL16NYZRUSyxwKGI87xOTUQUbp555vLly9i8eTMuX74cw6golljgUMQFs6IxEdFIMM+Qp5gMMg50H5Lh2hAR+cM8QzS2Rb0HR5xqp9VqpZHfwbQhCrevfe1reP311/G1r30t1qFQiJhniCjqPTj+9iFxP3MKpE2gXC6XtECUP/39/bK/4w3j8/1+p06dCug979y5gytXrsDhcGDixIlDti0uLsbevXtl902cOBEzZ84EAJw/f95rJdpHH30UkyZNwrVr17wGKE+ZMgVTp05Ff3+/bC0OYHD12dmzZwMAzp49i8uXL+PYsWOYMGECgMEp62lpabhx4wb++Mc/yp6rUCiQlZWFu3fvoqury+vnmDt3LoDBZfE9P6OsrCwoFArY7XZcu3ZN9lhaWhqys7Px4MED2ZL4d+/exaRJk6TPwR+Xy4WkpKQh20QD88zIjZb47ty5A2D44//y5ctYvHgxzp49i1OnTnk9PmfOHCQlJcFqtXp9d9OnT4dKpfJ5jKSmpkIQBLhcLpw7d066/+7du7hx4wZu3LiB9PR0XL582WsNmczMTDz88MO4desWLl26JHss0nnmzp07OHr0qCzHAPGTZyKRY6Je4ASyD0mgeyIF4t69e+js7AyobXd3d1DvES2Mb1BPTw8A4Pvf/35U3o8GJSUlYf/+/bJj0xf35BkrzDPBi/f4xG0dAj3+P//880iGQ2EU7hwTFwv9DbUPyUja+JKcnCydJfvT39+P7u5uzJw5M+xLqIcD45PLz8/H6dOnA15hU+zBycrKGrYHJxZnVsBfenAyMzPjugdn3rx5Q37HFy5c8PtYrDHPDG20xPf000+P6Pi/f/8+Ll686HV/pHpwFi5cGNc9OCqVKq57cMKZY6Je4ASyD8lI9ioZTlJSUsCrSqakpMRsCfVAML6/eOKJJwJu29fXh87OzrAskR+pXXXnz58fdIyLFy/2+1go8f7N3/yN9G/xMxzuO46Hy1MA80woRkN8Izn+AeCb3/xmRGL567/+a+nf8Z5n+vr6oFQqg44v0nkmEjkm6oOMPfe58NyHZLg2RETDYZ4hoiSXy+WK9pu6T81UKpXS+gVLliyR9jvy12YkTpw4AZfLNez1OpfLhXv37iE5OTluzkDdMb7QxHt8QPzHGGh8d+/eRVJSEoqLi6MYnW/MMyPD+ELD+EITiRwTkwInWk6ePAmXy4Xk5ORYh0I0Jty7dw9JSUmYP39+rEOJGuYZougZSY5J6AKHiIiIxiZu1UBEREQJhwUOERERJRwWOERERJRwWOAQERFRwmGBQ0RERAmHBQ4RERElHBY4RERElHBY4BAREVHCYYFDRERECYcFDhERESUcFjhERESUcFjgEBERUcJ5KNYBRJvRaAQAOBwOCIIAjUYTVJtYx+dwOGA2m6HVauMuPve2CoUiLuPT6/UQBAEAoNVq4yo+sY0oWvE5nU4YDAYAQGVlpc82sTw2RgvmmOjE6N6WeWbk8Y2JPOMaQywWi2vLli3S7dWrVwfVJlICee/29nZXU1OTy+VyuRwOh+upp56Kq/hEDofDtWLFCinWaAg0vtWrV7scDofL5XK5VqxYEZXYXK7A4nM4HK533nlHuu3ePtKamppcb775puz93cXy2BgtmGNCxzwTGuaZvxhTl6hMJhMyMjKk2xkZGTCZTCNuE8v4HA6HdJ9CoYBSqYTZbI6b+ERNTU1YunRpVOISBRKf2WyW2pjNZjQ2NsZVfAqFAgaDQfpO3dtHmlarRU5Ojt/HY3lsjBbMMdGJUcQ8E1x8YyXPjKkCx2KxQKVSSbdVKhWcTueI28QyPo1Gg9raWum2w+GAWq2Om/iAwQM6FpcuAomvvb0dNpsNVqsVAFBTUxNX8QHAxo0bUV5ejvLyclRVVUUtvuHE8tgYLZhjQsc8E/n4gLGRZ8ZUgeOLw+EIS5tIGeq9a2pqsHXr1ihG481XfFarVbruHGue8TmdTiiVSqjVaqjVarS3t0f17NSTr8+vra0NjY2NUCqVWL16dfSDGoFYHhujBXNM6JhnQjNW88yYKnA8u8XsdrvXARJIm0gZyXsbjUZoNJqoDlwLJD69Xi/F19bWBpPJFLUDO5D4BEGQ3adUKqWzrHiIz2g0orS0FGq1Grt27UJhYWHcXAaK5bExWjDHhI55JvLxjZU8M6YKHI1Gg7a2Num2zWaTujjFLrCh2sRDfMDgNUqFQgGtVguz2Ry1AyeQ+CorK6HVaqHVaqXR79Hq3g70+3X/vKxWa1x9vw6HA0qlUvYc99uxEA/HxmjBHBOdGJlnQotvrOSZJJfL5QpLdKOE+/QzpVIpnZ0sWbIEjY2NUCgUftvEQ3wOhwPl5eVSe6fTibNnz8ZNfAqFAsBggqyvr0d2djY2bdoUtTPUQL9fh8MBp9MJQRDi6vtVKBTQ6/XS5xjN3z+TyYSGhgb09vZCp9PF3bExWjDHRD5G5pnQ4xsLeWbMFThERESU+MbUJSoiIiIaG1jgEBERUcJhgUNEREQJhwUOERERJRwWOERERJRwWOBQWJnNZtTU1GDu3Lmoq6uDXq+HXq9HTU1NxNbSMJlMKC8vl3ao9bxNRImFeYYCwWniFHZOpxMLFy7EsWPHZOtVVFdX4+DBg9J94SSu6aDT6XzeJqLEwjxDw2EPDkWFRqOB0+mMm+XAiSjxMM+QOxY4FBXiPjHR3JWYiMYW5hly91CsA6DEJe5nYzabYbfbceDAAdlS6uIGeYIgoK2tDZs2bQIwuG9LQ0MDioqK4HA4sHTpUmn5boVCAavVCovFIrUnorGLeYb8YQ8ORYxGo5H+tLS0yDZzs1qtqK+vlzbNy8nJgV6vh9PpxJo1a1BVVQWtVguLxSIN4quuroYgCNDpdOjt7ZX2KyGisYt5hvxhDw5FnFqtRmFhIerr61FbWwsAaGhogFKplF0rb2trg0KhgCAI0gDBqqoq6XFxMKHVaoXdbo/qDsdEFN+YZ8gTCxyKioyMDHz22Wey+woKCqDRaKTbOp0Oer0eGRkZ0n3uMyF27twJlUoFrVYbtV2DiWj0YJ4hd7xERVGRk5MjnQmZzWaUlZWhpaVF1sZkMkGr1aKjo8PrfpPJhI6ODlRWVkIQBPT29kqPiZxOp+x5nreJKLExz5A7roNDYWU2m7F3715YrVYUFRVBo9FIMxrWr1+PoqIiad0Ik8mE5uZmFBUVARi8lq5QKHzeDwA/+9nPsHLlSum9GhoaUFZWBkEQsGXLFgDA1q1bAUB2mzMqiBIL8wwFggUOERERJRxeoiIiIqKEwwKHiIiIEg4LHCIiIko4LHCIiIgo4bDAISIiooTDAoeIiIgSDgscIiIiSjgscIiIiCjhsMAhIiKihMMCh4iIiBIOCxwiIiJKOCxwiIiIKOH8P/sn2nxl1xapAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -324,10 +415,10 @@ "# Set the labels for the legends manually\n", "ax[0].get_lines()[0].set_linestyle('dashed')\n", "ax[1].get_lines()[0].set_linestyle('dashed')\n", - "ax[0].legend(['AP: 0.66, Healthy', 'AP: 0.65, Stressed'], frameon=False)\n", - "ax[1].legend(['AP: 0.56, Healthy', 'AP: 0.53, Stressed'], frameon=False)\n", + "ax[0].legend(['AP: 0.52, Healthy', 'AP: 0.46, Stressed'], frameon=False)\n", + "ax[1].legend(['AP: 0.31, Healthy', 'AP: 0.29, Stressed'], frameon=False)\n", "fig.tight_layout()\n", - "fig.savefig(fig_save_dir + 'APmodel.pdf', format='pdf', bbox_inches='tight')" + "fig.savefig(fig_save_dir + 'APmodel-final.pdf', format='pdf', bbox_inches='tight')" ] }, { @@ -363,7 +454,7 @@ "labels = ['Healthy', 'Stressed', '(none)']\n", "sns.heatmap(matrix, annot=True, xticklabels=labels, yticklabels=labels, fmt=\".0f\", cmap=sns.cubehelix_palette(as_cmap=True, start=.3, hue=1, light=.9))\n", "fig.tight_layout()\n", - "fig.savefig(fig_save_dir + 'CMmodel.pdf', format='pdf', bbox_inches='tight')" + "fig.savefig(fig_save_dir + 'CMmodel-final.pdf', format='pdf', bbox_inches='tight')" ] }, { @@ -378,7 +469,7 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 5, "id": "bfb39b5d", "metadata": {}, "outputs": [ diff --git a/classification/evaluation/eval-test-yolo.ipynb b/classification/evaluation/eval-test-yolo.ipynb index 5b6bd87..47cc0ef 100644 --- a/classification/evaluation/eval-test-yolo.ipynb +++ b/classification/evaluation/eval-test-yolo.ipynb @@ -32,7 +32,16 @@ "execution_count": 1, "id": "3fe8177c", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zenon/.local/share/miniconda3/lib/python3.7/site-packages/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.13) or chardet (5.1.0)/charset_normalizer (2.0.4) doesn't match a supported version!\n", + " RequestsDependencyWarning)\n" + ] + } + ], "source": [ "import fiftyone as fo\n", "from PIL import Image\n", @@ -62,10 +71,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "19c5b271", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading split 'test' to '/home/zenon/fiftyone/open-images-v6/test' if necessary\n", + "Necessary images already downloaded\n", + "Existing download of split 'test' is sufficient\n", + "Loading 'open-images-v6' split 'test'\n", + " 100% |█████████████| 12106/12106 [1.0m elapsed, 0s remaining, 209.3 samples/s] \n", + "Dataset 'open-images-v6-test' created\n" + ] + } + ], "source": [ "import fiftyone as fo\n", "import fiftyone.zoo as foz\n", @@ -75,7 +97,7 @@ " classes=[\"Plant\", \"Houseplant\"],\n", " label_types=[\"detections\"],\n", " shuffle=True,\n", - ")\n" + ")" ] }, { @@ -90,7 +112,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "id": "ebdde519", "metadata": {}, "outputs": [], @@ -153,7 +175,7 @@ "metadata": {}, "outputs": [], "source": [ - "yolo_dataset_dir = '/mnt/yolo-second-run/data'\n", + "yolo_dataset_dir = '/home/zenon/testdir'\n", "\n", "# The type of the dataset being imported\n", "dataset_type = fo.types.YOLOv5Dataset\n", @@ -162,9 +184,9 @@ "yolo_test = fo.Dataset.from_dir(\n", " dataset_dir=yolo_dataset_dir,\n", " dataset_type=dataset_type,\n", - " split='test'\n", + " split='val'\n", ")\n", - "yolo_test.name = 'yolo_test'\n", + "yolo_test.name = 'yolo_test4'\n", "yolo_test.persistent = True" ] }, @@ -178,17 +200,25 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 3, "id": "0b86639e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['dataset', 'dataset-small', 'yolo', 'yolo_test']" + "['dataset',\n", + " 'dataset-new',\n", + " 'open-images-v6-test',\n", + " 'plantsdata',\n", + " 'yolo',\n", + " 'yolo_test',\n", + " 'yolo_test2',\n", + " 'yolo_test3',\n", + " 'yolo_test4']" ] }, - "execution_count": 17, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -210,7 +240,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 28, "id": "030e9c7c", "metadata": {}, "outputs": [ @@ -218,7 +248,7 @@ "name": "stdout", "output_type": "stream", "text": [ - " 100% |███████████████| 9184/9184 [56.3m elapsed, 0s remaining, 2.7 samples/s] \n" + " 100% |███████████████| 9184/9184 [1.5h elapsed, 0s remaining, 1.6 samples/s] \n" ] } ], @@ -229,7 +259,7 @@ " for sample in pb(yolo_view):\n", " image = Image.open(sample.filepath)\n", " w, h = image.size\n", - " pred = detect_yolo_only(sample.filepath, '../weights/yolo.onnx')\n", + " pred = detect_yolo_only(sample.filepath, '../weights/yolo-final.onnx')\n", "\n", " detections = []\n", " for _, row in pred.iterrows():\n", @@ -259,7 +289,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "4aaa4577", "metadata": {}, "outputs": [ @@ -268,9 +298,9 @@ "output_type": "stream", "text": [ "Evaluating detections...\n", - " 100% |███████████████| 9184/9184 [24.5s elapsed, 0s remaining, 341.6 samples/s] \n", + " 100% |███████████████| 9184/9184 [23.3s elapsed, 0s remaining, 363.8 samples/s] \n", "Performing IoU sweep...\n", - " 100% |███████████████| 9184/9184 [26.9s elapsed, 0s remaining, 301.2 samples/s] \n" + " 100% |███████████████| 9184/9184 [25.3s elapsed, 0s remaining, 333.0 samples/s] \n" ] } ], @@ -290,7 +320,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "id": "59355da5", "metadata": {}, "outputs": [], @@ -303,7 +333,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "id": "0c8a3151", "metadata": {}, "outputs": [], @@ -324,6 +354,50 @@ "The code for the LaTeX table of the classification report can be printed by first converting the results to a pandas DataFrame and then calling the `to_latex()` method of the DataFrame. This code can then be inserted into the LaTeX document." ] }, + { + "cell_type": "code", + "execution_count": 10, + "id": "f4ede94a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\\begin{tabular}{lrrrr}\n", + "\\toprule\n", + "{} & precision & recall & f1-score & support \\\\\n", + "\\midrule\n", + "Plant & 0.633358 & 0.702811 & 0.666279 & 12238.0 \\\\\n", + "micro avg & 0.633358 & 0.702811 & 0.666279 & 12238.0 \\\\\n", + "macro avg & 0.633358 & 0.702811 & 0.666279 & 12238.0 \\\\\n", + "weighted avg & 0.633358 & 0.702811 & 0.666279 & 12238.0 \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\n", + " precision recall f1-score support\n", + "\n", + " Plant 0.63 0.70 0.67 12238\n", + "\n", + " micro avg 0.63 0.70 0.67 12238\n", + " macro avg 0.63 0.70 0.67 12238\n", + "weighted avg 0.63 0.70 0.67 12238\n", + "\n" + ] + } + ], + "source": [ + "results_df = pd.DataFrame(results.report()).transpose()\n", + "\n", + "# Results for hyper-optimized final YOLO model\n", + "\n", + "# Export DataFrame to LaTeX tabular environment\n", + "print(results_df.to_latex())\n", + "\n", + "# Print classification report\n", + "results.print_report()" + ] + }, { "cell_type": "code", "execution_count": 13, @@ -348,6 +422,8 @@ "source": [ "results_df = pd.DataFrame(results.report()).transpose()\n", "\n", + "# Results for original YOLO model\n", + "\n", "# Export DataFrame to LaTeX tabular environment\n", "# print(results_df.to_latex())\n", "\n", @@ -357,7 +433,38 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 9, + "id": "ea4985d4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " Plant 0.52 0.54 0.53 22535\n", + "\n", + " micro avg 0.52 0.54 0.53 22535\n", + " macro avg 0.52 0.54 0.53 22535\n", + "weighted avg 0.52 0.54 0.53 22535\n", + "\n" + ] + } + ], + "source": [ + "results_df = pd.DataFrame(results.report()).transpose()\n", + "\n", + "# Export DataFrame to LaTeX tabular environment\n", + "# print(results_df.to_latex())\n", + "\n", + "# Print classification report\n", + "results.print_report()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, "id": "a6e0e146", "metadata": {}, "outputs": [ @@ -365,17 +472,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.5726538843333254\n" + "0.5545944356667605\n" ] } ], "source": [ + "# Result of final optimized YOLO model\n", "print(results.mAP())" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 10, "id": "98122829", "metadata": {}, "outputs": [ @@ -389,7 +497,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAACoCAYAAADtjJScAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAActklEQVR4nO3db2gb9/0H8LeWOq2z6qyBMZT4RFqsFlt2aEuzzRfYg5EN2YWFqNQKaxjx0iQbjOTBYtiDxSPOHi0ea8oeNNGyPinUzqigexArmcuetOeR9M8yWRH5Q2ssjXShEN8pyEk8er8Hme4n2ZJ9ujudTqf3C0Ks09e6Tx1/P/3c93v3/fo0TdNARERE5CHfaHQARERERHZjgUNERESewwKHiIiIPIcFDhEREXkOCxwiIiLyHBY4RERE5DkscIiIiMhzHmt0APX02WefQdM0tLW1NToUopawsrICn8+HF154odGhOIZ5hsg5teQYT4/gaJoGI+sYapqGhw8fGmrbCIzPGrfHB7g/RqPxGe1zXsI84wzGZ41X4qslx3h6BKd4RTUwMLBuu0KhgEwmg56eHmzZssWJ0GrC+Kxxe3yA+2M0Gl8qlXIwKndgnnEG47PGK/HVkmMcL3BUVcX09DQA4ODBgxXbJJNJAICiKBBFEZIkORYfETU/5hkicnyKSpZlLC0tVX0/m81ClmVEIhHEYjHE43HngiMiT2CeISLHR3AikQgURYGqqhXfl2UZfr9ff+33+yHLsumrK03TUCgU1m2zvLyMXC4HRVHQ2dmJnp4eU+eql+Xl5bK/3YbxWef2GI3Gp2kafD6fEyGti3mmdl75HWwUxmdNPXKM6+7BWVxcRCAQ0F8HAoGqScqIlZUVZDKZddssLS0hGo3i66+/BgAkEgkEg0HT56yXhYWFRoewLsZnndtjNBLf5s2b6x+IRcwz1Xnhd7CRGJ81duYY1xU4lSiKYvp729raNrxSWl5eRiKRwO3bt/Hzn/8cd+/eRVdXl+lz2u3Bgwe4ffs2nnrqKTz++ONl7/n9/oZfCS4vL2NhYQHbtm1De3t7Q2OpxO3xAe6P0Wh8t27dcjAqezmdZ7q6utDb22v6nHbzyu9gozA+a+qRY1xX4ASDwbIrqaWlJYiiaPrzfD6foTvGu7u78fTTTwMADhw4YPp8jfD++++ju7vbls/y+/0IhUKmvre9vd2Vd+cXuT0+wP0xbhSfG6anjGhknuns7ATw6ErV7P9orPTTjTT772CjMT5r7MwxrilwVFWFIAiQJAmnTp3Sj+dyOceebujp6cGNGzeQz+cdOZ9R1SrbXC6H3bt3Y/fu3baeb72CqZ6Jlaje3JBnivf+7Nu3z9Ln2H1hs3XrVls+i8gtHC9wZFnGRx99hHw+D1EUEYlEAADRaBSJRAKiKGJ4eBjJZBKKouDQoUOOxufG/3kXCgU88cQT6O3tLatsX3zxRVsLMqMF0+rEWizA7t+/j66uLlf+DKm1uDnPWL2QqteFzfnz5/Hw4UPcv3+/6sgSL3ComThe4EiSVPFKaXZ2Vv+6mIxoY3Ymm40KJrMFEMDESM5ye56x0hfqdWEzMjJiqD1HeKlZuGaKitxhveRULbEWR3A2b96MkZGRqgVQaWJkIiQyrx4XNnfu3Fn3Js9aLnB6e3vZvx105MgRvPnmm2XH0uk0zpw5g1wuh1gshocPH+Lq1asYHh7G97//fdvOXcuCmclkUp8iBsoX5Hzttddsi6mIBQ7VpFLSKp1Cq1QAVUuMLHiI3CEUCmHr1q0Vp8KLah3hZf92RjKZxNzcHLLZbNmN8uFwGMPDw5BlGbFYDIVCAX19ffjxj3+M2dlZSzfVFxUXzJyYmAAAjI6OVi1wVFXF2bNny6aDiwtyli7ZYCcWOGSrSklsdWJkwUPUnIyM8GYymar920sjO59//nnZatml9yJaeQw7EAjgmWeeMdxeURSMjIxgamoKY2NjG7b3+/2W1nwqVcuCmTMzMxgaGio7ttGCnFaxwCFHlCa1WgoeLyVEIq8LhUIIhULr9m8vXMh89dVXCIVC+qKNdtq0aRO+/PJLfTmB9aiqqk8LRaPRDQucDz74AN/5zncQDodtidXogpnpdBqSJOnTWU5hgUMNUUvBw0KHqLlU6t/VRnZu3LjRdH27s7MTN2/erDiCY3UhvUAgYKi4AaDvpwYAoihWHD2Zn59HMpnEgwcP0N/fj1/84hdrPkdVVZw5c6bqefbu3Wt4SqvSgpnZbLYhN/WzwCFXMJIQWegQNadKIzuZTAb79u3D5cuX9TbNZPU0UrXlPOoplUrpX/f392NqampNgdPd3Y1IJIJCoVB1OxFBEAxNb61mZMHMeDwOURSRTCaRSqX0e4XsGkVaDwsccqXShMhCh8gbSvvs6gUP2a9rk06ny0ZWIpEIduzYYeqzzI7grLdgZnFRzYMHD+rvp1IpDAwMOFLcACxwyOVY6BB5E/u1ebIsY3JyErFYDLFYDMCjggcAxsfH9aLiwoULyOVykGUZzz//fNXPMzuCs96CmcVFNQVB0GMuPu0VDof1KbXigpxdXV22rcxdxAKHmsJGhU6z37RI1IrW69fNeG+OUyRJQiKRKDsWDodx5cqVsmOla+MUCoW6xFLt3prSRTWByjGXLsi53hSaWSxwqKmslxCLmBiJmktpv758+XJT35tD7sECh5qSF29aJGp1pX22eG8OL1jILBY41NSM3LTIXZKJmke1kRz2Y6oVCxzyjGpTV+fPn8djjz2G3t7eBkdIREZUGsm5evVqo8KhJvWNRgdAZKdQKIQf/ehHuHHjBt5//30AwMjICKLRKG7dutXg6IjIqOIFyzvvvAMAtu2eTq2DBQ55Ummhc+7cOQDAxx9/jJs3bzY4MiIyKhQK6SOv169fx+LiYoMjombCKSrytFAohOXlZQDAgQMHAHCdDaJmUry3rth/r169iu3btzcyJGoSHMEhz+vp6UEikcD58+cBALt378azzz6Lv/71rxzRIXK54lQVR2KpVrYWOLlczs6PI7JNMBjEyy+/XHZvTrHQYbJsHswxrSkUCuGll14C8Ggkh/2WjLA0RZXJZMp2U52ensYbb7xhMSSi+uGCYs2FOYaKiiOxd+/exYEDB3jTMW3IdIFz9OhR5PN5fX4UgO3LLBPVS6XHUHlvjrswx9BqwWAQXV1dAB79LnBrFlqP6QJn586dGBkZKTt28eJFywEROYV74LgbcwxVsnpBT/ZXqsb0PTiVtk4PBoOWgiFyWunj5MX1Ni5fvsz5fRdgjqFKenp6uD4OGWJ6BCebzWJ6ehoDAwMAAE3TMDMzg/fee8+24Iicwikr92GOoWpCoRALG9qQ6RGcqakpdHd3Q9M0aJoGAPrfRM2oOGXFp6zcgTmGjMhkMuyjVJHpEZyxsTEMDg6WHZMkyXJARI3Ep6zcgzmG1sN7cWgjpgucwcFB3Lt3DzMzMwCAoaEh9PX12RYYUSNxyqrxmGNoPasvRDhlRauZnqLKZrP4yU9+gg8//BAffvghotEoH+EkT+GUVWMxx9BGSveqIlrN9AjOpUuXkEgkyo79/ve/5y8beQqnrBqHOYaIrDBd4HR3d6851t/fbykYIreqNGXFOf/6Yo4hIissTVGtxn1iyMuKIzml6+V8+umnnLKqE+YYqgWfpqLVTI/gSJKEn/70pwiHwwAAWZZx7Ngx2wIjcqNKIzkAR3PqgTmGjODTVFSN6RGcvr4+nDhxQl+j4uTJk2se6STyouJIzieffMLVj+uIOYaMWD2yyqepqMjSbuKiKJZdUeVyuYrz5kReU7xC5NVjfTHHkBFc2ZgqMVzgXLp0CZIk4cknnwQA/OUvfyl7X1VVyLKMc+fO2RshkYvxCSv7MMcQkZ0MT1G99dZbSKVS+ut3330XiqLofzRNw927d+sSJJGbhUIhfPvb3wbwaCSHa+WYwxxDRHYyPIKzej2K3/72t2tWFeUy6tSqOJJjHXMM2SGTycDv97Pvkfl7cC5cuIB0Oo2hoSEcPXoUfr8fw8PDXEqdWhbXyrEXcwzVgvfD0Wqmn6IaGBjAq6++iqmpKfT29uKNN97A0tKSjaERNR8+0WEf5hiqBfserWa6wBEEAQAwMzODl19+GQDQ0dFhT1RETYz749iDOYZqxb5HpUxPURVXGc1ms+jt7UU2m4WqqrYFRkStjTmGiKwwPYIzNDSEdDqN9957D/l8HtPT04aTTzKZRDKZxPT0NGRZrtjmyJEjSKfTSKfTOHXqlNkwiahJWckxAPMMUaszPYLj9/vx+uuv66+PHTtmaJ+YbDYLWZYxMTEBABgdHa34ZEQul8P+/fvR39+P06dPmw2TiJqU2RwDMM8QUQMW+pNlWb/bHXiUxGRZXpN8Dh06hEgkYjS8qjRNQ6FQWLfN8vJy2d9uw/isaUR8pefc6PdvdXs3Mhqfpmnw+XymzmHnQn/MM7XzSny19j27eOXn1yj1yDGGC5y33noLfr9f3wvm3XffxfDwcFkbI4twLS4uIhAI6K8DgUDFYefigl+KogAAYrGY0VDLrKysIJPJGGq7sLBg6hxOYXzWOBlf8VwLCwt44oknav4+tzIS3+bNm019tl05BmCesaLZ4yu+//e//x137txBMBisf1AVzu9WXojPaI5xxUJ/xeRSamxsTP96165dGBoa0p+qqEVbWxt6enrWbbO8vIyFhQVs27YN7e3tNZ+j3hifNY2I7/79+wCAbdu2GXqqwys/w1u3bpk+R70X+mOeWZ9X4mtrawMAHD9+HABw9erVDf9tnIyvUbwSXy05xvQ9OKIo4ty5c4jFYnjyyScxNzeHgYGBDb8vGAyWXUktLS1BFMWyNslkEqlUSk8+giAgm80iHA7XHKfP58OWLVsMtW1vbzfcthEYnzVOxlfsoLWes9l/hmanpyoxm2MA5hkrmj2+7du3l60q/t///tfR/55m//k1mp05xvRTVDMzM2XDxYODg1WfVCglSVLZfjO5XE6/KismJFEUsXPnTr2Nqqqmkg4RNS+zOQZgnml1XA+HAAsjOIFAACMjIzV/nyiKGB4eRjKZhKIoOHTokP5eNBpFIpFAOBzWH/FMpVJ4++23zYZJRE3KbI4BmGeIyEKB869//avsiQfg0Q17P/zhDzf83mpPLczOzq5pY8cTDkTUfKzkGIB5hqjVmS5wYrEY9uzZg2AwCL/fj2vXruHEiRN2xkZELYw5hoissHSTcSKRwMzMDFRVxS9/+cs1N/EREZnFHENEVpi+yRiAvgT666+/jlwuh3v37tkVFxERcwwRmWa6wJmcnIQgCPqTCbU84UBEtBHmGLJDJpPBzZs3Gx0GNYDpAmdgYAAjIyMcMiaiumCOISuKW3Xs27cPzz77LIucFmS6wKm06V3puhNERFYwx5AVoVAIN27cwDvvvAMAyOfzDY6InGb6JuO+vj5Eo1F861vfgizLkGUZx44dszM2ImphzDFkVSgUYmHTwkyP4AwODuL06dPo7e2Fpmk4efKkvkkeEZFVzDFEZIXpEZxXXnkFhw8f5hUVEdUFcwwRWWF6BCcWi61ZUXRubs5yQEREAHMMEVljegTH5/PhN7/5DYLBIERRhKIoSCaTHEImIlswxxCRFaYLnLNnz2JwcBB3797Vd/xdWlqyKy4ianHMMURkhekCZ2JiYs2VFIePicguzDFEZEVNBU4mk8GFCxcQDAbx6quvrnmfQ8dEZAVzDBHZxXCBMzc3h9HRUX0uXJZl/OEPf6hnbETUQphjiMhOhp+imp6expUrV/C3v/0Nly9fxtatWyuuNEpEZAZzDBHZyXCB093dre/tAQCHDx/GtWvX6hIUEbUe5hgispPhAicYDJa99vv90DSt7Fgmk7EnKiJqOcwxRGQnwwVONpvFvXv3yv7kcrmyr6empuoZKxF5GHMMEdnJ8E3G8Xgcf/rTn8qOaZqGyclJ/Wufz4cTJ07YGyERtQTmGCKyk+ECZ2RkBGNjY1Xf1zQNZ8+etSUoImo9zDFEZCfDBc7evXvLbgCsZHh42HJARNSamGOIyE6G78Hp6+uzpQ0RUSXMMURkJ9O7iRMRERG5FQscIiIi8hwWOEREROQ5LHCIiIjIc1jgEBERkeewwCEiIiLPMbwODjnnyJEjePPNN8uOffHFF/jzn/+M27dvIxaLAQAWFxexc+dOSJJk27mTySQAQFEUiKJY9bPj8ThEUQQAfO9736t4PBKJ2BYXERFRLVjguEwymcTc3Byy2axeKADA008/jba2NnzyySd6gQMAzz33HGZnZ8vampXNZiHLMiYmJgAAo6OjFQuc0dFRnD59GoIgIBqN6gXOz372M/zxj3/Uj7PAISKiRmGB8z+5XA73799He3u7rZ8bCATwzDPPGG6vKApGRkYwNTW17rL1RYIgQFVVKyHqZFkuW0nW7/dDluWyIiedTutt0uk0EokECoUCvvjiizXHiYiIGoUFDoCvvvoK0WgUX3/9te2fvWnTJnz55Zfo7OzcsK2qqvq0UDQa3bDAmZ6exuDgIMLhsC2xLi4uIhAI6K8DgcCa4ml+fh65XA7ZbBYAMD4+jl/96lf4/PPP8e9//7vseHEkiIiIyGkscAB0dnYikUigs7OzLiM4Roob4NEISnFaRxTFNaMnwKMCo3ifjCRJZdNVRaqq4syZM1XPs3fvXsNTWoqirPnsjo4Ovaian59HJpNBoVCAIAhlx9PptG3FFxERUS1Y4PxPd3c3ent7sWXLlobFkEql9K/7+/sxNTW1psDp7u7e8N4WQRAMTW+tFgwGy0ZslpaW1hRCoiiWHevo6EAul0NXVxcePnxYdjybzbLAISKihmCB4xLpdLpsZCUSiWDHjh2mPsvsCI4kSTh16pT+OpfL6QWWqqoQBAGSJGF6elpvk81m8d3vfhfXr1/HP/7xj7Ljdj7dRUREVAsWOC4gyzImJycRi8X0Kad0Og3g0b0s+/btw3/+8x9cunQJt2/frjh1VcrsCI4oihgeHkYymYSiKDh06JD+XjQaRSKRgCAIiMVimJ6ehqqqOHbsGPx+P775zW/ilVdeKTsuCELNMRAREdmBBY4LSJK05qmjcDiMK1euAAAKhQLy+TxOnTpV9ym0atNfs7OzVdsUCgUAwA9+8IOGTvEREREVcSVjIiIi8hwWOEREROQ5DZmiMrIdgNEtA4iIKmGeIWptjo/gFLcDiEQiiMViiMfjptoQEVXDPENEjo/gGNkOwEgbozRN02+CrWZ5ebnsb7dhfNY0Ir7iuf75z38aOu+DBw9w+/ZtKIqCxx9/vN7h1ezBgwfI5/PYtm3buu00TYPP53MmqHUwz9TOq/HV2hfNaoY+7Pb47M4xjhc4RrYDMNLGqJWVFWQyGUNtFxYWTJ3DKYzPGifju3PnDgDgwIEDjp2z3jZt2oSLFy+W9c1KNm/e7ExA62CeMc9r8XmxL3qV3TnGFY+Jr94OwGybStra2tDT07Num+XlZSwsLGDbtm22b9VgB8ZnTSPi6+3txdWrV5HP5w21L15dPfXUU66+unr++efX/RneunXLwahqwzyzPq/GV2tfNKsZ+rDb47M7xzhe4BjZDsBIG6N8Pp/htVna29tdvY4L47PG6fi2b99uuG2hUEAmk2n4diHVFOPb6GfohukpgHnGCi/GV0tfNKtZ+rDb47Mzxzh+k7EkSWV7Lq3eDmCjNkREG2GeISKfpmma0yctfTSzo6NDXxl3165d+nYA1drU4tNPP4WmaRvO12mahpWVFbS1tbnmCrQU47PG7fEB7o/RaHwPHz6Ez+fDiy++6GB0lTHP1IbxWcP4rKlHjmlIgeOUzz77DJqmoa2trdGhELWElZUV+Hw+vPDCC40OxTHMM0TOqSXHeLrAISIiotbErRqIiIjIc1jgEBERkeewwCEiIiLPYYFDREREnsMCh4iIiDyHBQ4RERF5DgscIiIi8hwWOEREROQ5LHCIiIjIc1jgEBERkeewwCEiIiLPYYFDREREnvNYowNwWjKZBAAoigJRFCFJkqk2jY5PURSk02lEIhHXxVfaVhAEV8YXj8chiiIAIBKJuCq+Ypsip+JTVRXT09MAgIMHD1Zs08i+0SyYY5yJsbQt80zt8bVEntFayOLionb8+HH99f79+021qRcj556fn9dmZmY0TdM0RVG0l156yVXxFSmKou3Zs0eP1QlG49u/f7+mKIqmaZq2Z88eR2LTNGPxKYqinT17Vn9d2r7eZmZmtN/97ndl5y/VyL7RLJhjrGOesYZ55v+11BSVLMvw+/36a7/fD1mWa27TyPgURdGPCYKAjo4OpNNp18RXNDMzg6GhIUfiKjISXzqd1tuk02kkEglXxScIAqanp/V/09L29RaJRBAMBqu+38i+0SyYY5yJsYh5xlx8rZJnWqrAWVxcRCAQ0F8HAgGoqlpzm0bGJ0kSJiYm9NeKoiAcDrsmPuBRh27E1IWR+Obn55HL5ZDNZgEA4+PjrooPAI4dO4ZoNIpoNIrDhw87Ft9GGtk3mgVzjHXMM/WPD2iNPNNSBU4liqLY0qZe1jv3+Pg4Tp486WA0a1WKL5vN6vPOjbY6PlVV0dHRgXA4jHA4jPn5eUevTler9PNLpVJIJBLo6OjA/v37nQ+qBo3sG82COcY65hlrWjXPtFSBs3pYbGlpaU0HMdKmXmo5dzKZhCRJjt64ZiS+eDyux5dKpSDLsmMd20h8oiiWHevo6NCvstwQXzKZxM6dOxEOh/H222+jv7/fNdNAjewbzYI5xjrmmfrH1yp5pqUKHEmSkEql9Ne5XE4f4iwOga3Xxg3xAY/mKAVBQCQSQTqddqzjGInv4MGDiEQiiEQi+t3vTg1vG/33Lf15ZbNZV/37KoqCjo6Osu8pfd0IbugbzYI5xpkYmWesxdcqecanaZpmS3RNovTxs46ODv3qZNeuXUgkEhAEoWobN8SnKAqi0ajeXlVVXL9+3TXxCYIA4FGCnJycRHd3N8bGxhy7QjX676soClRVhSiKrvr3FQQB8Xhc/zk6+fsnyzKmpqaQz+cRi8Vc1zeaBXNM/WNknrEeXyvkmZYrcIiIiMj7WmqKioiIiFoDCxwiIiLyHBY4RERE5DkscIiIiMhzWOAQERGR57DAIVul02mMj4/jueeew6lTpxCPxxGPxzE+Pl63tTRkWUY0GtV3qF39moi8hXmGjOBj4mQ7VVWxY8cOXLlypWy9iqNHj+KDDz7Qj9mpuKZDLBar+JqIvIV5hjbCERxyhCRJUFXVNcuBE5H3MM9QKRY45IjiPjFO7kpMRK2FeYZKPdboAMi7ivvZpNNpLC0tYXZ2tmwp9eIGeaIoIpVKYWxsDMCjfVumpqYwMDAARVEwNDSkL98tCAKy2SwWFxf19kTUuphnqBqO4FDdSJKk/5mbmyvbzC2bzWJyclLfNC8YDCIej0NVVYyOjuLw4cOIRCJYXFzUb+I7evQoRFFELBZDPp/X9yshotbFPEPVcASH6i4cDqO/vx+Tk5OYmJgAAExNTaGjo6NsrjyVSkEQBIiiqN8gePjwYf394s2E2WwWS0tLju5wTETuxjxDq7HAIUf4/X5cvHix7FhfXx8kSdJfx2IxxONx+P1+/VjpkxBnzpxBIBBAJBJxbNdgImoezDNUilNU5IhgMKhfCaXTaQwPD2Nubq6sjSzLiEQiuHbt2prjsizj2rVrOHjwIERRRD6f198rUlW17PtWvyYib2OeoVJcB4dslU6nceHCBWSzWQwMDECSJP2JhiNHjmBgYEBfN0KWZXz00UcYGBgA8GguXRCEiscB4Ne//jX27t2rn2tqagrDw8MQRRHHjx8HAJw8eRIAyl7ziQoib2GeISNY4BAREZHncIqKiIiIPIcFDhEREXkOCxwiIiLyHBY4RERE5DkscIiIiMhzWOAQERGR57DAISIiIs9hgUNERESewwKHiIiIPIcFDhEREXkOCxwiIiLyHBY4RERE5Dn/B7bGNnWF/RAwAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAACoCAYAAADtjJScAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAcBElEQVR4nO3dYWwT5/0H8K//NB1B9dlIWaUJn8WqGJQ4qaAb23JIezGhyUmlITw1RhOaSCnkzQSTRqS9WDMR9mrJtNJXBY/1zaTGRbXUvSCGpS97kaAbY46JStEWxZ7oJqbmzigBgnr/F8y3OLHj8935fD5/PxJq7vL47lfD/fS75557Hp+maRqIiIiIPOT/mh0AERERkd1Y4BAREZHnsMAhIiIiz2GBQ0RERJ7DAoeIiIg8hwUOEREReQ4LHCIiIvIcFjhERETkOSxwiIiIyHOec/qEqqoilUoBAE6ePFmxTSaTAQAoigJRFCFJkmPxEVHrY54hIsd7cGRZxvLyctXf5/N5yLKMWCyGRCKBZDLpXHBE5AnMM0TkeA9OLBaDoihQVbXi72VZht/v17f9fj9kWTZ1d3Xr1i1omoaOjg7T8RKRcWtra/D5fNi/f39T42CeIfKmenKM4wVOLUtLSwgGg/p2MBismqRq0TRN/1Or3dOnT/Hcc8/B5/OZOlcjMT5r3B4f4P4YjcbXKmv3NiLPPHnyxKboiMgOritwKlEUxdTnOjo68OTJE6ytrRlq//TpU1PncQrjs8bt8QHuj9FIfK3ak2Elz2iahu7u7i3bra6uYnFxEbt370ZnZ6epczUS47OG8VljNL579+4Zvgl0XYETDofL7qSWl5chiqLp43V0dDDxNBjjs87tMdaTfFqB3XnG5/Nhx44dhtp2dnYabtsMjM8axmdNrfjq6eF2TYGjqioEQYAkSZicnNT3FwoFS283MPE4h/FZ5/YY7Uw+zdCoPENE7uN4gSPLMj7++GMUi0WIoohYLAYAiMfjSKfTEEURQ0NDyGQyUBQFp06dciSuQqGAR48eufru2Q3x+f1+RCKRpsZAVIvb88yLL77I64iowRwvcCRJqninNDs7q/9cSkZOefDgAeLxOL788ktHz9uqPvzwQ4RCIX27UgHGQoiaqRXyzN27d3mNEDWQax5RNVNXVxfS6TS6urqa3kNSiVvGZxQKBRw+fBiHDx821H5jIQSw8KH2Vcoz//nPf3DixAkUi8Vmh0TkaSxw/isUCqGnp8eV4x9WVlawffv2psf3yiuv4O7du5sS88YCrFYhtL7wYcFD7SQUCqGrq6vZYRC1BRY4VJdKxcjGAqxaIVSt8GHBQ+1oYWHB9Gd5nRDVxgKHGqJS8t1Y+GxV8PT09DCBkyeVZlA+duyYpeNUegRshZWXGVhwkRuxwCFHrU+CtQoe9uyQF3V3d1fs4TSq3rFwTuGYO3IbFjjUVJUKnoWFBfbskKdZ+Tdc7RGwVWZfZuCYu+Y7ffo03n777bJ9uVwOFy9eRKFQQCKRwJMnT3D79m0MDQ3he9/7nm3nzmQyAJ7NBC6K4pbzSWUyGX0eqo2f/epXv4pAIGBbXAALHHKZSCSCSCTCnh2iLTTi37zZlxk45q65MpkM5ubmkM/ny2bjjkajGBoagizLSCQSWFlZQW9vL370ox9hdnbW0szdJfl8HrIsY2JiAgAwMjJStcBRVRWXLl3S55za+Nkf//jHOHPmjOWY1mOBQ67Enh2i1tGOY+7+/ve/Y3l5Wd+2a0LWYDCIl156yXB7RVEwPDyM6elpjI2N1Wzv9/tNLyy7kSzL+piy0rFlWa5Y5MzMzGBwcHDLz2azWfT09NgSG8ACh1qE0Z6dVkyURF5V75i7Vrl+Hzx4gEgk0pDJYbdt24bPP//c0HQCqqrqj4Xi8XjNAuejjz7Ct7/9bUSjUVtiXVpaQjAY1LeDwWDF4imXy0GSJP2RVKXPBgIBrKys2BJXCQscailGenZaKVEStROvXL9dXV347LPPKvbgWJ2QNRgMGp4rSZZlfUZuURQr9p7Mz88jk8ng8ePH6Ovrw09+8pNNx1FVFRcvXqx6nqNHjxp+pKUoyqZ9+Xze0MzhDx8+NHQOo1jgUEtb37NTLVHu2rWryVESUSVGrl+3FjobHyM1Y0LWbDar/9zX14fp6elNBU4oFEIsFsPKykrVuZcEQTD0eGujcDhc1mOzvLy8qRBKJpMQRRGZTAbZbFYfK7Txs4qiYM+ePXXHsBUWOOQJWyXK27dvNzk6ItoKb1Tql8vlynpWYrEYDhw4YOpYZntwJEnC5OSkvl0oFPQCS1VVCIKAkydP6r/PZrPo7+9HNBqFIAhln/3nP/+J119/3VT81bDAIU9Znyhv3LiBY8eO4ZNPPsHOnTttHbxGRPbjjYoxsixjamoKiUQCiUQCwLOCBwDGx8f1ouLq1asoFAqQZRn79u2rejyzPTiiKGJoaAiZTAaKouhvSAFAPB5HOp2GIAh6zKW3vaLR6KbPjoyM1H3+WljgkCet79Y+ceIEAOD999/Hvn37XNvlTUTPVLpRKRaL2L59e7NDcwVJkpBOp8v2RaNR3Lx5s2zf+rlx7B7AW1JtbM3s7GzZdqWY1392q0doZv2frUcjcpFSgnz//fcBAMPDw9izZw/++Mc/4rPPPmtydERUSyQS0XteP/30UywtLTU5Imol7MEhT4tEIti1axfS6TSePn2K4eFhvcv77t277M0hcrnSXCmlntjbt2/j5ZdfbmZI1CLYg0NtIRwO49VXX8Xdu3fxhz/8AQBw48YN9uQQuVypJ/by5csAgE8++YTXLRnCHhxqK+t7bEqrObv9dVSidheJRLC6ugrgfz057IGlWtiDQ22ndEf44YcfAgAOHz6MPXv28K6QyMW6u7uRTqf1nhy7Fxsl72GBQ20pEongBz/4AR9ZEbWQcDiMvXv3AgAWFhZ4vdKWbC1wCoWCnYcjarhIJIJvfetbAJ49smJPjrsxx1Bp0DGvV6rF0hichYWFsrU4UqkU3nrrLYshETlr43wbN27c0PdTczHH0Ebd3d2b5schqsR0gXPmzBkUi8Wy5c7tnqSHyCmVBh9zEGNzMcdQNZFIRC9sFhYW4Pf7ea3SJqYLnIMHD2J4eLhs37Vr1ywHRNQs7MlxF+YY2sr6R1UAb0hoM9NjcCotvBUOhy0FQ9RslcbkcObj5mCOoa2UbkhKLwnwURVtZLoHJ5/PI5VKob+/HwCgaRpmZmbwwQcf2BYcUTNUW+yPd4jOYo6hWtY/qiLayHQPzvT0NEKhEDRNg6ZpAKD/l6jV8TXy5mOOoXrwtXHayHQPztjYGAYGBsr2SZJkOSAiN+Hg4+ZhjiEjOBaHqjHdgzMwMICHDx/iypUruHLlCh4+fIje3l47YyNyhY3P+tmT4wzmGDKCY3GoGktjcM6cOaMPBEwmk7hw4YK+tD2Rl1RbwyoUCvEV1QZhjiGjOBaHKjFd4Fy/fh3pdLps329+8xsmH/KsaoOPAXaLNwJzDBFZYbrACYVCm/b19fVZCobI7SKRiF7oFItFLCwscDbVBmGOITM48R+VWHpEtRHXiaF2weTZeMwxVA8ONqaNTBc4kiTh9ddfRzQaBQDIsoyzZ8/aFhgRtTfmGKrHxpnI2atKpt+i6u3txblz5/Q5Ks6fP7/plU4iIrOYY6hekUiEY7RIZ2k1cVEUy+6oCoVCxefmRERmMMcQkVmGC5zr169DkiS88MILAIArV66U/V5VVciyjMuXL9sbIRG1BeYYIrKT4UdU77zzDrLZrL793nvvQVEU/Y+mafjiiy8aEiQReR9zDNmJSzeQ4R6cjfNR/OpXv9o0qyinUScis5hjyA58m4pKTA8yvnr1qj59+okTJ/DTn/6Ur3ASkW2YY8gMLt1AJaYLnP7+frz22muYnp5GT08P3nrrLSwvL9sYGhG1M6s5JpPJIJPJIJVKQZblim1Onz6NXC6HXC6HyclJmyKnZuPbVARYKHAEQQAAzMzM4NVXXwUABAIBQ59l4iGiWqzkmHw+D1mWEYvFkEgkkEwmK7YrFAo4fvw4pqamMDo6ak/gROQKlmcyzufz6OnpQT6fh6qqhj4nyzImJiYAACMjIxWfq5cST19fHy5cuGA2TCJqUWZzDPBsUsDSWAzg2bgMWZY35ZpTp04hFovZFzQRuYbpAmdwcBCpVAoffPABisUiUqkUdu7cWfNzTiceTdOwsrKyZZvV1dWy/7oN47OmkfGtP3atf2dGj+NGRuPTNA0+n8+Wc5rNMQCwtLSEYDCobweDwYrFUemtLUVRAACJRMJUrMwzjVdvfHZdm0Z57ftzWiNyjOkCx+/344033tC3z549a2gAoNOJZ21tDQsLC4baLi4umjqHUxifNY2Ir3TMxcVFbN++3bbjuZWR+J5//nlbzmU2x1RTyiXrjY2N6T8fOnQIg4OD+qOxejDPOMdofHZfm0Z55ftrFjtzjCsm+mtk4uno6EB3d/eWbVZXV7G4uIjdu3ejs7Oz7nM0GuOzppHxPXr0CACwe/duS4MavfId3rt3z/Q57Mwx4XC47MZpeXkZoiiWtclkMshms3quEQQB+XxeX/uqHswzjVdvfHZdm0Z57ftzWiNyjOEC55133oHf79fXgnnvvfcwNDRU1sbIJFxOJx6fz4cdO3YYatvZ2Wm4bTMwPmsaEV/pQrTr2K3+HVp5PGVXjgGezZez/uWEQqGgPwZXVRWCIEAUxbKbJlVVTeUYgHnGSUbjK12bi4uLePHFFx2bC8cr31+z2JljHJ/oz+nEQ0Stwc6J/kRRxNDQEDKZDBRFwalTp/TfxeNxpNNpRKNR/Y3ObDaLd9991/r/BLkGJ/wj02NwRFHE5cuXkUgk8MILL2Bubg79/f2GPsfEQ0S1mM0xJdVeUpidnd3Uhm9SeU9pwr8bN27g2LFjnPCvDZkucGZmZsq6iwcGBnD9+nV8//vfr/lZJh4iqsVKjiECnhU5LGzal+kCJxgMYnh42M5YiIh0zDFEZIXpmYz/9re/4eHDh2X71q8ETERkBXMMEVlhugcnkUjgyJEjCIfD8Pv9uHPnDs6dO2dnbETUxphjiMgKS4OM0+k0ZmZmoKoqfvazn2163ZuIyCzmGCKywvQjKgD6YplvvPEGCoXCpu5kIiIrmGOIyCzTBc7U1BQEQdDnpRgYGKi6MjgRUb2YY4jICtMFTn9/P4aHh9llTEQNwRxDRFaYLnAqLXrHNxyIyC7MMURkhelBxr29vYjH49i5cydkWYYsyzh79qydsRFRG2OOISIrTPfgDAwM4MKFC+jp6YGmaTh//ry+SB4RkVXMMURkhekenB/+8IcYHR3lHRURNQRzDBFZYboHJ5FIbFoTZm5uznJAREQAcwwRWWO6B8fn8+GXv/wlwuEwRFGEoijIZDLsQiYiWzDHEJEVpgucS5cuYWBgAF988YW+4u/y8rJdcRFRm2OOISIrTBc4ExMTm+6k2H1MRHZhjiEiK+oqcBYWFnD16lWEw2G89tprm37PrmMisoI5hojsYrjAmZubw8jIiP4sXJZl/Pa3v21kbETURphjiMhOht+iSqVSuHnzJv70pz/hxo0b2LVrV8WZRomIzGCOISI7GS5wQqEQ/H6/vj06Ooo7d+40JCgiaj/MMURkJ8MFTjgcLtv2+/3QNK1s38LCgj1REVHbYY4hIjsZLnDy+TwePnxY9qdQKJT9PD093chYicjDmGOIyE6GBxknk0n87ne/K9unaRqmpqb0n30+H86dO2dvhETUFphjiMhOhguc4eFhjI2NVf29pmm4dOmSLUERUfthjiEiOxkucI4ePVo2ALCSoaEhywERUXtijiEiOxkeg9Pb22tLGyKiSphjiMhOplcTJyIiInIrFjhERETkOSxwiIiIyHNY4BAREZHn1LWaODnj9OnTePvtt8v2/eMf/8Dvf/973L9/H4lEAgCwtLSEgwcPQpIk286dyWQAAIqiQBTFqsdOJpMQRREA8N3vfnfTMQRBsDUuIiKierDAcZlMJoO5uTnk83m9gACAr3/96+jo6MCf//xnvcABgL1792J2drasrVn5fB6yLGNiYgIAMDIyUrFIGRkZwYULFyAIAuLxeFmBo6oqLl26hFOnTlmOh4iIyCwWOP9VKBTw6NEjdHZ22nrcYDCIl156yXB7RVEwPDyM6enpLSc9KxEEAaqqWglRJ8ty2Twkfr8fsiyXFTm5XE5vk8vlkE6nsbKyov9+ZmYGg4ODtsRDRERkFgscAA8ePEA8HseXX35p+7G3bduGzz//HF1dXTXbqqqqPxaKx+M1C5xUKoWBgQFEo1FbYl1aWkIwGNS3g8HgpuJpfn4ehUIB+XweADA+Po6f//znAJ4thChJkv6Yi4iIqFlY4ADo6upCOp1GV1dXQ3pwjBQ3wLMelFgsBgAQRXFT7wnwrMAoFRCSJJU9ripRVRUXL16sep6jR48afqSlKMqmYwcCAb2omp+f11d4LhQK+MY3vmHouERERI3EAue/QqEQenp6sGPHjqbFkM1m9Z/7+vowPT29qcAJhUJ6EVSNIAiGHm9tFA6Hy3pslpeXNxVCoiiW7QsEAigUCrh16xb279+PTCaDbDarjyGyq3eJiIioHixwXCKXy5X1rMRiMRw4cMDUscz24EiShMnJSX27UCjoBZaqqvqbUalUSm+Tz+fxne98p6xAzGaz6O/vZ3FDRERNwwLHBWRZxtTUFBKJhP7IKZfLAXg2xuXYsWP417/+hevXr+P+/fsVH12tZ7YHRxRFDA0NIZPJQFGUsjeh4vE40uk0BEFAIpFAKpWCqqo4e/Zs2cBkWZb1t8Ci0agtb3cRERHViwWOC0iShHQ6XbYvGo3i5s2bAICVlRUUi0VMTk42/BFatcdfs7OzVdusf4uq0v8LERGR0ziTMREREXkOCxwiIiLynKY8ojKyHIDRJQOIiCphniFqb4734JSWA4jFYkgkEkgmk6baEBFVwzxDRI734BhZDsBIG6M0TSsbBFvJ6upq2X/dhvFZ08j4Ssf861//aun4jx8/xv3796EoCr7yla/YFZ5tHj9+jGKxiN27d2/ZTtM0+Hw+Z4LaAvNM/bwan13XaC2tcA27PT67c4zjBY6R5QCMtDFqbW1Nn2m3lsXFRVPncArjs6YR8f373/8GAJw4ccL2Y7vNtm3bcO3atbJrs5Lnn3/emYC2wDxjntfia6drtNXZnWNc8Zr4xuUAzLappKOjA93d3Vu2WV1dxeLiInbv3m37Ug12YHzWNDK+np4e3L59G8Vi0dJxSndXX/va11x9d7Vv374tv8N79+45GFV9mGe25tX47LpGa2mFa9jt8dmdYxwvcIwsB2CkjVE+n8/w3DGdnZ1NXaqhFsZnTaPie/nlly0fY2VlBQsLC01fLqSaUny1vkM3PJ4CmGes8GJ8dlyjtbTKNez2+OzMMY4PMpYkqWzNpY3LAdRqQ0RUC/MMEfk0TdOcPun6VzMDgYA+M+6hQ4f05QCqtanHX/7yF2iaVvN5naZpWFtbQ0dHh2vuQNdjfNa4PT7A/TEaje/Jkyfw+Xx45ZVXHIyuMuaZ+jA+axifNY3IMU0pcJxy69YtaJqGjo6OZodC1BbW1tbg8/mwf//+ZofiGOYZIufUk2M8XeAQERFRe+JSDUREROQ5LHCIiIjIc1jgEBERkeewwCEiIiLPYYFDREREnsMCh4iIiDyHBQ4RERF5DgscIiIi8hwWOEREROQ5LHCIiIjIc1jgEBERkeewwCEiIiLPea7ZATgtk8kAABRFgSiKkCTJVJtmx6coCnK5HGKxmOviW99WEARXxpdMJiGKIgAgFou5Kr5SmxKn4lNVFalUCgBw8uTJim2aeW20CuYYZ2Jc35Z5pv742iLPaG1kaWlJe/PNN/Xt48ePm2rTKEbOPT8/r83MzGiapmmKomjf/OY3XRVfiaIo2pEjR/RYnWA0vuPHj2uKomiapmlHjhxxJDZNMxafoijapUuX9O317RttZmZG+/Wvf112/vWaeW20CuYY65hnrGGe+Z+2ekQlyzL8fr++7ff7Icty3W2aGZ+iKPo+QRAQCASQy+VcE1/JzMwMBgcHHYmrxEh8uVxOb5PL5ZBOp10VnyAISKVS+t/p+vaNFovFEA6Hq/6+mddGq2COcSbGEuYZc/G1S55pqwJnaWkJwWBQ3w4Gg1BVte42zYxPkiRMTEzo24qiIBqNuiY+4NkF3YxHF0bim5+fR6FQQD6fBwCMj4+7Kj4AOHv2LOLxOOLxOEZHRx2Lr5ZmXhutgjnGOuaZxscHtEeeaasCpxJFUWxp0yhbnXt8fBznz593MJrNKsWXz+f1587NtjE+VVURCAQQjUYRjUYxPz/v6N3pRpW+v2w2i3Q6jUAggOPHjzsfVB2aeW20CuYY65hnrGnXPNNWBc7GbrHl5eVNF4iRNo1Sz7kzmQwkSXJ04JqR+JLJpB5fNpuFLMuOXdhG4hNFsWxfIBDQ77LcEF8mk8HBgwcRjUbx7rvvoq+vzzWPgZp5bbQK5hjrmGcaH1+75Jm2KnAkSUI2m9W3C4WC3sVZ6gLbqo0b4gOePaMUBAGxWAy5XM6xC8dIfCdPnkQsFkMsFtNHvzvVvW3073f995XP513196soCgKBQNln1m83gxuujVbBHONMjMwz1uJrlzzj0zRNsyW6FrH+9bNAIKDfnRw6dAjpdBqCIFRt44b4FEVBPB7X26uqik8//dQ18QmCAOBZgpyamkIoFMLY2Jhjd6hG/34VRYGqqhBF0VV/v4IgIJlM6t+jk//+ZFnG9PQ0isUiEomE666NVsEc0/gYmWesx9cOeabtChwiIiLyvrZ6REVERETtgQUOEREReQ4LHCIiIvIcFjhERETkOSxwiIiIyHNY4JCtcrkcxsfHsXfvXkxOTiKZTCKZTGJ8fLxhc2nIsox4PK6vULtxm4i8hXmGjOBr4mQ7VVVx4MAB3Lx5s2y+ijNnzuCjjz7S99mpNKdDIpGouE1E3sI8Q7WwB4ccIUkSVFV1zXTgROQ9zDO0HgscckRpnRgnVyUmovbCPEPrPdfsAMi7SuvZ5HI5LC8vY3Z2tmwq9dICeaIoIpvNYmxsDMCzdVump6fR398PRVEwODioT98tCALy+TyWlpb09kTUvphnqBr24FDDSJKk/5mbmytbzC2fz2NqakpfNC8cDiOZTEJVVYyMjGB0dBSxWAxLS0v6IL4zZ85AFEUkEgkUi0V9vRIial/MM1QNe3Co4aLRKPr6+jA1NYWJiQkAwPT0NAKBQNmz8mw2C0EQIIqiPkBwdHRU/31pMGE+n8fy8rKjKxwTkbsxz9BGLHDIEX6/H9euXSvb19vbC0mS9O1EIoFkMgm/36/vW/8mxMWLFxEMBhGLxRxbNZiIWgfzDK3HR1TkiHA4rN8J5XI5DA0NYW5urqyNLMuIxWK4c+fOpv2yLOPOnTs4efIkRFFEsVjUf1eiqmrZ5zZuE5G3Mc/QepwHh2yVy+Vw9epV5PN59Pf3Q5Ik/Y2G06dPo7+/X583QpZlfPzxx+jv7wfw7Fm6IAgV9wPAL37xCxw9elQ/1/T0NIaGhiCKIt58800AwPnz5wGgbJtvVBB5C/MMGcECh4iIiDyHj6iIiIjIc1jgEBERkeewwCEiIiLPYYFDREREnsMCh4iIiDyHBQ4RERF5DgscIiIi8hwWOEREROQ5LHCIiIjIc1jgEBERkeewwCEiIiLPYYFDREREnvP/963vMpweFMMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -406,10 +514,10 @@ "results.plot_pr_curves(iou_thresh=0.95, backend='matplotlib', ax=ax[1], color='black', linewidth=1)\n", "# Set the labels for the legends manually because\n", "# the default ones contain a line for the classes (irrelevant).\n", - "ax[0].legend(['AP = 0.66'], frameon=False)\n", - "ax[1].legend(['AP = 0.41'], frameon=False)\n", + "ax[0].legend(['AP = 0.64'], frameon=False)\n", + "ax[1].legend(['AP = 0.40'], frameon=False)\n", "fig.tight_layout()\n", - "fig.savefig(fig_save_dir + 'APpt5-pt95.pdf', format='pdf', bbox_inches='tight')" + "fig.savefig(fig_save_dir + 'APpt5-pt95-final.pdf', format='pdf', bbox_inches='tight')" ] }, { diff --git a/classification/evaluation/eval-train-yolo.ipynb b/classification/evaluation/eval-train-yolo.ipynb index 7092e25..95f39c5 100644 --- a/classification/evaluation/eval-train-yolo.ipynb +++ b/classification/evaluation/eval-train-yolo.ipynb @@ -26,7 +26,16 @@ "execution_count": 1, "id": "c0727442", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zenon/.local/share/miniconda3/lib/python3.7/site-packages/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.13) or chardet (5.1.0)/charset_normalizer (2.0.4) doesn't match a supported version!\n", + " RequestsDependencyWarning)\n" + ] + } + ], "source": [ "import matplotlib.pyplot as plt\n", "import pandas as pd\n", @@ -94,103 +103,103 @@ " \n", " \n", " 0\n", - " 0/299\n", - " 7.49G\n", - " 0.04468\n", - " 0.01796\n", + " 0/69\n", + " 7.28G\n", + " 0.02551\n", + " 0.011000\n", " 0\n", - " 0.06264\n", - " 87\n", + " 0.03651\n", + " 12\n", " 640\n", - " 0.7777\n", - " 0.6004\n", - " 0.7016\n", - " 0.5741\n", - " 0.04719\n", - " 0.007429\n", + " 0.7350\n", + " 0.5716\n", + " 0.6676\n", + " 0.5290\n", + " 0.02950\n", + " 0.005770\n", " 0\n", - " 0.677645\n", - " 0.58685\n", + " 0.643083\n", + " 0.54286\n", " \n", " \n", " 1\n", - " 1/299\n", - " 5.66G\n", - " 0.03713\n", - " 0.01763\n", + " 1/69\n", + " 7.27G\n", + " 0.02155\n", + " 0.010970\n", " 0\n", - " 0.05476\n", - " 87\n", + " 0.03252\n", + " 6\n", " 640\n", - " 0.7596\n", - " 0.5931\n", - " 0.6851\n", - " 0.5284\n", - " 0.04633\n", - " 0.007840\n", + " 0.7681\n", + " 0.6184\n", + " 0.7172\n", + " 0.5787\n", + " 0.02820\n", + " 0.005597\n", " 0\n", - " 0.666103\n", - " 0.54407\n", + " 0.685168\n", + " 0.59255\n", " \n", " \n", " 2\n", - " 2/299\n", - " 5.9G\n", - " 0.03728\n", - " 0.01787\n", + " 2/69\n", + " 7.27G\n", + " 0.02127\n", + " 0.010850\n", " 0\n", - " 0.05515\n", - " 64\n", + " 0.03212\n", + " 22\n", " 640\n", - " 0.7899\n", - " 0.5904\n", - " 0.6901\n", - " 0.5618\n", - " 0.04848\n", - " 0.007925\n", + " 0.7820\n", + " 0.5965\n", + " 0.7014\n", + " 0.5684\n", + " 0.02819\n", + " 0.005582\n", " 0\n", - " 0.675733\n", - " 0.57463\n", + " 0.676769\n", + " 0.58170\n", " \n", " \n", " 3\n", - " 3/299\n", - " 5.87G\n", - " 0.03721\n", - " 0.01785\n", + " 3/69\n", + " 7.27G\n", + " 0.02089\n", + " 0.010820\n", " 0\n", - " 0.05507\n", - " 128\n", + " 0.03170\n", + " 9\n", " 640\n", - " 0.7593\n", - " 0.5991\n", - " 0.6911\n", - " 0.5547\n", - " 0.04522\n", - " 0.007872\n", + " 0.7795\n", + " 0.6028\n", + " 0.7099\n", + " 0.5858\n", + " 0.02629\n", + " 0.005540\n", " 0\n", - " 0.669754\n", - " 0.56834\n", + " 0.679856\n", + " 0.59821\n", " \n", " \n", " 4\n", - " 4/299\n", - " 5.9G\n", - " 0.03695\n", - " 0.01766\n", + " 4/69\n", + " 7.28G\n", + " 0.02061\n", + " 0.010730\n", " 0\n", - " 0.05461\n", - " 39\n", + " 0.03135\n", + " 33\n", " 640\n", - " 0.7454\n", - " 0.6202\n", - " 0.7018\n", - " 0.5798\n", - " 0.04608\n", - " 0.007888\n", + " 0.7653\n", + " 0.6153\n", + " 0.7170\n", + " 0.5929\n", + " 0.02638\n", + " 0.005602\n", " 0\n", - " 0.677061\n", - " 0.59200\n", + " 0.682151\n", + " 0.60531\n", " \n", " \n", " ...\n", @@ -213,151 +222,151 @@ " ...\n", " \n", " \n", - " 295\n", - " 295/299\n", - " 5.91G\n", - " 0.02877\n", - " 0.01319\n", + " 65\n", + " 65/69\n", + " 7.25G\n", + " 0.01648\n", + " 0.008796\n", " 0\n", - " 0.04196\n", - " 46\n", + " 0.02527\n", + " 14\n", " 640\n", - " 0.6611\n", - " 0.6464\n", - " 0.6605\n", - " 0.5391\n", - " 0.04283\n", - " 0.009531\n", + " 0.7416\n", + " 0.6157\n", + " 0.6932\n", + " 0.5738\n", + " 0.02396\n", + " 0.006050\n", " 0\n", - " 0.653667\n", - " 0.55124\n", + " 0.672811\n", + " 0.58574\n", " \n", " \n", - " 296\n", - " 296/299\n", - " 5.86G\n", - " 0.02869\n", - " 0.01313\n", + " 66\n", + " 66/69\n", + " 7.25G\n", + " 0.01645\n", + " 0.008787\n", " 0\n", - " 0.04182\n", - " 35\n", + " 0.02524\n", + " 8\n", " 640\n", - " 0.6792\n", - " 0.6322\n", - " 0.6616\n", - " 0.5396\n", - " 0.04283\n", - " 0.009532\n", + " 0.7360\n", + " 0.6175\n", + " 0.6915\n", + " 0.5715\n", + " 0.02398\n", + " 0.006076\n", " 0\n", - " 0.654858\n", - " 0.55180\n", + " 0.671563\n", + " 0.58350\n", " \n", " \n", - " 297\n", - " 297/299\n", - " 5.91G\n", - " 0.02872\n", - " 0.01319\n", + " 67\n", + " 67/69\n", + " 7.25G\n", + " 0.01629\n", + " 0.008693\n", " 0\n", - " 0.04191\n", - " 98\n", + " 0.02499\n", + " 3\n", " 640\n", - " 0.7010\n", - " 0.6163\n", - " 0.6619\n", - " 0.5394\n", - " 0.04282\n", - " 0.009539\n", + " 0.7511\n", + " 0.6058\n", + " 0.6895\n", + " 0.5694\n", + " 0.02401\n", + " 0.006101\n", " 0\n", - " 0.655927\n", - " 0.55165\n", + " 0.670670\n", + " 0.58141\n", " \n", " \n", - " 298\n", - " 298/299\n", - " 5.92G\n", - " 0.02870\n", - " 0.01315\n", + " 68\n", + " 68/69\n", + " 7.25G\n", + " 0.01627\n", + " 0.008705\n", " 0\n", - " 0.04185\n", - " 47\n", + " 0.02498\n", + " 27\n", " 640\n", - " 0.6962\n", - " 0.6193\n", - " 0.6637\n", - " 0.5406\n", - " 0.04284\n", - " 0.009546\n", + " 0.7536\n", + " 0.6024\n", + " 0.6883\n", + " 0.5680\n", + " 0.02404\n", + " 0.006127\n", " 0\n", - " 0.655502\n", - " 0.55291\n", + " 0.669570\n", + " 0.58003\n", " \n", " \n", - " 299\n", - " 299/299\n", - " 5.9G\n", - " 0.02875\n", - " 0.01319\n", + " 69\n", + " 69/69\n", + " 7.25G\n", + " 0.01622\n", + " 0.008689\n", " 0\n", - " 0.04195\n", - " 44\n", + " 0.02491\n", + " 28\n", " 640\n", - " 0.6892\n", - " 0.6242\n", - " 0.6642\n", - " 0.5413\n", - " 0.04285\n", - " 0.009554\n", + " 0.6964\n", + " 0.6407\n", + " 0.6871\n", + " 0.5661\n", + " 0.02406\n", + " 0.006154\n", " 0\n", - " 0.655092\n", - " 0.55359\n", + " 0.667390\n", + " 0.57820\n", " \n", " \n", "\n", - "

300 rows × 17 columns

\n", + "

70 rows × 17 columns

\n", "" ], "text/plain": [ - " epoch mem train/box_loss train/obj_loss train/cls_loss total \\\n", - "0 0/299 7.49G 0.04468 0.01796 0 0.06264 \n", - "1 1/299 5.66G 0.03713 0.01763 0 0.05476 \n", - "2 2/299 5.9G 0.03728 0.01787 0 0.05515 \n", - "3 3/299 5.87G 0.03721 0.01785 0 0.05507 \n", - "4 4/299 5.9G 0.03695 0.01766 0 0.05461 \n", - ".. ... ... ... ... ... ... \n", - "295 295/299 5.91G 0.02877 0.01319 0 0.04196 \n", - "296 296/299 5.86G 0.02869 0.01313 0 0.04182 \n", - "297 297/299 5.91G 0.02872 0.01319 0 0.04191 \n", - "298 298/299 5.92G 0.02870 0.01315 0 0.04185 \n", - "299 299/299 5.9G 0.02875 0.01319 0 0.04195 \n", + " epoch mem train/box_loss train/obj_loss train/cls_loss total \\\n", + "0 0/69 7.28G 0.02551 0.011000 0 0.03651 \n", + "1 1/69 7.27G 0.02155 0.010970 0 0.03252 \n", + "2 2/69 7.27G 0.02127 0.010850 0 0.03212 \n", + "3 3/69 7.27G 0.02089 0.010820 0 0.03170 \n", + "4 4/69 7.28G 0.02061 0.010730 0 0.03135 \n", + ".. ... ... ... ... ... ... \n", + "65 65/69 7.25G 0.01648 0.008796 0 0.02527 \n", + "66 66/69 7.25G 0.01645 0.008787 0 0.02524 \n", + "67 67/69 7.25G 0.01629 0.008693 0 0.02499 \n", + "68 68/69 7.25G 0.01627 0.008705 0 0.02498 \n", + "69 69/69 7.25G 0.01622 0.008689 0 0.02491 \n", "\n", - " target img_size precision recall mAP_0.5 mAP_0.5:0.95 val/box_loss \\\n", - "0 87 640 0.7777 0.6004 0.7016 0.5741 0.04719 \n", - "1 87 640 0.7596 0.5931 0.6851 0.5284 0.04633 \n", - "2 64 640 0.7899 0.5904 0.6901 0.5618 0.04848 \n", - "3 128 640 0.7593 0.5991 0.6911 0.5547 0.04522 \n", - "4 39 640 0.7454 0.6202 0.7018 0.5798 0.04608 \n", - ".. ... ... ... ... ... ... ... \n", - "295 46 640 0.6611 0.6464 0.6605 0.5391 0.04283 \n", - "296 35 640 0.6792 0.6322 0.6616 0.5396 0.04283 \n", - "297 98 640 0.7010 0.6163 0.6619 0.5394 0.04282 \n", - "298 47 640 0.6962 0.6193 0.6637 0.5406 0.04284 \n", - "299 44 640 0.6892 0.6242 0.6642 0.5413 0.04285 \n", + " target img_size precision recall mAP_0.5 mAP_0.5:0.95 val/box_loss \\\n", + "0 12 640 0.7350 0.5716 0.6676 0.5290 0.02950 \n", + "1 6 640 0.7681 0.6184 0.7172 0.5787 0.02820 \n", + "2 22 640 0.7820 0.5965 0.7014 0.5684 0.02819 \n", + "3 9 640 0.7795 0.6028 0.7099 0.5858 0.02629 \n", + "4 33 640 0.7653 0.6153 0.7170 0.5929 0.02638 \n", + ".. ... ... ... ... ... ... ... \n", + "65 14 640 0.7416 0.6157 0.6932 0.5738 0.02396 \n", + "66 8 640 0.7360 0.6175 0.6915 0.5715 0.02398 \n", + "67 3 640 0.7511 0.6058 0.6895 0.5694 0.02401 \n", + "68 27 640 0.7536 0.6024 0.6883 0.5680 0.02404 \n", + "69 28 640 0.6964 0.6407 0.6871 0.5661 0.02406 \n", "\n", - " val/obj_loss val/cls_loss f1 fitness \n", - "0 0.007429 0 0.677645 0.58685 \n", - "1 0.007840 0 0.666103 0.54407 \n", - "2 0.007925 0 0.675733 0.57463 \n", - "3 0.007872 0 0.669754 0.56834 \n", - "4 0.007888 0 0.677061 0.59200 \n", - ".. ... ... ... ... \n", - "295 0.009531 0 0.653667 0.55124 \n", - "296 0.009532 0 0.654858 0.55180 \n", - "297 0.009539 0 0.655927 0.55165 \n", - "298 0.009546 0 0.655502 0.55291 \n", - "299 0.009554 0 0.655092 0.55359 \n", + " val/obj_loss val/cls_loss f1 fitness \n", + "0 0.005770 0 0.643083 0.54286 \n", + "1 0.005597 0 0.685168 0.59255 \n", + "2 0.005582 0 0.676769 0.58170 \n", + "3 0.005540 0 0.679856 0.59821 \n", + "4 0.005602 0 0.682151 0.60531 \n", + ".. ... ... ... ... \n", + "65 0.006050 0 0.672811 0.58574 \n", + "66 0.006076 0 0.671563 0.58350 \n", + "67 0.006101 0 0.670670 0.58141 \n", + "68 0.006127 0 0.669570 0.58003 \n", + "69 0.006154 0 0.667390 0.57820 \n", "\n", - "[300 rows x 17 columns]" + "[70 rows x 17 columns]" ] }, "execution_count": 2, @@ -366,9 +375,10 @@ } ], "source": [ - "df = pd.read_csv('../../classification/yolo-second-run/runs/train/yolov7-custom7/results.txt',\n", - " delimiter=',',\n", - " names=['epoch', 'mem', 'train/box_loss', 'train/obj_loss', 'train/cls_loss', 'total', 'target', 'img_size', 'precision', 'recall', 'mAP_0.5', 'mAP_0.5:0.95', 'val/box_loss', 'val/obj_loss', 'val/cls_loss'])\n", + "#df = pd.read_csv('../../classification/yolo-second-run/runs/train/yolov7-custom7/results.txt',\n", + "df = pd.read_csv('results-final.txt',\n", + " delimiter=',',\n", + " names=['epoch', 'mem', 'train/box_loss', 'train/obj_loss', 'train/cls_loss', 'total', 'target', 'img_size', 'precision', 'recall', 'mAP_0.5', 'mAP_0.5:0.95', 'val/box_loss', 'val/obj_loss', 'val/cls_loss'])\n", "df['f1'] = 2 * np.divide(df['precision'] * df['recall'],\n", " df['precision'] + df['recall'])\n", "df['fitness'] = 0.1 * df['mAP_0.5'] + 0.9 * df['mAP_0.5:0.95']\n", @@ -385,10 +395,22 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 3, "id": "f2a956f0", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zenon/.local/share/miniconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " \n" + ] + }, { "data": { "text/html": [ @@ -420,31 +442,31 @@ " 0\n", " 0\n", " precision\n", - " 0.7777\n", + " 0.7350\n", " \n", " \n", " 1\n", " 1\n", " precision\n", - " 0.7596\n", + " 0.7681\n", " \n", " \n", " 2\n", " 2\n", " precision\n", - " 0.7899\n", + " 0.7820\n", " \n", " \n", " 3\n", " 3\n", " precision\n", - " 0.7593\n", + " 0.7795\n", " \n", " \n", " 4\n", " 4\n", " precision\n", - " 0.7454\n", + " 0.7653\n", " \n", " \n", " ...\n", @@ -453,58 +475,58 @@ " ...\n", " \n", " \n", - " 595\n", - " 295\n", + " 135\n", + " 65\n", " recall\n", - " 0.6464\n", + " 0.6157\n", " \n", " \n", - " 596\n", - " 296\n", + " 136\n", + " 66\n", " recall\n", - " 0.6322\n", + " 0.6175\n", " \n", " \n", - " 597\n", - " 297\n", + " 137\n", + " 67\n", " recall\n", - " 0.6163\n", + " 0.6058\n", " \n", " \n", - " 598\n", - " 298\n", + " 138\n", + " 68\n", " recall\n", - " 0.6193\n", + " 0.6024\n", " \n", " \n", - " 599\n", - " 299\n", + " 139\n", + " 69\n", " recall\n", - " 0.6242\n", + " 0.6407\n", " \n", " \n", "\n", - "

600 rows × 3 columns

\n", + "

140 rows × 3 columns

\n", "" ], "text/plain": [ " epoch metric value\n", - "0 0 precision 0.7777\n", - "1 1 precision 0.7596\n", - "2 2 precision 0.7899\n", - "3 3 precision 0.7593\n", - "4 4 precision 0.7454\n", + "0 0 precision 0.7350\n", + "1 1 precision 0.7681\n", + "2 2 precision 0.7820\n", + "3 3 precision 0.7795\n", + "4 4 precision 0.7653\n", ".. ... ... ...\n", - "595 295 recall 0.6464\n", - "596 296 recall 0.6322\n", - "597 297 recall 0.6163\n", - "598 298 recall 0.6193\n", - "599 299 recall 0.6242\n", + "135 65 recall 0.6157\n", + "136 66 recall 0.6175\n", + "137 67 recall 0.6058\n", + "138 68 recall 0.6024\n", + "139 69 recall 0.6407\n", "\n", - "[600 rows x 3 columns]" + "[140 rows x 3 columns]" ] }, - "execution_count": 12, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -529,7 +551,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "id": "e04f6713", "metadata": {}, "outputs": [], @@ -551,7 +573,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "65aca46f", "metadata": {}, "outputs": [], @@ -577,7 +599,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAFbCAYAAADY/fSfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkLUlEQVR4nO3dd3xT1f8/8Fe6W7rYM4UyBGlxgPiBIALCB8pQBEfZitgy/AgOEEQEBBWhbESFgiACUhEU0LYiKkNSNkobhqy2KRvaJtDd5P37o7/cL6EtTRct4fV8PHxgknvPPTm9SV73nHPvVYmIgIiIiMiOOFR0BYiIiIjKGgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsjpOtCxqNRkRERAAAQkJCClwmOjoaAGAwGKBWq6HRaMqgikRERETFY3MPjlarRWpqaqGv6/V6aLVaBAUFITg4GOHh4WVRPyIiIqJis7kHJygoCAaDAUajscDXtVotvLy8lMdeXl7QarUl6sU5evQoRATOzs7FXpeIiIjsU05ODlQqFR5//PEil7U54BQlMTERvr6+ymNfX99Cw1BRRAQiguzs7DKqHRGVNbPZjIyMDLi7u8PBgdP5iKhyKbOAUxCDwVCi9ZydnSEiaNq0aRnXKE9GRgbi4+PRqFEjuLu7l8s27BXbruTsre2uXLmCNWvWYNiwYahdu3a5bsve2u5eYtuVHNuu5Mqr7c6cOQOVSmXTsmUWcPz8/Kx6bFJTU6FWq0tcnkqlgoeHR1lUrVDu7u7lvg17xbYrOXtpOzc3N+Xfe/V+7KXtKgLbruTYdiVX1m1na7gByuA0cUuo0Wg0iI2NVZ5PSkriWVRERERUIWzuwdFqtdi7dy9u3rwJtVqNoKAgAED//v2xefNmqNVq9OrVC9HR0TAYDAgNDS23ShMRERHdjc0BR6PRFNgjs2PHDuX/LaGHiIjoQWQymZCTk1PR1ahwWVlZyr8lPQnB2dkZjo6OJa5DuU4yJiIielDcunULSUlJEJGKrkqFM5vNcHJywsWLF0sccFQqFRo0aABPT88Src+AQ0REVEomkwlJSUnw8PBAzZo1izUZ1h6ZTCZkZWXB1dW1RL0wIoJr164hKSkJzZo1K1EZDDhERESllJOTAxFBzZo1eUo58gIOkHeWZUmHmWrWrIn4+Hjk5OSUqAxenYuIiKiMPOg9N2WptG3JgENERER2hwGHiIjoARMREWHzsmFhYRg7dmw51qZ8MOAQERE9YPbu3Wvzsh06dECvXr3KsTblg5OMiYiIHiARERFISkqyefn79a4EDDhERESVkFarxdy5cwEAM2fOhF6vh8FggE6nw4wZMxAREQEfHx9ERkZi5MiRCAgIsFo/PDwcarUaer1euQOB5a4Eer0e4eHhAICQkBBlWw0aNMCAAQOUHp5evXph7ty50Ov1Vhf2BfIPcwUHB5dXU5QIh6iIiIgqIY1Gg/Hjx8NoNMJgMCAoKAjBwcHQarUICwtDcHAwgoKC0KtXL3z44YdW644dO1YJNSEhIYiIiIBOp4NGo8GAAQOgVqsREhKCkJAQZVuhoaFKz45lSCogIADjx4/PV7fw8HAkJiYiODgYwcHB8PHxQXR0dDm3SPEw4BAREVVSPj4+0Ov1VsNEarXaapmAgADo9XrlsV6vx6+//mp1+6SgoKAiJxZ7e3srISggIAATJkwocDmj0Yi5c+di5MiRynORkZFWdagMOERFRERUid0ZaLy8vODn51fo8lqtFt7e3tBqtcpziYmJNgWQO7dVkLi4OHh7e8Pb21t5bvHixUWud68x4BAREdkRo9EItVpt1etzt4nCljk6AKxCy93Kvx9wiIqIiMiO3DlkZVFYMNHpdMUuv6CyKlvwYcAhIiK6j9y8efOur2s0GgQGBuab9BsVFQUAyplVQF7vzZ1nXxVFrVajR48eyllYQF64sZRfWTDgEBERVUI6nQ7Lli2zOqU7PDwccXFxiI6OhlarhU6nQ1hYGIxGo/IvAKxatQqxsbGIiIhAdHQ0oqOjldO41Wo1Xn75ZYSFhUGr1UKtVkOr1SI8PFzZliUAFVQHIG/OTWpqKsLDwxEdHY2oqKhKd5o45+AQERFVQgEBAfkm795+ardFYRN8CzsLqqDXNBpNgfN0CqqDLeVXBuzBISIiIrvDgENERER2hwGHiIiI7A4DDhEREdkdBhwiIiKyOww4REREZHcYcIiIiMjuMOAQERGRzbp161aq1+8VBhwiIiKy2apVq0r1+r3CgENEREQ2s9x5vKSv3ysMOERERGVMRJCRkVEu/4lIkdvXarVo27atci+qqVOnKveX0mq16NatG7RaLYYPH67cvyosLAzR0dEIDw9X7jAeHR2NiIgIpRydTodu3brBaDRCp9Mp98SaOnUqAFi9DgArV65U7oVlufmnTqdD27ZtodVqER0djbFjx5Z5+wO8FxUREVGZEhGMGDECx44dK5fyH330UaxYsQIqlarQZTQaDdRqNXr27Alvb28EBARg+PDh2LFjBzQaDby9veHj44NFixbB29sbERER8PX1RVBQEABg+PDhGD9+PCIjI7F48WLo9XqEhYVh8eLFSg9NZGQk/Pz8oNFo4OPjAyDv3lWW1zdt2gQASplTp06FWq1GQEAAAgMD4ePjA41GA71ej+joaGW5ssIeHCIiojJ2t/BxL3l7ewPIGzYyGAxKzwqQF0Ysr+t0OqSmpkKr1UKr1SrhpkOHDsr6d950c+TIkdDpdOjfvz+WLVuWb9snTpxAgwYNlMeWu5bfWbfywh4cIiKiMqRSqbBixQpkZmaWS/lubm42Byij0Qhvb28YjUb4+PgUGioCAgKQmJio3FFcp9PB19cXiYmJ+cqyiIqKwowZMwBAGQK7ff7Nww8/jKSkJOWxXq+36qWx9PqUFwYcIiKiMqZSqeDu7l7R1UBUVBR8fHwQGxurnN2k0+mg1+sRERGB4OBgAEBwcDDCw8MREREBHx8fqNVqhISEICwsDOHh4VCr1Up40ev1iIqKQmJiojKvxvK6pezo6Gi88MILWLduHaKjo2EwGBAQEACNRpNv+1qtFl5eXsrQWVlhwCEiIrJTlgBze89JQEAADh48mG/ZkJCQfM9NmDAh33M7duwodHsBAQHYsWMHTCYTMjMzMWLECDg6Oha4jEV5nVbOOThERER26vY5Nw8aBhwiIiI7c/sw0IOKQ1RERER2prBhqAcJe3CIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiIp05402b7+pZmXEgENERERFuv1Gmrf/f2XF08SJiIjKQUZGhtVjV1dXODg4IDMzEyKiPO/s7AwnJyfk5OQgNzdXed7BwQGurq4wmUzIzs5Wnq8Mt4C4HzDgEBERlYOOHTtaPY6IiECTJk0wduxYHDlyRHn+vffew8svv4yvv/4a4eHhyvNdu3bF7NmzcfToUYwaNUp5/tChQ0VuW6vVYurUqZgxYwbCw8OxaNEieHt7IywsDK1atYJer4dGo0FAQIByrygg7waYQUFBCAsLQ4cOHbB3714MGDCg0vfWFIRDVERERHbGcuNKHx8fJdxERETA19cXQUFBCAkJwdy5c6HT6RAZGYng4GBoNBpERkYCAHx9faHRaNChQwer0HU/YQ8OERFROdizZ4/VY1dXVwDA4sWL8w1RAcBrr72GYcOGKc87OOT1QTz++OP5yrJVQECA8v86nQ5eXl7QarUAgPHjxyMyMhIdOnQAkHdH8MWLFyvLR0REwGg0IjU1tUTbrmgMOEREROWgsLkybm5uBT7v7OyshJ3bOTo6lsm8m4CAACQmJkKj0QDICzy+vr5ITExUljEajYiKikJqaipCQkKg0+kQGxsLnU5nFZbuB8UaooqOjkZ0dDQiIiKUBFjYMpb/iIiI6N4q6GabwcHB8PX1RUREhPL7HBISAgAIDw9HdHQ09Ho9AgMDcfPmTWi1WmVujl6vtyrzfriZp809OHq9HlqtFjNmzAAADB8+XEmBFkajEXq9XmmwqVOnIigoqAyrS0REREUp7Gablt/n202YMCHfc5bfegBWv/U7duwo8P8rI5t7cLRaLby8vJTHt4/jWVgmMel0OmUZqlyOHTuGLVu2KI9NJhM+/PBDLFiwwOo0RCIiovuZzT04iYmJ8PX1VR77+voWeAXD8ePHo3///ggICMDq1atLXDERQXp6eonXvxvLtQnuvEbBg2DBggXYsmULEhISkJubi9deew3btm2DiGD58uXYtWsXPD09C13/QW670rK3tsvMzFT+La/PqoW9td29xLYrueK0XVZWFsxmM0wmE0wmU3lXrdKzTKIWkRK3h8lkgtlsRkZGBsxms1KeSqWyaf1STTK2jM3dLjY2Fps3b8bcuXPx6quvYvPmzSUqOycnBydOnChN9YoUHx9fruVXRqdPn0ZKSgq2bt2KQ4cO4eeff8acOXNQpUoVjBo1Clu3bsXjjz9eZDkPYtuVFXtpO8vn//z580hOTr4n27SXtqsIbLuSs7XtnJyckJWVVb6Vuc+Upj2ysrKQm5uLc+fOWT3v4uJi0/o2Bxw/Pz+rHpvU1NR8F/6Jjo5Ghw4dEBAQgFWrVmHq1KnQarX55urYwtnZGU2bNi32erbIyMhAfHw8GjVqVO5XhExMTESdOnVs/oOUt1u3bgEAEhIS8Ndff6FXr14YNWoUMjMzMXr0aOTk5ODhhx8udP172Xb2xt7a7sqVK9izZw/8/f1Ru3btct2WvbXdvcS2K7nitF1WVhYuXrwIFxeXQs+SepCICLKysuDq6mpzj0tBZTg5OcHPz085xf7MmTM2r29zwNFoNAgLC1MeJyUlKcHFaDTC29sbBoPBKvRoNBr4+PjYXJnbqVQqeHh4lGhdW7m7u2Px4sW4efMmPvnkkzIvPzs7G+3atcObb76JmTNnlnn5JXH58mUAwIYNGxAbG4t169bBw8MDHh4eaNCgAfR6vU3t7u7uXu5/H3tlL21n+RJ3c3O7Z+/HXtquIrDtSs6WtnN2doaDgwNMJhMcHR3vUc0qL8uwlEqlKnF7mEwmODg4wNPTUzl9vjhhyeaAo1ar0atXL+WSzqGhocpr/fv3x+bNmxEcHIzw8HDExcUByLvkc2U/b37Dhg0wGo3lEnAOHjwIg8GAr7/+GtOmTYOTU8Vedig3NxdXr15FkyZNEBsbC1dXV/Tp00d5vVmzZsVKx0RElMfJyQkeHh64du2aEnYeZCaTSRmeKknAMZvNuHbtGjw8PEr821mstQo75fv2U8UKOgWtssrOzsbx48eRk5Oj9EKVpZ07d8LJyQkXL17E9u3b0atXrzItv7iuXr0KEcGgQYMwc+ZM9OjRw+o9N23aFAcOHKjAGhIR3Z9UKhXq1q2L8+fPIyEhoaKrU+HMZjNyc3Ph5ORU4rDn4OAAPz+/Eg9xPZBXMt63bx8yMjKQm5uLnJwcAHmnTz/11FN3Xe+3335DUlIShg8frjy3a9cufPbZZ/jnn39w9OhRq7kIO3fuRPfu3ZGUlISVK1fek4BjMpmQnp5e4Cn6ly5dAgD06dMHv/zyi1UvHJAXcNavX1+sWepERJTHxcUFzZo14yU3kDd/6dy5c/Dz8yvx3C8XF5dS9YQ9kAHn448/BgAMHDgQQF7XYlEBJzc3FyNHjkRmZqZVwBk8eDB8fHxw+fJlREdH45VXXgGQ1zu0d+9ezJgxA87Ozhg/fjxu3rxp87WBxo8fj6tXryI8PFyZXGWLsLAwLFu2DOfPn8/32sWLFwHkDTcePnw43+vNmjXDrVu3cPXq1XKfNEoEAGlpaRgyZAjmzZuHxo0bV3R1iErNwcGBk4wB5bRuV1fXCmuPB3KQsFOnTti3bx8OHToEf39/tGzZEv/8889d19m0aRPOnz+PS5cuKT0hBoMBFy5cwJQpU9C6dWv8+uuvyvIHDx5ERkYGOnfujP/+97/Izc21efgnMTERCxcuxLfffotnn322wOsN3c5kMiE3NxcigjVr1iA+Ph7Xrl3Lt9ylS5fg4OCAWrVqFViO5ay106dP21RPqtyio6MxcODAAi/nUFn88MMP+Omnnyr9FVGJ6P7zQAacPn36ICMjA+vWrcNjjz2GRx999K4BR0QQFhamTJi29H5YrtPTokULBAUFYfv27cjNzcXChQsxZswYeHt747HHHkOLFi3g6+sLrVYLEcGuXbuQm5tb6PaWLFkCLy8vbNu2Dfv27cNjjz2GmJiYQpd//fXX8fTTT+PYsWNKnQq6htClS5dQq1atQid8WY6gOdH4/jd58mT07NkTGzZswJ9//lnR1SmU5WKgDNVEVNYeyIDTokULqNVqpKWl4dFHH8Wjjz6K2NjYQq+2ePz4cRw+fBizZ89GtWrVrAKOSqVC8+bN0aNHD9y4cQODBg3CO++8g0aNGuH7779XJli1a9cOWq0WW7ZsQefOnTFq1CikpaVh7dq12L9/P65cuYKVK1di0aJFWL58OUaOHIk+ffrg77//Rp06ddCxY0dMnToVkydPRo8ePfDRRx9Br9cjKSkJ3377LWJiYpQbqTk5OeH48eP53sfFixdRt27dQtvFcqr46dOnER8fXy5X4/zpp5+UoTIqHyKCFStWYPTo0ahTp06B96OpSCkpKZgxYwb++usv7Ny5E66urvj333+V1/fv348nnngCqampxSrXbDZj9+7dStc4ET3YHsiAo1Kp0LlzZwBQAk56enq+qyVaWJ5//PHH0aZNGxw5cgRAXsBp2LAhPDw80K5dO3h5eWHjxo2YPHkytmzZgh49eihlaDQa7Nu3D19//TVq1qyJlStXonbt2hg6dCjatWuHOnXqIDQ0FO+//z4A4H//+x+AvF6V3bt344MPPsAnn3yCL774AiqVCgsWLMAzzzyD2bNnw8PDA8HBwTh16hT69euHZs2aFRhwLl26hHr16t21bZo2bYrZs2fD398fzZo1wyeffIKYmBj89ttvCAsLw4gRI/DNN98ok7OLY8mSJejXrx9eeumlEoUno9GIbt26sYepCJcvX8a1a9fw3//+F23btsWhQ4cqukpWJk2ahGnTpqFjx47w9PTEkCFDrAJOdHQ0Dh8+jIULF9pcZmZmJgYNGoROnTrh22+/LYdal7/Y2Fjs3r37nm931qxZeO655+wmGJ47dw7Lly+v6GpQZSCV0LFjx+TYsWPlVn5aWpqsXbtWqlevLhcvXpRr166JSqWS5cuXK8skJCTItGnTxGw2y9KlS8XZ2VlMJpNMmjRJ6tevLyIiffr0kZ49eyrrvP766/Lf//5XcnJy8m1zx44dAkAAyJIlSyQ8PFzeeOMNOX36tOzcuVO++eYbuXr1qoiImEymAut98eJFSUtLExGRM2fOSNWqVQWAvPnmm3L16lV59NFHZe/evfLCCy9I165d863/xBNPyOuvv37XttmwYYOEhobKhg0bZMiQIVKlShWl3lWqVJE2bdqIo6OjPPbYY3Ljxo0iWvr/REVFiUqlkueff15UKpVMnTpVNm/eLKdPn7a5jJ9++kkAyIcffmjzOkXZvHmzvPPOO2I2m8uszMKkpaXJoUOHlL9hSSUkJNz19aioKAEgZ8+elY8++kiqVatWLu/v4sWLMn36dLl48aLV87du3ZLQ0FBZvXp1vvd66NAhUalUMnPmTHnrrbdk/vz58vnnn4uzs7Pk5uaKiEi/fv0EgPj4+EhKSoqIFN12r732mri5uUnDhg2lV69eZf5e74VnnnlGAMjMmTPL9O+1a9cumTRpUqFt95///EcAyOeff15m26woZrNZOnXqJADk1q1bpS6vrD6zD6Lyarvi5IMHNuDc2fA9e/aUtm3bKo9ffvllASAJCQkyadIkadSokYiIbNy4UQDI5cuXpUmTJvLOO+8o65hMpkK/mIxGozg4OIizs7Ncv369TN7Hr7/+Ko0bN5Z///3X6vkPP/xQ6tatqzzesmWLbN++XerXr1/scJCdnS0HDx6Uf//9V0wmk6SlpcmaNWvEzc1NPv30U2W5w4cPyyeffFJoOc8884x06NBBTCaTvPXWW0pocnNzk88//1zMZrOYTCb5+OOP5fPPP5eFCxdKkyZNZP78+UoZb7/9tgCQwMDAYr2Hu+nevbsAkHXr1pVZmYUpiw/8tm3bBIB89NFHhe5rs2bNEm9vbzGZTBIZGamEnbK2cOFCmT59upw4ccLqectnBIA0bNhQdDqd3Lp1S1auXCmNGzeWwMBAq4OA7du3W9XR399fBg8eLO7u7tKvXz85d+6cVdslJibKt99+q6xvNpulRo0aMnnyZFm8eLE4OztLcnJymb/f8mQymcTb21seffRRASCdO3eWn3/+WRYvXizr1q0r1d9Po9GIq6urpKam5nstJydH3NzcpHbt2lKlShWJj48vzdsoMbPZLNeuXbN6LiYmRnbs2FGscm7f9w4dOlTqejHglBwDTiEqIuBYegeOHDkiR44cUT4kv//+uwwaNEg6duwoIiLnzp0TALJhwwZxcHCQ8PBwm7fbtm1beemll8r8/dzpu+++EwCSnJwscXFx4uLiIm5ubuLg4CBffPFFqcq2tN2QIUOkYcOGkpubKwkJCVK7dm0BIEajMd86SUlJolKp5OuvvxaRvNC0e/duiY+PlzfeeEMAyBdffCFLly4VAOLs7CyOjo7SpEkTqVWrlmRkZIiIyOOPPy516tQRAMXq+SlMTk6OeHp6ipeXl1SrVk0uX75c6jLvpiw+8CEhIeLh4aEc6RdkwIAB8tRTT4mIyNWrV5X9tawNGDBApk+fLiNGjLB6fsSIEdKyZUs5deqUBAYGipeXl7i7u4tKpZI+ffqITqezWv78+fMCQKKioiQ1NVUAyJo1a2TNmjVSs2ZNcXZ2ll9++UVpuzFjxggAuXTpkoiIxMXFCQD57bff5MKFC6JSqWTVqlVW2xg9erRVWK5sTp06JQBk+/bt8ttvv4m/v78AEBcXFwEgKpVK3njjjQJDyt1Y2gaA7N27N9/rx44dEwDy888/S9WqVWXy5Ml3LW/37t2yZMmSYtXBFkuWLBEnJydZv369iIgkJydLjRo1xMXFRY4cOWJTGZmZmdKwYUOlJ2zNmjWlrhcDTskx4BSiIgJOTk6O1K9fX7p16yZPPPGENGvWTBwdHWXZsmXSsWNHGTRokIjkHWm0bdtWGR7666+/bN7ulStXxGAwlPn7udM///wjAGTnzp3Stm1badGihTz22GMCQH766adSlW1pu127dgkAmTNnjgQEBIi3t7cAkP3790t2drZ888038tZbb8mqVatk7ty5hR5BioiMGTNGXF1dxcvLS0JCQiQ9PV2uXbsmJ0+eFADy9ddfS0pKiqhUKlmyZIm4u7vLnDlzSvU+RPKGSwDI5s2bpUqVKlY9UuWhtB94s9ksarVa3nrrLXn33XfF09OzwDZt0aKFvPHGG8rjhg0byujRoyUpKanMhj7MZrMEBgbK9OnTpW7duuLn5yc1a9aUpKQkqV+/vtKzmZqaKuPGjZNZs2bJuXPnCiwrNzdXXF1dZfHixbJ7924BoHz+09LS5JlnnpG6devKjh075ObNm1K3bl0BoBxcLF26VJycnJQhiaefflq6d++ulJ+RkSGurq7SoEGDQod/K9ratWsFgDLsm56eLidPnpScnBy5ceOGLFiwQDw9PaVu3bqyceNGm/+Ob775ptSoUUMcHR1l8eLF+V5ftWqVcmDy2muvSZMmTZSyL1++LFOmTFGCZEpKinKA8fvvvxe5bbPZLElJSRIfHy9ms1nMZrMMGTJEJk6cKCJ5PTSWg57HH39cvLy8BIBMnDhRhg8fLl5eXvLII49I06ZNCzxwutOyZctEpVLJ8ePHxc/PTyZNmmRTG90NA07JMeAUoiICjkhe176jo6O0bNlSfv/9d2ncuLFMmDBBGjVqZPVhOX36tPJhLM48lHslIyNDHBwcxN3dXRwdHWXfvn1y5swZefrppyUxMbFUZVva7tatW9K6dWsBIC1atJD9+/crvTQ//vijMjxhmbvzwgsv3LW+jzzyiNSpU0eZc2HRu3dvadWqlWzatEkAyJkzZ6Rv377Kl993330naWlp8sILL8jChQuL9V4WLFggrq6ukpmZKd27d7eaT1Valy9floiICKvnCtvv0tPTZffu3SIiYjAY5MMPPyxwGFOn0yk9HRcuXBAnJydZsGBBvrLu7FkMDg5WjuI3b95cqvd18uRJOXr0qCQmJkrdunVl+vTpMn36dHn33XelevXqyvyH7du3F6vcgIAA+d///ieLFy8WFxcXyc7OVl5LSkqSatWqSZcuXZS5bDVq1JDnnntOREReeukl0Wg0yvJr1qxRAr6IyO+//668/z179pTq/ZeXcePGSZMmTe66TGJiovTt21cAyMCBA4vszUlMTBQfHx8ZP368NG/eXIYOHZpvmTfffFMeeughEckb8r59aKd///4CQKpVqybz5s2TYcOGiaenp3IAaOlZvXz5coEHbgsXLlTaPTg4WPkMu7q6ypUrV6RFixbi4OAg33//vQCQH374QWbMmCHu7u4CQBYsWCCnT58WDw8PGT9+fL7y33nnHfnggw9EJK9XuFGjRvLyyy+LSN6Ug2efffau7WMLBpySY8ApREUFHBGxmhvQvXt3ee6558TZ2VmWLl1qtdzmzZvv+qNd0YYNGybDhg2Tf/75p0zLvb3tDhw4IMuWLZOsrCwRyZs7MX78eHnvvfekQYMGIpLX9ezg4CA///zzXctNTU2VCxcu5Ht+z5494ujoKM7OzlK/fn0xm81y7NgxGT9+vPTq1UscHByU3ilvb2/lSz8rK0u++eYbuXLlSqHb7N+/vzz99NMiIvLxxx+Lt7e3MtG1tD766CMBIKtXr1aeK2y/Cw0NVXoDP/nkEwGg9BiKiPz1118yfPhwmTBhgri5uUl6erqIiAwaNEgaN25sVed9+/YJADlw4IDy3OXLl2Xbtm3SpEkTGTVqVKnel0ajEbVaLRs2bFACjmWS8fz58wWAuLu7Kz9+tnr++eele/fuMmLECHn88cfzvb5hwwYBIA899JDUqVNHZs+eLe7u7pKWlia1atWyGloxmUzSvn17CQgIkOzsbPnggw+kRo0a0qBBA6uerdIqTW/Y77//Lu+9957s3btXzGazdOjQQYKDg21ad/369eLj4yNdunQpdJm4uDipX7++NGzYUM6cOSP9+/eXhx9+WEwmk+j1emW5Dh06yMCBA0Uk77uvRo0a8t5778nWrVsFgCxdulQGDRqkDJUtWLBAdDqdODs7y+DBg+Xw4cNStWpVqVWrljK8ZNGnTx9p166dLF26VFQqlbi4uEinTp3Ezc1NCcLVq1cXFxcX8fHxUfaZpKQkWblypfJdPHPmTHF2dpZTp04pZZvNZqlVq5byuVmwYIFVz9+7775bZGC0BQNOyTHgFKIiA87txowZIzVq1BAAsnXr1nKrz/3kbm1nOausU6dOVuGvtMNyx44dk6CgIJk6darV8yaTSUaMGCGurq6yZs0acXFxkc8++0wOHz6sTNb08/OTo0ePWq136tQp2bZtm9SqVUs5ArQMudk63l+UZ599VlQqlbi7uyshMy0tTfbv3y9hYWEyduxY+fjjj+Xnn38WAOLh4SEdO3aUmjVrSsuWLZXelqysLHnooYeUI+EePXoo2zhw4IAAkFdeeUX27NkjgwYNEg8PD6latWqBf5/Q0FBp2bKliORN2J4+fXqxzjRJSEhQ6hEYGCiPPvqoVcCxzIHo06dPsdtrypQp4urqKlWrVpVXX3013+tpaWlKj8KoUaOUOSuWkwHu7DE6cuSIODg4yMcffyzt2rWTl19+Wd59912pVatWgWc5FofZbJaFCxdKzZo1JTIystjrvvnmmwJA6QUOCgoSDw8PmTt3rs3lrFy5UlQqVYE9fSaTSQIDAyUwMFA583Lq1KmiUqlk2LBh4ujoKAcOHJDc3Fzx8PCQsLAwZd2RI0eKSqVS9jVLiLt165bs379feRwRESFOTk7i6Ogojz/+uLz00kvK5HfL+6xWrZpMnz5dRPIOdGrUqCH//vuvDB8+XADIU089JREREQIg3zyu26Wnp0vDhg2VHjuRvN4py0GNr6+vAJDRo0fna5/S/rgy4JQcA04hKkvAsRyRAsj3I/mgulvbvffee1K/fv18X5rlyWw2KwHq9ddfVyaztmrVSn755Rdp06aNeHl5KcHFbDZLQECA8ne1nKWRkZEhLi4usmjRojKpV926deXtt9+Wxx57TBo1aiRXrlyRtLQ0+eyzzwSAtGzZUpks3KZNG/nhhx8EgDg4OMiZM2fk+eefF3d3d3nhhRfEwcFB/vjjDwkJCZHo6Gir7axevVopp3HjxjJr1qxCz4SxzPOwzHNRqVTi4+MjjRs3lnnz5hX5nsLCwsTV1VUJj4MHD853mnh8fHy+08ZtYTQaZerUqdKkSRP5/vvv872elpYmf/31lwwbNkyZpNymTRvx9fWVXr16Kb1at5s8ebI4OjqKg4ODLFu2TDl54K233ipR70t2draEh4dLUFCQAJDmzZuLm5vbXeejZGZmSnJysrI9y1lwc+fOlZycHPnpp5+kWrVqAkB27dplc10uXLggAOS7777L99rmzZut5gempaUpw0AApGbNmtKqVStZvHixAJA//vhDWVev18vcuXNl7dq1Rc572bp1q7zwwgvK2U+ffvqpAJB58+Yp8+duD56WnsYjR46Io6OjREZGitlslilTpsjJkyfvuq0VK1aISqWSpKQkERFlGDwyMlIaN24sX3zxhdXfNCYmpkwOWBhwSo4BpxCVJeBYumkBlNmp3fe7u7Xd6tWrK3Suw9mzZ6Vdu3by5ZdfKkfpN2/elCeeeEJq164tZ8+eVX7kvvnmGzl8+LDVl2KHDh3kxRdfLNY2X3/9dWV+Vlpamly/fl358dm8ebNyhlm7du3k4sWL0qxZM3nmmWdEROTatWsyZ84cOXXqlJjNZunYsaNynaL09HQZMmSIAJAxY8YU+b6joqKKHF6zHPW2bNlSqlatKsePH5ePPvpIWrdubXWJhDtZJog+8cQT0r9/f/nmm28EgMyaNavA6+CUh4L2u7tdlkEkL5BYrvFiOevOcqbenb2Btvj444/FwcFB2rVrJxs2bJDMzEzp0aOHeHt75zszzMIyFOPj4yNff/21BAQESJcuXazqffbsWZk5c6bVvCNbtGrVSuntsgwTm81mad26tXTu3FlZzjKcXLNmTXn99dfl6NGj4uTkJADk9ddfL7NhWRGRsWPHSpUqVWTevHmiUqkK7b2985TwoqSkpIiLi4sSxKdMmSK1a9cu9O9vMBiUkyD2799fvDdxGwackmPAKURlCTjHjx9Xhg/uxYXg7gd3a7uDBw8KAHF0dKxUXwhXrlyRxo0bi0ajkXHjxknNmjULHKZ4//33pWbNmvm+lC9cuCBDhw7NNxyRnZ0tVapUEU9PT7l165YEBwdLkyZNlKNLywX59u/fL97e3sqp9Hf2wljk5ORY7Wdms1l27NhRpm3ZqFEjAWA1FyUsLEw8PDwKPMPIEhJ8fHwEgEREREhGRoYMGDBA9u3bV6EBxxZ6vV65zpKFpRetOL2MJpNJGjduLMOHD7d63mg0SmBgoDRu3FiuXLkiJpNJFi9eLEePHlXmQ02dOlUJq3fOjyqNCRMmSJ06dWT06NFSs2ZN0ev1yiUibu9VsrTdhQsXlHbYuHFjuQy7X758WVxcXMTT01NatWpVpmU///zzShDv2bNnkRd09PPzU9q8sABalPs14JjNZiX0VhQGnEJUloCTkZEhKpVKmjdvXm51ud/cre1u3rwpAKR169YVULO7s8yxcXBwkLFjxxa4zMmTJ8XHx0eefvpp5f0dOnRI/Pz8xNXVVQBI3759Zdq0aXLlyhXRarXKF+iUKVOUuQuPPvqo1KxZ0+pH9cSJE9K0aVNp27ZtmVxhtaSGDRtmdaaMyP9d+fj207izsrLEbDbLZ599Jg4ODvLBBx/IpEmTrCYPF3Yl4/JQ1l+WkydPFgDy/vvvS0JCgrzzzjt37XX8888/C+2ZPH/+vNSpU0eaNm0qgwYNEgBSr1496dGjhzRt2lRyc3PFbDbLV199JR9//HGZ1F/E+urolv22WrVq8uKLL1rte/f6R3rEiBECQEaOHFmm5Vrm65w+fVpq1qxZ5EVLDxw4IFu2bBFnZ+cSX6X5fg047733njg6OkqbNm3K/EQTWzHgFKKyBByRvKOAbt26lVtd7jdFtV2zZs0KDRAVzXKBuIMHDxa6jFarlSpVqkjVqlWlbdu2SmDR6/WyfPlyad++vVSpUkWCg4Pl448/Fi8vL2UYonbt2tK+fXsBUOAp5waDQbRabYV+We7cuVNGjRpl9QNoGbqyHNFnZGRI7dq1pWnTpuLm5ibvvvtugWXdzwHHEt4cHR2VkNChQ4dClx86dKg0a9as0J7cc+fOyUMPPSQODg4yf/58pbeuPC6KZ5GZmSmtW7eWxYsXK1esrlOnTr7h9Hv9I63T6cTBwaHMrw6elpYmXl5e0qZNGwEgW7ZssWk9jUZjdYHVmzdvFjnnx8JoNMquXbvuu4DTrFkz6dSpk3h6et71CvPliQGnEJUp4Lz22mvKmQFUdNudP3/+nlzMsCQyMjJsmsh54sQJmTZtmvTr10/Wr1+fb27EokWLxMnJSR555BHp3bu3Mnn3008/Va6IPWXKlHzlVtajQbPZLN7e3jJr1iwREfnll18EgLz44ovSrVu3Qnuc7ueAYxETEyOzZs2SFStWCACJjY2VjIwMyczMFJG84clhw4aJSqUq8uKSKSkpytHyX3/9Jf369ZObN2+WaX3vZuXKlQUOf1XEfnfq1KkyndtjsXPnTmXoqaDLShTk/ffft5qvExwcLK6urjYNFS5evFhq1apVob2uxRUfHy8AZNOmTdKuXTsZNmxYhdSDAacQlSngkDW2XV5PjKenp3I2TGZmpnz22Wdy8+ZNyc3NldGjR0tcXFy+9Spz27Vv316GDBkiInmnkzdt2rTIeWf2EHAssrOzpU6dOtK3b1/x9/eXJk2ayMaNG6VBgwZSq1YtWbp0aalPL68olXm/KwlLT6itoqOjBYCcPHlSTp06JSqVSqpWrSoNGjQo8sKngwcPFgBW1w4qrfK+mnZ4eLg4ODhISkqKvPLKK/Lkk0+W6/YKUxkCjgOIqFi8vb3xyiuvAAC6dOkCV1dXTJw4EZ6ennB0dMQXX3yBgICACq5l8QQEBCAuLg5msxlbt25F3759oVKpKrpa94yzszNGjBiBLVu2wMPDA56ennjppZdQtWpVHD16FGPGjIGTk1NFV5OQ9/lr3769zctrNBo4Ojpi165d+Oyzz1CnTh0cOnQIZrMZDz30EMaPH4+cnJwC19XpdACAhISEMql7WloaAgICMH369DIpryC//fYb2rZtC19fXzRv3hynTp2CiJTb9iozfmKJSmDy5MmoUaMGHnvssYquSpkIDAzE2rVrERMTg8uXL+P555+v6Crdc2+//Tbc3Nzw5ptvwtnZGWvXrsXLL78MX1/fiq4alYKXlxdat26NN998E9nZ2Zg7dy4aN24MnU6HRYsW4ZNPPkFCQgLWr18PZ2dnZT2TyYSTJ08CAOLj49GhQ4dCtxEXF4fY2FhkZmaiffv2qFKlCm7evImHH37Y6kBh9uzZOHnyJD799FMMHDgQzZs3L9P3ajKZsGPHDowZMwYA0Lx5cxgMBly9ehW1a9cu023dD9iDQ1QC9erVw/Tp0+HgYB8foYCAAGRmZuLll19GrVq1inWEbC+qV6+OKVOmwMfHBx4eHggNDWW4sRPz58/HlClTsG7dOowbNw4A4Ovri2nTpmHjxo3YsmULXn31VZjNZmWdc+fOITMzE0BewCnI9evX8eqrr6JVq1YYNGgQXnvtNTz88MPw8/NDQEAABg8ejNTUVADAkSNHEBYWhrfffhsNGjTAuHHjyrRn5caNGxgwYACSk5PRu3dvAFAC1KlTp8psOwVJT0/H0KFDsWfPnnLdTnGxB4eI0LZtW3To0AEtWrTAqFGj4OjoWNFVIiozTz31FJ566qkCX+vbty/WrVuH4OBg+Pn5YdasWQDyemWAvOCbmJiYb72UlBQ888wzSEpKwvLlyxEcHAwHBwdotVqYTCZcvnwZ48aNw4YNG1CjRg1cu3YNjRs3xowZM9C+fXu8/PLLiI2NxSOPPFLq92cymdC9e3ecP38eERERaNeuHQCgadOmcHBwwKlTp/D000+XejuF2blzJ9auXYvvv/8eq1evxsCBA8ttW8XBgENE8PHxwV9//VXR1SCqEC+99BISExMxfvx49OnTBx06dEBsbCyqV6+Oli1bWvXgJCcnY/v27Vi4cCEuXLiAv/76Cy1btlRe7969u/L/3bp1w/bt25GQkIAnnngC//3vf+Hu7o7nnnsO3t7e+PHHH0sVcGJiYuDn54fIyEgcOXIEMTExSrgBAFdXVzRq1EjpwRERJCYmom7dunBxcSnxdu/0xx9/oF69eujatSuGDh2KunXr4sknnyyz8kvKPvrXiYiISuHtt99G06ZNsWzZMgB5PTgBAQGoX7++Msn45MmTePTRRzFw4ECkpqYiMjLSKtzcSa1WY8SIEZgxYwaee+45uLu7A8gLHr1798aPP/6I3NxcfPvtt8jOzi5WfaOiovDUU0+hRYsWmDhxIoYOHWoVbiwsE43//vtvdOnSBY0aNUKVKlXwyCOPYPjw4bh+/XqxtluQP/74A127dsXXX3+NTp064aWXXsLFixdLXW5pMeAQEdEDz8HBASEhIfj++++RnJyMuLg4tGzZEvXq1UNCQgLOnTuHjh07wsfHB+fPn8fJkyfxn//8p8Tb69evH/755x8MGzYMw4YNw6+//mrzuidPnsSAAQPQs2dPDB06FJ6ensrQ2p1atGiBHTt2oHXr1rh69SrWrl2LRYsWQaPR4IcffkBYWFiJ3wOQ16NlCU9OTk6IiIhA06ZNce7cuVKVWxYYcIiIiAC88sorMJlMGDRoEE6dOoXAwEDUq1cPmZmZ+OCDDwAAu3fvRqNGjUq9rZ49e8LV1RXfffcdgP87Jf12+/fvx+7du/NNRv7yyy/h5eWF7777Dl988QUSExNRv379ArfTqVMnVKtWDYsWLcI///yDwYMHY8yYMfjqq68QGhqK8PBwpKenl/h97Nq1CyKCZ555BgBQo0YNxMTEFDrn6V5iwCEiIgJQu3ZtvPjii/jzzz/x5ptvYuDAgUpw2LBhA4YPH45q1aqVybY8PT0xYsQIDB8+HO3atSsw4Lz88svo1KkTHnnkEVy9elV5/sCBA+jUqRO8vLyK3E7fvn1x4cIF5fIHt/vf//6H1NRUrF27tsTv448//kDjxo3RsGHDEpdRXhhwiIiI/r+VK1fiwoULWLhwIdzc3FC3bl3ltdDQ0DLd1tKlS/H1118jMDAwX8C5fPkyEhMTMWnSJCQkJGDu3LkAgJycHBw9ehRt27Yt9fb9/f3x3HPPYeHChTCZTEr5t8vJyVFOlxcRq94eEUFkZCS6detW6rqUBwYcIiKi/8/DwwM1atRQHnt6eqJatWro2rUrmjZtWi7bbNmyJU6cOKGEDAA4ePAgAGDUqFEYO3Ysli5dimvXriE2NhZZWVlldpbS5MmTceLECaxevRrz589H1apVsWnTJuX11157DX5+fli7di26dOkCb29vDBw4EPHx8dDpdDh37hz69u1bJnUpaww4REREdzF37lzMnz+/3Mq3XGjz9tPRDx48iJo1a8LPzw9vv/02HBwcMG/ePBw8eBCOjo5ldhX1J598EgMGDMCECRMwYcIE1KtXDy+++CKWLl2K48ePY926dfDx8cHQoUNx5swZTJs2Dbt27cIrr7yCLVu2oEqVKsr8m8qG18EhIiK6i+DgYHh4eJRb+ZZ71+l0OjRp0gRAXsBp27YtVCoVqlevjrfeegthYWHo2LEjAgMDy7Q+n376KTZv3oyuXbsiMjISEyZMwJtvvonAwEA0aNAAcXFx2L59OzQaDapXr442bdqgd+/eiI2NRc+ePeHm5lZmdSlL7MEhIiKqQPXq1YO3t7cyD0dEcPDgQathqIkTJ6J69erYsWNHmV9Ez9/fH7GxsdiyZQucnJwwb948BAcHIzY2FpMmTYKrqyueffZZVK9eHUDeGWCdOnVCSkpKpR2eAhhwiOj/S0lJQadOnTBgwICKrgrRA0WlUiEgIADHjx8HAJw/fx43btywmkjs6empXLOmLCYY3+mhhx5SLkTo4OCA1atXIyIiAiEhIQXWd/78+WjXrh369OlT5nUpKxyiIiIAeTcfdHd3R0REBObMmQM/P7+KrhLRA6NJkyZYt24ddu7cidzcXAD5g8zAgQNhMpnw/PPPl3t9XF1d8fLLLxf6euvWrRETE1Pu9SgN9uAQlUBOTg6ysrKQlpZW0VUpE2vWrEG7du2wYcMGbNy4ETVr1qzoKhE9UEwmE0QEAwcORLVq1VC1alX4+PhYLaNSqTB06FCbrn9DDDhUxpKTk5GVlVXR1ShQZmYm9uzZY9OyIgK9Xp/vCqIAYDAY0KhRI7i5uWH58uUAgEOHDuHYsWP466+/MHDgQBgMhjKte3mLiYlBWloafH19ERgYiPDw8Iqu0j13/vx5ZGVlITU1FdHR0QgNDYXJZML169dhNpsrunpUgS5cuKBccbi8xMXFITQ0FHPmzMHChQuRkpKCI0eOWC1jMBgwevRo6PX6cq2LLUwmE/7555+KrsZdMeBQmapevXqlnXT22muv4emnn8a+ffvuutyFCxfQrVs3+Pn5KZdnvz3ozJo1CykpKWjbti2+//577N27F0OHDsW4ceMwb948bNiwAYMGDSrX91LWkpOTlYmLhw4dwrhx43D48GEAsOsfdxFBdnY2srKy0Lt3b4SEhCA0NBQ9e/ZETEwMVCoVgoKCEBQUVCY3JaTK78aNGzh79qzyOCcnBxMnTsSgQYNw5syZctvutm3bMGnSJABA586d8fHHH1tdZNBsNmPw4MH46quvlCGssmQymYr1/iZOnIjHHnusyO/TisSAQ2UqNDQUBw4cKLDnoyKlpaXhwIEDeO655wo9AyErKwt79uyBj48PRATLli3DsGHDsG3bNvTs2RO9e/fGtWvXUKVKFUycOBHvv/8+fHx80KlTJ9SuXRs7d+7ETz/9hJYtW+L3339Xrv5pMpnw/fff29x7VBEiIiKwYsUKAMCzzz4LV1dXfP/99wgPD0efPn2wefPmCq5h2TKbzVi1ahUCAwMxbtw4fP/99zh9+jQmTJiASZMmISYmBseOHYODgwM+/fRTHDp0CBMnTqzoatM98Pzzz6Np06YYPXo00tPTkZCQgB9//BEAMHPmzHLZpk6nQ0REBGrXrg0AcHZ2RkhIiFVPzfnz53Hw4EGsWLHCKoCVhczMTMyaNQtPPvkkTpw4AbPZjPDwcDzxxBM4depUgeuMHj0aALB3794yrUtZYsApwvz588u9a9Je/PHHH/jzzz/Ro0ePUt28rTREBMnJyVbPbd++HQcOHMCxY8ewZMkSvPbaa7hy5Uq+defNm4fevXvD0dERf/zxB0JDQ9GiRQs4OTkhPj4e2dnZuHHjBsaPH4+pU6eiX79+6NatG0wmEzZv3owNGzbAYDBg1apVqFatmnImRJcuXRAcHIyff/4ZW7duxf79++9Vc+QTERGBjh07Wg0jxsXFoXPnzkhMTAQA+Pj44OTJk5g0aRL8/f2xe/dujBgxAsuWLcOCBQuQkJCAmjVr4ujRo/e8/sXtTbp16xYOHDiQr4zz589jzJgxaNasGcaNGwcfHx9MmzYNrVq1QuvWrdGuXTuoVCoAQPfu3fHDDz9g+vTphW4nIyMDb7/9Np588kkkJCRg4cKF6NmzJ3t9KgmTyWTzd9KSJUswZMgQPPbYY8jKylIuvvfLL79g/vz5iIyMtLogX1mIjo7G9OnT4eLiojy3fPly9OnTByaTCceOHYOnpyfOnj2Lq1evon///mXWi5OcnIyHHnoIdevWRb169TBixAgYDAZ88MEHiI+PV3poLKHqypUrePHFF5GUlIRbt27h3XffrXQHtAqphI4dOybHjh0rt/LT0tLk0KFDkpaWdtflzGazAJBK2kx31bNnT1m6dGmZl3u3ths/fryo1WrJzc2VS5culfm2C2IymZT/v3DhgmzatEl8fHxk4cKFkpGRIW+//bYAkFdffVVERG7cuCFubm7SuXPnfOX4+/vLK6+8Uqztf/rpp/LZZ59ZPWc2m8VsNovJZJLc3FwZOHCg7Nq1S4xGowQEBIi/v79cvnxZbty4IX///bfk5uaKiMjNmzclMzNTKScrK0s6deokUVFRxarT3dSrV08AyF9//aU8t3LlSlGpVHLz5s0C10lMTJTr16/LpEmTxMvLS5555hkBINu2bZPp06fLxYsXy6RuZrNZsrKyCnwtLS1Nfv75Z6lSpYps3rxZREQiIyNlzpw5snr1ajGbzQWuFxoaKgDk3LlzYjab5fPPP5c2bdpIenq6XLhwoVj127p1q4waNUpSUlLyvTZx4kRxc3OT1157TdLT06VJkybi6ekp06dPF7PZLAcPHpRff/21WNuzxc2bN2Xjxo3K4xs3buRbxtbvO3s2cOBAmTRpkmRlZUl8fHyBy1y/fl169+4thw8fFhGRf/75R3766SdZtWqVjBw5UkTyviceeeQR8ff3L3A/KC6z2Sw//PCDvPjii9KhQwer13bu3CkAJDIyUvz9/eW5554TEZG//vpLAMjBgwdLvX0RkXfeeUe8vb3l4sWLcuHCBVmxYoWI5LVHVlaWpKWlyQsvvCAvvfSS5OTkSP369aV27dpy4MAByc7OFo1GI1999VW+cstrvytOPqiUv9yVJeCYTCZZtmyZDBs2LN9rubm5cvToUcnOzi6vahapsPonJiYKAFmwYIGsX79eRowYIbt27ZLjx4/L1atXS71NS9vduHFDTp06pbzWsWNHefnll2XIkCHKhzU5OVm++OILMRgMRZZd0I9UamqqvP/++/L7779bPZ+bmys7duyQgIAAiY2NlVWrVomDg4NERETIqFGjRKVSydatW6VXr16ycOFCq7Jnz54tHTt2lEuXLsmBAwdEJC9MLFy4UA4dOlSidrnTRx99JABk/fr1ynNpaWmybt06cXd3l99++03Wr18vAKR3795y/PhxqVevnjzzzDNiMpnk999/l4yMDGnfvr3UrFlTzp49KxMmTJCdO3cWuL3k5ORCf+Rvd+HCBdm/f7/o9XoZM2aMaDQaGT9+vLRo0aLIdS9evCguLi7y6quvyrZt2+TPP/8ss4ATHx8vXbp0kTFjxhT4elpamnz55ZcCQJ566im5du2auLm5iaenpyxfvlxycnKslr9+/bps2bJFUlNTBYDMmjVLtmzZIgBk1KhRcuvWrWLXcePGjeLg4CCurq5y4sQJMZvNkpiYKL/99pukpKSITqdTlk1PT5fTp09LWlqa+Pv7CwDp1q2bLF26VN59912rcmNiYmTixImSkZFRrPqcPn1aPvnkEwEgzz77rGzbtk18fX3l6NGjVss96AHn1q1b4ubmJu+8844MGDBAHn/8casDIxGRuLg4adCggVSrVk3OnDkjIiJjxoyR5s2by2+//Wb1/XX+/Hnx9fWVjz/+uFT1SkxMlOeee04ASGhoqOzfv9/q9fT0dJk0aZK0aNFC6tSpI2fPnhWRvO+q6dOnFxrUimvatGl3fS+WOn7++edy/vx5eeWVV6w+871795b//Oc/+dZjwClEZQk4w4YNkxEjRihH4xaXL1+WOnXqCADlB7Ioubm5sn79ejlx4oSkpqaKiMipU6fkyJEjsmnTJsnKypLz58/L3r17Cw0hsbGxcu3aNWVdPz8/Wbt2rXJkuGHDBrlx44bs2rVL6tatK9evX5dvv/1WXFxcxNfXVwDIF198YVN9C2NpO71eLw8//LDUqlVLcnNzJSsrS27duqUcAahUKvnzzz9l3LhxAkDGjRtXaJnp6enSt29fadu2rdI2Fq+++qp4eHhIWFiYzJs3T+nh+PbbbwWAtG/fXv7++28BIE2bNlUC58mTJ5WelMIMHjxYHn74YTGbzbJly5Yy7XVasmRJvqMsS9slJSVJenq6JCcny/r166V27dqybNkyadGihbz00kvy66+/iqurqyxZskQuXbokLVq0kBUrVggAefLJJ5XysrOzZcqUKZKVlSUdO3aU9u3by6RJkwqt09dffy1fffWVmM1meeKJJ8TJyUneeustERGbf/AtX6qbNm2SunXrWgWc3NxcCQ0NlTlz5hS7vUaOHCm1atWSDz74QCZPnpzv9aioKNmxY4ecOHFCMjIyxGw2S1RUlNy4cUOOHDki27ZtU5ZNSEiQ5s2bS+3atSUlJUX2798vGRkZEhcXJ9OmTSt23W6XlJQk69atE5G8XlIAUr9+fUlPTy90ndmzZ8vPP/8sOTk58vnnnwsAGTBggIiIvPDCCwJA3njjjWIfLD377LOi0WhkypQp0qhRIzl79qy0bt1a6tWrZ/Udcvt+l5ubK2azWdatWycxMTElaAFrd37G/v33X3n//ffl9ddfl3nz5pW6/LIQFxcnzZo1k9OnT8vevXsFgKxatUq6dOkizz77rHz//fdy8+ZNeeWVV0Sv1yvrrV69WgCIWq3O17N74sQJMZlMkpiYWOJ6zZo1Szw8PGTYsGECQC5fvlzgcufPn5fk5GSr565fvy579+61aTvx8fHy6aefKj3Ftzt16pRVr3FBLl26JMePHy/09e+++04ee+yxfN8hDDiFqMiAc+vWLdm9e7cYDAbx9vaWd955R2rVqiU//PCDssy4cePE3d1dAMj8+fOV53/55Rd5/vnn8x1BiYhs375dGe4CIFevXpXXX39deXz48GGZOXOmABBXV1er4GQymeStt95Sjl7j4+PF0dFRWrRoITNmzBAASvf5hAkTRMS6NyQuLk5Onz4tDz30kPKDVtq2mzx5slStWlW2bt0qx48fFwDy+OOPS0pKimRmZsr06dPl7Nmzcu3aNfnwww9l5syZ+crKzc2Vixcvyu+//y5eXl6i0Wjk+PHj8sUXX8jChQvl77//loEDB8qKFStEp9MJANm4caNMnz5d4uLiZPfu3cqH9p9//in2kMOvv/4qAGTu3Lni7Owsc+fOLVXb3M5sNufrwi5sv7M8NplMYjabpUuXLvLUU08pXzyWcL1+/Xp55513lMdLliwRlUolhw8fll9//VU6d+4sPXv2lEuXLuUbqjh37pw0btxY+aK+ePGiGI3GEr+/5ORkqVevnkyfPl12794tR48elUOHDom7u7tUqVLFarhr3759RYbHXbt2yaZNm2TdunUCwOoIccuWLeLk5CQDBgyQtLQ0mThxogBQjmhHjx4tDRs2VPb5GTNmSIMGDeT06dNKXbt06SILFiywqZfLFjk5ObJs2TL54YcfitWDZTabJTw8XBk+fuedd2TlypWyc+dO+f77720u5+rVq+Lk5CRLliyxev7ixYsye/Zsqx+ztLQ00Wq10r17d7l27ZoMHDhQCd979uyx2ldOnDghe/bskdTU1Hz77+0Hebt375adO3fKa6+9JlOnThUREa1WK9WrV5fmzZtL586dRaPR2Px+bJWamiq//PJLsdbJycmx+rt/8skncvToUQkPD5e2bdsWGlD1er0sXLhQABTYw7Ft2zZxcXG560FuTEyMnD17VtLS0qx6u0VEHnnkERk4cKCkp6fLzJkzi/V5/Oyzz0SlUsmKFSvk8uXL8uKLLxbaS/7+++8LADGbzVY91N988434+/vL8OHDbd5uQSxtaxle3r17t4wdO1Zu3brFgFOQigo4ERER4ujoKF5eXpKUlCRdu3aV2NhYqVu3rnzwwQciknfU7O/vLx999JFMnTpVfv75ZxHJ++OmpKTI008/LQDkk08+sSp7yJAh8tBDD8l3330nAGTp0qWSmpoqWq1WkpKSRETEaDRKbGyszJo1S27evCm3bt2SLVu2iMlkkpCQEJk7d67ExsaKiMiaNWskJSVFcnJyxN/fX2rXri1vv/22VKtWTQICAmT16tX53ndYWJhy9Fkclu7/+Ph4+eKLL2T8+PFiNBqVHxCDwSAPP/ywACj0KDQ9PV2++eYbyczMlPj4eHnkkUfE3d1d6ZG4fv26mM1muXbtmjg5OYmrq6sMHjxYRP7vA/Too48qgdDSDqWRm5srH330kXh6ekrXrl0Lnf9RVmw5oklLS5OZM2fK9evXC3w9IyNDTpw4IdnZ2dKgQQMZMWKE1etZWVni7u5uFbxF8sJctWrVymwITkRk8uTJMn36dKlbt64AkDNnzsi///4rcXFxIpL3d7tx44Z4enqKk5OTfPjhhwWWk5qaKlFRUZKeni5Xr14VlUolq1atkuzsbDGbzRIYGCjPP/+87Nu3T9LS0qRv377KvBoRkR07dggAOXTokDLMc/uXfWZmprLf3Dk0UVm88cYb0qhRowIDWFJSkmRlZcmPP/4oAwcOlOnTp8uOHTtk/PjxBfb2ms1mmTx5skyePFnS09MlLS1NFi9eLA4ODrJp0yapUqWKrFmzRjIzMyUgIEC+/PJLZd2uXbvKJ598Ij/++KM8+uijkpycLEePHpX//Oc/ykHAxo0bxdXVVfr16ycff/yxAJCIiAjZtGmTdOrUSW7cuCHLli2TGjVqFNk7UBwZGRnSqFEjcXV1lTNnzhTa43G7gwcPSp06dWTt2rWFLnO30Ltnzx5Rq9USHR2d77WsrCx58sknxcPDQ1JSUqxCpdlsljVr1oizs7P89NNPMm3aNHF3d5fly5cry1y8eFEZDiuu7OxsGTVqlLRu3Vpu3rwpbm5uEhISUuCy3bt3l2effVZ++eUXASCdO3eW7Oxsee6556R+/fo2j0LczezZs6V58+aSlZUlY8aMkS5dusi1a9cYcApSUQFn2bJlMnjwYGUs/c8//xQRkaFDhyoBRyTvSCYrK0vMZrOcPn1azGazLFmyRJo1aya3bt2SDRs2yK5du2TBggVKF6ZWq1WOPCzDTHfz1VdfKV/Ku3btuuuyV65ckfj4eDl9+rQ0atRImQB6J7PZXOQcnE2bNsmUKVMkPT1dZs+eLe3atZMXXnhBRERq1aolAOSZZ57J1x2Zm5tb4ARHi+3bt4uLi4u0aNFCsrKyZOnSpbJgwQLRarX56pibmyuZmZn5vsD27t0r1atXl6CgoLu+h+I6d+5cvqGx8lAWXbYjRowQtVotP/30kyQmJsqVK1fyLdO1a1fp1auXiOR9Efbp00f27NlT5gHu4sWLMn36dFmwYIHs3btXCQ8HDhyQPn36SKtWreTatWty8uRJmT17tsydO1eOHTsmL7zwgtUR808//SQA5Pz58yIisn//fvn777+lefPmcvbsWdHpdJKSkqK0XXJystVnIicnR77++mv5+++/5bnnnpOhQ4fmq+uPP/6Yb1+rTH7++WcBICdOnJB9+/aJXq+XP/74Q9q0aSNOTk7y7bffyoEDB6RDhw5Sq1atIg9UZsyYIY6OjtKgQQM5d+6cvPTSS0qAuj10dO3aVbp37y4ieUfeAGTTpk0SFxcn1atXlz59+khmZqaEhobKW2+9JTExMfLss8/KgAEDJDMzU8xms7z33nuycuVKEfm/Xp7MzEyrH/yvv/5annnmGbl27ZocP35cEhISit1GkZGR4uDgIH///bfUrVtXJk6cWOQ6rVq1EgDyzz//FHt7IiJPP/20dOrUqdDP7PXr1+Wbb76RrKwsadeunbzyyisSFhYmJpNJnJycZNiwYZKdnS23bt2S119/XTw8PESv10ufPn2K3RN1J7PZLD/++KNkZGTIV199JZ6engX2Ju7bt09iYmLEbDbLzJkzpUqVKrJnz55SbftOkZGRAkCmTZsmOTk5kpmZySGqwlREwMnJybnrOLrFG2+8oYQdyxDHv//+K4888oj069dPWc5oNIqHh4d88sknsnHjRiUs2SoyMlIWLlyYr1uzKFFRUVKtWrUCuytXrFghDg4Odz2qCgwMlJo1a0pubq40atRI+vXrJxs2bBCRvPebkJBQ4p1Wq9VKvXr1ZOvWrcVe1+LSpUvFbpPKoiw+8Hv27BFXV1cZO3Zsoct8++23Spd6dHS0MgRa1iwB584v1bi4OHF3d5cXX3wx3xyFv//+W9zd3WXAgAFiNBplzpw58s4770iDBg2UI2nLcGRgYKAyJ8KWtnvzzTeV3tH7TVpamnzzzTcyfPhwASAffPCB7Nu3T4YMGSLz58+3aZL+nf799185cOCA3Lx5U3bv3i379u3Lt0xERIQyxPTPP//ImDFjlJBy+PBhGTJkSL65G+np6Tb1hE2ZMkVef/11uXXrlkybNk1cXFxkxIgR0q5dO/H29paxY8dKbm6uzJ8/v8jAY9k3LMu9+uqr0rJly0KXP378uLRu3Vp2794tR44cKbKuhWnXrp0AKPQMQ4vs7GyZPHmy+Pv7y/vvvy8ieYHx9t4hk8kk586dU6YV2DqHxhZms1mSkpLk4sWLMmfOHGW7V65ckXXr1lnVvzx6MS1/R0vvrch9OAcnKipKoqKiZMOGDXf94yxfvlxZtiQqIuD88ccfStfnnWJiYqRJkyaSmJgoVatWVbraU1JSBIAsXrxYevToke/9DhkyRKpXry5Vq1ZVTlO+FwrbgS2nHR4/flxu3LiRr2v21q1b4unpKatWrRIRKXBSWml32so6RHAvlNUH3pZ5JKmpqXL9+nWZOHGiNG3atMzmntyusIAjcve/89q1a6Vx48by559/ikqlku7duyv7nEjekMzEiROtetVsaTuDwSB//vlngfvt/eDKlSvSsGFDWbRoUZm9B4PBIO7u7uLn51foPCij0SivvPJKvrN4SuuNN94QALJo0SIxm83yyy+/KGcXTp8+XZlT16RJE6WXuCCWHvKnnnpKCXq//fabTJgwQZYvXy7z58+XW7duWfXqLVu2TBwdHYsMJkWJj4+XJUuWlOmPdI8ePZS5kmXNcvLFpk2bRCQvwAIosKe3vN1XAScxMdFqDL2wH+xXX31V2Qlv79EojooIOJMnT5aaNWsW+MV86dIl8fT0lFq1aomzs7PVmGXfvn0L7Z05efKkDBkyRHx9fStkB7vTlStXJCgoSH777TcBIKNHj863TFZW1l1PV33QTzktjXvVdmazWWrUqKHMISvtpQEKc7eAUxRLL+J7770nLVu2LHKC5YOy35XHPDC1Wi0ACu0Fsgxr3z4XpyxYzji7vcc4OTlZGc5q37699OrVSz7//HNxdHRU5lTdGcYHDRokAPJdrsNy4sbIkSNl1apV4uzsrBxkTpo0yeqMw5Iqj/3uzksalLV27dopv70TJkwQPz+/ct1eYSpDwHGy9YKAWq3W6g6mXl5e0Gq10Gg0ynM6nU5ZRqfTlery7iJSblfDzcjIgNlsRkZGhvKcm5sbgoODlcvr387b2xtbt27FmjVrMG/ePLi4uCh1W79+PQAUWFe1Wo0vv/wSb731Fjw9PSvs6r4Wnp6e2LRpk3LZ8SpVqljVaf78+cjIyMAHH3xQaF0tbXZ725Ft7mXbzZgxA4sXL8bUqVOxcuXKctn3LJ+VzMzMEpWfnp6OyZMnw8PDA6mpqXB0dCx02Qdpvyvr+wz9+eefOHLkCHJycgr8O61evRp6vR79+/cv0/2katWqeP75562uIuzq6ooBAwYgPT0dGzduxLVr19CgQQO4u7vj2LFjmDBhAhISErBr1y7odDrUr18fn376KQYPHozOnTtb1W/dunXo27cv5syZAxHBxo0bMWDAAMTGxuLDDz/EpEmTSv1+ymu/y87OLtPybhceHo66desiPT0dffr0QatWrSrkt6e82k5ElKuMF0UlYts1lsPCwuDr64uQkBAAwNSpU6HRaBAUFKQsExERgYiICOV+HREREZgxY0Zx64/Y2Nhy3QF27tyJNWvW4IsvvoCbmxuuX78ONzc3eHp6lts2K4v//e9/qFWrFt577z0AwKZNm9C7d2/4+vpi4MCBaNGiBaZNm1bBtaSyYjKZ7hocSsNgMGDPnj3o2LEjfHx8ymUb9GBISUnBp59+ioSEBPTo0QMBAQH43//+Bx8fH6xbtw516tQpsoysrCycP38enp6eGDduHObMmYMmTZrcg9pXPitWrIBOp8PTTz+Nbt26WXVO2AMXFxe0atWqyOVs7sEpiMFgsHpsNBrh4+ODgIAAAHn3uNHpdMrj4nB2dkbTpk1LU71Cpaen44MPPsCXX36JZcuW4fnnn4fRaMQff/xhczK8XyUkJGDfvn345ptvcPLkSXz77bf44YcfsGrVKiQkJGDChAl4+OGHC10/IyMD8fHxaNSoEdzd3e9hze9/9tZ2V65cwZ49e+Dv76/cJLC82Fvb3Uv3Q9vl5OQgLCwMLVq0gEqlgojg33//RU5ODjp37mzz9/Jjjz0Gf39/XL16FW3bti31fnk/tF1BLPeTa9iwIZo2bYpq1ard8zqUV9sV547nNgccPz8/GI1G5XFqairUarXVMmq12uo5Hx8f6PX6EgUclUoFDw+PYq9nizZt2uD9999HfHw8jh8/jh07dmDbtm2oUqVKuWyvMvnhhx9w4sQJ+Pr6ol27djh8+DCGDRuG9PR0JCcn29zu7u7u5fb3sXf20nZubm7Kv/fq/dhL21WEyt52bdq0sXq8aNGiEpXz+++/Y+fOnfD39y+LagGo/G13p88++wyfffZZRVcDQNm3XXE6IWwOOBqNBmFhYcrjpKQkZf6N0WiEt7c3NBoNIiIilGX0er3VHJ3KpE+fPmjatCni4uIwduxY9OnTp6KrdE9oNBqrv4mfnx927txZcRUiIipDgYGBCAwMrOhqUCVgc8BRq9Xo1asXoqOjYTAYEBoaqrzWv39/bN68Gd7e3ggODkZERASMRiPGjx8Pb2/vcql4WXB2dkaHDh3QoUOHiq4KERERlaFizcG5fULx7Xbs2FHkMkRERET3ikNFV4CIiIiorDHgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjtOxVk4OjoaAGAwGKBWq6HRaO66rLe3912XISIiIioPNvfg6PV6aLVaBAUFITg4GOHh4YUuazQasXz5chiNxjKpJBEREVFx2BxwtFotvLy8lMdeXl7QarUFLhsVFYWePXuWvnZEREREJWDzEFViYiJ8fX2Vx76+vgX20Oh0Omg0GmU4q6REBOnp6aUqozAZGRlW/5Lt2HYlZ29tl5mZqfxbXp9VC3tru3uJbVdybLuSK6+2ExGoVCqbli3WHJw7GQyGfM/p9XoEBQWVplgAQE5ODk6cOFHqcu4mPj6+XMu3Z2y7krOXtrN8/s+fP4/k5OR7sk17abuKwLYrObZdyZVH27m4uNi0nM0Bx8/Pz6rHJjU1FWq12mqZ8PBwqNVqREdHIzY2Fnq9Hmq1GgEBAbZuRuHs7IymTZsWez1bZGRkID4+Ho0aNYK7u3u5bMNese1Kzt7a7sqVK9izZw/8/f1Ru3btct2WvbXdvcS2Kzm2XcmVV9udOXPG5mVtDjgajQZhYWHK46SkJOUMKaPRCG9vb4SEhCivx8bGolWrViUKNwCgUqng4eFRonVt5e7uXu7bsFdsu5Kzl7Zzc3NT/r1X78de2q4isO1Kjm1XcmXddrYOTwHFmGSsVqvRq1cvREdHIyIiAqGhocpr/fv3t+rd0Wq1iImJQWRkJPR6vc2VISIiIioLxZqDU9jcmh07dlg91mg02Lx5c8lrRURERFQKvJIxERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsDgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsDgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsDgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsDgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsDgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsjlNxFo6OjgYAGAwGqNVqaDSaApcxGAzQ6XQICgoqcBkiIiKi8mRzwNHr9dBqtZgxYwYAYPjw4fnCi06nAwAEBwfDaDSia9euOHjwYBlWl4iIiKhoNg9RabVaeHl5KY+9vLyg1WqtljEYDMpz3t7e8PHxUUIPERER0b1icw9OYmIifH19lce+vr4wGo1Wy2g0GqteHYPBgICAgBJVTESQnp5eonWLkpGRYfUv2Y5tV3L21naZmZnKv+X1WbWwt7a7l9h2Jce2K7nyajsRgUqlsmnZYs3BuZPBYCj0talTp2LmzJklLjsnJwcnTpwo8fq2iI+PL9fy7RnbruTspe0sn//z588jOTn5nmzTXtquIrDtSo5tV3Ll0XYuLi42LWdzwPHz87PqsUlNTYVarS5w2ejoaGg0GgQFBdlafD7Ozs5o2rRpide/m4yMDMTHx6NRo0Zwd3cvl23YK7Zdydlb2125cgV79uyBv78/ateuXa7bsre2u5fYdiXHtiu58mq7M2fO2LyszQFHo9EgLCxMeZyUlKQMRxmNRnh7ewPIm6vj7e0NjUYDnU4Hb2/vQoPQ3ahUKnh4eBR7veJwd3cv923YK7ZdydlL27m5uSn/3qv3Yy9tVxHYdiXHtiu5sm47W4engGIEHLVajV69eimngYeGhiqv9e/fH5s3b4bBYMC4ceOU541GI06dOmVzZYiIiIjKQrHm4BQ25LRjxw4AeWdO8bRwIiIiqmi8kjERERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdsepOAtHR0cDAAwGA9RqNTQaTYmWISIiIipPNvfg6PV6aLVaBAUFITg4GOHh4SVahoiIiKi82RxwtFotvLy8lMdeXl7QarXFXoaIiIiovNk8RJWYmAhfX1/lsa+vL4xGY7GXsUVOTg5EBMeOHSv2urYQEQDA6dOnoVKpymUb9optV3L21nYmkwldunTB5cuXce3atXLdlr213b3Etis5tl3JlVfb5eTk2Fxesebg3MlgMJTJMneyVL68diiVSgUXF5dyKdvese1Kzt7azsnJCVWrVr0n27K3truX2HYlx7YrufJqO5VKVfYBx8/Pz6o3JjU1FWq1utjL2OLxxx8v9jpEREREFjbPwdFoNIiNjVUeJyUlKWdIWULN3ZYhIiIiuldUYhkos8Htp4D7+PggKCgIANCtWzds3rwZ3t7ehS5DREREdK8UK+AQERER3Q94JWMiIiKyOww4REREZHcYcIiIiMjuMOAQERGR3WHAISIiIrvDgENERER2hwGHiIiI7A4DDhEREdmdUt1s8350+5WW1Wo1byVRhLFjx2LkyJEAgMjISEyYMAEA27EgRqMRERERAICQkBDl+cLaim34fwprO+5/tomOjobBYIBOp0NQUFCR+xjb7/8U1nbc92wTHR0NtVqNuLg4AEBwcLDyPFDB+548QBITE+XDDz9UHr/66qsVWJv7Q79+/eSJJ56QV199VQwGg4iwHQsTFRUlc+bMkeXLlyvPFdZWbENrBbWdCPc/W8TFxUlUVJSIiBgMBnniiSdEhPueLQprOxHue7YwGAzSr18/5f8feughEak8+94DNUSl1Wrh5eWlPPby8oJWq63AGlV+oaGhOHjwIFatWgVvb28AbMfCBAUFwc/Pz+q5wtqKbWitoLYDuP/ZwmAwKO/f29sbPj4+0Ol03PdsUFjbAdz3bOHt7Y3NmzcDAPR6vdIbU1n2vQdqiCoxMRG+vr7KY19fX+VO6FQwy93hDQYDgLzuR7aj7QprK7ahbbj/FU2j0Vh18xsMBgQEBCAyMpL7XhEKazuA+15xREREYO/evVi0aBGAyvO990AFnIJYdl4qmGXcGci7a3zPnj0LXI7taLvC2optmB/3v+KZOnUqZs6cWejr3PcKd2fbcd+zXXBwMNRqNebOnYsZM2YUuExF7HsP1BDVnV3gqampUKvVFVSbyi86OhphYWHKY29vb+j1erZjMRTWVmzDonH/K57o6GhoNBoEBQUB4L5XHHe2Hfc921l6YDQaDaKioqDVaivNvvdABRyNRqN0OwJAUlLSAz8D/m7UajU6dOigPDYajQgICGA7FkNhbcU2LBr3P9tptVp4e3sjKCgIOp1OmQ/Bfa9oBbUd9z3bREREYNmyZcpjHx8f+Pj4VJp9TyUiUm6lV0K3n6Lm4+OjJHYqmKW9YmNjMWDAACVtsx3z02q12LBhA27evIng4GCro0Egf1uxDf9PUW3H/a9wer0e/fv3Vx4bjUacOnUKAPe9otjSdtz3Cmc0GpWAuHfvXvj6+iqXeagM+94DF3CIiIjI/j1QQ1RERET0YGDAISIiIrvDgENERER2hwGHiIiI7A4DDhEREdkdBhwiIiKyOww4RGQ3tFot+vfvj4iIiIquChFVMAYcIrIbGo0G7du3r+hqEFElwIBDRHbl9rsVE9GDiwGHiIiI7I5TRVeAiOyfVquFTqeDWq1GbGwsJkyYAK1Wi6lTpyo34TMYDNDpdBg/fjy8vb0BADqdDlqtFmq1Gnq9HkFBQco9gfR6PTZs2IBWrVrBYDCgZ8+eynqWe+To9Xrs3bsXixcvrrD3TkQVgwGHiMqVXq/H3LlzsXnzZgB5N9kLDw9HSEgIevToAV9fX6sb8Y0bNw6rVq1S1lu1apVSVv/+/bF69WoAwPDhw7F582Z4e3sjLCwMERERyo3+YmNjrW76p9PpEBAQcA/fNRFVNAYcIipXGzZsgI+PD7RarfJcbGys8v+WXhcACAoKwrhx42A0GrFhwwa0bNnSqqwGDRogKioKAKBWq5V1R44cabVcq1atlP/38vKCwWAouzdERPcFBhwiKnctW7aERqNRHgcHB5eqPKPRCC8vL+Xx7SGJiAjgJGMiKme9evVCTEyM1XO39+YYjUbl/6Ojo6HRaODt7V3gesePH0fPnj0RFBSE48ePF1omEZFKRKSiK0FE9k2r1WLv3r3K0JElxISFheHmzZsICgqC0WhEbGwsRo4cqfTI3Dk5uVevXspcmoLK1Ov1+PDDDwEAM2fOVObxtGzZEhMmTFAmKBOR/WPAIaIKExYWBj8/v1IPWRER3YlDVERERGR3GHCIqEJotVrExMQop3ETEZUlDlERERGR3WEPDhEREdkdBhwiIiKyOww4REREZHcYcIiIiMjuMOAQERGR3WHAISIiIrvDgENERER2hwGHiIiI7A4DDhEREdmd/wfjvW6Cfyzi1QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAFbCAYAAADY/fSfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUoElEQVR4nO3deXhMZ/8/8PdkkUWWsdU6UYoiaJUuRilFRTzVom0spbTCY22r0ZUI2m9boYq2SrRoPUir6UKTeGprU2PXVgyKEpkg9sxkX2Y+vz/8ch4j2ySZbJP367pyxZw5y30+Zibvuc99zlGJiICIiIjIgThVdQOIiIiI7I0Bh4iIiBwOAw4RERE5HAYcIiIicjgMOERERORwGHCIiIjI4TDgEBERkcNhwCEiIiKHw4BDREREDsfF1hlNJhMiIyMBAMHBwYXOExsbCwAwGo3QaDTQarV2aCIRERFR6djcg6PT6ZCSklLk8waDATqdDgEBAQgKCkJERIQ92kdERERUajb34AQEBMBoNMJkMhX6vE6ng7e3t/LY29sbOp2uTL04f/zxB0QErq6upV6WiIiIHFNubi5UKhW6du1a4rw2B5ySJCYmQq1WK4/VanWRYagkIgIRQU5Ojp1aR1S7WCwWZGZmwsPDA05OHGpHRLWP3QJOYYxGY5mWc3V1hYigTZs2dm7RLZmZmUhISMDdd98NDw+PCtlGTcJ6FFTTa3L58mV89dVXGDt2LBo3blzu9dX0elQE1qQg1sQa61FQeWty5swZqFQqm+a1W8Dx8/Oz6rFJSUmBRqMp8/pUKhU8PT3t0bQieXh4VPg2ahLWo6CaWhN3d3fltz3bX1PrUZFYk4JYE2usR0FlrYmt4Qaww2ni+aFGq9UiPj5emZ6UlMSzqIiIiKhK2NyDo9PpsGfPHqSmpkKj0SAgIAAAMGzYMERFRUGj0SAwMBCxsbEwGo2YOHFihTWaiIiIqDg2BxytVltoj8z27duVf+eHHiIiotrIbDYjNzcXAJCdna385mD/W0pTE1dXVzg7O5d5WxU6yJiIiKi2SEtLQ1JSEkQEwK2zGV1cXHDx4kUGnP+vNDVRqVRo0aIFvLy8yrQtBhwiIqJyMpvNSEpKgqenJxo1agSVSgWz2Yzs7Gy4ubmVqyfCkdhaExHB1atXkZSUhLZt25apfgw4RERE5ZSbmwsRQaNGjZTTn81mM4BbZzMy4NxSmpo0atQICQkJyM3NLVP92GdGRERkJ6U5jZmKV95aMuAQERGRw2HAISIiqmUiIyNtnjc8PBwzZsyowNZUDAYcIiKiWmbPnj02z9uzZ08EBgZWYGsqBgcZExER1SKRkZFISkqyef6aelcCBhwiIqJqSKfTYdGiRQCABQsWwGAwwGg0Qq/XY/78+YiMjISvry+io6MxadIk+Pv7Wy0fEREBjUYDg8Gg3IEg/64EBoMBERERAIDg4GBlWy1atMCIESOUHp7AwEAsWrQIBoPB6sK+QMHDXEFBQRVVijLhISoiIqJqSKvVIiQkBCaTCUajEQEBAQgKCoJOp0N4eDiCgoIQEBCAwMBAzJkzx2rZGTNmKKEmODgYkZGR0Ov10Gq1GDFiBDQaDYKDgxEcHKxsa+LEiUrPTv4hKX9/f4SEhBRoW0REBBITExEUFISgoCD4+voiNja2gitSOgw4RERE1ZSvry8MBoPVYSKNRmM1j7+/PwwGg/LYYDBg27ZtVrdPCggIKHFgsY+PjxKC/P39MWvWrELnM5lMWLRoESZNmqRMi46OtmpDdcBDVERERNXYnYHG29sbfn5+Rc6v0+ng4+MDnU6nTEtMTLQpgNy5rcIcO3YMPj4+8PHxUaYtW7asxOUqGwMOERGRAzGZTNBoNFa9PsUNFM4fowPAKrQUt/6agIeoiIiIHMidh6zyFRVM9Hp9qddf2LqqW/BhwCEiIqpBUlNTi31eq9WiU6dOBQb9xsTEAIByZhVwq/fmzrOvSqLRaDBw4EDlLCzgVrjJX391wYBDRERUDen1eqxcudLqlO6IiAgcO3YMsbGx0Ol00Ov1CA8Ph8lkUn4DwJo1axAfH4/IyEjExsYiNjZWOY1bo9HgueeeQ3h4OHQ6HTQaDXQ6HSIiIpRt5QegwtoA3Bpzk5KSgoiICMTGxiImJqbanSbOMThERETVkL+/f4HBu7ef2p2vqAG+RZ0FVdhzWq220HE6hbXBlvVXB+zBISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRzfr371+u5ysLAw4RERHZbM2aNeV6vrIw4BAREZHN8u88XtbnKwsDDhERkZ2JCDIzMyvkR0RK3L5Op8ODDz6o3IsqNDRUub+UTqdD//79odPpMH78eOX+VeHh4YiNjUVERIRyh/HY2FhERkYq69Hr9ejfvz9MJhP0er1yT6zQ0FAAsHoegHKvqvwfADhx4gQeeeQR6HQ6xMbGYsaMGXavP8B7UREREdmViOCll17C0aNHK2T99913H1avXg2VSlXkPFqtFhqNBoMGDYKPjw/8/f0xfvx4bN++HVqtFj4+PvD19cXSpUvh4+ODyMhIqNVqBAQEAADGjx+PkJAQREdHY9myZTAYDAgPD8eyZcuUHpro6Gj4+flBq9XC19cXwK17V+U/HxkZCQDKOkNDQ9G8eXN06NAB/v7+8PX1hVarhcFgQGxsrDKfvbAHh4iIyM6KCx+VycfHB8Ctw0ZGo1HpWQFuhZH85/V6PVJSUqDT6aDT6ZRw07NnT2X5O2+6OWnSJOj1egwbNgwrV64ssG29Xm91uEqj0WDv3r0F2lZR2INDRERkRyqVCqtXr0Z6ejqysrLg7u4OZ2dnu63f3d3d5gBlMpng4+MDk8kEX1/fIkOFv78/EhMTlTuK6/V6qNVqJCYmFlhXvpiYGMyfPx8AlENgtwcaf39/5bAYABgMBgwYMEB5nN/rU1EYcIiIiOxMpVLBw8MDKpXK7gGnNGJiYuDr64v4+Hjl7Ca9Xg+DwYDIyEgEBQUBAIKCghAREYHIyEj4+vpCo9EgODgY4eHhiIiIgEajUcKLwWBATEwMEhMTlXE1+c/nrzsmJkZZZ2xsLIxGI/z9/aHVavHHH38gKSlJ2b5Op4O3t7dy6MxeGHCIiIgcVH6AuX18i7+/Pw4ePFhg3uDg4ALTZs2aVWDa9u3bi9yev7+/1fN3rtNsNqNDhw7Ytm2bEvoq6rRyjsEhIiJyULePualtGHCIiIgczO2HoWorHqIiIiJyMEUdhqpN2INDREREDocBh4iIiBwOAw4RERE5HAYcIiIicjgMOERERFSiO2+0eftNNasjBhwiIiIq0e030rz939UVTxMnIiKqAJmZmcjKyoKIwNnZGW5ubnByclKm5XN1dYWLiwtyc3ORl5enTHdycoKbmxvMZjNycnKU6R4eHpW6HzUVAw4REVEF6NOnj9XjyMhI3HPPPZgxYwaOHDmiTH/99dfx3HPP4csvv0RERIQyvV+/fvjwww/xxx9/4N///rcy/dChQyVuW6fTITQ0FPPnz0dERASWLl0KHx8fhIeHo3PnzjAYDNBqtfD391fuFQXcugFmQEAAwsPD0bNnT+zZswcjRoyo9r01heEhKiIiIgeTf+NKX19fJdxERkZCrVYjICAAwcHBWLRoEfR6PaKjoxEUFAStVovo6GgAgFqthlarRc+ePa1CV03CHhwiIqIKsHv3bmRlZSl3E3dzcwMALFu2rMAhKgB48cUXMXbsWGW6k9OtPoiuXbsiLi6uTG3w9/dX/q3X6+Ht7Q2dTgcACAkJQXR0NHr27Ang1h3Bly1bpswfGRkJk8mElJSUMm27qrEHh2q8bdu2oVu3bnj99dexb98+WCyWqm4SERE8PDysfvIDi7u7u9V0F5dbfQ2urq5W0/MDkbOzs9X0ssoPO1qtFlqtFsCtnprExERlHpPJhMjISKSkpCi9OsCtcFTTlCrgxMbGIjY2FpGRkUoCLGqe/B+iinTkyBEMHz4ceXl5WLduHXr06AE/Pz9Mnz4du3btshqwR0RUWxR2s82goCCo1WpERkYqf5+Dg4MBABEREYiNjYXBYECnTp2QmpoKnU6njM0xGAxW66wJN/O0+RCVwWCATqfD/PnzAQDjx49Xkl0+k8kEg8GgFCw0NBQBAQF2bC7R/yQkJGDw4MHo2LEjdu3aBXd3d+zZswdRUVGIiorCJ598goYNGyIoKAihoaG46667qrrJRESVoqibbeb/fb7drFmzCkzL/1sPwOpv/fbt2wv9d3Vkcw+OTqeDt7e38vj243j58gcx5Xdl3T4/kT3dvHkTgYGB8PDwwNatW1G3bl04Ozujd+/e+Pjjj3H+/HkcPHgQEyZMwIYNG9CuXTssX7683D06IgKtVosVK1bYaU+IiKgi2NyDk5iYCLVarTxWq9WFXsEwJCQEw4YNg7+/P9auXVvmhokIMjIyyrx8cTIzM61+13Y1rR7Z2dkYMmQILl++jB07dsDLy6vQ10rHjh3RsWNHTJ48GfPmzcPLL7+MlStX4qOPPsKjjz5a7DaKqsnRo0exd+9enD59GsOHD4eXl5f9dsyOsrKylN/2eB/VtNdIZWBNCqrNNcnOzobFYoHZbIbZbAYAZSCxiCjTarvS1MRsNsNisSAzM1MZWykiUKlUNm2rXGdR5R+bu118fDyioqKwaNEijBs3DlFRUWVad25uLk6cOFGe5pUoISGhQtdf09SEelgsFrzzzjs4cOAAPvvsM5jNZpteJ1OmTEGfPn2wcOFCDBw4EIMGDcKMGTPQqFGjYpe7sybr1q2Dp6cnUlJSsGDBAowbN64ce1Nx8t+b586dw40bN+y23prwGqlsrElBtbUmLi4uyM7OLjC9sGm1nS01yc7ORl5eHs6ePWs1vU6dOjZtw+aA4+fnZ9Vjk5KSUuDCP7GxsejZsyf8/f2xZs0ahIaGQqfTFRirYwtXV1e0adOm1MvZIjMzEwkJCbj77rt5RUjUrHrMnj0b27dvx/r16/H000+XatkOHTpg6NChWL9+PebMmYNnn30WH330EUaPHl1g3qJqcuDAAQQGBqJ+/frYsGED3nnnHfj4+JR3t4q0du1arF27Fhs3bkTTpk1tXu7y5cuIi4tDq1at0Lhx43K3oya9Rkrr2LFjWL9+Pd5//32bvxkCjl2TsqrNNcnOzsbFixdRp04duLu7A7jV25CdnQ03N7dSvbYcWWlqIiJwcXGBn5+fckbZmTNnbN6WzQFHq9UiPDxceZyUlKQEF5PJBB8fHxiNRqvQo9Vq4evra3NjbqdSqeDp6VmmZW3l4eFR4duoSap7PT777DMsWbIES5YswahRo8q8nn//+98YMWIEJkyYgFmzZmHMmDHKB9Kdbq/JhQsXcOTIEbz22mvo3bs31q1bh9WrV2P27Nllbktx0tPTERYWhqtXryIwMBC7d++2OeTk74+7u7td/0+r+2skPT0ddevWLdUyS5cuxYYNG/DUU0+hX79+pd5mYTXZs2cPNBoN/Pz8Sr0+R1DdXycVwdXVFU5OTjCbzXB2dgYA5RCMSqVSptV2pamJ2WyGk5MTvLy8lGsFlSYo2hxwNBoNAgMDlUs6T5w4UXlu2LBhiIqKQlBQECIiInDs2DEAty75fPtFhogMBgO2bdsGi8WCFi1aQKPRoEWLFlCr1VYv3CtXruDw4cM4fPgwjhw5gsOHDyMxMRGvvPIKXnnllXK3Q61WY8GCBfjuu+8QHR2NYcOGlbjMli1b4OzsjEGDBqFevXqYNGkSFi9ejGnTplmNT7OXzz//HDdv3sT27dvxwgsvoG/fvti1a1epenJqk/j4eHTv3h0//vijzWdvpqSkICoqCiqVCsuWLStTwLlTVlYWAgMD8eijj+Lnn38u9/qoZnBxcYGnpyeuXr1qFXbyD8Uw4Nxia00sFguuXr0KT09P5TpBpVWqpYr60Lj9VLHCTkFzBH/99ReWLl0KNzc3NGvWDM2bN7f6Xb9+/VJ3Qf7666+4du0ahg8fXkGtrnoWiwWHDx/Gli1bsGXLFvz5559wdnaGiFhdkK9u3bpo0aIFGjdujH/++QcXLlwAcCuIPPDAAwgKCsIjjzyCp556ym5t69ChA7p164b169fbFHB++ukn9O7dG/Xq1QMAvPnmm1i1ahU+/vhjhIWF2a1dAJCRkYGFCxdi3Lhx6NevH3bv3o0+ffrg8ccfx86dOxlyCvHGG28gJycHS5cutTngfPPNN8jJyUFYWBjCwsJw7tw5tGrVqlztiI6OhslkQnR0NE6dOoV27dqVa33lsW/fPuzatQv9+vVDt27d+Ee2AqlUKjRt2hTnzp3D+fPnAdz6/MvLy4OLi4tykb/arjQ1cXJygp+fX5kP7/FWDSW4cuUKZs+ejdWrV+Puu++Gr68vLly4gKtXr1rNp1ar8c4772DGjBklDoBKTU3F66+/js8//xwqlQrbt2/H448/XpG7YTfXrl3D8ePHodfrcfz4cVy/fl3pjr79t4eHB44dO4atW7fi0qVLUKvVCAwMxBtvvIGAgAB4eXkhOTkZBoMBSUlJMBgMMBgMSE5OhlarxQMPPIBu3bqhVatWFXrs+vnnn8cbb7yBGzduoH79+kXOl5aWhh07duDDDz9UpjVt2hSTJ0/GkiVL8PLLLyvBxx5WrVqF69ev4+233wYAtGnTBrt27ULfvn3x+OOPY9euXWjSpIndtlfT7dy5EzExMXj66afxww8/4J9//sE999xT4nJr167FwIEDERISgo8//hiffvopFi1aVK62bNy4EZ07d0ZycjKWL1+O5cuXl2t9ZWU0GjF8+HBcunQJb7/9NurXr48BAwbgiSeewMCBA9G8efNSr1NEYDAY0LhxY2VMhC1SU1Nx6dKlKg17laFOnTpo27atcufvzMxMnD17Fn5+frVuTFJRSlOTOnXqlC8YSjV09OhROXr0aIWtPz09XQ4dOiTp6elFzpOdnS3h4eHi4+MjarVaPv74Y8nJybF6/vz586LT6WTz5s0yZcoUcXZ2lnbt2klMTEyR692xY4e0bNlS6tatK5988on07dtXmjZtKleuXLHrPpZGcfX4559/ZOrUqdKnTx9p1KiRABAA4uLiIh06dJA+ffrIww8/LF26dJG2bdtK8+bNpX79+uLu7i5t27aVmTNnyq5du6xqV51cunRJnJycZOXKlVbT76zJd999JwDkzJkzVvMlJyeLh4eHzJ49225tysjIkCZNmsj48eMLPHfq1Clp1qyZtG/fXi5dulTkOi5evChhYWFy8eJFu7TJlvdMVTGbzdKtWzd55JFHJD09XerVqychISElLnfixAkBIJGRkSIiMmvWLFGr1ZKWlmbTdguridFoFDc3NwkPD5fZs2eLl5eXpKSklG3Hymny5Mni5eUlZ8+eld9//13mzJkjDz30kKhUKgEg/v7+Mn36dNm4caOcP39eLBZLoevJycmRHTt2yCuvvCL33HOPABB3d3fp37+/vP/++7J//37Jzc0Vkf/VxGg0ik6nk/nz50uvXr3ExcVFVCqV/Pbbb5VZgipXnd83VaW8NSlNPmDAuYPFYpEff/xR2rRpI05OTjJlyhS5evWqTes9evSo9O3bVwDIk08+KadPn1aeS01NlcmTJwsA6dOnj/zzzz8iInLhwgVp2LChBAYGitlsts8OllJR9UhJSZF27dpJkyZN5LnnnpOwsDD59ttvRa/XS3Z2dpW0tSIMHDhQevXqZTXtzpq88MIL4u/vX+jys2bNEi8vL7l27Zpd2rN06VJxdnYuEKby5YecDh06yNmzZwv9vyhtwMnLy5O4uDhZtGiRJCUlFXi+On9Qb9y4UQBIXFyciIjMnDlT6tevLxkZGcUu9+abb0q9evUkMzNTRETOnTsnTk5O8vnnn9u03cJqsnbtWlGpVGIwGOTChQvi4uIiS5YsKduOlUNcXJwAkOXLlxd47vr16xIZGSkvvviitG3bVvnS0rx5c3n22WdlyZIlotPpZP369RIUFCS+vr7K85MmTZLvvvtOFi9eLIMHDxYvLy8BIL6+vjJkyBCZPXu2PPbYY+Lj46NMHzp0qHz66afy8MMPS4cOHSQrK6vS61FVqvP7pqow4FRRwMnOzpbBgwcLABkwYIDEx8eXet0Wi0U2b94sfn5+UqdOHXnrrbfk559/lrvvvls8PT1l+fLlBYLMzz//LADko48+Ktd+lVVh9TCbzTJkyBBRq9VWQc0Rff311wJAzp07p0y7vSZ5eXnSoEEDefvttwtd/sqVK1K3bl158803y92WzMxMadasmYwdO7bY+f7++29p1qyZVY+aWq2W5s2by7333it9+/aVsLAwmT9/vvz888+FBp3U1FSJioqSF154QRo2bCgARKVSSYsWLQq8/6rrB3VWVpa0atVKnnrqKWXaqVOnBICsW7euyOXy8vKkWbNmMmXKFKvpTz/9tPj7+xfZm3G7wmoycOBA6d27t/J45MiR0rp1a8nLyyvFXpVPVlaWtG/fXnr06GHTdi9fviw//vijvPHGG/Loo4+Km5ub8rrq1q2bhIWFyeHDhwutSU5OjuzZs0cWLFggffr0ER8fH3nggQckNDRU9u7dq/TsiNz6XHdxcZEFCxbYdX+rs+r6vqlKDDhVFHBmzpwprq6uEhUVZdMHXEnbCAsLE3d3dwEgvXv3LvIb+e3bPnToULm2WxaF1WPevHmiUqnk559/rvT2VLbU1FTx9PSU9957T5l2e01+++03ASD79u0rch1vvfWW1K1bt9yHGj/55BNxcnKSU6dOlTjvpUuXZPPmzbJu3Tr57LPPZOHChRIaGiqvvfaaTJ06VcLCwqy+oTdp0kQCAwPl9ddfl8DAQOUPmb+/v7z11luyb98+SUpKkq5du4qPj4/88ssvhdajOvn444/FyclJjh8/bjV9wIAB8sgjjxS5XExMjACQAwcOWE3fuXOnAJAdO3aUuO07a3L58mVxdna26gHat2+fAJCffvqpNLtVLqGhoeLq6irHjh0r0/LZ2dly8ODBQnvySlLS6+TNN98UNzc3+fvvv8vUtpqmur5vqhIDThUEnOjoaAEgixcvtuu2EhISJDo6usTDT9nZ2dKtWzdp06aNmEwmu7ahJHfWY8uWLaJSqWT+/PmV2o6qNHr0aGnfvr0SbG+vSUhIiDRu3LjY/8Nr166Jt7e3zJo1y2p6Xl6enD9/Xnbt2iVRUVHFds9nZWVJixYt5Pnnny/3/uQforpw4YKcPXtWvvvuO3nnnXdk0KBB0qJFC+nbt68sWbKk0NBtMpkkICBAXFxcZM2aNSJSPT+oU1JSpEGDBhIcHFzguaioKAEgR44cKXTZoKCgQntqLBaLdOrUSZ5++ukSt39nTT755BNxcXEpcKjy4Ycfln79+tm6W+USHx8vrq6uEhoaWinbu1NJr5P09HRp1aqV9O3bt9xfImuC6vi+qWoMOJUccKrDOBgRkdOnT4uXl5dd/sCVxu31OHXqlPj6+spTTz1VpbWobPnf6A8fPiwi1jVp166dTJgwocR1zJkzRzw8PGTSpEnyxBNPSJs2bcTV1VXpQQEg9957r+zatavQ5VesWCEqlUpOnDhR7v0p7yDjnJwcmTBhggCQefPmSVpaWrX7oH7rrbfE09NTLly4UOC53Nxcad68eaHh58aNG8pA4MKsXLlSnJycrA5ZFubOzxGtViuDBw8uMN9//vMfAVDmHhVb5eXlySOPPCLt27evsnEutvzx2rZtmwCQtWvXVmLLqgYDTkGVGXBq/WniZrMZY8aMgaurK9auXVul1ypo06YNPv/8czz//PMYMGAAxo4dW+p15ObmKld8LK3U1FQ8/fTTaNKkCb766qtadd2G/v3746677sL69evxwAMPKNNPnTqFU6dO2XTq8KuvvooffvgB+/btQ+vWrfHUU0+hdevWaNWqFVq3bo3MzExMmzYNffv2xQsvvIBFixahYcOGAICcnBy8//77GDFiBNq3b19h+2krV1dXrFq1Cq1atcI777yD06dPY9q0aTYvb7FYkJKSgmvXruHGjRtITU2FyWRSfvIfN2rUCAMGDMB9991XqssBJCUlYcmSJQgJCUGzZs0KPO/i4oJJkybhgw8+wMKFC60uxLhp0ybk5eXh+eefL3Tdo0ePxhtvvIHPPvsMCxcutKk9CQkJ0Ol0WL9+fYHnnnnmGYSEhGDZsmVYuXKlbTtYBitWrMC+ffsQFxdXqlO4K9sTTzyBUaNG4bXXXsPgwYOV9wBVT2azGVeuXMGFCxdw8eJF5felS5cwcuRIu1wcs8KUKUJVsMrswXnvvfdEpVLZdMy9sowbN07q1q0rJ0+etHkZi8UiERERUrduXXnnnXdKtb309HQ5ePCgDB06VLy8vAqMZ6gtXn75ZWnSpInk5uYqr5F3331XPDw87PYNzGw2S0REhNSrV08aNGggX375pVgsFlm5cqWoVCrR6/V22Y49TxP/+uuvxdXVVe6//36ZPHmyTJkyRSZOnCjjx4+XMWPGyMiRI+Xpp5+WXr16SYcOHaRRo0bi5ORk1XN1+4+np6c0btxY2rRpI56engJAGjduLGPGjJH169fL5cuXS2zTiy++KI0aNRKj0VhsDVxcXGTp0qVW0x966CH517/+Vez6Q0JCpF69esX+v9/+OfL++++Lh4eHpKamFjrvggULxMPDQ65fv17sdsvq/Pnz4uXlJZMnT66Q9dvK1m/nly9flnr16skLL7xQOQ2rIjW5B+fUqVMycOBAcXZ2tnr/Ojs7S4sWLaRx48bSsWPHUh9q5CGqSgo4O3bsEGdnZ7tew8QeUlNT5d5775UGDRrIypUrSzwT4saNG/LMM88IAOnVq1eRp4cWJT09XaZNmyYAJCoqqrzNr7EOHjwoAGTbtm3Ka0Sr1cqQIUPsvq3Lly/L888/LwDkscceEz8/P3nuuefstn57XwcnOjpa2rdvLx07dpT7779funfvLo888oj06tVL+vbtKwEBAfL888/LK6+8Iu+++658/vnnsnnzZtm9e7f89ddfkpCQIDdu3LA6q0bk1rijHTt2yOuvvy733Xef8iHatWtXmTJlinz66aeya9cuq9ATHx8vTk5ONr3Gn332WauxVXq9XgDI5s2bi13u7NmzolKpZNWqVUXOc/sHdefOnSUoKKjIeS9fvix16tSRDz/8sMQ2l5bFYpHBgwdL8+bNq+yaO/lK88crIiKiyAHdOTk58uOPP8ozzzwjAQEB8p///KfE0/6ro5oYcLKysmT+/Pni5uYmrVq1kuXLl8uWLVvk8OHDkpycrAxdKM2A/Nsx4FRCwNm5c6doNBrp2bNngQ/d6iA5OVleeOEF5VRNnU5X6HxxcXGi0WhErVbLt99+KyK3zshSqVQlfojn++yzz8TJyUlef/11u7W/JrJYLHLvvffKmDFjJD09XX755RdxcnKS1atXV9g2f/nlF2nTpo2oVKoyXZagKDX1Qn+XLl2SdevWyejRo6Vjx47i4uKihJ6GDRtK7969pWPHjnLPPffYdC2m/A/hnTt3isitaxbVr1/fpjEqQ4YMkU6dOhX5DTW/JgcOHBAA8uOPPxa7vnHjxolGo7Hb543FYpH9+/crnxMlbb8ylOZ1YjabpVevXtK2bVvJzMwUi8Uihw4dkhkzZiiXLbjvvvvk0UcfFQCiVqtlypQpcujQoRozQLm6BJz8duRf86kou3fvlnvvvVdcXFzkrbfeKrbdFotF/P39bRqQX1hbGHAqSFpamjz++OOiVqvl/PnzFbYde9DpdNKtWzcBIGPHjlWuXpubmytz584VJycn6dWrl9V+mM1mGTlypLi5uRV75dDs7Gzl4oNDhw6t9LO3qqMFCxYop3vPnTtXVCqVJCcnV+g2MzMz7X5YsKYGnDvl5OTI8ePHZfPmzTJ//nwZMWKEdOvWzebLF1gsFmnfvr08++yzkpubK02aNJHp06fbtOz27dsFQJGDwvNrMmvWLKlXr16JgevIkSM29R6V5Pr167J06VLp3LmzABCNRlNl19C6U2lfJ8ePHxdXV1cJDAyUjh07KpczCAkJkb/++kuZ79SpU/LWW29J06ZNBYB06dJFPv74Y5svwlpV7P2+ycnJkW3btklCQoJN8yclJclbb70l9evXFwDi6uoqPXr0kJCQEPn++++Vy1pcvXpVxo0bJwCkZ8+eNn/ZWrFihTg5OdncHhEGnAoPOMuWLRMAsnHjxgrbhj3l5eXJqlWrpGHDhuLt7S3vvfee9OzZU5ycnGTevHmFfiPMyspSQlxhZ29cunRJHn30UXF1dZXly5dXi28Z1cE///wjAOTLL7+Uvn37ysMPP1zVTSoTRwk49rB06VJxcXGR1atXW50pVxKLxSIdO3aUfv36Fbrf+WPX7r77bpvOshMR6dWrV4GrZhe23ezsbDEajXLlyhVJTEyU06dPyy+//CKjRo0SNzc3cXFxkeHDh0tMTEylXkSwJGV5neSPTxo1apTExsYW28OVm5srW7dulWHDhomLi4u4uLjIk08+Kd98802JvROV7caNG/LNN9/IK6+8Im+88YZMmzZNxowZI08++aT06tVLunTpIs8++6xs27atxDNWU1NTZcmSJaLRaJQezfvvv19CQ0ML7dHav3+/jBw5UlxcXMTb21teeeUV2b17tyxfvlxGjBhhtZ62bdtKgwYNRK1Wy6pVq0p19mxqaqr4+vrKG2+8YfMyDDgVHHBGjx4tY8eOrXEf1jdu3JBp06aJk5OTtGzZUn7//fdi5zcajXLfffdJixYtJDExUZm+b98+ad68uTRt2lR0Ol2N/uNVEXr27Cm9e/cWd3d3mTdvXlU3p0wYcP7n5s2b4unpKe7u7tK5c+dSHd7YsmWLuLu7S/v27QtcUyc9PV3WrFljdQisJJs3bxYAMmrUKBk6dKg8/vjj0r17d2nbtq3cddddyoVBi/q59957JTw83KaB2FWhLK8Ti8VSpsN2V65ckWXLlsmDDz6o3BZiwoQJ8uuvv1bJJS6uXbsm33//vbz88sty//33K/f88vT0lBYtWkjnzp2lV69e8uSTT8qYMWNkypQp4u/vLwCkZcuWMm/ePKvP6fx9nDNnjtSrV09cXFxkzJgxsn//fomMjJTRo0eLWq0WANKsWTP597//LStWrJAePXoIAGndurV8/PHHRQ7EP3/+vGzYsEGmTp0q06ZNK3NP9SuvvCINGjSweYxUZQYclYiIvc7Ispf4+HgAQOfOnStk/RkZGThx4gQ6dOgAT0/PCtlGRTp79iwaNWoEb2/vEue9dOkSevToAS8vL8TFxeH777/H5MmT0a1bN2zevBnNmjWr8fWwt88//xyTJ08GABw6dAjdunWr4haV3qVLl7Bq1SpMnDgRTZs2Lff6avprJDg4GKtXr8ZHH32EV199tVTLHj9+HKNHj4Zer8eCBQsQEhICZ2dnZGRk4KWXXsLu3buRlJQEZ2fnEteVl5eH4cOH4+rVq/D19VV+fHx8lN8eHh5wc3ODm5sb3N3dlX/Xq1ev1KfTV7aqep2cPHkS69evx/r163H+/Hm0bNkSXbt2Rb169Qr81K9fH/fccw9atWoFF5eyXSnl5s2bOHr0qPJz4MABHD16FABw991347HHHkOfPn3w0EMPISMjAx07diy0HiKC/fv3Y/Xq1di0aRMyMzMREBCAMWPGYM+ePfjiiy+gUqkQHByMmTNnws/Pz2r53Nxc7NmzBz/99BN+/PFHnD17Fn379sUrr7yCwYMH2/SaLK8zZ86gbdu2+PLLLzF+/PgS5y/va6Q0+YABpwZ+WJfWyZMn0bNnT7i7u+PixYuYOHEili1bplwro7bVoyTXr19H06ZN0bhxY5w8eRJ169at6iaVGgOOtRMnTmD8+PHYsmULGjVqVOrlc3JyMGfOHISHh6N379746quvoFar0bp1a4wcORLLly+vgFbXPFX9OrFYLPj999+xadMmnDt3Djdv3rT6ycvLU+atU6cO2rVrh44dO6JDhw7o0KED2rRpg7y8PKSlpSE9PR1paWnKz7Vr1xAfH4+//voLBoNBWYe/vz+6du2Kxx57DI899hhatmxZpnqkpqZi06ZNWL16NQ4cOIAGDRpg+vTpmDZtGho0aFDivosIjEaj1TWfKktgYCCSk5Nx+PDhEgN4ZQacWn+hv9qgffv22Lp1K0aPHo2VK1di4sSJVd2kaq1BgwaYMWMGXFxcqvW3ZbJdhw4dsG/fvjIvX6dOHXz44YcYNGgQxo4diy5dumD06NG4fv06nnvuOTu2lMrDyckJvXv3Ru/evQs8JyJIT0/H9evXcfr0aZw4cQLHjx/HiRMnsHv3bly5cqXQdapUKtStWxf16tVDp06dMGrUKHTp0gX33Xcf2rVrV+YLq97J29sbwcHBCA4Oxrlz53DXXXeV6suVSqWqknADANOnT0dgYCD27t0LrVZbJW0oDANOLdGjRw+cPXu2qptRY8yfPx8nTpyo6mZQNdOnTx/89ddfmDJlCj777DNoNBqrK19T9aVSqeDl5QUvLy+0bNkS/fv3t3r+xo0bOHv2LNzc3FC3bl1lXg8Pj0r/otOqVatK3V55DRw4EG3atMEnn3zCgENEVFPVq1cPGzduxNChQ2E0GtnL5yDq16+P+vXrV3UzaiQnJydMnToVs2bNwuLFi+1yWNweas/NhoiI7Ohf//oXe2+I/r9x48ahTp06WLVqVVU3RcGAQ0REROWiVqsxduxYfP7558jJyanq5gBgwCEiIiI7mDp1KpKTkxEVFVXVTQHAgENERER20KlTJ/Tt27faXDaBAYeIiIjsYtq0adDpdDhy5EhVN4UBh4iIiOxjyJAhGDRoEDIyMqq6KTxNnIiIiOzDxcUF0dHRVd0MAOzBISIiIgfEgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEVEpmsxm//vor5syZU9VNIaIiMOAQkcPLzMzE5s2bYTaby7WemzdvYtKkSXjmmWdw/fp1xMTEID4+3k6tJCJ7YsAhukNWVhbS0tKwd+9eiEhVN4fs4M0338THH39crnWICPr27YuNGzeiX79+ePLJJ9G8eXN89dVX9mkkEdkVA04tcePGDbz22mvYvXt3VTel2luxYgUaN26M6dOnIy4urqqbQ/9fbm4uLl68iMzMzFItd/ToUXz66afo3r07Zs+ejezs7FItf+bMGTzzzDO4fPkyPvnkE5w8eRLTpk2Dq6srVqxYgQ8++KDUQbhfv35o0aIFOnbsCACYN28eHnvsMQQEBMBgMGDv3r349NNP8f333+Pq1avIyclBbm5uqbZBVNsx4NQgV69exeLFi5GXl4cTJ04gJyfHpuUyMzPRv39/LFu2DHv37oXRaERERESp/1DUBunp6fjggw8wduxYtGvXDosXL66wbZnNZnz11Vc4fvw4fvjhB/z3v/+tsG2Vl8FgwMqVK5GWloatW7dixowZmDp1Kk6dOoW9e/ciODgYs2bNwt69e5GSkoJNmzZh27Zt+OeffwAAJpOp2BAgIkhOTsa+ffsAAKtXr8aoUaPw+OOP48qVK/i///s/1KlTB82bN8dvv/2G9PR0m9vu7e2N4OBgvPjii1i4cCFWrVpl87LffPMNOnXqhEOHDiEpKQmPPvoomjVrpjzfrFkzvPfee3jxxRdtWl9YWBi2bNmCkSNH4qWXXsLw4cMBAE2aNEHLli1Rt25d1K1bF7/99htmzpyJYcOG4c8//8QPP/wAb29vDBs2DAcOHLC5/WQ7EUFGRgYsFktVN6VGM5vN1eewrVRDR48elaNHj1bY+tPT0+XQoUOSnp5eYduwt08//VTc3d3Fw8ND4uLipEmTJjJw4EBJS0srdrn09HSxWCwSHh4uf/31l+Tk5Mj3338vKpVKGjRoID/99FONrEdFuXjxojz77LNy/Phx+fzzz2XLli0Vsp3Tp09L586dBYB8+OGHEhgYKA0aNJDExES7rP/ixYsSFhYmFy9eLPe6vvjiC/Hw8JC6detKQkKCLF26VDp37iz333+/7N+/X2JjY+XBBx+Utm3bytdffy379+8XAAJApk2bJhkZGQJA3N3d5ZlnnhERkQkTJsi4cePkrbfeEhGRRx99VACIk5OTZGVlydy5c6VPnz4SFBQkFy5ckIMHD8rq1atl69atcurUKWndurV88cUXJbZ98+bN8t///ld5PH78eGnTpo2YzWab9j05OVk+/PDDQt9n+e+bjz76SJycnOTUqVPFrkun04lKpZKlS5fatG2LxSJXr16VzMxMOXv2rCxcuFAefPBB+eWXX2Tnzp0yYsQI+eGHHyQrK8um9VWG6vJZcuXKFTly5Ijs3LlTrl+/LidPnpSPPvpIQkNDZd++fXLq1CkZPHiw9OjRQz744AMxmUzi4uIiAKRPnz4iItKrVy/p1KmTDB48WEREli9fLsuXL5dDhw5JXl6eTe2oLvWoTJmZmfLqq69KQkJCoc+XtyalyQcMONWUxWKRmJgYGThwoOh0OomLi5P/+7//k2vXromIyPbt28XLy0tmzpxZ5Dpu3Lgh3bp1k7lz5xZ47syZMzJjxgw5efKkbNiwQZ588km5cuVKRe1OjWAymSQ2NlYsFovyGtm7d6989NFHdtvG/v375auvvpKMjAx59tlnZe/evSIicu3aNdFoNBIWFmaX7RQWcLKysuTy5csiIiUGYxGRrVu3yokTJ2TXrl3y8ssvy+7du216z1gsFjGZTJKYmCjJycmSlZUlGzdulKVLl8qGDRtERGT06NHyyCOPSGBgoIiI/PTTT/LDDz/I8ePHbQofwcHB4u7uLn/88UeR81y9elXq168vY8aMUaYlJyfLlStXxGKxFLt+s9ksI0eOlJ9//rnIefJfI9evX5cOHTrI999/X+w6X375ZenevbvNfxyL8/PPP0uXLl0EgHz77beSnZ0tOTk55V5veZX1s9WW12Nx/v77b1mxYoU8//zzkpKSIm+88YYSsv/73//Kpk2bpG7dutK8eXNZu3atnDt3ToYMGSLjxo2TDRs2iMVikc8++0y+/vpriY2NFRGR999/X6ZPny6vvfaaiNx6zbm6uoqzs7OkpaXJihUr5M0335QffvhBMjIy7FqPmspgMMjy5cuLfY0z4DDgyJdffikA5IEHHpBff/210Hn++usvMZlM8ssvvxT45p+bmysPPfSQ1K9fX/78889it7Vu3Trx9PSU3r17F/lGrQ3effddqVOnjly8eFF5jSxfvlxUKpWcPHmyxOVTU1PlhRdekNmzZ4uIyMSJE2X06NEya9YsERF59dVXBYA88sgjhf4Rv3jxolgsFjly5EiZ2p+WliYpKSly/fp1+eCDDyQsLEyWL18uubm5ctdddynbFhG59957pUOHDvLqq6+KxWKR3NxcZT3Jycnyr3/9SwAoPSzV7T2TmZkpL730kpw/f77Ied5//31Rq9WSnJxsNX3Pnj3Svn175ctCYT777DMBIL/88kuR89xeE7PZLOnp6UWu8/z582KxWOTmzZvF71gpHT9+XDIyMuTJJ5+UMWPG2NwzVVHK8jq5efOmdO7cWTp37iwzZ84Us9lc5H7kB9Ndu3ZJWFiY/Otf/5LMzEyZOnWqODs7y4MPPignT56UCxcuyKFDh+TMmTOSmZlZYqC1VWZmpvL+fPvtt6Vp06YCQK5duyaLFy+WIUOGSFhYmFy6dEny8vJKXY9Lly7J2rVr5ejRo5Kbm2v310tFslgs8tRTT0nTpk0lJSWlyPkYcGpxwNm6dassWLBAzGaz7Nu3r8Q3Zm5urnTo0EE0Go2cOHFCRG71ROTl5cmaNWuK/YabLz09XVavXi2TJk2SvLy8Kv+QrAopKSmiVqtl2rRpIvK/18iNGzekadOmMmPGjBLXMWrUKPHy8pL3339fRESGDx8ujz32mDz77LMiIjJ58mRZs2ZNsd9utm/fLgAkKiqq2G1ZLBb5/vvv5Y8//pDff/9d+aANDQ2VS5cuSevWrSUsLEzpEQoPD5c1a9bI77//LhaLRSIjIyU4OFhGjBghIiIPPfSQPPzww7J69WrJyMiQ3r17y+bNm5XXX3V9z/z+++8yefLkAu+TjIwMMZvNhQbTK1euiJeXl4SEhBS53tGjR8ukSZOK3fbtNbFYLNKpUyeZOHFigfn++ecf8fDwkK+//trGvSq9TZs2iUqlktdff73CtmGL0rxOsrKyZOzYsXLo0CHZtWuXjB8/Xjkc1K9fP+nZs6fMnTtXcnNzZd68eaLVaqVJkyaSl5cn48aNk4YNG8rAgQMlKSlJrly5Uu5eoLKwWCySlJQkIiJr1qyRAQMGSP369eX8+fPywQcfSJMmTaRHjx6i0+kkMTFR/vvf/0pCQoLyGZubmytxcXGSkJAgW7duFQCiUqnko48+km+//Va8vLxk2rRpcu7cuUrft9I6cuSIAJDNmzcXOx8DTi0NOLNnzxYAMmTIkFJ1YyclJYm/v79MnjxZUlJS5KGHHpLJkyfbvPzt9VixYoUMGDCg1vXkmM1m+eabb+TChQsiYl2Tv/76SzIzM4td3mKxyC+//FLiYYqSWCwWGT58uPj4+CiHk+508eJFpYflyy+/lMTERAkNDZWvvvpKTp48KRaLRS5cuFCqMTirV6+W5557Trp06VLseJPq9p758ccfBYAsWrRImZaTkyP33XefLFy4sMjlwsLCZOTIkQWCkdlsll27donFYinxkM+dNfnwww/F1dXVqjfVYrHIwIEDxc/PT1JTU8uyizZbtWqV/Pbbb1V6qMrW10lmZqYEBgaKm5ubxMTEFHg+IiJChg8fLg8//LCI3Or9HDVqlHzwwQeSkZFh114Ze7NYLGKxWGTfvn0ya9Ys6d27txw+fFjpFQQgK1eulPj4eFGr1QJA3nvvPblx44Z8/fXXylCBS5cuSWhoqDRq1Eh++eUXiY+Pl+3bt1t96Th8+LB8/fXXcuPGDdm4caN0795dZs6cWeJ4MHvLzMwUs9ksR48eLfH/hQGnCgPO9u3bi/zDUlEuXLggmZmZsnz5cgkPDy/TG/fmzZuSnZ0tY8eOFW9vbzl06JDNy95ej927d4unp6cMGDCgWhzTrwzXr1+XSZMmWYWBO18j7733nsyZM6fQ5XU6nfTv31+uX79ul/akpKTIxo0bCxw6ys3NlWPHjsm1a9eka9euxYYpew4yFqm+AUdE5PXXX5f+/fsr34oXL14sTk5Oxb4H8v8IHTt2zGr6J598IgAkPj6+xO3eWROTySTjx4+3+rZtsVhkzZo1hf4RrwhpaWny4IMPysqVKytle3ey5XVisVgkLS1NAgICrAaAO6Lb65GbmytnzpyR6OhoSUxMlEOHDklYWJjs37+/2C+0+WEuJCREAMg999wjJpNJXnvtNSUw7dq1S+Li4uT555+Xxo0by65du2THjh0yadIkiY2Nlezs7ALrzR8rd+7cuXKPv5w8ebIEBgba9LeLAaeKAk5+F9uBAwfs9u0gLi5OZs+erZyNc+TIEblw4YLygo6NjZWGDRsqYx3Kw2KxyDvvvCOHDx8u1XJ31mPnzp0SFhZW4A+so3rnnXfE09PTaqzGnTWZM2eOeHp6ytWrV62WvXz5sjRv3lx69uxp90D40ksvyb///W8RETl48KB07dpVGjVqJBkZGSW+PmtTwMnNzZXc3FzZvn27XLp0SVatWmXT+2nDhg3i7Owsf//9t4jc+qLh6elpc+9nYTWxWCyydetWuXjxoty4cUNmzJhht+BrC4vFItOmTRMnJyf57rvvyryesr7vS3qdpKWlSWBgoGzbtq3a9sDYkz3fNxaLRXbu3Cnjx48Xg8Egf//9t+zbt0+MRqPVfPljmL755htp3bq1AJCffvpJoqKipHfv3uLv7y8///yzREdHKwHptddek+zsbDl9+nSp2/X7778LAJvPDmTAqaKAM3jwYGnbtq38888/cv/998uBAwfKvI20tDRJSEgQJycnadiwoUybNk1ycnJEpVIJAHn44YflypUr4unpKQEBAQX+cFamouoRFhYmgYGB1eo0VHvLyckRPz+/AmMX7qzJ1atXpV69evLTTz9Zzffnn39Kt27dlOPw9rRq1SoBIN99952MHDmyVK/J2hRwRG6NuWnWrJkAkBs3bti0TGZmpmg0GnnuueeUHp1NmzbZfCipsJoYjUbx9fWVmTNnysSJE8Xb21s57FlZzGazzJgxQ44dO1ZkiMjNzZWUlBRZt26dvPvuu7JhwwbJy8uT+++/X+rXr68MRn/ttddk7ty5EhMTU+i6DAaD/PDDD/Lee++JxWKRGTNmSJ8+fSQsLKzA2WppaWnSu3dv8fLykt9++61idr6aqer3jcVikT///FMyMzMlNjZWRo0aJdOnT5dDhw5JcnKybNy4UWJjY+X69euyZs0acXJyklGjRpUq6MTFxUlQUFClnTpfmnzgUppr5sTGxgIAjEYjNBoNtFptofNFRERAo9EAAAICAkqziSo1ZswYeHt7w9fXF+7u7ujbty9iYmLQq1cvm9dx9OhRzJkzB0lJSTh06BD27t2L7t27w8nJCWazGUeOHEFSUhJcXV3RqFEj7NmzB126dIGTU/W75qJWq8X777+PF198Ef/5z38QHh4OAGjevDlGjRoFvV4Pk8mEtLQ09O/fH3v27MGff/6J1NRUTJgwAQaDAb/99hvq16+P3r17o2HDhkhKSkK9evXg6emJvLw8fPvtt0hISED79u0xYsQItGvXDnfddRcef/xxfPDBB9i1axfq16+Ptm3bwtPT0+776OTkhKNHj5Y4X37b69Spg+zsbLi5uWHVqlV44okncPDgQahUKru3bcKECfj999+Rm5uLzz//HJ6ennBxKdVbttbw8PDAhg0b0K9fP+zcuVO5gF5x3N3dsXTpUuTm5mL58uU4dOgQ1q5dW673oo+PD2bMmIEFCxYAAD755BOrCwNWBicnJyxduhRJSUno3r07Xn31VfTs2RMmkwnTp0/HiRMnMGXKFEyePBkvvPACGjZsiFGjRmHkyJEYMGAA6tWrh/bt2wMAEhMTsXPnTnz11Vc4e/YsJk+erFy0ccOGDZgwYQK2bduGBg0aYOLEiXj00Uexd+9eLF68GJMmTcJ7772H//znP3jooYfw5ptvonXr1vjggw/Qo0ePSq1JbaVSqXDfffcBAAYOHIiBAwdaPT9ixAirf2dkZODDDz/E9evXkZ6ejtzcXHTv3r3I9UdGRuLBBx/Epk2bKmYHysvW1JSYmGg1BmHcuHGFzjdu3Dily2zo0KG2rt5KVfTghIeHW51ympaWJlOnTpWrV68WezppvuTkZLFYLNK9e3e555575Ouvv64xZyOVNCZpwYIFIiLStWtX8fX1lXbt2omISO/evZUuzqysLJkyZYq4ublJgwYN5K+//pIVK1aIp6enAJDIyEjZtm2bMv/8+fMlMTFRnJycpGXLlvL222+LiMi8efNk/PjxSo9K/tlBd911l4iIXXtKkpOTpWXLloV+myysJtnZ2dK+fXtZtGiRbNmypcDg1opgNpvFZDKVerna1oOTryy9jX/++adyUcLSKKom169fl6ioKLl48aJdrnlTVmlpafLII48IAPnoo4/k7NmzMmLECJk3b57odDqxWCw2nUxgsViUcYlvv/229OjRQ4YPHy65ubly8uRJSUpKKnC2XX4v2I4dO2Tq1KnSvXt3OXPmTMXtbDVVU943t8s/PDlu3DgBIF26dJHLly/Lr7/+Kl988YX8+uuvkpaWJn///be4ubkpn922qsweHJWIbTdRiYyMRGJiImbNmgUAmDFjBkaMGGHVi6PX67Fy5Uq8++67MBgM8Pf3L1Poio+Ph4igTZs2ZVq+JJmZmUhISMDdd98NDw8P7N69G4MHD8amTZvw5JNPWs2bmJiIHj164I033sCMGTOs1uHh4YE1a9Zg9erVOHbsGPbv34+6deuiSZMmcHV1rZC2V4Q761ESi8UCJycnJCYmIjU1Fd7e3mjRogUAFPrtNysrC05OTsjIyIBer8fNmzfRtm1btGvXDnl5ecXW6vr16zh9+jRSUlLQvXt33HfffRg0aBAWL14MX1/fMu1v/i0uHn/8cfzzzz/Q6/WoX7++1TxF1WTSpEnYvn07GjZsiJYtW2LTpk3Vsvft8uXL+OqrrzB27Fg0bty43Osr7WukJtm1axc+/fRTrFu3DnXr1rV5uZpQk7y8PFy4cAEtWrSAs7NzhW+vJtSkMtXkepjNZnz//ff49ddfsWTJEsydOxdLly6FiCAuLg7btm3Dhg0bcODAgVLtW3lrcubMGahUKnTu3LnEeW0OOOHh4VCr1QgODgYAhIaGQqvVWh2CioyMRGRkpNI9GxkZifnz55d6B+Lj422+z5I9TJ8+HUajEevWrStwqEFE8Nlnn2HNmjUIDQ2FiGDr1q04duwYtm7dih07diA+Ph4PP/wwnnjiCdSpU6fS2l3biAiio6OxcOFCDBkyBK+99prNy5rNZmzcuBE7d+6ESqXCF198gSVLlkCr1eLhhx+2eT0JCQkIDw/HzJkzcdddd8Hb27ssu1LhjEYj4uLi0KtXrzIHQSKi22VnZ+PixYto1qwZTpw4AS8vrwrriChOnTp1bAo45TqgbzQarR6bTCb4+voqPTfHjh2DXq8vU0+Oq6trpfXgfPvtt7hy5QruvffeQuf/5JNP0KtXLwwePBgrVqyARqPBmDFj4O/vj0cffbRC2liZatK3jI4dO+K5556Dj48PYmNjcfToUcydOxdubm5W84kItm3bhn379iEzMxMffvghfvvtN2g0GgwdOhQdOnQo9qaLRdWkQ4cOGDRoUIXtn71cvnwZcXFxaNWqFXtwKghrUhBrYs0R63H//fdb/S4te/Tg2MrmgOPn5weTyaQ8TklJUQYS59NoNFbTfH19y3yoSqVSVcig0tu5ublh+PDhmDBhQomDEsePHw8AmDt3boW2qSp5eHhUeM3tIX8AZGZmJlasWIFdu3Zh9+7d2Lp1K/bs2QNXV1csX74cM2fORGZmJgYMGAAPDw8cPHiw1IeTakpN7uTu7q78tmf7a2o9KhJrUhBrYo31KKisNSnNCR02f9prtVqrW6AnJSUp42/yg49Wq4XBYFDmMRgMRZ5pVR389NNPiI2NxV133VXVTaEymDp1Kg4ePIihQ4dCrVYjJCQEcXFxyh/3gwcPIjk5GevXr4dKpaqWY2WIiKhi2NyDo9FoEBgYiNjYWBiNRkycOFF5btiwYYiKioKPjw+CgoIQGRkJk8mEkJAQ+Pj4VEjD7eGPP/5AQEBAqU4Dp+qlS5cu6NKlCwDg3LlzVt8IGjVqVFXNIiKiKlaqMThFXdNm+/btJc5T3Vy9ehVhYWEcFOxA2AVMRET5amWffW5uLiZMmIA5c+bUqNO5iYiIyDa1MuB8/fXXuHjxotVVHImIiMhx1MqAo9Fo8OKLL6JTp05V3RQiIiKqALXyxjYDBgxQrrxLREREjqdW9uAQERGRY2PAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOx6U0M8fGxgIAjEYjNBoNtFptsfP6+PgUOw8RERFRRbC5B8dgMECn0yEgIABBQUGIiIgocl6TyYRVq1bBZDLZpZFEREREpWFzwNHpdPD29lYee3t7Q6fTFTpvTEwMBg0aVP7WEREREZWBzYeoEhMToVarlcdqtbrQHhq9Xg+tVqscziorEUFGRka51lGUzMxMq9+1HetRUE2vSVZWlvLbHu+jml6PisCaFMSaWGM9CipvTUQEKpXKpnlLNQbnTkajscA0g8GAgICA8qwWAJCbm4sTJ06Uez3FSUhIqND11zSsR0E1tSb5781z587hxo0bdltvTa1HRWJNCmJNrLEeBZWnJnXq1LFpPpsDjp+fn1WPTUpKCjQajdU8ERER0Gg0iI2NRXx8PAwGAzQaDfz9/W3djMLV1RVt2rQp9XK2yMzMREJCAu6++254eHhUyDZqEtajoJpek8uXLyMuLg6tWrVC48aNy72+ml6PisCaFMSaWGM9CipvTc6cOWPzvDYHHK1Wi/DwcOVxUlKScoaUyWSCj48PgoODlefj4+PRuXPnMoUbAFCpVPD09CzTsrby8PCo8G3UJKxHQTW1Ju7u7spve7a/ptajIrEmBbEm1liPgspaE1sPTwGlGGSs0WgQGBiI2NhYREZGYuLEicpzw4YNs+rd0el02Lt3L6Kjo2EwGGxuDBEREZE9lGoMTlFja7Zv3271WKvVIioqquytIiIiIioHXsmYiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOx6U0M8fGxgIAjEYjNBoNtFptofMYjUbo9XoEBAQUOg8RERFRRbI54BgMBuh0OsyfPx8AMH78+ALhRa/XAwCCgoJgMpnQr18/HDx40I7NJSIiIiqZzYeodDodvL29lcfe3t7Q6XRW8xiNRmWaj48PfH19ldBDREREVFls7sFJTEyEWq1WHqvVaphMJqt5tFqtVa+O0WiEv79/mRomIsjIyCjTsiXJzMy0+l3bsR4F1fSaZGVlKb/t8T6q6fWoCKxJQayJNdajoPLWRESgUqlsmrdUY3DuZDQai3wuNDQUCxYsKPO6c3NzceLEiTIvb4uEhIQKXX9Nw3oUVFNrkv/ePHfuHG7cuGG39dbUelQk1qQg1sQa61FQeWpSp04dm+azOeD4+flZ9dikpKRAo9EUOm9sbCy0Wi0CAgJsXX0Brq6uaNOmTZmXL05mZiYSEhJw9913w8PDo0K2UZOwHgXV9JpcvnwZcXFxaNWqFRo3blzu9dX0elQE1qQg1sQa61FQeWty5swZm+e1OeBotVqEh4crj5OSkpTDUSaTCT4+PgBujdXx8fGBVquFXq+Hj49PkUGoOCqVCp6enqVerjQ8PDwqfBs1CetRUE2tibu7u/Lbnu2vqfWoSKxJQayJNdajoLLWxNbDU0ApAo5Go0FgYKByGvjEiROV54YNG4aoqCgYjUa8/PLLynSTyYS///7b5sYQERER2UOpxuAUdchp+/btAG6dOcXTwomIiKiq8UrGRERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcl9LMHBsbCwAwGo3QaDTQarVlmoeIiIioItncg2MwGKDT6RAQEICgoCBERESUaR4iIiKiimZzwNHpdPD29lYee3t7Q6fTlXoeIiIioopm8yGqxMREqNVq5bFarYbJZCr1PLbIzc2FiODo0aOlXtYWIgIAOH36NFQqVYVsoyZhPQqq6TUxm83o27cvkpOTcfXq1XKvr6bXoyKwJgWxJtZYj4LKW5Pc3FyblyvVGJw7GY1Gu8xzp/zGV9QLQqVSoU6dOhWy7pqI9SioptfExcUF9erVs9v6ano9KgJrUhBrYo31KKi8NVGpVPYPOH5+fla9MSkpKdBoNKWexxZdu3Yt9TJERERE+Wweg6PVahEfH688TkpKUs6Qyg81xc1DREREVFlUkn9AzAa3nwLu6+uLgIAAAED//v0RFRUFHx+fIuchIiIiqiylCjhERERENQGvZExEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIodTrptt1kS3X2lZo9HUyltJmEwmREZGAgCCg4OV6bW5NrGxsTAajdDr9QgICFD2vbbXRKPR4NixYwCAoKAgZTpQO2sC3Np/Hx8fvkYAzJgxA5MmTQIAREdHY9asWQBqd00iIiKUezDmX8m/NtdjxowZePfdd+Hj42M1vVJqIrVIYmKizJkzR3k8bty4KmxN1YmJiZGFCxfKqlWrlGm1uTbHjh2TmJgYERExGo3SvXt3EandNTEajTJ06FDl3+3atROR2l0Tkf/VJf/1UtvrMXToUOnevbuMGzdOjEajiNTumtxeh/z3T22uR2JiorRr1066d+8u3bt3l3bt2smqVasqrSa16hCVTqeDt7e38tjb2xs6na4KW1Q1AgIC4OfnZzWtNtfGaDQq++rj4wNfX1/o9fpaXRMfHx9ERUUBAAwGg/LtqjbXBABiYmIwaNAg5XFtr8fEiRNx8OBBrFmzRvmGXltrotfrlf3W6/XK+6e21gO49dlx8OBB5Wf+/PkIDg6utJrUqkNUiYmJUKvVymO1Wq3cCb22q8210Wq1Vt2jRqMR/v7+iI6OrrU1yRcZGYk9e/Zg6dKlAGr360Sv10Or1Spd60DtrgcAxMfHA7j1ngFuHcasrTU5duwYkpKSYDAYAAChoaGYP39+ra0HAKvP1cjISOXLQWXVpFYFnMLkvzGpoNpYm9DQUCxYsKDI52tbTYKCgqDRaLBo0SLMnz+/0HlqS00MBoMypqI4taUeAJQxNwDQv39/q96t29WGmphMJvj6+sLf3x/ArcCj1+sLnbc21ON2BoMBJpOpwDic21VETWrVIao7D8ukpKQog8FqO9bm1qA3rVar/BGr7TXJ/0al1WoRExMDnU5Xa2sSEREB4NZrJD4+HjqdDnq9vtbWA7hVi/DwcOWxj48PDAZDra2JRqOx2k9fX99aXY/bbdq0SQl+QOV9ttaqgKPVapUuVQBISkqqVaPZi1Pba6PT6eDj44OAgADo9Xpl3EltrUlkZCRWrlypPPb19YWvr2+trUlwcDACAgIQEBCgnPHh7+9fa+sB3PqD3rNnT+WxyWSq1TXRarXK4Sngf2PXams9brdt2zarAFNZNVGJiNh9rdXY7aem+fr62tTl7Gh0Oh02bdqE1NRUBAUFFXoqY22qjcFgwLBhw5THJpMJf//9N4DaWxOTyaSEvj179kCtViuXFKitNQFuvXcWLVqEFi1aYNasWdBoNLW6Hvn7Hh8fjxEjRih/xGprTfIvN2EymaDRaGr9Z2u+YcOGYe3atVaHqCqjJrUu4BAREZHjq1WHqIiIiKh2YMAhIiIih8OAQ0RERA6HAYeIiIgcDgMOERERORwGHCIiInI4DDhE5DB0Oh2GDRuGyMjIqm4KEVUxBhwichharRY9evSo6mYQUTXAgENEDuX2uxQTUe3FgENEREQOx6WqG0BEji//7tsajQbx8fGYNWsWdDodQkNDlRsSGo1G6PV6hISEKPes0ev10Ol00Gg0MBgMys0ugVv3ENu0aRM6d+4Mo9GIQYMGKcvl30vLYDBgz549WLZsWZXtOxFVDQYcIqpQBoMBixYtQlRUFIBbN9eLiIhAcHAwBg4cCLVabXVTwpdffhlr1qxRlluzZo2yrvyb9gHA+PHjERUVBR8fH4SHhyMyMlK5IWh8fLzVzUH1ej38/f0rca+JqKox4BBRhdq0aRN8fX2h0+mUafHx8cq/b7/DcEBAAF5++WWYTCZs2rQJHTt2tFpXixYtEBMTAwDQaDTKspMmTbKar3Pnzsq/vb29YTQa7bdDRFQjMOAQUYXr2LEjtFqt8jgoKKhc6zOZTPD29lYe3x6SiIgADjImogoWGBiIvXv3Wk27vTfHZDIp/46NjYVWq4WPj0+hyx0/fhyDBg1CQEAAjh8/XuQ6iYhUIiJV3Qgicmw6nQ579uxRDh3lh5jw8HCkpqYiICAAJpMJ8fHxmDRpktIjc+fg5MDAQGUsTWHrNBgMmDNnDgBgwYIFyjiejh07YtasWcoAZSJyfAw4RFRlwsPD4efnV+5DVkREd+IhKiIiInI4DDhEVCV0Oh327t2rnMZNRGRPPERFREREDoc9OERERORwGHCIiIjI4TDgEBERkcNhwCEiIiKHw4BDREREDocBh4iIiBwOAw4RERE5HAYcIiIicjgMOERERORw/h+8WlSO1OMUwAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -591,11 +613,11 @@ "sns.lineplot(x='epoch', y='value', style='metric', dashes=[\"\", (2,1)], data=df_aranged,\n", " color='black', linewidth=1)\n", "ax.set_ylim([0, 1])\n", - "ax.set_xticks(np.arange(0, 350, 50))\n", + "#ax.set_xticks(np.arange(0, 70, 50))\n", "ax.set_ylabel('')\n", - "ax.axvline(133, 0, 1, lw=1, color='grey')\n", + "ax.axvline(27, 0, 1, lw=1, color='grey')\n", "fig.tight_layout()\n", - "fig.savefig(fig_save_dir + 'precision_recall.pdf', format='pdf', bbox_inches='tight')" + "fig.savefig(fig_save_dir + 'precision_recall_final.pdf', format='pdf', bbox_inches='tight')" ] }, { @@ -608,13 +630,13 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 14, "id": "bc5a84dd", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAACoCAYAAADtjJScAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqKElEQVR4nO3dfVBU570H8O8i77LLEiWGhEVNjClvURsSy+pMU2N1YXInSmvWZhJrTMSkvQkzV5w00+gU8XrnRuxU722skBetN62rN9zEtuxqrE1qOBhNYyusxLcEORAkvsBZkHc49w9nT0VZ2F3YF85+PzOOnrPPOb/nHPTxt895zvNoZFmWQURERKQiYYGuABEREdFYY4JDREREqsMEh4iIiFSHCQ4RERGpDhMcIiIiUh0mOERERKQ6THCIiIhIdZjgEBERkeowwSEiIiLVCQ90BYiIfMFmswEAJEmCwWCA0Wh0u4zD4YDFYgEArF692qNzElFwYA8OEamOKIoQBAEmkwlmsxllZWUelREEAa2trR6fk4iCR0j24Jw8eRKyLCMiIiLQVSEal3p7e6HRaDBnzpxAV2VIgiBAq9Uq21qtFoIgDOpxGa6MyWSCJElwOBwendMdbH+IvOdJ2xOSCY4syxhpjVFZltHb24uIiAhoNBo/1Uzd8QcGBuBwOKDT6RAWNnznYSCvX433fqzjB/savfX19dDr9cq2Xq8flKy4W2Y05V1xtj89PT0eH0veGRgYQGdnJ2JiYkZse0g9QjLBcX5zyszMdFmmo6MDtbW1mDFjBmJjY/1VNVXHb2pqwvvvv4/8/HwkJSX5Pb671Hjvxzp+dXW1n2s1epIkjUmZ0ZQHbrQ/sixjxowZLst0dnairq4O06ZNQ0xMjMcxRiuQ8X0Ru7m5Gb/97W+xYsUKTJkyxe/xPRHK8d2Jff78ebe/+IVkgkNE6paSkjKod6W1tRUGg8HjMqMpPxyNRuNW8hoTExOQJDcY4o9l7OjoaOV3d88Zyvc+0PGHi+1Jrzb76ohIdYxG46BepoaGhkFvSI1UxtNzElHwYQ8OEamOwWBAbm4ubDYbJElCfn6+8lleXh7Ky8uHLSMIAiorK9HW1gaDwQCTyTRseSIKPkxwiEiVTCbTkPsPHz48Yhmj0Thk74yr8kQUfPiIioiIiFSHCQ4RERGpDhMcIiIiUh0mOERERKQ6THCIiIhIdZjgEBERkeowwSEiIiLVYYJDREREqsMEh4iIiAKuu7t7TM/HBIeIiIgC4uuvv8aePXuwZMkSJCYmoqqqaszOzaUaiIiIyK+OHDmCF198EWfPngUAzJo1C1u3bsXDDz88ZjECkuDYbDYAgCRJMBgMQ675MlyZsrIyGAwGAFwbhoiIaDyQZRkHDhzA7t278Yc//AHz58/Ha6+9BpPJhMTERHR0dKC2tnbM4vn9EZUoihAEASaTCWazGWVlZR6VefbZZ2E2m2EymVBaWurPqhMREZGHZFnGwYMHMX/+fCxZsgT19fXYsGEDDh48iGeeeQaJiYk+iev3HhxBEKDVapVtrVYLQRAG9dC4KhMfH6/st9vtKC8v91/FiYiIyCMNDQ1YtWoVPvzwQ2RlZeHgwYNYtGiRX2L7PcGpr6+HXq9XtvV6PRwOh1tlRFFEQ0MDRFEEAGzYsAEbN270qh6yLKOjo8Pl552dnYN+9zc1xu/q6lJ+H+7e+yq+u9R478c6vizL0Gg0/qoSEY0zX375JcrKyvCb3/wGsbGx+OMf/4jc3Fy/thtBMchYkiS3yjgcDsTHxyM9PR0AUFNTA7vdrmx7ore3161nfXV1dR6feyypKb7z5/zVV1/h2rVrfo/vKTXde1/Ej4yM9E9FiGhc+d///V88++yziIyMxI9+9CNs2rQJd9xxh9/r4fcEJyUlZVCPTWtrqzJgeKQyDodjUNn4+HiIouhVghMREYEZM2a4/LyzsxN1dXWYNm0aYmJiPD7/aKkxfnNzM44ePYrp06djypQpfo/vLjXe+7GOf/78eZ/Xo6SkBFOnToXJZEJBQQF0Oh1yc3P91r1NRJ7p6OjA+vXr8ctf/hJmsxlvvvkm4uLiAlYfvyc4RqMRW7ZsUbYbGhqU8TcOhwM6nc5lGYfDAYvFouwXRXHIN7DcodFoEBsbO2K5mJgYt8r5ipriR0dHK7+7e85AXr+a7v1Yx/dHN3NmZiYWL16MN998E+np6Vi7di327dvn87hE5BlZlrFjxw4UFxfjypUr+NWvfoWXX3454I+x/Z7gGAwG5ObmwmazQZIk5OfnK5/l5eWhvLzcZRmdTgez2QyLxQKHw4HCwkLodDp/XwIR+YHz37bVasWmTZsA3Oi1JaLg0d3djZ/+9Kd466238OMf/xgbNmzAvffeG+hqAQjQGBxXc9ccPnx4xDKc94YoNDhfJhBFEampqRBF8bYXEogocP7yl7/AbDbj6tWr+O1vf4tnnnkm0FUahEs1EFFQysnJwenTp/Hee++hvb0d+/btY4JDFCTOnz+PJUuWIDMzE6dOnQq65AYIkreoiIhutXPnTkydOhUJCQl4+eWXodVqkZmZGehqEYW8y5cvY8mSJZgyZQrKy8uD9tExe3CIKChlZmZi2bJl2Lt3L9LT07Ft2za0trYGulpEIW337t2477770NzcjA8++CBokxuACQ4RBambBxnn5uYC4CBjokD6z//8T6xcuRJ5eXmorq5GampqoKs0LK8fUXGOCiLyJQ4yJgoex44dw89//nO8+uqr2Lx5c6Cr4xavExzOUUFEvpSTkwOLxYL33nsPbW1tsFgsSEhIcPt4m80G4MYM2gaDYcg5s1yVcbXfYrEoE4wajUavJhklGk9kWcb+/fuRn5+Phx9+GEVFRYGuktu8fkTF7mMi8iWtVovly5fj2LFjsNlseOGFF/Dcc8+5dawoihAEASaTCWazGWVlZW6XcbXfbrejsrISJpMJq1evRklJydhdLFEQ6uvrw9NPPw2z2YxFixbBarUiIiIi0NVym9cJjiiKqKqqYvcxEfmEKIpYsWIFPvnkE3zyySfIy8tza/04ABAEAVqtVtnWarUQBMGtMsPtv3VZGbvd7s2lEQU9WZaxatUq7Nu3D7/73e9gsVgGLYI9Hnj9iConJwf79u0bNEfFeLt4Igpehw4dQnl5+aB9W7dudWtgY319/aD2SK/X3/YFzFUZV/sNBgOqq6uV/aIoer0WnizL6OjocPn5eFhRfjzF7urqUn4f7r77Kr4ngiW+xWLBnj178Oabb+KJJ57wS33cuXZZlt1eAsLrBIdzVBCRLyUnJ9+2LyMjw+vzOVez96aMJEkwm82oqKiAw+FATU0NAHi9VExvb69bvVHBvqL8eInt/Ll+9dVXuHbtmt/jeyOQ8U+ePIlXXnkF3/ve9zB79my3e07HykjXHhkZ6dZ5OMiYiIKS8y2qmzU0NLh1bEpKyqAem9bW1tseLw1XxtX+7du3w263IyMjAzqdzuuEKyIiAjNmzHD5+XhYUX48xW5ubsbRo0cxffp0TJkyxe/xPRGo+LIsw2q1YufOnTh8+DBmzZqFsrIyJCUl+a0O7lz7+fPn3T6f1wkOF8IjIl8yGo1YtWqV8ghIEAQUFha6feyWLVuU7YaGBuVNKIfDAZ1O57KMKIpD7nc4HHjttdewfft2iKKoJDne0Gg0bq0UH8wryo+n2NHR0crv7p4zlO59d3c38vLyUFFRgdmzZ2PTpk0oKChAXFycX+Lfarhr92SFcq8THM5RQUS+lJaWhqKiIlgsFgBAcXEx0tLS3DrWYDAgNzcXNpsNkiQhPz9f+SwvLw/l5eUuy7jar9PpMG/ePNhsNoiiiI0bN47xFRP5X2NjI/Lz83H48GG8//77WLhwIb744guEhY3/eYBHNch4NHNUEBGNxGAwDOq1qa2tdXv2VJPJNOT+w4cPj1jG1X6z2exWbKJgt3//fuzYsQPHjx9HXFwc3nvvPTz++OMjDsIeT7xOcJxzVFitVgDACy+8ELDuLCIa//bv3z/s55IkwWq14r333vNTjYjUp7e3F2vXrsV//dd/4dFHH8VPfvITvPrqq6rsoBjVI6qCggJl8F1ZWRm2bdsW9GtTEFFw+v3vf69MGuqKLMt+qg2RekiShL/+9a/YunUrzp49i8uXL+PXv/41XnzxRY/GtIw3Xic4o5mjgojoVuvWrUN2dvawZYZaboGIBmtubsann36Kuro67Nq1CydPngQAZGdn4+mnn8aTTz6JrKysANfS97xOcMZ6jgoiCm0jJTcA3B5kTBSKrl69is2bN+ONN95AV1cXIiIisGDBAuzZswcZGRmYNWuWqntsbjXqt6hu5u4cFeOFLMv40Y9+hFdffRXf+c53Al0dIiKiIQmCgOeffx6NjY145ZVXsHr1aiQlJanibShveZ3gjGaOivFCkiQcOHAAjY2N+OyzzwJdHSIiokE+//xzrF27Fh999BFSU1Nx/PhxPPDAA4GuVlDwOrVzzlEhyzJkWUZxcbFbXczjiXPGxJsX3iMiIgq0/v5+bN68GQ899BCamppQXl6OmpoaJjc38boHBxjdHBXB7sKFC3jhhRcAABMnTgxwbYiIKJR1dnaivr4edXV1ePfdd3HkyBE0NjZi3bp1+Pd//3dEREQEuopBx+0EJ9TmqLh5EHV7e3sAa0JERKGmra0NV69eRV9fH44fP46CggI0NzcDAL71rW9h2bJlMJvNmDt3bkgNHPaE2wlOqM1RERUVhQULFuDIkSP4+OOPsWnTJphMppB4tY4oGDQ0NChfNNra2iAIAtLT04d8g5NILerr67Flyxb83//9H3p6epT9CxYswK9//WtMmzYN3/72t5nUuMHtBCcU56h4/fXXUV5ejs2bN2P9+vVYv349Ll26NOJqtEQ0elVVVVi2bBmAG+PgFi9ejP379yv7iNREkiQUFhbi3XffhUajwc9+9jMYjUaEhYXhgQcegMFgYFLjIbcTnFCdo+LW8TdPPPEE/vSnP2HSpEkBqhGRerW1tcFqtUKj0aCysvK2z2tqapjgkOrY7XY89dRTuHjxIl566SU8/vjjeOihhwK6mrkajGqQcSh48cUXsXDhQpw6dQo9PT0oLCzEihUr8Morr2DevHmYMGFCoKtIpBparRbZ2dkoKytDfX39bY+jnn/++QDVjGhs1dXV4cSJE9i1axcqKiowffp0VFZWYvr06aitrQ109VSBCc4IoqKi8Mgjj+CRRx4BANxzzz348Y9/jO9+97vQ6XRIS0vDAw88gPDwcMiyjOTkZEyZMgVRUVGYPn06pk+fjvj4eMTFxSEyMjLAV0MU/AwGAzZu3IiqqirVTT1BoaO9vR01NTXQarU4d+4crl69iu7ubvT19WHPnj3K3Gr33HMP9uzZgx/+8IeIjo5W1WregcYEx0NPPPEELl26hJMnT+Ljjz/G6dOncebMGWU+IKvVim+++QYDAwODBl1HRUVh1qxZyMrKQlZWFmJjY9Hb24v+/n7IsoyJEyciPj4eAKDX69Hb26uqQdtEnsrIyMBbb70Fs9mMuLg4VFVVITMzE3FxcYGuGpFLVqsVP/nJT1BXV3fbZ+Hh4ejr64PJZMLu3buxaNEi3HnnnSE927AvMcHxQnR0NLKzs11+u5RlGT09Paivr8eXX34JSZJw6dIlfPbZZ/jzn/+MN954w604EyZMwNy5c3Hvvfdi0qRJmDx5MqKiotDS0oLOzk50d3ejq6sL3d3d0Gq1mDZtGlJSUqDT6dDT0wNZlhEXF4e4uDhMnDgRcXFxiIqKQlRUFBITEzlgjQAAPT09kCQJ/f396O/vD5rn/larFS0tLcp2dnY2Dh06hEWLFgWwVkRDO3nyJLZv345du3Zh8eLF2LRpE+6//35cv35daZvDwsLQ3t7OyWP9xOsE56233sJzzz034r5QpNFoEBUVhfvvvx/333//bZ9fv34dAwMDCA8PR3h4uLKvtbUVsixDkiS0tbWhoqICZ86cwcWLF/H555/jypUr6OzsxKRJkxAbG6skK1FRUZAkCfv27Rv0H8JwdDqd8jgtOTkZ06dPR0xMjNKz9PXXX+PChQvo7+9He3s77rzzTqSmpqKzsxPt7e2Ij4/H1KlTodfrER0djZiYmEH1iY6ORkJCAiZPnqxcI/mWLMtoa2tDT08P4uLi0NfXh9raWvztb3/DxYsXcf36daVsW1sbLl68iLq6Oly8eBEDAwPKZzk5OSguLg7EJQyi1+vx5JNPBroaRApZlnH58mVMmjQJEyZMQG1tLc6cOYNDhw5hx44dSEpKwo4dO7BmzRqXXyCZ3PiP1//z7N27V+k6BoCDBw+itLSUCY4bhpoZWa/XQ6/XK9sdHR2IjY1FamqqR9+o29vb0dbWhsjISGg0GrS3t+P69eu4fv062tvb0d3djY6ODpw9exZff/01mpubceHCBfz5z39WPgsPD8ekSZMwceJEJCcn4+6774Yoivj444+VHqGWlhY0Njaiv79/2PpoNBpMmjQJCQkJCA8Ph9lsxvLly9HY2IiOjg5ERkYq54yOjsbkyZMxZcoUREdHo6WlBYmJiYiMjMTAwICSFCYlJaGlpQUnTpxAU1MTtFotdDod7rrrLjz44IOYPHkyJk+ejMjISLS2tt72q6WlBQ6HAzqdDgkJCYiLi0NCQgL6+voAAPHx8bh+/Tp6e3txzz33YNKkSYiJifGqx6upqQlXrlzB+fPncfbsWZw9exbnzp3D9evXERYWBo1Gg5aWFoSHh6O/vx+TJ0/GXXfdhfDwcOj1ekRERGDatGmIi4tDV1cXIiMjIcuyci1tbW1obW3FuXPncObMmSGf34eHhyM5OXlQwxobG4upU6ciKysLM2bMQGJiopJwz5gxAw6Hw+NrHWunTp2C0Wgc9EiqurqaPTjkV/39/fjoo49w7Ngx/PGPf8SxY8dw9913K4OCgRu97SUlJSgoKOAXuiDi9U/CbDbDarUiIyMDFRUVqK+vx+rVq8eybuQFZ7LgdMcdd3h1no6ODmXpDVcJVn9/Pzo7O5Vf3d3dyq+uri5cu3YNzc3N+Oabb3Dt2jXo9Xr09/dj9uzZ+M53voPY2Fj09PQoSVl3dzcuX76Ms2fPor29HT09PcpbamFhYQgLC0N3dzcuXboErVaLhx56CBkZGWhvb4fD4cCRI0dQWlo6ZNIVHh6OhIQEJZHU6XT48ssv0draivb2dly7dg0REREYGBhAZ2fnbccnJCQgKysLaWlpGBgYQEdHB7q7u9Ha2gqdTgeNRqM8LnRe/+XLl/HFF18o59DpdJg5cyZmzpwJrVYLWZbR39+P+Ph4JXm7fPky6urq0NTUhJiYGMiyjN27d6OrqwvR0dHo7u6GRqNRrsWZ3GVlZeHpp59GcnIyIiMjldm3Z86ciQcffBDR0dEe/eyDIcExm81YunQpUlJSoNVqcfr0aRQVFQW6WhQCZFnG8ePHUV5ejn379qG5uRl6vR4ZGRl4++238fnnn0MURezevRuPPvooACAlJSWwlabbeJ3gPP/882hra0NeXh7S09Oxbds2t4+12WwAbkxsZDAYhpwgcKQyNpsNOp1OdZMLjicTJky4LaEaTlNTE0pLS/Gzn/0MSUlJw5YdLsGSZdllb8rAwAAkScKVK1fQ09OjJDSxsbFu9cAMDAzg6tWr+PTTT6HT6dDR0YGrV6/iyy+/xIkTJ3Do0CGEh4cjNjYWERER0Ov1aGhoUB5LRkdHK4/tMjMz8Ytf/AIGgwH33Xcf7rzzTrfqcOu133q9w12/mhgMBpSXl8NqtcLhcGDt2rUwGAyBrhaNI01NTTh27JjSs1lXV4euri6kpKQMmuJDlmXU19fjH//4B44fP44//OEPOHXqFO6++2489dRTWL58OR5++GHl392zzz4bkOshz3id4CxatAharRbbtm2DVqvFvn370NbWNuIjKlEUIQgCNm7cCODGX5Rbk5SRyjgcDpSWliI/P9/b6tM4Ntx/7mFhYUhISEBCQoJX5w4LC8PEiRORlJTk8eNBX7n1ekMhuXGyWCyoqanBr371K1RVVSmPFIluJcsympqa0NjYiL///e9466238OmnnwIAkpKSsGbNGvzgBz9AU1MT7r33XsyaNQstLS1oa2tDe3s7zpw5AwCYNGkSUlNTsW/fPuTl5XGus3HM6wQnLi4Ou3btUp7rx8fH4wc/+MGICY4gCIPGAmi1WgiCMCiBGamM1WpFTk6Ot1UnonGgpKQEKSkpyr97vkVFt+rt7cUHH3yAr776Ch999BEqKioA3PgSsHjxYvz+97/H/PnzcfHiRRw+fBhvvPEGIiMj8e677+LKlSuYMGECUlJSEBkZiddffx3f/va3kZCQgC+++AKpqalMbsY5rxMc5yhx5yrjOTk5bo3Bqa+vHzSYVq/X3/a8f7gydrsdRqNReYTlLVmWh51QyTkOY6jxGP6gxvhdXV3K7yNNZhXI61fjvR/r+P54TJaZmYnFixejqqrKp3FofDl79iyOHj2KU6dO4X/+539w7do15dHwf//3f2P27NmYOXMmEhMTlWOcicrcuXORlJQ07MLRnGhPPbxOcNLS0rBixQrlmXhZWZlH43BuJkmS22VEUYTJZPIqzs16e3vdmg57qMma/ElN8Z0/w6+++grXrl3ze3xPqene+yK+r2fmbmhouG0f36JSv97eXhw/fhyVlZX47LPPcOHCBTQ2NuLOO++EXq/HX//6V3R3d0Ov12PNmjV46qmnkJGRAQCcMI8G8TrBOXToEMrLywft27p1K1JTU4c9LiUlZVCPTWtr620DB12VKSsrg8FggM1mQ3V1NURRhMFgQHp6usf1j4iIwIwZM1x+3tnZibq6OkybNg0xMTEen3+01Bi/ubkZR48exfTp00dckT2Q16/Gez/W8c+fP+/zeqSlpSEvLw8JCQkQBAGCIKCwsNDnccn/WltbYbPZ8MEHH8BqtSpfhtLT0zFr1izMnz9feSvztddew9q1axEdHR1S49HIc14nOLcuggdAyaKHYzQasWXLFmW7oaFBecbunJvEVZmbx+lUV1cjMzPTq+QGuPGM1p0BpM7J7wJFTfGdrypHR0e7fc5AXr+a7v1Yx/fHfyzZ2dnYtm0bLBYLZFlGcXEx0tLSfB6XfOcvf/kLjhw5gm+++QYXLlzAxYsXIcsyLl68iL6+PsyZMwf/+q//irS0NDz++OPQ6XSBrjKNY14nOKIo3rZvqC7lWxkMBuTm5sJms0GSpEFvQuXl5aG8vHzYMsCNQchVVVUQRRHp6el8dZRIpQwGg9e9NqOZjmKk/U5j8bhcrZwDgC9cuICpU6eioqICe/bsQWJiInQ6HTIzM7FkyRKEhYUhJSUF//Iv/4KUlBRlmgROmEej5fXfIKPRiFWrVik9KJ50H7tqFA4fPjxiGWfsWx+PEdH49txzz+H5559X1nj7/ve/73LCwYyMDBQVFQ3ZkwyMbjoKV/sdDgdEUVReptiwYYNfE5w9e/Zg//79uO+++1BSUhKUb/j09/fj5MmT+NOf/oSysjI0NjYiNjYWHR0dSElJwW9+8xvk5+fz0RL5xagGGRcVFcFisQAAu4+JaFQWL148qDc2OztbSTJuJYoiDh486HJaitFMRyGKostjLRYLjEYj0tPTR7WmkDdvcW7cuFEZ+/Too4/i+9//vtfxR+Lpm3y1tbXYvn07Dhw4gNbWVkycOBHLli3DmjVrkJGRgatXrypvNY10zlB+gzPU44/1G5yj6gM0GAx44YUXAICTbxHRqNy6sOa6detclrVYLMNO5jia6SiGO7awsFCZvX3Xrl0jX5QLnrzF+c0330AQBJw/fx4lJSV444038MMf/hAzZ87EggULcOXKFTz22GOYM2eO1/UZLj5w4z+VkydPor6+Hh0dHejr68MjjzyCS5cu4YMPPsDRo0eRmJiIZcuWYe7cuUhPT0dERAQAKBPoXblyxavYY2G8vcEZ6vHH6g1OrxOctrY2FBQUQBAEaDQaGI1GbNu2jYkOEY0JZw+Jc12tm9uWmycAdJcn01G42l9dXY3y8nKUlJRg5cqVXj8q9+QtzmeeeUZJhp566ik8+uij2LNnDz799FPs2LEDCQkJ2L9/PzZu3IiCgoIxefzjjO9wOHDq1CkcOHAAR44cAQBERUUBALZv3w4ASE1Nxc6dO/Hkk0+OydQBofwGZ6jHH+s3OL1OcHbu3InVq1fj7bffBgCcPn0aVqsVy5Yt8/aURESK4b5E3drbc6vRTEcBYMj9NpsN8+bNQ3p6Ot555x1s2LDhtsde7nLnLc76+nocOHBgUE9PUlISkpKS8NBDDwG4sXbawMAA1q9fj5///Of43e9+h9LS0lGt0dfX14eTJ0+iqKgIH374IcLDw5Geno73338fixcvhizL6O7uRm1tLZKTk5GcnOyTMTWh/AZnqMcfqzc4vZ4VKTMzUxkMCNwYk+PtK9tERLdyfon64osvUFtbi7Vr18Jqtbp1rNFoRHV1tbJ963QUw5VxtV+SJMTHxw+KcfP2WPvlL3/pcgySU1hYGMLDw/Ef//EfOHr0KKKiojBv3jwsWLAAH374IXp6etyOd+nSJRQVFeHee+/F/PnzIQgC3n77bbS3t+Pvf/87nnjiCURHRyMmJgZ6vR7Z2dkwGAwcMExBy+senKHmJ+CcBUQ0Vob6EuWu0UxH4Wq/2WxGWVkZampqANxYf8+XX+qcj+aAG4+Fbp4bbCjz589XVsJ+6aWXsGjRIkyePBk//elPsXDhQnzrW98CcGMtv6ioKNx1113Q6XS4dOkSSktLUVFRgYiICJjNZixfvhyxsbGYPXu28kiKaLxxO8E5dOjQoO3KykqcPn1aSWocDgcMBoPL1zaJiDwx2i9Ro5mOwtV+d9bbGwsDAwM4e/as8ibZwoUL3TpuwoQJWLJkCXJycnD69Gls374dRUVFKCoqGva49PR0bN68Gc8++ywSEhKUuWiIxjO3E5wtW7bAaDQqA/+0Wi1aWlrQ0tKilGltbeU6MUTkFX6J+idJktDR0aH0vngqKioKc+bMwTvvvIOtW7fi3LlzaGpqQmdnJ7773e8iIiICLS0tkCQJEydORGpqKh81keq4neBs3LhxUHcxEdFY4peof3LO1TJx4sRRn+uOO+7A3Llzb9t/82rbRGrkdoLD5IaIfIlfov5pqFfjicgzXOyDiILCUMlNe3u78uZUTk5OyPyH7+zBCeRrwkTjndeviRMR+ZIoilixYgU++eQTfPLJJ8jLywuZga/swSEaPfbgEFFQOnTo0G0zBW/duhWpqakBqpH/XL9+HcDYjMEhClXswSGioDTU21IZGRkBqIn/ORMcPqIi8h4THCIKSqIo3ravoaEhADXxP/bgEI0eH1ERUVAyGo1YtWqVMluwIAgoLCwMcK38o6OjA5GRkQgPZxNN5C324BBRUEpLS0NRURFkWYYsyyguLg6Z18jb29sDspI0kZrw6wERBS2DwRAyvTY36+joYIJDNErswSEiCjLt7e0cYEw0SkxwiIiCTEdHB6KjowNdDaJxjQkOEVGQ4RgcotHjGBwioiDz4IMPQq/XB7oaROMaExwioiDzb//2byGzLAWRr/ARFREREakOExwiIiJSHSY4REREpDpMcIiIiEh1mOAQERGR6jDBISIiItVhgkNERESqwwSHiIiIVIcJDhEREakOExwiIiJSnYAs1WCz2QAAkiTBYDDAaDS6XcZms0GSJNjtdphMpiGPJSIabTsz1P6XX34ZmzZtgk6n88clENEo+L0HRxRFCIIAk8kEs9mMsrIyt8vY7XYAgNlsRmFhIQoKCvxadyIaH0bTzgy3/+DBg3jsscfw8MMP44EHHhjyvEQUHPzegyMIArRarbKt1WohCMKgb1euyjg/M5lM0Ol0iI+Ph91uR3p6ukd16O3thSzLOHXqlMsysiwDAM6dOweNRuPR+ceCGuP39/fje9/7Hi5duoTLly/7Pb671Hjvxzp+b29vQOrmrtG0M6Ioumx/Tpw4ofTeWCwWmM1mj+vG9sf/scdL2xPq8ce67fF7glNfXw+9Xq9s6/V6OBwOt8rc+khKkiSPkxsAys0Z7iZpNBpERkZ6fO6xosb44eHhSEhICFh8d6nx3o91fI1GE9QJzmjameHaHyeLxYKcnByv6sb2x/+xx0vbE+rxx7rtCcgYnFtJkuRxmQ0bNqC4uNireHPmzPHqOCIav7xpZ4baL4oiHA6H1+Nw2P4Q+Yffx+CkpKQM2m5tbYXBYPCojM1mg9FoHPSNiojIaTTtzEjH7t2716ueYyLyL78nOEajEdXV1cp2Q0OD8tjJ2YU8XBlBEKDT6WAymWC32yGKoh9rT0TjwWjameGOBYCDBw/eliwRUfDRyM5RPX508yuY8fHxSk/MwoULUV5eDp1ON2QZURSRl5ennMfhcODMmTP+rj4RjQPetjPDHQsAeXl52LVrF18VJwpyAUlwiIiIiHyJMxkTERGR6jDBISIiItVhgkNERESqwwSHiIiIVIcJDhEREakOExwiIiJSHSY4REREpDpMcIiIiEh1gmKxzWB080ymBoNh0FTtvvDyyy9jzZo1AICKigqsW7fOp/VwOBywWCwAgNWrVyv7XcUb63q4iu/P+2Cz2SBJEux2+6CV6v1xD1zF9tf122w2GAwG1NTUAADMZvOwcfz97yGUBeJeh1L7E+ptz3DxVdf+yHSb+vp6ef369cr2ypUrfR5z6dKlclZWlrxy5UpZkiSf18Nqtcqvv/66XFpaquxzFc8X9Rgqviz77z7U1NTIVqtVlmVZliRJzsrKGjbWWNbBVWxZ9s/1S5IkL126VPnzzJkzh40TiH8PoSpQ9zqU2p9QbnuGiy/L6mt/+IhqCIIgQKvVKttarRaCIPg0Zn5+Pk6cOIF33nlHWePGl/UwmUy3rZrsKp4v6jFUfMB/90GSJOUcOp0O8fHxsNvtfrkHrmID/rl+nU6H8vJyAIAoioMWsvXXz5+GFqh7HUrtTyi3PcPFB9TX/vAR1RDq6+uh1+uVbb1er6xA7CvO1YslSQJwo8vO3/VwFc+f9fDXfXCuGu0kSRLS09NRUVHh83vgKjbg378HFosFlZWV2LZtG4Dg+PmHukDda7Y/odH2DBcfUF/7wwTHTc4fuK84n3UCN1Y7zsnJCUg93I3nq3oE4j5s2LABxcXFLj/35T24NbY/r99sNsNgMKCkpAQbN270KI6//x6GMn/ca7Y/odf2DBVfbe0PH1EN4dbuy9bWVhgMBp/Fs9ls2LJli7Kt0+kgiqLf6+Eqnr/qEYj7YLPZYDQaYTKZAPj3Htwa25/X7/wGZDQaYbVaIQhCwH/+5P+2B2D7A4Re2zNUfDW2P0xwhmA0GpWuOgBoaGjw6ZsMBoMB8+bNU7YdDgfS09P9Xg9X8fxVD3/fB0EQoNPpYDKZYLfblefB/rgHQ8X21/VbLBbs3LlT2Y6Pj0d8fHzAf/7k/7YHYPsDhFbb4yq+GtsfjSzLstc1VbGbX0uLj49Xslxfx6uursby5cuVDNVX9RAEAXv37kVbWxvMZvOgLH6oeGNdj5Hi+/o+iKKIvLw8ZdvhcODMmTPDxhqrOrgT25fX73A4lAausrISer1eeV3WXz9/ci0Q9zqU2p9Qbnvcja+W9ocJDhEREakOH1ERERGR6jDBISIiItVhgkNERESqwwSHiIiIVIcJDhEREakOExwiIiJSHSY4NK4JgoC8vDxYLJZAV4WIQgjbnuDHBIfGNaPRiOzs7EBXg4hCDNue4McEh8a9m1eaJSLyF7Y9wY0JDhEREalOeKArQOokCALsdjsMBgOqq6uxbt06CIKADRs2KAuoSZIEu92OwsJC6HQ6AIDdbocgCDAYDBBFESaTSVkPRRRF7N27F5mZmZAkCTk5OcpxzvVNRFFEZWUltm/fHrBrJ6LAYdtDCplojNXX18tLly5Vtvfu3SuXlpbKsizLr7/+uvJnWZZlq9Uqr1y5UjnO+WenpUuXypIkyZIkyY899pgsSdJt5yktLZVfeukl5ZiVK1fKNTU1vrk4IgpabHvoZuzBoTG3d+9exMfHQxAEZd/Ny907v/kAgMlkQkFBARwOB/bu3Yu0tLRB50pOTobVagUAGAwG5dg1a9YMKpeZman8WavVQpKksbsgIhoX2PbQzZjgkE+kpaXBaDQq22azeVTnczgc0Gq1yvbNDRURkRPbHnLiIGMac7m5uaiqqhq07+ZvVA6HQ/mzzWaD0WiETqcb8rjTp08jJycHJpMJp0+fdnlOIiK2PXQzjSzLcqArQeojCAIqKyuV7ltnQ7Jlyxa0tbXBZDLB4XCguroaa9asUb4V3TpAMDc3F+np6S7PKYoi1q9fDwAoLi6GKIooKSlBWloa1q1bpwwSJKLQwLaHnJjgkF9t2bIFKSkpo+42JiLyBNue0MNHVERERKQ6THDIbwRBQFVVFWw2G+x2e6CrQ0Qhgm1PaOIjKiIiIlId9uAQERGR6jDBISIiItVhgkNERESqwwSHiIiIVIcJDhEREakOExwiIiJSHSY4REREpDpMcIiIiEh1/h9GaxAUuXZgzgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAACoCAYAAADgkuTbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAs8klEQVR4nO3de1BUZ5o/8G+DKKB9ujV454BcvEDDGuIloc1kN8FLNzXZKkgmODcXL5Gpmo1mEsnWbiJZwaqZHXESJ0ltKUllNlUzEbPhj90IrWOcmUQPm5gJWaG9xQv2wWiMKN0oqCjn9we/PksrDX2jr99PVQr77fec874cffKc97znPRpFURQQERERxYC4UDeAiIiIKFiY+BAREVHMYOJDREREMYOJDxEREcUMJj5EREQUM5j4EBERUcxg4kNEREQxg4kPERERxQwmPkRERBQzxoTioBaLBQBgt9shiiKMRqPHdSwWC0RRRFtbGwCgrKxsxPojHYuIope/8Wao8g0bNmDr1q0QBMHrYxFRiClBZrPZlM2bN6ufy8vLPa5jt9uVkpIS9c9z5swZtr4nxyKi6OVPvBmufM6cOcrChQuVhQsXKnPmzFF27drFeEMUIYI+4iNJErRarfpZq9VCkiSXK6Ph6jQ0NAAAZFlWt3FXX5blEY/liZaWFiiKgoSEBO86SxTD+vr6oNFoUFBQELI2+BNv3MUPADhy5Ig62lNfX4+ysjLU19cz3hCFiDfxJuiJj81mg16vVz/r9Xo4HA6v6tTX1+Pw4cPYsWPHsPU9OZYnFEWBoii4ffu219vS/+nv70dvby+SkpIQF8fpZTT6/Ik37spNJpNaVl9fD7PZ7PGxPMF4EziMOTSUkMzxuZfdbveqTllZGURRRG1tLaqrq73apyfHuldCQgIURUF2drbbOr29vWhvb8esWbOQlJTk9THCVSD79e233+K9997DqlWrMHXq1AC10Hc8Z6Pr9OnT0Gg0ITu+O97GG3flsizD4XDcN8/H22Pdy5N4A4TPeQ60aI05PF+jy5t4E/TEJy0tzeUqqKurC6IoelzHGWiMRiM2btwIk8k0Yv3hjuUpjUaD5OTkEeslJSV5VC/SBKJfiYmJ6s9w+h3xnI2OcEh6AhFv3G27e/duLFmyxKtjecrTeAOE/jyPlmiNOTxfo8ObeBP0sT+j0YjW1lb1c0dHh3oP3Bk03NWpr6/Hzp071XKdTgedTue2/nDHIqLo50+8GSl+7Nu3zyWxYbwhigxBH/ERRRHFxcWwWCyw2+1Yv369+l1paSkaGhrc1jGbzZAkCZIk4fDhwygrK4PBYACAIesPd6xA++abb9De3o6cnJxROwYRecefeDNS/BAEATqdzqNjEVH4CMkcn8GTAwc7cODAsHUEQVDL772ScrdPd+WB9tZbb2Hv3r3qREciCg++xpvhygGoT5h6Wp+IwgOnuQdIdnY2zpw5gxs3boS6KUREROQGE58AKSgoQH9/v8s9fiIiIgovTHwCJDc3FwkJCfjyyy9D3RQiIiJyg4lPgIwdOxazZ89GS0tLqJtCREREbjDxCaCcnBwmPkRERGGMiU8A5eTk4OTJk5zgTEREFKaY+ARQTk4O+vv78dVXX4W6KURERDQEJj4BlJWVhXHjxuGvf/1rqJtCREREQ2DiE0BjxoxBXl4evvjii1A3hYiIiIbAxCfAHnroIY74EBERhSkmPgFWUFCA48eP4/r166FuChEREd2DiU+AFRQUQFEUTnAmIiIKQ0x8AiwnJweJiYlYuXIlFixYgBUrVuDq1auhbhYRERGBiU/AJSQk4J133sEzzzyD/Px87N+/H5999lmom0VEREQAxoS6AdHoRz/6EX70ox/h7t27+MMf/oAzZ86EuklEREQEjviMqvj4eGRmZjLxISIiChMc8RllWVlZOH36dKibQRTRamtrkZ6eDpPJhI0bN0IQBBQXF2P58uWhbhoRRZiQJD4WiwUAYLfbIYoijEajx3UsFgvsdjusVitMJpNavmHDBmzduhWCILjsZ8OGDaioqAAANDY2orKyctT6NZSsrCwcOHAgqMckijb5+flYsWIF3n77bRgMBrz44ovYs2ePR9v6G2/cbVtXVwdRFAEAJpMJQOjjDRGNLOi3umRZhiRJMJlMKCsrQ11dncd1rFYrAKCsrAybNm3Cxo0b1fr79u1DUVERFi1ahLlz56rbdHR0oLy8HLW1tWpACqasrCycPXsW/f39QT82UbRwXtA0NTWhuLgYAKDT6Ubczp94M9y2q1evRllZGUwmE3bt2qWWhzreENHIgj7iI0kStFqt+lmr1UKSJJcrKXd1nN+ZTCYIggCdTger1Qq73Y4jR46owbG+vh5lZWUAgPXr16tXY/5QFAU9PT1uv+/t7XX56ZSamopbt27hzJkzmDlzpt/tCDZ3/fLFzZs31Z/D/S6DJZB9Cyfh0i9FUaDRaAKyL1mW1Z85OTmQZRkOh2PE7fyJN7IsD1mu0+nUcqvVioaGBrVOsOINED7nOdCiNebwfI0ub+JN0BMfm80GvV6vftbr9fcFMHd1Bt/aAgaGnw0Gg8u29fX1MJvN6ufW1la1LgA1IfJWX18fjh8/PmK99vZ2l8+KogAA/vSnP2HBggU+HTsc3NsvXzjPwblz58JqbaNA9C0chUO/xo4dG5D9mM1m7NmzBx9++CGuX7+OPXv2uMQId/yJN+7KZVlGR0eHmoxVVVWhuroaQPDjDRAe53k0RGvM4fkaPZ7Gm7CY3Oz8y+lNnaqqKtTU1LiUOa8CB8/zGXyPfenSpTCbzffNA/JEQkICsrOz3X7f29uL9vZ2zJo1C0lJSWp5RkYGNBoN7t69i5ycHK+PG2ru+uWLb7/9Fp9++ikyMjIwderUALXQd4HsWzgJl34FclL/zp07kZ6ejokTJ2LDhg3QarXIz8/3aV++xJvB5Q6HAzqdTr3oamtrg9VqhcFgCFq8AcLnPAdatMYcnq/R5U28CXrik5aW5nLF1dXVpU4Q9LSOxWKB0Wi8b0h59+7dWLJkiUu91tZWNRgJggBZlu8bJfKERqNBcnLyiPWSkpJc6iUnJ2PmzJno6OjwaPtwdW+/fJGYmKj+DKffRSD6Fo5C3a9A3eYCfJ/c7G+8Garc4XC47EOn00GWZciyHPR4A4T+PI+WaI05PF+jw5t4E/TJzUajUR0OBgYmAzpvXzmDzHB1JEmCIAgwmUywWq3qcDMA7Nu3zyUgiaLokgg5HA6fgpC/srOz+Ug7kR98ndzsT7wZrnxw3JFlGUajMWziDRENz+cRH1/X1RBFEcXFxepj6evXr1e/Ky0tRUNDg9s6siyrT3IBA4Hl5MmT6mfnhGcng8EAi8Wijvy8++67vnbXL1lZWXxpKZEffJ3c7E+8cVcuCALKyspQX18Ph8OBTZs2QRCEsIk3RDQ8nxMff9bVcPfUw+D1boaqI4oijhw54na/g5+uuHc/gXjSwldZWVn48MMPQ3Z8okhnNptRX1+PDz/8EN3d3aivr8fEiRM92tbXeONPeSjjDRENz+fEZ/DQ89atWwF4NvQci7KystDV1YWrV69i0qRJoW4OUcTRarVYuXIlmpqaAAA/+9nPMGHChBC3iogikc9zfGRZRnNzs9dDz7EoKysLAPjOLiIfybKMVatW4dChQzh06BBKS0s9ftybiGgwn0d8fF1XIxYNTnwWLVoU4tYQRZ79+/ffdyt7+/btEblEBBGFls8jPjt37oQgCOq6Gjab7b7HRGmAXq/HpEmTOOJD5KPU1NT7yvLy8kLQEiKKdD4nPvn5+fjBD36A3bt3w2AwYMeOHejq6gpg06ILH2kn8t3gx8edOjo6QtASIop0Pic+vq6rEauysrLQ0tKCrVu34sEHH0RRURGamprUV1oQkXtGoxFr1qzB9u3bsX37djz11FPIzc0NdbOIKAJxcnOQzJkzB//7v/+LX/3qV8jNzUV3dzeKi4sxf/582Gy2UDePKKzl5uZiy5YtUBQFiqKgpqYGhYWFoW4WEUUgvyY3+7quRizasGEDFi9ejL/7u79DcnIyFEXBJ598gr//+7/H7373O1RVVYW6iURhTRRFbNq0Sf18/PhxTm4mIq/5nPhwXQ3vTJo0Sb0lCAy8V+Rv//Zv8fjjj+PgwYNMfIgG+eCDD4b93m63o6mpiQuDEpHX/LrVxXU1/FdUVITm5mb09PSEuilEYeP999+H3W53+x8Azo8jIp/4POLDdTUCo6ioCLdv38ahQ4dGfM8ZUayorKwccQ6P82WjRETe8HnEh+tqBEZOTg6mTZuGjz/+ONRNIQobnkxc5lNdRNHvxo0bePPNN/HXv/41YPv061bXvbiuhvc0Gg2eeOIJHDx4MNRNISIiCgs3b97E66+/jszMTLzwwgs4e/ZswPbt860u57oaBoMBACBJkssTF+S5oqIivP/++7h27RqfjCMiopjV29uLuro6/OpXv8Lly5dRXl6OzZs3Iz09PWDH8HnEh+tqBE5RUREURcGf//znUDeFiIgo6G7cuIHf/OY3yMrKwi9+8QssX74cx48fx9tvvx3QpAfwY8QH4LoagZKeno6srCx8/PHHKCkpCXVziIiIgsJut+PNN9/Ea6+9Brvdjp/85Cf4l3/5F8yePXvUjulx4sN1NUZXUVERLBaLui5SXl4eX/pKRERRqaurC2+88QZ+85vfoLe3F2vXrsVLL70U8NGdoXic+Lz//vsuC/ANxdN1NSwWC4CBZEkUxSEfS3VXx2KxwG63w2q1wmQyqeUbNmxARUUFAKCxsRGVlZUeHyscfP/738euXbvU37Fer8fBgwdRUFAQ4pYRhV5HR4f6JGl3dzckSYLBYBjy6dJ7+Rtv3G1bV1enXpyYTCaPj0UUqxRFweeff46dO3di9+7d6O/vR0VFBf7pn/4JM2bMCFo7PE58ArWuhizLkCQJ1dXVAIDVq1fft527OlarFQBQVlYGh8OBoqIiHDlyBMBAYCwvL0deXh527Njh8bHCxZNPPonLly+jr68Pt27dwsqVK7Fs2TL8+c9/5jIBFPOam5vxgx/8AMDAqvErVqzABx98oJa540+8GW7b1atXY8eOHRAEAaWlpTCZTBEVb4iCpb29HR9++CE++eQTSJKEK1euID09HS+//DLWrl2LadOmBb1NHic+gVpXQ5IkaLVa9bNWq4UkSS4Bwl0d53cmkwmCIECn08FqtcJgMGD9+vXqVZc3x/KUoijDrq7c29vr8tMX48ePV//c0NCA4uJiPPHEE6isrERKSgpEUURhYSE0Go3Px/BWIPrldPPmTfVnOKxUHci+hZNw6ZeiKH79Xe3u7kZTUxM0Gg0OHz583/dtbW0jJj7+xBtZlocs1+l0arnValUXcg1mvAHC5zwHWrTGnFg6X+fOncNHH32EhoYGfP7550hKSsLixYuxbt06PProo3jssccQHx8PAAE7L97EG78mN/vCZrNBr9ern/V6/X1vdXdXZ/CtLWBgONn5OH1ra6taBgyMCnlyLE/19fV59EqO9vZ2n/Y/lO3bt6OyshKbN2/GrVu3AADr16/H+vXrA3YMTwWiX85zc+7cOVy9etXv/QVKIM9ZOAmHfo0dO9bnbbVaLQoLC1FXVwebzXbfba1169aNuA9/4o27clmW0dHRoa5lVlVVherq6pDEGyA8zvNoiNaYE43nS1EU7N+/HwcPHsSf/vQnnDlzBgkJCXjkkUewdetWPPbYY0hOTlbrnzp1alTa4Wm8CXriMxTnX05v6lRVVaGmpkb97JzTAwBLly6F2Wz2+VhDSUhIQHZ2ttvve3t70d7ejlmzZiEpKcmnYwzl8OHD6tXfW2+9hS1btiAvLw9r164N2DGGE8h+ffvtt/j000+RkZGBqVOnBqiFvhutcxZq4dKv06dP+70PURRRXV2N5ubmgC2X4Uu8GVzucDig0+nUi662tjb1NrwvxxrKSPEGCJ/zHGjRGnOi7XzdunULhw4dwt69e7F37150dHRAr9fDbDajuroaS5cuDeqLy72JN0FPfNLS0lyugrq6uu57emmkOhaLBUaj0WVCYWtrq5r8CIIAWZY9OpanNBqNS8bqTlJSkkf1vDV+/Hi8+uqruHr1Kp5//nmkpqYG9dH3QPQrMTFR/TkavyNfjdY5C7VQ9yuQt2Tz8vLwzjvvoKysDBMmTEBzczPy8/NHDKz+xpuhyh0Oh8s+dDpdyOINEPrzPFqiNeZE8vk6efIkPvroI/zxj3/EJ598gt7eXsycOROLFy/GG2+8geLiYr9Gef3hTbzxeQFDXxmNRvW2FDAwKdl5+8oZNIarI0kSBEGAyWSC1WqFLMsQRRFLlixR6zscDhgMhmH3E4k0Gg1ef/11PP3003j66afxyiuv4Pbt26FuFtGoa2pqwrVr19TPhYWF6ry/4fgTb4YrH/zKHlmWh61PFKlu3LiB5uZm/Nu//RsKCgowb948bN68GQBQXV2N1tZWnDx5Ei+//DKWL18esqTHWz6P+Lzzzjv33W4ZquxeoiiiuLhYfSx98HyV0tJSNDQ0uK0jyzI2btyo1nc4HDh58iSAgVEf58jPu+++O+KxIlVcXBx+//vfIz8/H1u2bEFjYyPee+89PvlFUU2v1+OZZ57xejt/4o27ckEQUFZWhvr6ejgcDmzatAmCIEAQhKiLNxQ7Ojs70dLSgpaWFnz55ZdoaWnBqVOnoCgKkpKS8OSTT6Kqqgpms1kdSQMCNzk5mHxOfHbv3q0OOwPAvn37sGvXLo/mntz79JXTgQMHhq0jiqL6+Lq7fd67nbtjRbIxY8bglVdegdlsxqpVq1BQUIAXXngBVVVVLk+GEUWLo0ePwmg0utzaam1txfLly0fc1td4E8hyonBy7do1fPnllzhy5Ag+//xzfPHFF+oo5vjx4zF//nwsXboUlZWVeOihh5Cbm4tx48aFuNWB43PiU1ZWhqamJuTl5aGxsRE2mw3PPvtsINtGI1iwYAG+/PJL1NbWYuvWrXj//fexefNm/PSnP3XJyIkiXVlZGUpKSpCWlgatVotjx45hy5YtoW4WUVjr6enBF198gaNHj+Ls2bM4c+YMjh49qj5ZptVqsXDhQvzwhz9EQUEBCgoKkJ2drT5qHq18TnzWrVuH7u5ulJaWwmAwqIsGUnCNGzcOL7/8Mn74wx/ipZdeQkVFBTZv3oy1a9ciMzMTDzzwAPR6PZKTk5GUlIQxYwZOeUJCAjIzMxEXF/RpXkReE0URDQ0NaGpqgsPhwIsvvshXuhD9f9euXYPVaoXVakV7eztkWcapU6fQ0tKCO3fuICEhARkZGcjMzMRTTz2lJjlz586N+iRnKD4nPsuXL4dWq8WOHTug1WqxZ88edHd3B+0xa3KVmZmJ//zP/8SpU6ewfft27Ny5E52dncNuo9PpUFhYiCVLlsBoNOLhhx/mrTIKW/X19Whra8Prr7+O5uZmTJw4MaiPyxKF0p07dyDLMs6ePYuzZ8/i1KlTaG1tRVtbGy5cuAAAiI+PR2pqKkRRxLx581BeXo4lS5YgLy8vJhMcd3xOfCZMmIDf/e536kqlOp0OTz31FBOfEJszZw527tyJnTt34s6dO7h27Rq6urrQ29uLnp4e3L17F8DAbP0jR47g8OHDqK2thd1uR3x8PERRREpKClJSUpCZmYnMzEyMHz8es2bNithHMMl7N2/eVBfpk2UZNpsNsizjypUruHLlCubNm4edO3cGrT21tbVIS0tTn5IqLCzE/v37PZrjQxQJFEXBN998oyY27e3tsNlssNlsOHfuHM6fP487d+4AGHjIJT09HXl5eVi1ahUMBgPy8/Mxd+7cqJqLM1p8TnwqKiqg0WjUt7abzWbO8QkzY8aMweTJkzF58uQhv3f+T6O/vx/Hjh2DJElob2/HlStXcPnyZfzlL3/B22+/jdu3b+P555/Ho48+ikceeQRpaWlIS0vDggUL3O6bwlN/fz8uX76MM2fO4MSJE/j6669x6dIlXLlyBZ2dnWpi09XV5bLd5MmTkZqaiilTpkAURcyfPz+o7c7Pz8eKFSvQ3Nwc1OMSBdLNmzdx/PhxfPPNN7h48aIaa1tbW/HVV1+5rC49depUpKWlQRRFlJSUIDMzExkZGcjKykJ6enrEPDoejnxOfHJzc7Fq1Sr1PntdXR3n+USouLg45OXlDflIfHd3NxobG3H+/Hn85S9/wXvvvYcLFy6gv78fAPDggw9i6dKlWLhwoToxjvOG/KMoivpuIeerShRFQV9fH3p6enDjxg1cu3bNJVHp7OyE3W5HT08Puru71duct27dgqIoAAZWjr1w4YK69pNGo0F6ejpmzJiBBx54APPmzcPkyZPxwAMPYOrUqRBFUf0v1CvNdnR03Ffm6VNd0erf//3fMXfuXOTk5IS6KYSBf2vnz5/HxYsXcenSJXR0dKgjpc6Rm++++06tr9FoMGnSJKSkpCA3NxfPP/885s+fj+zsbGRkZIT831w08znx2b9/v/pyPqft27fzH2GUiY+PR3Z2Np588km89NJLAP7vXvOhQ4dw4MAB1NfXo7a2FsDAZGvn/ywffPBBLFu2TH1Pi/OFgefOncOZM2dcXmqn1WqRkpKCSZMmYfz48Rg7diw0Gg3u3LmD3t5ejBs3zuMrHEVR0NXVhQsXLqiJwfXr1++rd+vWLXR2duLs2bPQ6XTqyp8TJkyAKIqYPn26el9cURTcuHEDnZ2duHTpknoLqK+vD8nJyS7/KYqi3ibq7u5Wt7916xZ6enqGfEmhoii4cuUKZFnGN998o96SHMnYsWPVW5N6vR7jx49HcnIyxowZg+nTp2PChAlqIjp27FiIooi0tDRkZGQgOzs7YoJrbm4uSktLMXHiREiSBEmSsGnTplA3K6TeeustPPzww3jiiSdC3ZSY09/fj6+//hqff/65+t9XX33lsqDs+PHj1RGbgoICmM1mxMfHY8mSJcjNzcW0adM47yZEfE587n1hIAAuohcjxowZg4yMDGRkZOCnP/0pAODKlStoaWnB8ePHIcsyzp8/jw8++ACvvfYa4uLioCgKpk2bhoqKCjz99NO4ePHisMeIi4tDfHw8+vr61DJncpSSkoIHHngA48ePx9WrV3HlyhU1mXDeyhkq0fFWXFycer/8zp07Lm0BgOTkZIwbN85lZMYpISEBqampLglVYmIikpKSkJiYOOTy6llZWXj88ceRmpoKQRCQnJysJoDAwO99/PjxSEpKwqRJk9Tfwb376unpwfHjx5GTkxM187IKCwuxY8cO1NfXQ1EU1NTUIDc3N9TNCqlly5bho48+Ukf0QuXatWtoaWnB119/rSbugiAgLS0N6enpmD17NmbPnh1WSbaiKOjt7YXdbkdXV5d6gdTd3Y3e3l7cvHkT8fHxSEhIgKIo6jvabDYbTpw4gZMnT6oXNXPmzMGiRYvwk5/8BPn5+Zg+fTqmTZsGQRBc/m1G47/LSOVz4jN4yXanoYajKTakpKRg2bJlWLZsmVqmKApOnTqFTz/9FIqiIC4uDh0dHXj77beRkZGB5ORkaDQaKIoCh8OBzs5OdHZ2oqenBz09Pbhz5476GP7NmzfVWzvOn93d3Zg6dSpyc3PVfQFQ56GkpqZi8uTJSElJwYQJE+5LEG7cuIGjR49CFEWX23N2ux02mw0dHR1qQhMXF6cOS0+ZMgVpaWmYOHGius+7d++qE8j7+/sxZcoU3vILMFEUY36UZzCz2Yxdu3bh2LFjWLRoUUD2eefOHXz22WcwGo1u333U09ODP/7xj/iv//ovHDx4UF0TJi4uDjNnzsSMGTPUJOHGjRsA/u+2jnOfqampKCgowIMPPojp06cjJSVFvUjo7e3F+fPnoSgKBEFAQkKCOtrrvNBx7ldRFNy+fRs9PT24fv06Ll++jIsXL6qvNxk3bhyysrKwcuVKnDp1Cr29vejr68OtW7fcjqrGxcUhMTERd+/eVS92dDoddDodZsyYgfz8fDz99NNYsGABFi5cCL1eH5DfPQWPz4mP0WjEmjVr1DcUc+iZ7qXRaDB37lzMnTsXAHDx4kXs2rULBQUFmD59eohbNzAqk5ycjClTptx3BZafn+/VvuLj4zFhwgQ+Xh0ga9euxbp169Q3si9btszlBaCD5eXlYcuWLUOOQkezxx57DElJSWhsbAxY4vPyyy/j17/+NTZu3IjXXnvNJfm5c+cOfvvb3+LVV1/F9evXMW/ePJSUlKjz+2bPnq2uEwYMJCWdnZ04deoUTpw4gcuXLwMYGJU9e/YsWlpa8Pvf/z5g7xuMi4vD1KlTMW3aNDXJci7PMX/+fBQVFSE5OVlNpARBgE6ng16vV0eRBUFwGWV19iOQL9yl0PNrcvOWLVtQX18PABx6JqKAWbFihcsChYWFhaiurh6yrizL2LdvX8wtpZGYmIhHHnkEjY2NePXVV/3e36FDh7Bt2zYsX74cO3bswO3bt/Hmm2+ir68Pzc3NePHFF9HS0oKf//zneO655zBnzpxh96fRaNRb0+5e1trf3w+73a5OzgcGnnw6c+YMUlNT1dvdfX19UBRFHXUdfIt33Lhx990WdnJebP3zP/+zzxdbTHqij8+JDzAw9Pyzn/0MAHilS0QBc+8LSSsrK93Wra+vx8SJE0e7SWHpe9/7HmpqanD58mVMmTLFq2337t2L7777Ds888wz6+/vxD//wDygsLERjYyP+4z/+A+vWrcP+/fths9nQ19eHv/mbv8H//M//YPHixQFrf1xcHCZOnOhy/np6epCYmMi5MDRqfE58uru7sXHjRkiSBI1GA6PRiB07djABIqKAcy6U6py0PjjODF7YMNY8+uijAAaSmNWrV3u83VtvvYXnnnsOiqLghRdewJw5c3Dp0iXs27cP8fHxWLNmDXQ6HRobG/HQQw9h0aJFeOihh1xuZRFFKp9nX+7cuRPPPvssTpw4gePHj+PFF19EU1NTINtGRARg4EJrzZo1WLhwIRYtWoS1a9eqSdAzzzwTc/N7nCZNmoTFixfjv//7vz2q39/fjy1btuAf//Ef8Ytf/AKnT5/G2rVr0d7ejjfeeAPZ2dlq3aeeegrvvPMOfv7zn2Px4sVMeihq+Jz45OfnqxMPgYE5P86JzkREgcQLLffMZjP27duHP/zhD0O+n+/EiRPIz8+HIAiIj4/Hv/7rv+KXv/wlamtrkZWVhW3btuHSpUtYs2ZNCFpPFHw+p/CCIHhURkTkr6EutGjAj3/8Y3z00Uf48Y9/jLi4OBQXF+Pdd99FSkoKOjs78f3vfx8JCQl49dVXodPpMHfuXHzve98LdbOJQsbjxGf//v0unw8fPoxjx46pyY7D4VDXTiEiCiReaLk3Y8YMHDlyBBcuXMDevXvxyiuvYOHChdizZw9eeukl2O12fPbZZ8jMzAx1U4nCgseJz7Zt22A0GtVJhlqtFteuXVMXigKArq4uj96dY7FYAAwsFCeK4pATE93VsVgssNvtsFqtMJlMI5Zv2LABFRUVAIDGxsZhnw4hovAQyAstf+PNUOXu4koo483MmTOxfv16mEwmlJSU4OGHH8bYsWPx8ccfM+khGsTjxKe6utplqNlXsixDkiR1TY7Vq1ffF4jc1bFarQCAsrIyOBwOFBUV4ciRI27LgYHVpMvLy5GXl8eXqBJFiEBdaPkTb4bb1l1cCYd4k5aWhkOHDuGVV17Bo48+qj75RUQDPE58ApH0AAMrPDuDGTAQ0CRJcglG7uo4vzOZTOqqm1arFXa7fchyg8GgXgH5S1EU9PT0uP3e+a6ooV5AGckC2S/nS0qdbx4PNZ6z0eXPireButDyJ97Isux2W3dxJVjxBhj5PNfU1ABAWPxb80a0xpxw+XcZaOHSL2/iTdCfT7TZbC7vNtHr9fctRe+uzuBbWMDA8LPzSTJ35a2trWoZMDAq5Iu+vj4cP358xHrO99ZEm0D0y3kOzp07h6tXr/q9v0DhORs9zncseWuopOf69evqk1xms9mjNcP8iTfDbesurgQ73gDhcZ5HQ7TGHJ6v0eNpvAmLhRmcfzm9qVNVVaVe0QxXPvge+9KlS2E2m32aFJmQkOCyxsW9ent70d7ejlmzZoXVW4j9Fch+ffvtt/j000+RkZGBqVOnBqiFvuM5G12nT58O2L5kWcbGjRvV11jU1dVhx44dyMnJ8XpfvsSbe8vdxZVgxRsgfM5zoEVrzOH5Gl3exJugJz5paWkuV1xdXV0u7+TxpI7FYoHRaLxvSPnecovFgtbWVjUYCYIAWZZ9Wm9Io9F4tHx6UlJSVC6zHoh+JSYmqj/D6XfEczY6AvmOo/3796OhocGlbPv27SMmPv7Gm6HK3cUVWZaDHm+A0J/n0RKtMYfna3R4E298XsDQV0ajUR0OBgYmAzpvUzmDzHB1JEmCIAgwmUywWq2QZdltuSiKWLJkibofh8PBRRaJItBQT2/l5eWNuJ0/8cZdubu4wnhDFBmCPuIjiiKKi4vVx8/Xr1+vfldaWoqGhga3dZzD3U4OhwMnT550Ww4MjPo4r9DefffdIPWSiALJeYEzWEdHx4jb+RNv3JUbDIYh44q7ciIKLyGZ4+PuqYcDBw4MW0cURfUxdU/KB+8nEE9aEFFoGI1GrFmzRh1BkSQJmzZt8mhbX+ONJ+X3fs94QxT+gn6ri4jIW7m5udiyZQsURYGiKKipqQnYEhtEFFvC4qkuIqKRiKLo8SgPEZE7HPEhIiKimMHEh4iIiGIGEx8iIiKKGUx8iIiIKGYw8SEiIqKYwcSHiIiIYgYTHyIiIooZTHyIiIgoZjDxISIiopjBxIeIiIhiBhMfIiIiihlMfIiIiChmMPEhIiKimMHEh4iIiGIGEx8iIiKKGWNCcVCLxQIAsNvtEEURRqPR4zoWiwV2ux1WqxUmk8ml3F39kY5FRNHL33gzVPmGDRtQUVEBAGhsbERlZaXHxyKi0Ar6iI8sy5AkCSaTCWVlZairq/O4jtVqBQCUlZVh06ZN2Lhx47D1PTkWEUUvf+LNcNt2dHSgvLwctbW1agLEeEMUGYI+4iNJErRarfpZq9VCkiSXKyN3dZzfmUwmCIIAnU4Hq9WKtra2IevLsjzisTzR19cHRVFw9OhRt3UURQEAfP3119BoNF7tP5wFsl93797F448/jkuXLuG7774LRPP8wnM2uvr6+kL+e/Un3gwXP9avXw+TyeT1sTzhSbwBwuc8B1q0xhyer9HlTbwJeuJjs9mg1+vVz3q9Hg6Hw6M6g29tAQPDyQaDAY2NjUPW9+RYnnD+Mof7pWo0GowdO9brfYe7QPZrzJgxmDhxYkD2FQg8Z6PfjlAHeH/izXDbtra2AhiIQcDAKHQw443z+3A4z4EWrTGH52v02xG2ic9QnMHDmzpVVVWoqanxep+eHOteBQUFXm9DROHJl3hzb7lzTg8ALF26FGaz2edj3Yvxhmh0BX2OT1pamsvnrq4uiKLoVR2LxQKj0agONbur78mxiCh6+RNv3JVbLBZs27ZNLRcEAbIsM94QRYigJz5Go1EdJgYGJgk6b185h4WHqyNJEgRBgMlkgtVqhSzLbusPtx8iin7+xBt35aIoYsmSJWq5w+GAwWBgvCGKEBrFOTMpiAY/8qnT6dSRm6VLl6KhoQGCIAxZR5ZllJaWqvtxOBw4efLksPt0V05EscHXeDPcts7y1tZWrFy5Uh3ZYbwhCn8hSXyIiIiIQoErNxMREVHMYOJDREREMYOJDxEREcUMJj5EREQUM5j4EBERUcxg4kNEREQxg4kPERERxQwmPkRERBQzwuIlpZFu8GqtoihG9DL1FosFdrsdVqsVJpNJ7Uu09VEQhKjqW11dnbp68FCrDkdqv2ho0XRuoz3mRGO8ASI85ijkF5vNpmzevFn9XF5eHsLW+KetrU1pampSFEVR7Ha7snDhQkVRoquPdrtdKSkpUfsZDX0rLy9X7Ha7oiiKUlJSoihKdPSLhhZN5zbaY040xhtFifyYw1tdfpIkCVqtVv2s1WohSVIIW+Q7u92utl0QBOh0Olit1qjqY1NTE8xms/o50vtmtVrV9lutVjQ0NACI/H6Re9F0bqM95kRbvAGiI+Yw8fGTzWaDXq9XP+v1evWtz5HGaDSiurpa/Wy322EwGKKmj1ar9b6h10jvW1tbGzo6OiDLMgCgqqoKQOT3i9yLpnMbzTEnGuMNEB0xh4nPKLDb7aFugt+qqqpQU1Pj9vtI7KMsy+o96eFEUt8cDgd0Oh0MBgMMBgPa2tpgtVqHrBtJ/SLvRMO5jbaYE43xBoiOmMPEx09paWkun7u6ujz6yx7OLBYLjEajOmEtGvpYV1cHYKBvra2tkCQJVqs14vsmiqJLe3U6HWRZjvh+kXvReG6jLeZEa7wBoiPmMPHxk9FoRGtrq/q5o6MjfGeye0CSJAiCAJPJBKvVClmWo6KPzz77LEwmE0wmk/q0gcFgiPi+GY1GdcgZgHq+Ir1f5F60ndtojDnRGm+A6Ig5GkVRlFA3ItINfoRPp9OpVy2RRpZllJaWqp8dDgdOnjwJIHr6KEkSamtrkZqaisrKSoiiGPF9cz4O7HA4IIrikI+WRmK/yL1oObfRHnOiMd4AkR9zmPgQERFRzOCtLiIiIooZTHyIiIgoZjDxISIiopjBxIeIiIhiBhMfIiIiihlMfIiIiChmMPGhmCBJEkpLS1FfXx/qphBRDGDMCV9MfCgmGI1GFBYWhroZRBQjGHPCFxMfihmD3xxMRDTaGHPCExMfIiIiihljQt0Aim3OtxaLoojW1lZUVlZCkiRUVVWpL76z2+2wWq3YtGkTBEEAAFitVkiSBFEUIcuy+jJAYOD9P7t370Z+fj7sdjvMZrO6ncPhgCRJkGUZhw8fxm9/+9uQ9Z2Igo8xh6AQhYjNZlNKSkrUz7t371Z27dqlKIqi/PrXv1b/rCiK0tTUpJSXl6vbOf/sVFJSotjtdsVutytFRUWK3W6/bz+7du1SnnvuOXWb8vJypa2tbXQ6R0RhhzGHFEVROOJDIbN7927odDpIkqSWtba2qn92XjEBgMlkwsaNG+FwOLB7927k5ua67Cs1NRVNTU0AAFEU1W0rKipc6uXn56t/1mq1sNvtgesQEYU1xhwCeKuLQiw3NxdGo1H9XFZW5tf+HA4HtFqt+nlwICMiYswhTm6mkCkuLkZzc7NL2eArMYfDof7ZYrHAaDRCEIQhtzt27BjMZjNMJhOOHTvmdp9EFLsYcwgANIqiKKFuBMUuSZJw+PBhdTjYGWi2bduG7u5umEwmOBwOtLa2oqKiQr2auneCYnFxMQwGg9t9yrKMzZs3AwBqamogyzJqa2uRm5uLyspKdZIiEUU3xhxi4kNhadu2bUhLS/N7GJqIyBOMObGDt7qIiIgoZjDxobAjSRKam5thsVhgtVpD3RwiinKMObGFt7qIiIgoZnDEh4iIiGIGEx8iIiKKGUx8iIiIKGYw8SEiIqKYwcSHiIiIYgYTHyIiIooZTHyIiIgoZjDxISIiopjx/wDwyJ3tc2Ex0gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -627,20 +649,20 @@ "fig, ax = plt.subplots(1, 2, figsize=set_size(width, subplots=(1,2)))\n", "sns.lineplot(x=df.index, y='val/box_loss', data=df, ax=ax[0], color='black', linewidth=1)\n", "sns.lineplot(x=df.index, y='val/obj_loss', data=df, ax=ax[1], color='black', linewidth=1)\n", - "ax[0].set_ylim([0.02, 0.07])\n", - "ax[0].set_xticks(np.arange(0, 350, 50))\n", + "ax[0].set_ylim([0.02, 0.03])\n", + "#ax[0].set_xticks(np.arange(0, 350, 50))\n", "ax[0].set_xlabel('epoch')\n", "ax[0].set_ylabel('box loss')\n", - "ax[0].axvline(133, 0, 1, lw=1, color='grey')\n", + "ax[0].axvline(27, 0, 1, lw=1, color='grey')\n", "\n", - "ax[1].set_ylim([0.007, 0.01])\n", - "ax[1].set_xticks(np.arange(0, 350, 50))\n", + "ax[1].set_ylim([0.005, 0.007])\n", + "#ax[1].set_xticks(np.arange(0, 350, 50))\n", "ax[1].set_xlabel('epoch')\n", "ax[1].set_ylabel('object loss')\n", - "ax[1].axvline(133, 0, 1, lw=1, color='grey')\n", + "ax[1].axvline(27, 0, 1, lw=1, color='grey')\n", "\n", "fig.tight_layout()\n", - "fig.savefig(fig_save_dir + 'val_box_obj_loss.pdf', format='pdf', bbox_inches='tight')" + "fig.savefig(fig_save_dir + 'val_box_obj_loss_final.pdf', format='pdf', bbox_inches='tight')" ] }, { @@ -653,13 +675,20 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 18, "id": "fe9b6f1c", "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.61718\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAFQCAYAAADayYZkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKK0lEQVR4nO3deVxU9f4/8NeAgwIyYJloOqiJhSwZ5DpuuSVYppJCieWOt6uZ3SDbruaSZVo3bXULKxemm5j5S0YzLckht8xwXG6a5JBLuTCDLIrw+f3hg/N1HEiWw5xZXs/HowfOcM6Z97w7MC8+53POUQkhBIiIiIhu4KV0AUREROR8GBCIiIjIDgMCERER2WFAICIiIjsMCERERGSHAYGIiIjsMCAQERGRHQYEIiIistNA6QKUcODAAQghoFarlS6FiIjIYUpLS6FSqRAdHX3LZT1yBEEIATkvICmEwNWrV2XdpitjP+y5Yk/Ky8uRn5+P8vJy2bftiv2oT+yHLfbDlpz9qMnnn0eOIFSMHERFRcmyvaKiIhw5cgShoaHw8/OTZZuujP2w54o9OXPmDL788kskJyejRYsWsm7bFftRn9gPW+yHLTn7kZOTU+1lPXIEgYiIiP4eAwIRERHZYUAgIiIiOwwIREREZIcBgYiIiOwwIBAREZEdRU5zNBgMAACLxQKtVgudTlfpcsuXL4dWqwUAxMbGAgCsViv0ej0AYNKkSQ6oloiIyPM4fATBbDbDaDQiNjYWiYmJWL58eaXLjRs3DomJiYiNjcWyZcuk541GI/Lz8x1ULRERkWdyeEAwGo0ICAiQHgcEBMBoNNosYzKZpGVMJhMyMjKk78XGxiIkJMQxxRIREXkohx9iOHXqFIKCgqTHQUFBsFqtNsscOnQIeXl5MJvNAICZM2dizpw5stYhhEBRUZEs2youLrb56unYD3uu2JN9+/YBAEpKSmT7Wangiv2oT+yHLfbDlpz9EEJApVJVa1mnuNSyxWKxeWy1WhEYGIiIiAgA1wODyWSSHsuhtLQUR44ckW17AJCbmyvr9lwd+2HPVXpy8uRJTJs2DZMnT8YLL7yA1NTUav9SqQlX6YejsB+22A9bcvXDx8enWss5PCCEhITYjBjk5+dLExEraLVam+cCAwNhNptlDQhqtRqhoaGybKu4uBi5ublo06YNfH19ZdmmK2M/7LlaT7Zs2YKGDRsCALKystCvXz888cQT0vevXr1a7V8ylXG1ftQ39sMW+2FLzn4cP3682ss6PCDodDosXLhQepyXlyedxWC1WqHRaKDT6aQzFYDrExurOtOhtlQqlew3AfH19eWNRW7AfthzlZ5s27YNnTt3BgA8/PDDSElJweOPPw6NRoMdO3agX79+aNGiBd5++2089thjtX4dV+mHo7AfttgPW3L0oyYjgQ6fpKjVajF48GAYDAbo9XokJydL34uPj5dCQmJiIvR6PZYvX46UlBRoNBoA1yc57tq1C0ajUTpdkpzDhg0bcO7cOenx5cuX7W4VLISAXq/HXXfdhXXr1jm6RPobQgisW7cOBoMBWVlZ6NGjBwDgH//4By5fvowNGzYAAD7++GPcdddd6Ny5M8aNG4dffvlFybKJqL4ID/TLL7+IX375RbbtFRYWin379onCwkLZtulq5s+fLwCIoUOHiv/973+iU6dOwsvLS0RHR4v9+/cLq9UqFixYIMLDwwUA0aZNG+Hr6ysOHjyodOkOUd19xGAwiFatWon//Oc/wmq1isuXLzukvvPnz4thw4YJANJ/e/bsEa+++qo4ffq06N27t3jwwQdFYWGh8Pf3F3PnzhVFRUWiY8eOIjw8XJSWltbo9fgzY4v9sMV+2JKzHzX5/OOVFKna/vzzT1y7dg3nzp3D119/jW+//RbFxcV4//338dJLL6F///7YuHEjHnroIZjNZrzxxhsoKSnB/fffj8DAQLzyyiuIjo7Gli1bYDKZcM8996BPnz5YvXq10m+t1hYvXoxOnTohKSmpTjP9hRBIT0/H0KFD0bhxYzz77LPQaDRo166dzczly5cvIywsDBs3bqxz7UIIfPfdd1i4cCHuu+8+7Ny5ExkZGXjnnXcwdepUtGrVSlo2KSkJ27Ztw6JFi1BYWIjHH38cvr6++Pjjj3H48GF8/PHHda6HiJxMneOIC+IIQs3t2bNHeHt7Cz8/P+Hl5SX9lXnHHXcIAGL69OmirKxMdOzYUajVarFq1SpRWFgoiouLRWZmpnjvvffEqVOnbLZ58eJFkZSUJACIH374weZ7ZWVlory83JFvscZOnTolGjVqJHr27CkAiDVr1lS57N/tI99++63o37+/ACASEhJESUmJ2LVrl/jwww/ttvuf//xHABCDBg2qU+0//PCD6NWrlwAg/P39xeDBg4XZbLZZ5vTp09IIwsWLF4Wfn58AIHQ6nc1ySUlJonnz5qKgoKDar+8JPzM1wX7YYj9sKTWCwIAgA3ffmcvLy0XPnj1FeHi4ePPNN8WKFStEbm6uOHjwoJgwYYJISUmRPsxPnDghtmzZUu1+lJWVifvuu0/07NlT2sb3338vWrVqJaZNm1av76uuRo8eLYKDg4XVahXdu3cXQ4YMkb5XXl4uJkyYIO644w4RGRkpLl68WGlP0tPTBQDRsWNHsXHjRrvX6N27t+jXr58QQoirV68KrVYr7rjjDuHl5SXOnj1bq7pffPFF6TW//vrrKoPYjQFBCCHOnDkjDh48KC5evGiz3MmTJ4WPj4+YPXt2tWtw95+ZmmI/bLEfthgQHIgB4dbKy8vFtm3bxLvvviv9lb9ly5ZqrVvTfmRmZgoAYunSpeLTTz8V3t7eIjQ0VAAQq1evFqdOnRLjx48XaWlpdXhH8tq7d68AIJYtWyaEEGLJkiVCrVaLn376SWRlZYmPPvpIABBPP/20UKlU4r333rPrSWFhodBqtWLYsGFVfkh/8sknAoA4ePCgNM/j+++/F2q1WixevLjGde/bt0+oVCoxa9YsUVZW9rfL3hwQ/s5zzz0nGjduXO3Q4o4/M3XBfthiP2wxIDgQA8KtrVy5UgAQarVaREVFiVdffbXa69a0H+Xl5WLixInSYYsJEyaI0tJS8eijj0rPqVQq0bRpU6focXl5uejVq5eIjIwU165dE0IIcfbsWZtDLxXvQwgh4uPjRbt27cTu3bul+n///Xfx2GOPCbVaLX799dcqX6uwsFB06NBBaDQaAUC8/PLLQgghhg4dKkJDQ2s0ibGsrEx06dJFREVFVWtSYU0CwoULF0RQUJAYMWJEtQ4NuePPTF2wH7bYD1tKBQSnuJIiKatiEty1a9cwatQo3HvvvVixYgUef/xxrF69Gl5e9TuXVaVSYdmyZejWrRv++OMPvPLKK/Dy8sK6devw/fffIy8vD/feey86d+6MTz/9VDrtDgAaN25cp9cWQuD06dPw9/e3uQR4hT179uDixYvo168ffHx8UFZWhlmzZiErKwsGgwHe3t4AgODgYLz33ntQq9Xo0KEDsrKyMGXKFADAiy++iM6dO2P27NlYuXIlTp8+jZiYGKjVanz44Yd/e8EuPz8/GI1GjBs3Dk2bNpUuOb5gwQLExMRg3LhxuPfeexEfH4/w8PBKt7Fx40Y0bNgQFosFe/bswffff48GDeT90b/tttuwcuVKPProo5g7dy5mzpwp6/aJSAF1jiMuiCMIth577DHRtGlT0b17d+Hv7y/UarXw9/cXeXl5tdpeffVj5MiRIjg4WEycOFEEBgaK1q1bi6NHj9Z6ewcPHhR33323ACBuu+02YTQabb5fXl4u7rzzTgFABAYGivj4eHH33XcLLy8v8dprr9XotZYuXSr8/PxE69atRceOHUW7du3EpUuXal27EEKsWLFCABDe3t6iXbt2wmKxCCGEWLt2rdi6dasQQoj9+/cLtVotGjRoIJo3by4efvjham+/JiMIFV5++WWhVqvFhQsX/nY5V/+ZkRv7YYv9sMXTHEkRxcXF+Oqrr+Dv74+9e/di/fr1yMnJwY4dO9CyZUuly7OxYMEC9O7dGzt37sSYMWPg7++PHj164NChQ5UuL4Socls5OTno0aMH/Pz8sH79ekRERKB///42dxb96aefcPr0aXz44YeYPn06zp49i169emHnzp146aWXalT76NGjsW7dOtx55504dOgQPvvss0pHLGpiwoQJOHfuHI4dO4Y///wTkydPRm5uLp588kkMGjQIEydOxKOPPoqoqCg89NBD+PPPPzF//vw6veatPP300ygrK8P69evr9XWIqP7xEIOH2759O4qKipCZmYlWrVrZ3Irb2bRt2xaff/659PjixYvo378/Bg4ciJSUFERGRqJ///44cOAAZsyYgX379mHw4MFYvHgxgoODbba1atUqNG7cGFlZWWjcuDEGDx6MBx98EEOHDsWPP/6Idu3aYdOmTQgMDMSECROgVqvx6quv1qn+li1bYsuWLSgoKMCdd95Zp21VaNasGZo1a4bly5fjsccew88//4ygoCBMnDgR69atQ4cOHfDuu++idevWyM3NRfv27WV53aoEBwejf//+WLt2LSZNmlTlcr/++iuuXr1ar7UQUd1wBMHDbdq0CaGhoQgLC3PqcFCZ2267DVu2bEFoaChmzZqF2NhYNG7cGF26dMHp06cxbdo07NixA8OGDUNJSYm0nhACGzduxCOPPCLNYWjUqBE2bNiAJk2aYPDgwbhw4QI2bdqE2NhYqNVq2Wr29vaWLRzcKDExEZMmTcLRo0fx/PPP4/XXX0dubi4yMzMRGhoKtVpd7+GgwqhRo6S5Izfas2cP3n33XcyaNQvR0dGYO3euQ+ohotphQPBgQghs2rQJQ4YMqZdb+TpCs2bNkJWVhYKCAuzZswezZs3CN998g5ycHMybNw//7//9P/z888948MEHcfToUQDA0aNHceLECTzyyCM227r99tuxefNmXLx4Effccw9++uknDBkyRIm3VSuLFy/GsmXLMHXqVEXrGD58OBo1aoTPPvvM5vnk5GRMmzYNc+bMwcCBA5GZmYlvv/1WoSqJ6FZ4iMGDnTx5EqdPn8aAAQOULqXOVCoVOnfuLN2BsELnzp2RmZmJiRMnIjo6GuvWrcOePXvg5+eH/v37220nNDQU27Ztw7p163D77bfj0UcfddRbqDNfX9+/HdZ3lMDAQCQkJGDFihWYMWMGvLy8YDKZcPDgQaSnp6NPnz4ICAhAnz598K9//Uv2URoikgcDggc7cOAAACAmJkbhSurXAw88gJycHIwePRrDhw8HAIwfPx6NGjWqdPmOHTuiY8eOjizR7UycOBGffPIJRowYgZMnTyI8PByBgYEYNmwYGjZsiKKiIqSmpmLUqFFYunSp4qMeRGSPhxg82E8//YTmzZujefPmSpdS73x9ffH5558jPT0du3btwrJly5Quya316NED4eHhMBgMsFgsWLt2LUaMGIGGDRtKy4SGhmL06NGYPXs2CgoKFKyWiCrDgODBDhw44PajBzfy9vZGYmIidDqddIEjqh8qlQpbt27F8ePHsWfPHowdOxb/+te/7JZ78cUXcf78eXz99dcKVElEf4cBwQMVFBSgtLQUBw4cQHR0tNLlkJtq2bIl7rzzTjRt2hRpaWmVXukxJCQE9913HzZt2qRAhUT0dxgQPNDIkSMRFRWFs2fPMiCQ4oYMGYLMzExcu3atRusJIZCdnY3S0lJkZGRg5syZf3txLCKqGQYED1NaWoqdO3fi2LFjAMCAQIp7+OGHcenSJZurWFZHZmYmdDod2rRpI90DYuPGjfVUJZHnYUDwMCaTCcXFxXj11VcxatQotG3bVumSyMN16tQJzZs3x9tvv43y8vJqr5eeno527dqhZ8+eeOuttxAbG4tnn31WuvnYlStXMHXqVPz8888Arl9WfNKkSdi+fXt9vA0it8OA4GH27NkDb29vpKSkYM2aNS57gSRyH15eXvjoo4+wadMmPPvss9U6TFBSUoIvv/wSTzzxBPR6Pf71r3/hnXfewe+//w69Xg8AeOONN/D+++9j6NChOHbsGEaNGoUVK1Zg5MiRMJvN9f22iFweA4KH2bNnDyIjI+Hv7690KUSSoUOH4v3338eSJUswf/58bNu2Db/99luVy1fc0yIhIUF67p577kHfvn3x2Wef4ejRo5g/fz4mTJiAoqIihIWFYdOmTfj000/h7++PpKSkGo1WEHkiXijJw+zZswfdunVTugwiO//4xz/wxx9/4JVXXgFw/doV77zzDiZNmoRVq1bBy8sLY8aMAQBkZGQgMjISHTp0sNnG6NGjMWHCBIwYMQKtW7fGu+++ixdeeAE///wzunbtCq1WC61Wi759+2Lp0qV46qmnHP4+iVwFRxA8SH5+PkwmE7p27ap0KUSVmjNnDrZv346DBw/iySefxOTJk9G5c2eMHz8ekyZNwq+//ory8nJkZmbi4Ycftlv/0UcfRcOGDXH06FGsXr0avr6+CA0NxYgRI6DVagFcv7LmpEmTMGPGDPz111+OfotELoMBwYPMmzcPDRs2RGxsrNKlEFVKpVKhb9++uPfee/HRRx9h/fr1OH36NF599VW0bNkS06dPx/79+/HXX38hLi7Obn2NRoP58+dj+fLl6NKlS5Wv89prr6GoqAgZGRn1+XaIXBoPMXiAhQsX4sSJE1i5ciVmz56Nli1bKl0SUbXEx8dj+PDhUKlU6NixI4YPH46zZ89Co9Gge/fula7z7LPP3nK7d9xxB/r27YsvvvgCkydPlrtsIrfAEQQ39+233+L555/H1q1b0alTJzz33HNKl0RUIxVn2gwbNgwTJkzATz/9hIEDB9b5DpAjRozAjh07cP78eTnKJHI7DAhuaP/+/bhw4QIKCwvxz3/+E7169cKJEyeQnZ1tc7McIlezZMkSPProo5gyZUqdtzVs2DAIIfDCCy/gxIkTMlRH5F54iMHFXLlyBePHj8fhw4eRlJSElJQUAIBer0deXh569uyJHj16IDg4GE2bNsUff/yBDRs28HoH5Bb8/PzwxRdfyLKt4OBgvPTSS1i8eDEyMjJw4sQJNGnSRJZtE7kDjiC4mG3btmHt2rVo2rQpnn/+eWRnZ+PcuXOYOHEiUlJS0K9fP9x33324++67YbFYYDQaK71JDhEBc+fOxf/+9z+UlJTg7bffVrocIqeiyAiCwWAAAFgsFmi1Wuh0ukqXW758uXRqUsXM++qu6642bdqEdu3awWAwQKfTISkpCffccw8aNGiAt956Cx988AHWrl2L9u3bo6ysDA0acJCI6O80b94cU6dOxTvvvIPp06fj9ttvV7okIqfg8BEEs9kMo9GI2NhYJCYmYvny5ZUuN27cOCQmJiI2NhbLli2r0bruqLy8HEIIbNq0CY888gi8vb2xevVqtG7dGgaDATNnzsS//vUvHD9+HHfffTdUKhXDAVE1paamoqSkRLpMsxy+/vprrF27VrbtETmawwOC0WhEQECA9DggIMDuLm4mk0laxmQySecqV2ddd9W3b1+EhYXh9OnTGDJkCACgffv22LFjB/766y9Mnz5d2QKJXFjFaY8Vv2vKy8uxaNEivPvuu/j2229rfEGlwsJCjBkzBklJSXjxxRd5WWdySQ7/E/PUqVMICgqSHgcFBcFqtdosc+jQIeTl5Uk3VJk5cybmzJlTrXWrSwiBoqKiWq17s4q7x1V8lVtxcTF27doFPz8/BAcHIyYmxqZ2Pz+/envt2qjvfrgiV+xJSUmJ9FWun5UKztiPIUOG4Nlnn4XZbMb27duRmpoKHx8fXL16FQCg0+mwcOFC3Hfffbfc1kcffYT8/Hw8++yzWLBgAfbu3Yunn34aXbp0QWBgoN3yztgPJbEftuTshxCi2pPWnWIM2mKx2Dy2Wq0IDAxEREQEgOuBwWQyVWvd6iotLcWRI0dqtW5VcnNzZd1eBZPJhLKyMrzzzju46667cPz48Xp5HbnVVz9cmSv1pOJn6+TJk7h48WK9vIYz9eOee+5BeXk55s+fj02bNqFXr15YuHAh8vLykJOTgzVr1iA+Ph5r1qyR/lApKCjAH3/8gbCwMGk7JSUleOuttzBw4EAkJSWhXbt2mDVrFoYNG4YOHTrg008/rfIXtDP1wxmwH7bk6oePj0+1lnN4QAgJCbH5qz8/P1+aiFih4oYqFQIDA2E2m6u1bnWp1WqEhobWat2bFRcXIzc3F23atIGvr68s27x27Rq8vb2hUqmQnZ0Nb29vDB06VLbt16f66Ierc8WenDt3DllZWWjbti2Cg4Nl3baz9mPIkCH46KOP4O3tja+++gphYWGIiopCXFwckpKSoNPp8Prrr2PDhg3w9vZGQkICNm/ejPnz5+Ppp5+GSqXCU089hfz8fLz22msICwtDhw4d8OSTTyIjIwNjx47FtWvXcO+999q8rrP2Qynshy05+1GTPzAdHhAqhukq5OXlSWciWK1WaDQa6HQ6m8lCZrMZOp0OFoulynVrSqVSwc/Pr5bvonK+vr6ybPPAgQOIjY1FSkoKUlNTYTKZEBYW5nKzq+XqhztxpZ40atRI+lpfNTtbPzIyMnDs2DFcuXIF0dHRNt9r37491q5di0GDBuHNN9/EAw88gK+//hoPPvggXnzxRaSlpeH2229HdnY20tLSEBMTY7P+qFGj8Nxzz2HDhg1V3lHV2fqhNPbDlhz9qMk1cRw+SVGr1WLw4MEwGAzQ6/VITk6WvhcfHy+FhMTEROj1eixfvhwpKSnQaDR/u667+P3339GvXz9YLBYsWLAAhYWFOHDggN0vGyKSn7e3N8LDw+3CQYWBAwdi9uzZmDdvHgYMGIBu3brBYDDg+++/R/fu3dG6dWukpaVh7Nixduuq1WokJCRg3bp1nLRILkGROQhV3U1w27Ztt1zG3e9E+N133yE/Px/79u1D165d8f777+OXX35BYmKi0qUREYBXXnkF3bt3x5EjRxAXFweVSoXevXujd+/et1w3KSkJH374IbKystCnTx8HVEtUe04xSZH+z/Hjx3HnnXfi/vvvR1JSEmbMmAEAHEEgchIqlQoDBgzAgAEDaryuTqdDmzZtsGbNGgYEcnq81LKT+fXXX9G+fXsA168kuXnzZqxZswa9evVSuDIiqiuVSoXHH38cX3zxBa5cuaJ0OUR/iwHByRw/flw6u8LHxwdxcXEYNWoUvLz4v4rIHSQlJeHSpUvYvHmz0qUQ/S1+6jgRIYTNCAIRuZ+IiAj06tULU6dOlS4GR+SMGBCcyPnz52G1WmW7PgMROafPP/8carUaQ4YMka7USORsGBCcSMUFLDiCQOTemjdvji+//BImkwmvv/660uUQVYoBwYn8+uuvAIB27dopXAkR1bf77rsPL7zwAl577TWPuekcuRYGBCchhMCRI0fQokUL+Pv7K10OETnAK6+8Ap1Oh+HDhyMnJ0fpcohsMCAozGg0omXLltBoNHjjjTekG1QRkftr2LAhvv76a4SFhWHevHm3vMKiEAKPP/440tPTHVQheTIGBIUZjUZcunQJr776KtavX4+1a9cqXRIROZC/vz8WLFiAEydO4Msvv/zbZXfs2IH09HS8/PLLKCsrc0yB5LEYEBSWl5eHNm3a4LnnnkN8fDzuuOMOpUsiIgfr1q0bunXrhvnz50MIUeVyixYtQosWLfDbb79h48aNDqyQPBEDgsLy8vLQqlUrpcsgIoU9+eSTOHLkCLKzsyv9/u7du5GZmYkFCxagd+/eeO2111BSUuLgKsmTMCAojAGBiACgU6dO0Gq1WLVqld33zp8/j4SEBHTp0gWPPfYY3nzzTRw+fBgjRozA22+/jUOHDjm+YHJ7DAgKY0AgIgDw8vLCqFGjoNfrodPp0Lx5c4wYMQKnTp1CQkICioqK8MUXX0CtVqNr16744osvsGPHDqSkpOCf//yn0uWTG2JAUNC1a9dw5swZaLVapUshIieQlJSEy5cvo6CgABMnToTRaET79u2xa9cuZGRk2PyueOihh2CxWLBmzRpkZWXhf//7n4KVkztiQFDQ2bNnUV5ezhEEIgJw/SJpR48exf79+zFv3jzs3r0b/fv3x9q1ayu9o2uDBg0wbNgwBAUFVXpogqguGBAUlJeXBwAMCEQkad++PXx8fAAAWq0WmzdvxqOPPlrl8r6+vhg1ahQ++eQTXLt2zVFlkgdgQFAQAwIRyWH8+PE4ffo0tm7dqnQp5EYYEBSyc+dOnDhxAn5+fggKClK6HCJyYTExMbj33nvx8ccfK10KuREGhHr2xRdfICUlxea5s2fPok+fPpg3bx5atWoFlUqlUHVE5A5UKhXGjx+Pr776Cn/99ZfS5ZCbYECoZx999BGWLl1qc3W0ih/gy5cv8/ACEckiKSkJPj4+mDFjhtKlkJtgQKhHV65cwa5du3D58mWcPn1aev7SpUsAgD59+qB///5KlUdEbqRp06Z47733kJaWhnXr1ildDrmBBkoX4M5+/PFH6VKoR48eRcuWLQH8X0DQ6/UIDg5WrD4ici9jxozBN998g8mTJ6NLly5o166d0iWRC+MIQj3asWMHgoKCoFarcfToUen5/Px8AODkRCKSlUqlwocffohmzZohISHBZuSSqKYYEOrR9u3b0bdvX4SGhuLYsWPS85cuXYKvry8aNmyoYHVE5I40Gg0+//xz/PHHHwgPD0dWVpbSJZGLYkCoR0eOHEF0dDTCwsJw9OhRfPDBB9i5cycuXbqEJk2aKF0eEbmpmJgYHD58GBERERg/fjzv+ki1woBQj65du4aGDRsiLCwMP/74I6ZOnYpVq1YhPz+fAYGI6tVtt92GlStX4vfff8cbb7yhdDnkghgQ6tG1a9fQoEEDhIWFoaCgAEIInDlzhiMIROQQYWFhmDJlCt5//31ehplqjAGhHpWVlaFBgwaIjIwEALRs2RJnz57FpUuXOEGRiBziiSeewPnz57Fjxw6lSyEXo0hAMBgMMBgM0Ov1MBqNlS4zbdo0mEwmmEwmLFy4UHper9fDYDBg+fLlMJlMjiq5VipGEGJiYrB3714kJyfjzJkzPMRARA4THR2Ndu3aQa/XK10KuRiHBwSz2Qyj0YjY2FgkJiZi+fLllS6Xl5eHsWPHYtGiRZg8eTIAwGQyYdeuXYiNjcWkSZOwaNEiR5ZeYxUBAQA6deqEFi1a4M8//8T58+cZEIjIIVQqFRISEpCRkYGrV68qXQ65EIcHBKPRiICAAOlxQEBApaMIycnJ2Lt3L9LS0qDRaKR1tVqtzXLOOopQXl4OIYQUEACgefPmEELgxIkTDAhE5DBJSUm4dOkS0tPTlS6FXIjDr6R46tQpm+PvQUFBsFqtdsvl5OQAACwWCwAgMTERWq1Weh64PhphNpsRERFR4zqEECgqKqrxepUpLi62+QpASurXrl2TXqciFJSWlsLf31+213c2lfXD07liTypOjSspKZF9X3XFftSn+u5H27ZtERcXh/nz5yM+Ph5eXs49/Yz7hy05+yGEqPYNAp3iUssVIeBGqamp0r8HDBiAuLg4xMbGYvPmzbBarTh06BAASKMLNVVaWoojR47UruAq5ObmSv+u+OX6559/Sq9TUFAgfb+oqEj213c2N/aDrnOlnlT8XJ48eRIXL16sl9dwpX44Qn32IyEhAePGjcMHH3zgMveA4f5hS65++Pj4VGs5hweEkJAQmxGD/Px8u8MGBoMBOTk5UkjQaDTSSMGSJUtgMpkQGRkJjUYjnSFQU2q1GqGhobV/IzcoLi5Gbm4u2rRpA19fXwCQ3mNISAg6dOgAAAgNDYVKpYIQAuHh4dLz7qayfng6V+zJuXPnkJWVhbZt28p+zxBX7Ed9ckQ/OnToIN3IacqUKU59m3nuH7bk7Mfx48ervazDA4JOp7M5KyEvLw86nQ7A9Q9VjUYDrVZrMzJgtVoREREBq9WKV155BUuWLIHZbJZCQm2oVCr4+fnV7c3cxNfXV9pmxQiCv7+/zes0bdoUf/31F5o3by776zubG/tB17lSTxo1aiR9ra+aXakfjlDf/fj3v/+NgQMH4vPPP8eVK1cwdOhQtGjRot5er664f9iSox81CYYODwharRaDBw+GwWCAxWJBcnKy9L34+HhkZGQgIiJCOhUyJycHaWlpAK6PJPTo0QMGgwFmsxlz5sxxdPnVVlZWBgA2kxQBoEWLFvjrr784SZGIHK5///7o0qULxo8fD+D6odx+/fohMjISr732msLVkbNRZA5CbGxspc9v27bNbpmbl01MTKy/wmRUcdWymwNC8+bN8csvv/BCSUTkcCqVCsuWLcOOHTsQHx+PDz74AEajEfPnz0dSUhLCw8OVLpGciFNMUnRHVQWEiuE8jiAQkRI6duyIjh07AgDeeOMNXLlyBc2bN8eaNWs4ikA2nPtcFxf2dwFBrVbzuBoROYWGDRti5MiRWLt2LcrLy5Uuh5wIA0I9qQgI3t7eNs/369cPI0eOdOoZxETkWUaPHo3c3FxkZ2crXQo5EQaEelLVCMLAgQOxZs0aJUoiIqpUz5490axZM2zatEnpUsiJMCDUk6oCAhGRs/Hy8kJcXBw2b96sdCnkRBgQ6klVpzkSETmjwYMHIycnB2azWelSyEkwIMjg4MGDmDp1qs0EH44gEJErGThwILy9vZGZmal0KeQkGBBkcOTIEfz44482t1JlQCAiV9KkSRN0794dW7ZsUboUchIMCDKouDMaRxCIyJX17NkTP/74o9JlkJNgQJABAwIRuYMuXbrg9OnTyMvLU7oUcgIMCDKoCAgVExMBBgQicj1du3YFAOzevVvhSsgZMCDIoOJiSJWNINx8oSQiImd15513olWrVtizZ4/SpZATYECQAQ8xEJG76Nq1K0cQCAADgiwqCwi8DgIRuaKuXbti3759KCkpUboUUhgDggw4gkBE7mL48OG4cuUKlixZonQppDAGBBlU3HiJAYGIXF1oaCj+8Y9/YP78+bhw4YLS5ZCCGBBkUDGCIISQnmNAICJXNXPmTABAamqqwpWQkhgQZMDTHInIndxxxx146623kJaWBoPBoHQ5pBAGBBnwNEcicjfjx4/HwIEDMW3aNJs/fshzMCDIoKpJiiqVSvoeEZErUalUmDdvHn799Vds3LgRW7duxblz55QuixyIn14yqCog8PACEbmyLl26oE+fPpgwYQIGDRqE5ORkpUsiB2JAkEFV10FgQCAiV/fyyy+juLgYI0aMwFdffYX9+/crXRI5CD/BZMARBCJyVwMHDkRBQQFUKhVycnLw0ksvwWAwSKd3k/viCIIMGBCIyJ2p1Wo0aNAAixYtwtatW/HWW28pXRI5AAOCDKo6zZEBgYjcycMPP4wZM2bghRdewHfffad0OVTPGBBkUNVpjgwIRORu5s2bh969eyMxMRF//PGH0uVQPWJAkEFVl1pmQCAid9OgQQOkp6fDx8cHMTEx0Ov1SpdE9aTWAWHRokX473//i4KCAowfPx7Tp0/H1q1b5azNZVR1qWVeJImI3FGzZs2we/du9OnTB4899hhmzpxp8/uP3EOtA0JUVBRGjhwJvV6PiIgIvPPOO8jPz5exNNfBSYpE5GnuvPNO6PV6LFiwAHPnzsXq1auVLolkVutPMI1GAwDIzMzEvHnzAACBgYHVWrfi2t4WiwVarRY6nc5umWnTpmHy5MkAgM2bN0s3Dbn5uuCxsbG1ewMy4nUQiMgTqVQqPP/889i1axdee+01jBo1iiOnbqTWIwhmsxnZ2dkwm83o0KEDzGYzrFZrtdYzGo2IjY1FYmIili9fXulyeXl5GDt2LBYtWiQFBavVCrPZjNjYWMTGxsJoNNa2fFlxBIGIPNnLL7+MY8eOISUlBatXr+bhBjdR64AQFxeHw4cPY/369bh8+TI+//zzagUEo9GIgIAA6XFAQEClH/TJycnYu3cv0tLSpNEKjUYDvV4Pk8kkresMeJojEXmyLl26YOjQoViyZAmeeOIJvPjii0qXRDKo9SfY0qVL0bp1azRp0gTTpk1DQEAAoqKibrneqVOnEBQUJD0OCgqqNFjk5OQAuH4YAgASExMBACkpKYiPj0dERARWrVpV2/IhhEBRUVGt179RaWkpAKC4uFjaZklJCby8vGR7DVdSXFxs85VcsyclJSXSV7n3Y1fsR31yh36sWbMGQgi8//77eOGFFxAWFoaEhIRabcsd+iEnOfshhKj2VTBrHRCioqIwaNAgrFixAhEREXjuuefw+eef12pbFSHgRhVzDgBgwIABiIuLg0ajQU5ODjIyMrBo0SKMHTsWGRkZtXrN0tJSHDlypFbr3uzMmTMAgNOnT0vbPH/+vKyv4Ypyc3OVLsHpuFJPKn4uT548iYsXL9bLa7hSPxzBHfoxYMAA9OrVC7NmzUJ4eHid5iS4Qz/kJFc/fHx8qrWcwycphoSE2IwY5OfnQ6vV2ixjMBiQk5MjhQSNRgOz2Qyz2YwePXogIiICaWlpmDlzJoxGY6WTHG9FrVYjNDS0xutVpiKNNWvWDB06dAAANG7cGAEBAdJjT1JcXIzc3Fy0adMGvr6+SpfjFFyxJ+fOnUNWVhbatm2L4OBgWbftiv2oT+7Wj/nz56NXr144fPhwrUYR3K0fdSVnP44fP17tZWsdEMxms/S1JpMUdTodFi5cKD3Oy8uTPuCtVis0Gg20Wq0UQCqej4iIwKFDh2zChE6nq/aZEzdTqVTw8/Or1bo3q9iOWq222ebNjz2Nr6+vR7//yrhSTxo1aiR9ra+aXakfjuAu/ejZsycGDx6M+fPnY9SoUdX+i/Vm7tIPucjRj5rcZKvOkxQzMjJQUFAAvV5frYCg1WoxePBgGAwG6PV6m/uLx8fHS2HAarXCYDBg4cKFSEtLA3B9HoLRaIRer5eu3hUREVHbtyAbnsVARGRrwYIF+O2337B48WKlS6FaqvUnWEBAAIQQWLRoEd555x306NGjWpMUgaqvXbBt2za7ZW5edtKkSbWsuP7wOghERLYiIyMxZcoUzJ49G3fffTeGDh2qdElUQ3W61LJGo5EOD3Tv3t1prkvgaLwXAxGRvblz56Jfv34YNmwYpk+fbvM7kpxfnS61nJCQYDfB0BPxbo5ERPY0Gg02btyI9957D0uWLMFDDz2EjRs3Kl0WVVOtA0JeXp7dcxXXLvA0nINARFQ5lUqFKVOmYP369Thz5gyGDRtmd8l8ck61/gQLDw9HfHw8mjRpAqPRCKPRiJSUFDlrcxkMCEREf2/48OEYNmwYIiMj8dlnnznFfXTo79V6BKF79+5YvHgxOnToACEE5s6di+7du8tZm8tgQCAiujWVSoXRo0djw4YNKCgoULocuoVaBwTg+imLKSkpSElJQXh4eKWHHTwBAwIRUfWMGjUKxcXF+PLLL5UuhW6hTgHhyJEjyM7Olv5btGiRXHW5lKpOc+RtT4mIbLVu3RpdunTB5s2blS6FbqHWf+I+88wzKCgosLmjoqfed4B3cyQiqr4ePXpwBMEF1PoTrEePHnbX2N6yZUudC3JFPM2RiKj6unbtiv/85z/4888/0axZM6XLoSrU+hBDZdc/CAkJqVMxropzEIiIqq9bt24AgN27dytcCf2dOt2sSa/XS5dXFkIgMzMT69evl604V8GAQERUfSEhIQgODsaPP/6IIUOGKF0OVaHWIwjp6elo1aoVhBAQQgCA9NXTMCAQEVWfSqVCt27dOILg5Gr9CZaammp33YOK+zJ4mop7MdwYkBgQiIiqptPpMGfOHBQWFsLf31/pcqgSssxBKCgowJYtW6DRaGQpyhV5eXnxLAYiomoaOXIkCgsLkZGRoXQpVIVaB4Ts7Gzp3wEBARg0aJDNc55GpVKhvLwcp06dwtGjR3kdBCKiv9G2bVs88MADWLVqldKlUBVq9CduQUEBMjMzoVKpsGvXLrvvHzp0CCNHjpStOFfi7e2N8vJyzJ49GydOnOAIAhHRLYwbNw5jxoxBbm4u2rRpo3Q5dJMajSAEBASge/fuyMnJwalTp/D777/b/Ddx4sT6qtPpVYwgFBUV4cKFCwwIRES3EB8fDx8fH3z11VdKl0KVqPEnmFarxZw5c5Cdne2xN2eqjJeXF8rLy1FWVgar1cqAQER0C40bN0bPnj2xdetWTJs2Tely6CZ1upvjzS5fvlynYlzZjQHBYrEwIBARVcPAgQPx3Xff4erVqzbP79+/H3Fxcbh48aJClVGNAsKNAeDIkSN2/y1cuFD2Al1FxSGGihGE0tJSBgQiolsYOHAgCgsLkZ2djT179mDgwIFITU3FjBkzsHPnTqxevVrpEj1WtT/BtmzZgunTp+Obb75Bq1atMGbMGERFRdmc+28ymTB79ux6KdTZVZzmWFZWBiEERxCIiKohOjoat99+O8aMGYO8vDyEhYVh9+7daNy4MaKjo7FixQo8/fTT0vVmyHGq/Qmm0Whs7taYkJCAlJQUm2U89WZNgO0IQgUGBCKiv+fl5YXU1FT88MMPSE1NRXJyMs6fP4+jR48iPz8f8fHx2LdvHzp37qx0qR6n2p9geXl5No8rS3OeerMm4PppjkIIm4DA6yAQEd3ajBkzMGPGDOlxYGAgNBoNOnXqhFatWmHlypUMCAqo0QjCrFmz0KNHDwDXb9a0detW6fsWiwUGgwErV66Uv0oXwBEEIiJ5eXt7Y+zYsViyZAnefvtt+Pn5KV2SR6n2J9igQYOg0WikCyRZrVb88ssvNsvk5+fLWpwrufEshgoMCEREdTNu3DjMmzcPX3zxBZ588kmly/EoNfoE6969u3R6Y2XXQfDkSy0zIBARye+uu+5Cv379sGrVKgYEB5P1OgiefOEkHmIgIqofsbGx2LNnj81Zc1T/ah0QyNaNpzlWYEAgIqq7iIgIFBYW4tSpU0qX4lEYEGTCEQQiovoRHh4OADh8+LDClXgWRQKCwWCAwWCAXq+H0WisdJlp06bBZDLBZDLZXKFx2rRpsFqtjiq12iru5siAQEQkr5CQEPj7+8NkMildikdx+CeY2WyG0WjEnDlzAFyfoarT6eyWy8vLw9ixYxEZGYnFixdL627ZskWaDGm1WpGSkoJJkyY57g1UgSMIRET1w8vLCx06dOAIgoM5/BPMaDQiICBAehwQEACj0WgXEpKTkxEbG2vznNlsxt69e6HRaAAAer0eiYmJ9V90NVR2FgMvlEREJI/w8HCOIDiYwwPCqVOnEBQUJD0OCgqq9JBBTk4OgOsXYAKAxMREmxCh1+sRFxdX6zqEECgqKqr1+jcqLi6GSqXC1atXce3aNen5a9euyfYarqS4uNjmK7lmT0pKSqSvcu/HrtiP+sR+2KqsH+3bt0dGRgYKCws97r4Mcu4fQohq988pxsArQsCNUlNTpX8PGDAAcXFx0siB2WyG1WqVHtdGaWmpzb0l6srLywsWi8Xmf6DZbLYZLfE0ubm5SpfgdFypJxU/lydPnqy3W+66Uj8cgf2wdWM/GjdujMuXL+O7775D8+bNlStKQXLtHz4+PtVazuEBISQkxGbEID8/H1qt1mYZg8GAnJwcKSRoNBqYzWZEREQAANLT06VLPteWWq1GaGhonbZRobi4GF5eXvD397c5rBAaGooOHTrI8hqupLi4GLm5uWjTpg18fX2VLscpuGJPzp07h6ysLLRt2xbBwcGybtsV+1Gf2A9blfWj4kNNCOFxv1fl3D+OHz9e7WUdHhB0Op3NWQl5eXnSoYOKUQGtVmszOmC1WqVwAFy/a+Rjjz1WpzpUKpWs1/VWqVTSPIQKAQEBHn3tcF9fX49+/5VxpZ40atRI+lpfNbtSPxyB/bB1Yz/CwsLg7e2NP/74w2N7JMf+UZPDMw4PCFqtFoMHD4bBYIDFYkFycrL0vfj4eGRkZCAiIkI6FTInJwdpaWk229BoNAgMDHR06X/rxtMcg4KCkJ+fz7MYiIhkolarERISghMnTihdisdQ5BPs5rMTKmzbts1umcqWzcjIqJ/C6uDG0xxvu+02BgQiIpm1a9eOAcGBeCVFmdx4mmOTJk0A8DoIRERyYkBwLAYEmdw4ghATE4POnTvjjjvuULosIiK3UREQeNMmx2BAkMmNIwjt27fHnj174O/vr3RZRERuo127drh8+TL++usvpUvxCAwIMrnxbo68giIRkfzatWsHADzM4CAMCDK58RADAwIRkfzuuusuAAwIjsKAIJMbT3NkQCAikl9AQACaNWtWo4v9UO0xIMhEpVJBCMGAQERUjzp37oxvvvlG6TI8AgOCTG6cpMiAQERUP0aNGgWj0YiTJ08qXYrbY0CQiUqlQllZGYQQDAhERPXkkUcegZ+fH9atW6d0KW6PAUEmXl5eKC0tBQAGBCKietK4cWMMGzaMAcEBGBBkolKpGBCIiBxg8ODBOHToEC5duqR0KW6NAUEmXl5euHr1KgAGBCKi+tSpUycAwP79+xWuxL0xIMjEy8sL165dA8CAQERUn9q3b4+AgAAGhHrGgCATzkEgInIMLy8vxMTEYN++fUqX4tYYEGTCgEBE5Dj333+/NIIghOB8hHrAgCATTlIkInKcTp064eTJk7hw4QI+/PBDNG/eHLt371a6LLfCgCATzkEgInKczp07AwC++uorLFq0CKWlpUhISMDevXtRXl6ucHXugQFBJhxBICJynNDQUIwYMQLJyck4efIk1q9fj2vXrqFLly5ISEhQujy3wIAgE57mSETkWB9++CFuv/129OjRA8OHD8fJkyexePFirF+/Hr/88ovS5bk8BgSZcJIiEZFjNW3aFPv378eXX34JAPDx8cFTTz2FkJAQLFq0SNni3AADgkw4B4GIyPFatmyJpk2bSo/VajWmT5+OdevW4ezZswpW5voYEGTCEQQiIucwZswYqFQqpKenK12KS2NAkAknKRIROYfbbrsNDz30ENasWaN0KS6NAUEmHEEgInIeo0ePxr59+3D06FGlS3FZDAgyUalUnINAROQkHnroIQQEBGDDhg1Kl+KyGBBk4uX1f61kQCAiUlajRo0QExPDGzrVAQOCTBgQiIicS3R0NH7++Wely3BZDAgyYUAgInIu0dHROHHiBCwWi9KluCQGBJkwIBAROZfo6GgAwMGDBxWuxDU1UOJFDQYDAMBisUCr1UKn09ktM23aNEyePBkAsHnzZqSmpkrfW758ObRaLQAgNjbWARXfmkqlkv7NgEBEpLywsDA0bNgQBw4cQO/evZUux+U4PCCYzWYYjUbMmTMHADBu3LhKA0JeXh7Gjh2LyMhILF68WHp+3LhxWLx4MTQaDeLj450mIHAEgYjIuajVakRGRuLAgQNKl+KSHB4QjEYjAgICpMcBAQEwGo12ISE5Odnuw99kMknrmkwmZGRk1H/B1cQRBCIi53P//fdj8+bNsFqt0Gg0SpfjUhweEE6dOoWgoCDpcVBQEKxWq91yOTk5ACBNLklMTMShQ4eQl5cHs9kMAJg5c6Y0ElFTQggUFRXVat2bFRcX24wgXL16VbZtu6Li4mKbr+SaPSkpKZG+yr0/u2I/6hP7YUvOfkydOhXp6el44oknsHbtWps/5lyFnP0QQlS7B4rMQbhZZTNMb5xzMGDAAMTFxcFqtSIwMBAREREAgEOHDsFkMkmPa6K0tBRHjhypfdE3uTEgcNbsdbm5uUqX4HRcqScV+/DJkydx8eLFenkNV+qHI7AftuTqx0svvYQXXngBX3zxBSIjI2XZphLk6oePj0+1lnN4QAgJCbEZMcjPz5cmHFYwGAzIycmRQoJGo4HZbIZWq7VZNjAwEGazuVYBQa1WIzQ0tJbvwtbNIwhhYWG44447ZNm2KyouLkZubi7atGkDX19fpctxCq7Yk3PnziErKwtt27ZFcHCwrNt2xX7UJ/bDltz9aNu2LV5++WVcvnwZHTp0kKFCx5KzH8ePH6/2sg4PCDqdDgsXLpQe5+XlSfMPKo4RabVam2NFVqsVERER0Gq10Ov10vNms7nSCY7VoVKp4OfnV8t3Ufn2KgQEBMi6bVfl6+vLPtzElXrSqFEj6Wt91exK/XAE9sOWXP3w8/ND+/btcezYMZfurxz9qMkhFocHBK1Wi8GDB8NgMMBisSA5OVn6Xnx8PDIyMhAREQGDwSCNJKSlpQG4PpKQmJgIvV4Pq9WKlJQUp5l0wrMYiIicV1RUlDS3japHkTkIVZ2auG3bNrtlbl7WWU5rvBkDAhGR84qMjMSSJUtqNEnP0/FKijLhaY5ERM4rKioKFy5cwNmzZ5UuxWUwIMiEIwhERM4rKioKAHiYoQYYEGTCgEBE5Lzuuusu+Pn5MSDUAAOCTG4MCDf+m4iIlOfl5YX7778fO3fuVLoUl8FPMplUzEHw8vLiBBgiIif0yCOPYOvWrSgsLFS6FJfAgCCTilEDHl4gInJOw4YNQ0lJCbZs2aJ0KS6BAUEmDAhERM4tNDQUkZGR+PLLL5UuxSUwIMik4rACAwIRkfMaOnQoNm/eDCGE0qU4PQYEmXAEgYjI+XXv3h0XLlzA77//rnQpTo8BQSYMCEREzi8mJgYA8NNPPylcifNjQJAJAwIRkfNr0aIFmjdvzoBQDQwIMuEcBCIi1xATE1PtgFBUVISVK1di69atKC0ttfnepk2bEBkZiaKiovooU3EMCDLhCAIRkWu4//77sX//fgghcPXqVfzwww/4+eefUV5ebrNcaWkpEhISMHHiRAwaNAhjx461+f7ixYthMpmQnp7uwOodhwFBJgwIRESuISYmBn/++SfOnDmDjz76CL169UJ0dDQ+/vhjm+VeeuklbN26FQaDAUuXLsXatWvxwQcfYNq0afjuu++wfft2aDQavPvuu255VgQDgkx4iIGIyDV06tQJALB9+3ZkZGRgwIAB6Nu3L1avXi0t89tvv2Hx4sWYOXMmBg0ahEmTJqFXr16YMmUKPvjgA/Tv3x++vr5Yvnw5fv75Z2RnZyv1duoNA4JMOIJAROQaWrVqhQceeACLFi1CVlYWEhMTMWbMGOzcuRN5eXkQQuCFF15A06ZN8eyzzwK4/kfg2rVrkZ6ejpMnTyIqKgrjxo3DiBEjEBISgk8//VThdyW/BkoX4C4YEIiIXMdTTz2FxMREqFQqDBkyBI0aNcLkyZPx+uuvIz8/H//973/x2Wefwd/fX1qnVatWSExMBAAcOHAAQgh4eXlh1KhRWLZsGZYsWQJvb29MmDAB9913H55++mmX/kxgQJAJAwIRkesYNmwYmjVrhtDQUAQHBwMAhg8fjg8++AB+fn5IT0+XwkBlVCqVdGg5KSkJb7zxBgwGA86dO4dPPvkEn3zyCb7++mts3LgRfn5+DnlPcmNAkAnnIBARuQ4fHx/897//RUBAgPTcp59+irfffhtNmjRBo0aNqr2tyMhI3HvvvUhNTcWlS5eQlJSEcePGYejQoRg2bBjWr19v8zo1ceLECTRu3LhW69YV5yDIhCMIRESupXfv3oiOjpYeq9VqtGjRokbhoMKKFSsQGhqKhg0b4vXXX0f//v2xadMmZGdnIyYmBiaTSVr26NGj+Ouvv265zfPnzyM6Ohpr166tcT1yYECQCQMCEZHn6ty5M77++muYzWZotVoAQN++fXHgwAE0bNgQI0eOxG+//Ya+ffuiQ4cOGDly5C23+frrrwMAHn300XqtvSoMCDLhIQYiIrpZaGgo0tPTcfz4cURERODEiRN4/vnn8f333yMrK6vK9c6cOYP3338fzz33HJo2berAiv8PA4JMOIJARESViYyMxPz58xEaGoqdO3fi9ddfR1RUFObNm1flOl9++SXKysrwzDPPOLBSWwwIMmFAICKiqqSkpCAnJwdt2rSBl5cXZs+eja1bt9pdvbFCZmYmdDodgoKCHFvoDRgQZMKAQERE1TV8+HBMmjQJU6ZMwd69e22+d+XKFWzfvh1xcXEKVXcdT3OUCecgEBFRTSxZsgQ5OTkYNGgQduzYgY4dO2L16tXIy8tDYWEhYmNjFa2PAUEmHEEgIqKaaNSoETIzM9GvXz888sgjeOONN/DEE08AAFq0aIGOHTsqWh8PMciEAYGIiGoqKCgIGzZsgMViwahRozBw4EB89913yMjIkEamlcKAIBMeYiAiotpo3bo1VqxYgbZt2+Kjjz5Cnz590K1bN6XLUiYgGAwGGAwG6PV6GI3GSpeZNm0aTCYTTCYTFi5ceMvnlcYRBCIiqq0RI0bgxIkTuOuuu5QuReLwOQhmsxlGoxFz5swBAIwbNw46nc5uuby8PIwdOxaRkZFYvHjxLZ9XGgMCERHVhdKHFG7m8IBgNBptbloREBAAo9FoFxKSk5MrncFZ1fNKY0AgIiJ34vCAcOrUKZsLPwQFBcFqtdotl5OTAwCwWCwAIN12s6rna0oIgaKiolqte7Pi4mKb5CfXdl1VcXGxzVdyzZ6UlJRIX+Xep12xH/WJ/bDFftiSsx9CiGqPVDjFaY4VH/Y3Sk1Nlf49YMAAxMXFQaPRVPl8TZWWluLIkSO1K7gSFSMIly9flnW7riw3N1fpEpyOK/Wk4ufy5MmTuHjxYr28hiv1wxHYD1vshy25+uHj41Ot5RweEEJCQmxGDPLz86U7X1UwGAzIycmRwoBGo4HZbIbZbK70+YiIiBrXoVarERoaWod38n+Ki4tx/PhxAECTJk3QoUMHWbbrqoqLi5Gbm4s2bdrA19dX6XKcgiv25Ny5c8jKykLbtm0RHBws67ZdsR/1if2wxX7YkrMfFZ9V1eHwgKDT6WzOPsjLy5PmH1itVmg0Gmi1WptRAavVKoWAqp6vKZVKBT8/v1qtW9X2AKBhw4aybteV+fr6shc3caWeNGrUSPpaXzW7Uj8cgf2wxX7YkqMfNZkI6fCAoNVqMXjwYBgMBlgsFiQnJ0vfi4+PR0ZGBiIiIqRTIXNycpCWlgYAVT7vDDhJkYiI3IkicxCqOgth27ZtdsvcvGxVzyuNAYGIiNwJr6QoEwYEIiJyJwwIMuGllomIyJ0wIMiEIwhEROROGBBkwoBARETuhAFBJjzEQERE7oQBQSYcQSAiInfCgCATBgQiInInDAgyYUAgIiJ3woAgE85BICIid8KAIBOOIBARkTthQJAJAwIREbkTBgSZ8BADERG5EwYEmXAEgYiI3AkDgkwYEIiIyJ0wIMiEAYGIiNwJA4JMOAeBiIjcCQOCTDiCQERE7oQBQSYqlQp+fn7QaDRKl0JERFRnDZQuwF2oVCpkZ2cjLCxM6VKIiIjqjCMIMgoNDYWPj4/SZRAREdUZAwIRERHZYUAgIiIiOwwIREREZIcBgYiIiOwwIBAREZEdBgQiIiKyw4BAREREdhgQiIiIyA4DAhEREdlRCSGE0kU42k8//QQhhGxXPRRCoLS0FGq1WrqroydjP+y5Yk/KyspgtVqh0WhkvwmZK/ajPrEfttgPW3L24+rVq1CpVIiJibnlsh55Lwa5dziVSsVLLN+A/bDnij3x9vZGkyZN6mXbrtiP+sR+2GI/bMnZD5VKVe3PQI8cQSAiIqK/xzkIREREZIcBgYiIiOwwIBAREZEdBgQiIiKyw4BAREREdhgQiIiIyA4DAhEREdlhQCAiIiI7DAhERERkhwGBiIiI7DAgEBERkR2PvFmTnAwGAwDAYrFAq9VCp9MpXJEypk2bhsmTJwMANm/ejNTUVACe0x+r1Qq9Xg8AmDRpkvR8Ve/f3ftSVT88eT8xGAywWCwwmUyIjY295b7g7j2pqh+euo8YDAZotVocOnQIAJCYmCg9Dyi0fwiqtVOnTol///vf0uOxY8cqWI2yhg8fLjp16iTGjh0rLBaLEMKz+pOZmSnefPNNsWzZMum5qt6/J/Slsn4I4bn7yaFDh0RmZqYQQgiLxSI6deokhPDcfaSqfgjhmfuIxWIRw4cPl/599913CyGU3z94iKEOjEYjAgICpMcBAQEwGo0KVqSc5ORk7N27F2lpadBoNAA8qz+xsbEICQmxea6q9+8JfamsH4Dn7icWi0V6TxqNBoGBgTCZTB67j1TVD8Az9xGNRoOMjAwAgNlslkYDlN4/eIihDk6dOoWgoCDpcVBQEKxWq3IFKSgnJwfA9R984PrwmKf3p6r378l98dT9RKfT2QwBWywWREREYPPmzR65j1TVD8Bz9xEA0Ov12LVrFxYvXgxA+d8hDAgyq9ipPU3FcUIAGDBgAOLi4ipdzlP7U6Gq9+8pfeF+AsycORNz586t8vueto/c3A9P3kcSExOh1WqxaNEizJkzp9JlHLl/8BBDHdw8hJqfnw+tVqtQNcoxGAxYuHCh9Fij0cBsNnt8f6p6/57aF+4n13ug0+kQGxsLgPvIzf3w5H2kYgRAp9MhMzMTRqNR8f2DAaEOdDqdNBwGAHl5eW43s7Y6tFotevToIT22Wq2IiIjw+P5U9f49tS+evp8YjUZoNBrExsbCZDJJx5o9dR+prB+euo/o9XosXbpUehwYGIjAwEDF9w+VEELIvlUPcuOpJoGBgVIS9jQVfcjJycFjjz0mpVlP6Y/RaER6ejoKCgqQmJho8xcRYP/+3b0vt+qHp+0nZrMZ8fHx0mOr1Ypjx44B8Mx9pDr98KR9xGq1SoFp165dCAoKkk4PVnL/YEAgIiIiOzzEQERERHYYEIiIiMgOAwIRERHZYUAgIiIiOwwIREREZIcBgYiIiOwwIBCR0zIajYiPj5duHU1EjsOAQEROS6fToXv37kqXQeSRGBCIyKndeNc6InIcBgQiIiKyw9s9E1GNGY1GmEwmaLVa5OTkIDU1FUajETNnzpRuJmOxWGAymZCSkgKNRgMAMJlMMBqN0Gq1MJvNiI2Nla61bzabkZ6ejqioKFgsFsTFxUnrVVyr3mw2Y9euXViyZIli753IUzAgEFGNmM1mLFq0CBkZGQCu3yxm+fLlmDRpEgYNGoSgoCCbG8o888wzSEtLk9ZLS0uTthUfH49Vq1YBAMaNG4eMjAxoNBosXLgQer1eumFNTk6Ozc1rTCYTIiIiHPiuiTwPAwIR1Uh6ejoCAwNhNBql52689WzFX/0AEBsbi2eeeQZWqxXp6ekIDw+32VarVq2QmZkJ4PrtoCvWnTx5ss1yUVFR0r8DAgJgsVjke0NEVCkGBCKqsfDwcJv7zycmJtZpe1arFQEBAdLjG0MGESmDkxSJqEYGDx6M7Oxsm+duHE2wWq3Svw0GA3Q6HTQaTaXrHT58GHFxcYiNjcXhw4er3CYROZ5KCCGULoKIXIvRaMSuXbukof+KELBw4UIUFBQgNjYWVqsVOTk5mDx5sjQicPPkxsGDB0tzCSrbptlsxr///W8AwNy5c6V5DOHh4UhNTZUmOBKR/BgQiEg2CxcuREhISJ0PORCR8niIgYiIiOwwIBCRLIxGI7Kzs6XTEInItfEQAxEREdnhCAIRERHZYUAgIiIiOwwIREREZIcBgYiIiOwwIBAREZEdBgQiIiKyw4BAREREdhgQiIiIyA4DAhEREdn5/5eAASHH6nR9AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAFQCAYAAADayYZkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDjklEQVR4nO3de1xUdf4/8NegIFAzjK4tmg5CYgpoanmJQVPLcqDMxAu2bSUp4KXVTUXb9GuFlqVsibWaolF2kzKyiziW2Sp6rLx0GUbUMIkZM7OUGZWLqPP7g9+cZRxQGA5zObyej4cPnJlzzrzfcnv5OZ/zOQqbzWYDERERUS1+ni6AiIiIvA8DAhERETlhQCAiIiInDAhERETkhAGBiIiInDAgEBERkRMGBCIiInLCgEBEREROWnu6AE/47rvvYLPZ4O/v7+lSiIiI3Ka6uhoKhQJ9+/a95rYeCQh6vR4AYLFYoNFooNVq69wuOzsbGo0GAKDT6cR9LRYLjEYjdDpdvftejc1mg5QLSNpsNlRXV8Pf3x8KhUKy43oj9up9Ll++DKvVCpVKBT8/1wcFfaVfKbBXeWKvDduvodweEEwmEwRBQEZGBgAgOTm5zl/yycnJyMrKgkqlQmJiInQ6HYxGIwAgKSkJVqsVd911F/bu3dvoGuwjB7169WpCJ/9TXl6OoqIiREZGIjg4WJJjeiv26n1OnDiBTZs2ITU1FR07dnT5OL7SrxTYqzyx12szGAwN3tbtAUEQBCiVSvGxUqmEIAgOIcFoNIrbGI1G5OXlAagZcRAEATqdDiqVCiEhITAajYiJiWl0HTabDeXl5U3spkZFRYXDRzljr96nsrJS/NiUr2lf6VcK7FWe2Ou12Wy2Bo84uD0glJaWQq1Wi4/VajWsVqvDNoWFhTCbzTCZTACAhQsXIiMjA1qt1iFIWCwWl8IBUHMepqioyKV961NSUiLp8bwZe/UeFosFAHDs2DGcPn26ycfz9n6lxF7lib1eXUBAQIO284pJivYfcHZWqxUhISHiL//CwkKnkYKFCxdi0aJFLr+nv78/IiMjXd6/toqKCpSUlCA8PBxBQUGSHNNbsVfvc/LkSRQUFCAiIgKhoaEuH8dX+pUCe5Un9nptxcXFDd7W7QEhLCzMYcSgrKxMnIhop9FoHJ4LCQmByWQSA4Jer4dWqxUnLrpCoVBIfo4qKChI9ue97Nir9wgMDBQ/SlGnt/crJfYqT+y1fo2Z0Oj2dRC0Wq3DJAmz2SyeNrAHB61WK55eAGomNtq3EQQBKpVKnLRYezsiIiKShttHEDQaDRISEsTLFVNTU8XXEhMTkZeXB5VKhaSkJOTm5sJqtWLOnDlQqVQwmUyYOXOmuL3VasXhw4fd3QIREZHseWQOQn2nBrZt23bVbTQajUuXNRIREVHjcKllIiIicsKAQERERE684jJHIrq2U6dOobS0FBcuXHD4Y79MWMrlw4mIGBCIvJzJZMKSJUuwbt06XLhwwen1jh07Ii0tDSNHjsSAAQMwYsQI3HnnnVCpVB6olojkggGByEuVlpaKwUCpVOLpp5+GTqdDmzZtEBAQgICAAPj7++PPP/9EXl4eBg8ejM2bN+O1115D69atodVq0bt3b3Tt2lX8ExERIa6b0Byqqqpw5swZdOjQodneg4jcgwGByIvYbDYcPHgQK1asQE5ODlQqFTIyMjB9+nSHe5jUZl/4ZN68eVi+fDmOHj2KrVu3Ytu2bdi2bRvWrFmDqqoqcdtOnTqhS5cu4oJk9j8dOnRw6W6Q586dw5YtW5CXl4fNmzfj7Nmz6Nq1K4YNG4Y777wTw4YNY2Ag8kEMCEQedPnyZRgMBuzcuRM7duzAzp07cerUKbRv3x6LFy/GtGnTcP311zfqmF27dsW0adMwbdo08T2OHz+Oo0eP4ueff8bRo0dRWloKk8mEb7/9FmazWTx1oVarkZCQgAceeAD33HMPQkJCnI5fUVGBo0ePYt++ffjoo4+wdetWVFVVoU+fPpgzZw569OiBgoICbN++HWvXrgUAREVF4d5778X06dMRHh7etH80InILBgQiN7p48SK+//57MRAUFBTgzJkzCAgIwIABA5CamoohQ4YgLi5OsqVi/fz8xFGCoUOHOr1++fJl/P777/jxxx+xYcMGfPvtt3j33XfRunVr3HHHHRg0aBBOnDiB4uJi/PTTTzCbzQBqRiO0Wi2ee+45jB49GjfddJN4zPHjxwMAfvvtN/z3v//F9u3bsW7dOrz00ksYM2YMZs2ahdtvv12S/oioeTAgEDWzo0ePYuPGjdixYwd27dqFs2fPIjAwELGxsZg5cyaGDBmCgQMHeuzmMn5+fujQoQNUKhX+8pe/4NVXX8WpU6ewefNmfPbZZ1i1ahU6d+6Mbt26ITY2Ft26dUO3bt3QvXt3tG/f/qrH7tChAyZMmIAJEybg5ZdfxptvvomXX34ZsbGxiI2NxaxZs/DAAw+gdWv+KCLyNvyuJGomgiAgMzMTmzZtQnBwMOLi4jBv3jwMGTIE/fv3R5s2bTxdYr26dOnicJpCCtdddx2mTZuGKVOmYPPmzXjppZcwbtw49OnTB3l5eYiIiJDsvYio6bhQEpGELl26hI0bNyI2NhZxcXE4ePAgXnvtNZw6dQpbt27F/PnzMWjQIK8OB83Nz88PI0eOxFdffYWvv/4aVqsVt912Gz7//HNPl0ZEtTAgEEng0qVLeP3119GtWzeMGzcOgYGB+PTTT3Hw4EGkpqbK/t70rho4cCD27duH22+/HTqdDkuWLOGCT0ReggGBqAlsNhvy8/PRu3dvTJo0Cf369cO+ffvw1Vdf4b777nPpssGWpm3btvj000+xYMECPPXUUxg7dizOnj3r6bKIWjz+9CJy0b59+3DXXXfh3nvvRfv27fHtt9/i/fffx2233ebp0nxOq1atkJGRgU2bNuGLL77AwIEDYTQaPV0WUYvGgEDUAJcuXUJpaSl27tyJ9evX48EHH0T//v1x8uRJfPrpp/jqq6/Qv39/T5fp80aNGiXe0r13795ISUnB8ePHPVwVUcvEqxiI6nDhwgW88847WLt2LX7//XeYzWZcvHhRfD08PBzZ2dmYOHEiL9GTWPfu3XHgwAGsWrUKzz33HN5++23MnDkT8+bNQ9u2bT1dHlGLwREEolrOnDmDF154AREREUhNTQUAjB49GitWrEB+fj4OHjyI8+fP49ixY5g8eTLDQTMJDAzEE088gaNHj2LOnDl45ZVXcNNNN2Hp0qUoLy/3dHlELQJ/uhEBOHbsGJYvX45169bh4sWLePjhhzFlyhQANcsES7WqITVOSEgIFi1ahOnTp2PRokWYP38+li5diqlTp2L69Om8xwNRM+IIArVoR44cwSOPPILIyEi88847mD17Nn755RdkZ2cjKirK0+XR/9ehQwf85z//weHDh/HQQw/h5ZdfRpcuXZCcnIwff/zR0+URyRIDArVIhw4dwt///ndERUVh+/btyMrKQmlpKZ599lmEhoZ6ujyqx0033YSsrCyYzWYsXrwY27ZtQ+/evTF8+HBs27aNaygQSYgBgVqUoqIi/O1vf0N0dDR27NiBV155BcXFxXj88cd5GsGHqNVqpKen4+eff8Z7772HsrIy3H333dBqtdiyZQuDApEEGBCoRbBYLJgxYwZ69uyJXbt24T//+Q+Ki4sxbdo0BAYGero8cpG/vz8mTJiAvXv3YsuWLVAoFEhISMCAAQPwySefMCgQNQEDAsmazWbDW2+9he7du+P111/Hiy++iJ9++glTp05t0fdDkBuFQgGdTofdu3dj27ZtCA4OxqhRo9C3b1/s2LHD0+UR+SQGBJKtwsJCDB06FI888giGDh2KQ4cOYc6cOQwGMqZQKHDXXXdhx44d+O9//4vrrrsOQ4cOxbRp07h8M1EjeeQyR71eD6Bm2Fej0UCr1da5XXZ2NjQaDQBAp9MBAKxWK3JzcwEAKSkpbqiWPO3y5ct455138P333+PChQtOfxQKBfz9/dG6dWvx47lz57BhwwZERkbiiy++wPDhwz3dBrnZkCFDUFBQgJUrV+LJJ5/E5s2bsWbNGowYMcLTpRH5BLcHBJPJBEEQkJGRAQBITk6uMyAkJycjKysLKpUKiYmJYkAQBAFlZWVQq9XuLJs8pKioCKmpqdi1axe6d++ONm3aICAgQPzj7+8Pm82Gixcvorq6GhcvXsTFixdx+fJlLF68GLNmzUJAQICn2yAP8fPzw+OPP4777rsPKSkp0Ol0SE5OxqJFizxdGpHXc3tAEAQBSqVSfKxUKiEIgkNIMBqN4jZGoxF5eXniazqdDhaLBVar1X1Fk8hms+HkyZPNvkZAVVUVlixZgueffx4RERH46quvMHTo0GZ9T5Kv8PBwfP7553j99dcxa9Ys5OfnY+TIkUhNTUW/fv2gUCg8XSKR13F7QCgtLXX4379arXb6ZV9YWAiz2QyTyQQAWLhwoTjiIBWbzSbZkq0VFRUOH+Vs1apVSE9Px6RJk/Diiy8iKChI8vfYtWsX/vGPf+Dnn3/G7NmzMXfuXAQGBrp9iV1f+bxWVlaKH5vyb+Qr/TbFgw8+iDvuuAPPPvsscnNzsXbtWvTo0QOJiYkYPXo0oqOjPV2i5FrC59WOvV6bzWZrcCD2iqWWLRaLw2Or1YqQkBDExMQAqAkMRqNRfCyF6upqFBUVSXY8ACgpKZH0eN7m/PnzeP755xEVFYW3334bX331FZ5//nlERkY26jiVlZX44YcfUFJSAqvV6vDnzJkzKCwsxC233IK3334bkZGROHbsWDN11DDe/nm1f/8cO3YMp0+fbvLxvL1fKTzxxBN4/PHH8c033+CLL75AVlaWOFrVv39/9O3bF3379kX79u09XapkWsLn1Y69Xl1DT7u6PSCEhYU5jBiUlZWJExHtNBqNw3MhISEwmUySBgR/f/9G/2KrT0VFBUpKShAeHt4s/6P2FosXL0Z5eTmWLVuGkJAQpKWl4dFHH8Xzzz+PtLS0elNpeXk5vvnmG+zcuRMFBQXYt28fqqurERAQgHbt2qFt27ZQq9Vo27YtNBoNpk6dikceeQR+fp69yMZXPq8nT55EQUEBIiIimrQKpK/0KwV7r3//+9+RkpKCqqoqfPnll/j000+xe/duvP/++wCArl27QqvVYtiwYRg7dixatWrl4cobryV+Xtlr/YqLixu8rdsDglarxbJly8THZrNZnH9gtVqhUqmg1WrFKxWAmomN9V3p4CqFQiH5ynlBQUGyXY3vxIkTyMrKEm+QExUVhf3792Pu3LmYPXs2tm/fjlWrVqGsrAxFRUU4dOgQioqKUFRUhIMHD6K6uhrt27fH0KFD8dBDD2Ho0KGIjo72iXO/3v55tS/0FBgYKEmd3t6vlOy9BgcHY+zYsRg7diyAmq/3goIC8c9bb72F7OxsvP766+jRo4eHq3ZNS/y8tgSN7bUxP3PdHhA0Gg0SEhKg1+thsVjEW+oCQGJiIvLy8qBSqZCUlITc3FxYrVbMmTMHKpUKQM0kx927d+Ps2bPQaDTi1Q3UvJ555hkEBgZi9uzZOHHiBICaX0grVqzAiBEjMHHiRISFhYnb33DDDYiKisLtt9+OlJQUnwoERB07dsT48eMxfvx4ADXzYh577DH06dMHGRkZmDVrFm/1TbLnka/w+n6pb9u27ZrbaLVayUcTWgKbzYZVq1YhMTGx0bfILSoqwtq1a/Hvf/8barVaDAh29957LwwGA7744gtEREQgKioKf/nLX6Qsn8ijBg0ahO+//x4LFy7Ek08+iQ8//BA5OTmynNRIZMeVFFsIQRAwffp0rFixotH7Pvnkk+jSpQumTp1a7zYdOnTAww8/jEGDBjEckCwFBwcjMzMTu3fvhsViQd++ffHUU0/hiy++wMmTJz1dHpHkGBBaiJUrVwIAPvjgg0bdwKagoACffPIJnn/+eS5RTAQgNjYW3333Hf75z39ixYoVuOeee9ChQwd06NABI0aMQHp6OvLy8lBVVeXpUomahAGhBTh58iQ++OADjBgxAsXFxfjhhx8atJ/NZkN6ejpuu+028VwsEdVMDHvxxRdhtVpx5MgRbNy4EampqQgMDMQHH3yAMWPGoFOnTnjiiSdQWFjo6XKJXMJZNi3AunXr0KpVK7z55puIiorCxo0b0adPn2vu9+GHH+Kbb77B9u3bPX7JIZE38vPzQ7du3dCtWzeMGTNGfL6oqAjr1q3D+vXrsXz5cgwcOBCTJk1CUlKSOOGayNvxp77MXbp0Ca+99hoefPBBhIaG4oEHHmjQaYYLFy7gX//6FxISEjBs2DA3VUskD1FRUcjMzITZbMaHH36Idu3aYcqUKfjrX/+K+++/Hzk5Ofjzzz89XSbRVTEgyNzmzZthMpkwbdo0AMC4ceNw5MgRGAyGq+73zjvvoLi4GC+88II7yiSSpYCAACQmJiI/Px+//PILlixZgrKyMkyaNAmhoaG466678Oqrr+L333/3dKlEThgQZG7lypUYMGAA+vXrBwC46667oFar8cEHH9S7z+XLl7F06VKMGjUKvXr1clepRLLWuXNnPPHEE9i5cydOnDiBlStXwt/fH7NmzcLNN9+M1atX4/Lly54uk0jEgCBjxcXF2Lp1qzh6ANT8j2bUqFFXPc3w6aef4tChQ5g3b567SiVqUUJDQ5Gamgq9Xo9ff/0VY8eOxZQpUzB06FAcOnTI0+URAWBAkLXXXnsN7dq1c7oCYdy4cTh8+DCMRqPTPjabDS+88AIGDx6M2NhYd5VK1GK1b98ea9euxfbt23HixAn07t0bixYtwoULFzxdGrVwDAg+4NixY42+Y1dFRQVef/11PPbYY0438rj77rsREhJS52mGgoICfP311xw9IHKzYcOG4ccff8SsWbPw7LPP4tZbb8WuXbs8XRa1YAwIPmD8+PGIiorCa6+91uBFjjZs2IAzZ85gypQpTq/VPs1wpRdffBE9e/ZEQkJCk+smosYJCgrCkiVLsG/fPgQHB2Pw4MEYM2YMfvrpJ0+XRi0QA4KXKysrw/79+xEdHY2pU6di9OjR+OOPP66538qVK6HT6dC1a9c6Xx87diyKioocTjMYDAbk5+dj7ty5vKkSkQf16dMHX3/9NdavX4+9e/ciOjoaM2bMaND3PpFUGBC83K5du2Cz2ZCbm4tNmzZh165duOWWW/Dll1/Wu8/evXuxb98+TJ8+vd5t7rnnHqhUKmzcuFF8bunSpQgLC8OECRMk7YGIGs/Pzw8PP/wwDh8+jMWLF+PNN99E165d8eKLL6KiosLT5VELwIDg5Xbs2IEbb7wRXbt2xahRo/Djjz8iOjoad999N+bNm4fi4mIUFhZi7969KCgowOeff47FixejS5cuiI+Pr/e4bdq0wf333y+eZvjll1/w3nvvYdasWfD393dXe0R0DUFBQeL3+qOPPooFCxYgLCwMzzzzDNdPoGbFgODlduzYgaFDh4pD/jfeeCM+//xzvPjii3jppZfQrVs39OrVCwMGDMAdd9yBESNG4JNPPsGMGTPQqlWrqx573LhxMBqNKCoqwksvvYSQkBBMnjzZHW0RUSPdcMMNWLFiBQ4fPowJEyZg2bJlCAsLQ1paGg4fPuzp8kiGGBC8mNVqxf79+zFkyBCH5/38/JCeno5Dhw7hyy+/hCAI+O6773Do0CH88ssvOHXqFJ544olrHv+ee+6BUqnEa6+9hrVr1+Lxxx/Hdddd11ztEJEEbrrpJrzyyiswmUxYuHAhPvnkE/To0QMjR47E+vXr8fPPPzfqjq1E9eHNmrzY7t27cfnyZaeAYNe1a9d6JyE2RGBgIEaOHIkVK1YgKCgI//jHP1w+FhG5V7t27fDUU09h9uzZePfdd/Hqq6/i0UcfBQB06NABgwYNwqBBg9C/f38EBAR4uFryRRxB8GI7duxAaGgobr755mZ7j3HjxgEAJk2ahPbt2zfb+xBR82jTpg2Sk5Oxf/9+/Pnnn/jss88wceJE/Pbbb5g3bx7i4uLw0ksvcVSBGo0jCF7syvkHzSE+Ph4zZ87kwkhEMtCuXTvce++9uPfeewEAVVVVWLFiBebOnYu2bdvi1Vdf5SXM1GAMCF7q3Llz2LdvHx555JFmfZ82bdpg+fLlzfoeROQZbdq0wfTp03H69Gm88MIL8Pf3x8svv8yQQA3CgOClBEHAxYsX651/QETUUGPHjkXHjh0xc+ZM2Gw2LF++nCGBrokBwUvt2LEDN9xwA6KiojxdChHJwOTJkxEQEICpU6cCAEMCXRMDgpfasWMHhgwZwm9gIpLMlClToFAoMGXKFHEkwc+Pc9WpbgwIXqi8vBzffvstXnrpJU+XQkQyk5aWBoVCgbS0NBw9ehRvvvkmr2CiOjE6eqE9e/agurqa8w+IqFmkpqYiPz8f3377Lfr06YOdO3d6uiTyQh4ZQdDr9QAAi8UCjUYDrVZb53bZ2dnQaDQAAJ1O16h9fdmOHTvQrl07xMTEeLoUIpKp+Ph4fP/99/jb3/6GYcOG4dlnn8W//vWvay7RTi2H20cQTCYTBEGATqdDUlISsrOz69wuOTkZSUlJ0Ol0WLNmTaP29XX2+Qc8N0hEzalTp0748ssvsWDBAixcuBAjRozAb7/95umyyEu4fQRBEAQolUrxsVKphCAIDiMBRqNR3MZoNCIvL6/B+zaUzWZDeXm5q204sN96VYpbsFZWVuKbb77BokWLJKtPSlL26u18pdfKykrxY1O+ZnylXymwV0fz5s3DwIED8dhjj+GWW27Bq6++ivvuu89dJUqGn9drs9lsDZ787vaAUFpaCrVaLT5Wq9WwWq0O2xQWFsJsNsNkMgEAFi5ciIyMjAbt21DV1dUoKipyad/6lJSUNPkY+/fvR1VVFTp16iR5fVKSoldf4e29WiwWAMCxY8dw+vTpJh/P2/uVEnv9n9DQUKxfvx6LFy9GUlISEhISMGfOHKhUKvcUKCF+Xq+uoffm8IqrGOw/4OysVitCQkLEc/CFhYUwGo0N2reh/P39ERkZ6dK+V6qoqEBJSQnCw8MRFBTUpGN99NFHUKvVGDlypFeeC5SyV2/nK72ePHkSBQUFiIiIQGhoqMvH8ZV+pcBe67dlyxa8++67SE9Px4EDB/Cf//xHnAPm7fh5vbbi4uIGb+v2gBAWFubwv/6ysjJxIqKdRqNxeC4kJAQmk6lB+zaUQqFAcHCwS/vWJygoqMnHFAQBd9xxh8OpFG8kRa++wtt7DQwMFD9KUae39ysl9lq3lJQUJCQkICUlBWPGjEFycjJefvllhISENHOV0uDntX6NWVvH7bPgtFotDAaD+NhsNotzCOy//LVarXh6AaiZnKjVaq+6rxxUVVVhz549vLyRiDyuU6dO2Lx5M9auXYuNGzciOjoaq1evxoULFzxdGrmJ2wOCRqNBQkIC9Ho9cnNzkZqaKr6WmJgIq9UKlUqFpKQk5ObmIjs7WzwPdrV95WDv3r2orKxkQCAir6BQKDBp0iQUFhbijjvuwNSpU9GjRw+88cYbuHjxoqfLo2bmkTkI9Z3P2rZt2zW38ZVzYa7YsWMHVCoV+vTp4+lSiIhEYWFheO+99zB//nw8/fTTSE5OxpIlS/DMM88gKSmJl2TLFD+rXuTAgQPo37+/V05OJCLq2bMnPvzwQ+zfvx/dunXD3/72N/To0QP/+te/8PXXX+Py5cueLpEkxIDgRcxmM8LCwjxdBhHRVd1666347LPPsGfPHsTFxWHt2rWIjY1Fp06dkJqais2bN4vrc5DvYkDwIsePH0enTp08XQYRUYPcfvvtyMnJwW+//YadO3fioYcewldffYX77rsPnTt3xtKlS3H+/HlPl0kuYkDwEhcvXsRvv/3GgEBEPqdVq1YYPHgwMjMzceTIERiNRowbNw4LFixAREQE/v3vf3vlyrB0dQwIXuLkyZO4dOkSOnfu7OlSiIhcplAoEB0djVWrVuHIkSMYNWoU5s2bh5tuuglZWVktYhlkuWBA8BLHjx8HAI4gEJFshIeHIzs7G0eOHEF8fDxmzZqFyMhIrFy5kusp+AAGBC/BgEBEcnXTTTchJycHhw4dwp133onHH38cN998M9atW4fq6mpPl0f1YEDwEsePH4e/vz/at2/v6VKIiJpFt27d8NZbb6GwsBADBgzA5MmTER0djbfffhuXLl3ydHl0BQYEL3H8+HHceOONXHCEiGQvOjoa77//Pr777jtER0fj4Ycfxu23344jR454ujSqhb+NvITZbOYERSJqUfr06YOPP/4Yu3fvhsViQd++fbFmzRrYbDZPl0ZgQPAaXAOBiFoqrVaLAwcO4KGHHkJaWhpGjx6NU6dOebqsFo8BwUswIBBRS3b99ddjzZo1+Oijj7Br1y7ccsst0Ov1ni6rRWNA8AI2m40BgYgIwAMPPACDwYDevXsjPj4e8+fP5ykHD2FA8AJWqxXnz59nQCAiAtCxY0fk5+fjhRdewPPPP48pU6bwKgcP8MjtnsmRfQ0ETlIkIqrh5+eHefPm4a9//SsmT56MsrIyvPXWWwgICPB0aS0GRxC8gNlsBsBFkoiIrpScnIyNGzdi06ZNuP/++3nzJzdiQPAC9hGEG2+80cOVEBF5n9GjRyM/Px+7du3CPffcgzNnzni6pBaBAcELHD9+HO3bt0ebNm08XQoRkVe66667sH37dhw6dAhDhgzBzp07eYfIZsY5CM2orKwMR44cwYABA666Ha9gICK6tgEDBqCgoADx8fEYMmQIWrVqhZ49e2LAgAEYMGAAbrnlFq5GKyH+SzajnJwcDBs27Jqzb48fP84JikREDRAdHY2jR4/i+++/x6pVq9C/f3988803SEtLw8CBAzFr1iz88ccfni5TFhgQmpHFYkF5eTlKSkquup3ZbOYIAhFRA7Vu3Rq9e/dGSkoKsrOz8cMPP8BqtWL9+vUwGAwYOHAgtm3b5ukyfR4DQjOqqKgAABQVFV11O55iICJqmuuuuw5jxozBhg0bEB0djbvvvhvp6em4cOGCp0vzWQwIzcgeEA4ePFjvNhcuXMDvv//OgEBEJIH27dvj448/RmZmJrKyshAbG4vDhw97uiyfxIDQjBoygnDixAkAXAOBiEgqfn5+mD17Nr7++mucP38et956K6ZNm4Z9+/Zx2eZGYEBoRg0ZQeAqikREzePWW2/F/v37MWvWLHz88cfo378/evfujeXLl/NukQ3gkYCg1+uh1+uRm5sLQRDq3GbGjBkwGo0wGo1YtmyZ+Hxubi70ej2ys7NhNBrdVbJLao8g1JdauYoiEVHzue6667Bo0SKUlpYiPz8f3bt3x9y5c9GpUyeMHTsWP/zwg6dL9FpuDwgmkwmCIECn0yEpKQnZ2dl1bmc2mzFx4kRkZmYiLS0NAGA0GrF7927odDqkpKQgMzPTnaU3WkVFBdq0aYOzZ8/i119/rXOb48ePIygoCGq12r3FERG1IK1atUJ8fDw++OAD/Prrr8jMzMSPP/6Ivn37YuLEiTCZTJ4u0eu4faEkQRCgVCrFx0qlEoIgQKvVOmyXmpoKnU7ntK9Go3F4zmg0IiYmptF12Gw2yVbhso8U2D/anT9/Hr169cK+fftw4MABtG3b1mnfkpIS3HjjjU77eqv6epUjX+m1srJS/NiUr2lf6VcK7FWeGtprcHAwJk+ejEcffRRvvPEGnnvuOeTm5mLatGmYPXu2T/yHzdXPq81mg0KhaNC2bg8IpaWlDv/4arUaVqvVaTuDwQCgZi0BAEhKSoJGoxGfB2pGI0wmk0sBobq6+pqXHzbWlesdnD59GhEREQgICMDOnTvrvNfCoUOHEBISInktze1aazvIibf3av8eOXbsGE6fPt3k43l7v1Jir/LUmF4HDRqEjRs34u2338bKlSuxbt06pKSkICkpqcG/SD3Jlc9rQ++I6RVLLdt/wNWWnp4u/n348OGIj4+HTqdDfn4+rFYrCgsLAQAqlcql9/T390dkZKRrBV+hoqICJSUlCA8PR1BQkMNrnTp1Qrdu3XDmzBlERUU57Xv+/Hl069atzte80dV6lRtf6fXkyZMoKChAREQEQkNDXT6Or/QrBfYqT03ptV+/fpg3bx6ee+45ZGZmory8HEuXLvXakOBqr8XFxQ3e1u0BISwszGHEoKyszOm0gV6vh8FgEEOCSqUSRwpWrFgBo9GInj17QqVSoWfPni7VoVAoEBwc7HojdQgKCnI4ZlVVFZRKJXr27Imffvqpzvc7ceIE4uLiJK+luV3Zq5x5e6+BgYHiRynq9PZ+pcRe5cnVXrt27YrXX38dAwcOxJQpUxAcHOzVIQFofK+N6cXtkxS1Wq3DaQKz2SzOP7AHB41Gg7i4OHEbq9WKmJgYWK1WzJgxAzExMbBYLGJI8FYVFRUICgpCVFRUnacQbDYbV1EkIvIyaWlpeOWVV5CZmYn58+e32LUT3D6CoNFokJCQAL1eD4vFgtTUVPG1xMRE5OXlISYmRrwU0mAwICcnB0DNSEJcXBz0ej1MJhMyMjLcXX6j2ANC165dcerUKfzxxx9o3769+Pqff/6JqqoqBgQiIi/z+OOPo7q6GrNmzYK/vz+effZZT5fkdh6Zg3Dl1Ql2tW+uYd/mym2TkpKarzCJlZeXiyMIQM16CIMHDxZf5yJJRETe64knnkB1dTXmzZsHf39/LFiwwNMluZVXTFKUI5vNJo4gdOvWDX5+fvUGBI4gEBF5p7lz56K6uhoLFiyAv78/5s2b5+mS3IYBoZlUVVUBqJlA0qZNG0RGRjotuXz8+HH4+fmhQ4cOniiRiIgaYP78+bhw4QKefPJJdOzYEY888oinS3ILBoRmYl+8wn75SV0TFc1mM0JDQ9G6NT8NRETe7JlnnsHx48cxefJkdOnSBUOGDPF0Sc2ON2tqJlcGhOjo6DpHEHh6gYjI+ykUCqxatQp33HEHRo8ejSNHjni6pGbHgNBM6hpBMJvNOHv2rLjN8ePHOUGRiMhH+Pv7Y+PGjejQoQPuvfde/PHHH54uqVkxIDSTugICULO0sh1HEIiIfItarcbmzZthsVgwevRocb6ZHDEgNJMrA0KPHj0AwOE0AwMCEZHviYiIwMcff4y9e/fisccek+1CSgwIzeTKgHD99dcjLCxMnKhYUVGB06dPMyAQEfmg2NhYrF+/Hu+++65sF1Hi9PlmYg8ItdfIrj1RkWsgEBH5tvHjx+Onn37CggUL0LdvX4waNcrTJUmKIwjN5MoRBMDxUkeuokhE5PueeuopJCYm4pFHHpHdlQ0uB4TMzEx88MEHOHv2LB577DH885//xOeffy5lbT6tvoDw888/o7KykiMIREQyoFAokJOTg44dOyIxMRHnzp3zdEmScTkg9OrVC+PGjUNubi5iYmKwfPlylJWVSViab6srIERHR+Py5cs4cuQIjh8/DpVKheuvv95TJRIRkQRUKhXy8vJQUlKCyZMny2bSossBwX6b5S1btiAhIQEAEBISIk1VMlBRUYGAgAD4+f3vn7j2TZt4BQMRkXxER0cjJycHubm5yMrK8nQ5knB5kqLJZBI/RkVFwWQywWq1SlaYr7PfqKm2du3aITQ0FAcPHoTZbGZAICKSkXHjxmH27NmYM2cObrvtNoeb8/kil0cQ4uPjcfDgQXz44Yc4d+4c3n//fQaEWuoKCMD/JipyFUUiIvl54YUXMHjwYIwbNw6//vqrp8tpEpcDwurVq6FSqdC2bVvMmDEDpaWl0Gg0Utbm0+oLCNHR0TzFQEQkU61bt8aGDRvQunVrjB07FpWVlZ4uyWVNnqS4YcMGxMTEICsri5MUa7naCMLhw4dx4sQJBgQiIhkKDQ1FXl4evvvuO6SkpPjspEVOUmwmVwsI1dXVuHjxIgMCEZFMDRgwADk5OXj77bexZMkST5fjEk5SbCZXO8Vgx4BARCRfEyZMQFFREebPn4/u3btjzJgxni6pUZo8STEvLw9nz55Fbm4uA0It9QWEDh06iCMtnKRIRCRvTz/9NMaPH4+HH34YBw4c8HQ5jeJyQFAqlbDZbMjMzIRSqURcXBySkpKkrM2n1RcQFAoFoqOj4e/vjxtuuMEDlRERkbv4+fnhjTfeQM+ePTFy5EifurKhSUstq1QqaLVaADV3thIEQbLCfF19AQGomYfQsWNHh0WUiIhInoKCgvDxxx9DoVDg/vvvR3l5uadLapAmXcUwfvx4XtpYj6sFhLlz52L16tVuroiIiDylY8eO+PTTT1FUVITExESfuOrP5YBgNpudnjMYDE0qRk6uFhC6d+8OnU7n5oqIiMiT+vbti02bNuGbb75B//79vf53pstXMURHRyMxMRFt27aFIAgQBAFz5sxp0L56vR4AYLFYoNFoxNMUtc2YMQNpaWkAgPz8fKSnpzvsa+etv2ivFhCIiKhluvvuu7Fv3z4kJibi9ttvx7p16zBhwgRPl1Unl0cQYmNjkZWVhaioKNhsNixatAixsbHX3M9kMkEQBOh0OiQlJSE7O7vO7cxmMyZOnIjMzEwxKFitVphMJuh0Ouh0Oq+e81BeXs6AQERETrp27Yo9e/Zg9OjRePDBBzFr1ixUV1d7uiwnLo8gAIBGo3EYNTCbzde8dE8QBCiVSvGxUqmEIAhOowipqalOowMqlQq5ubnQarWIiYlxOI634QgCERHVJzg4GG+99RYGDhyIWbNm4cCBA8jNzUVoaKinSxM1KSAUFRU5TLTIzc3F8uXLr7pPaWkp1Gq1+FitVte5foL93IzFYgEA8RLKOXPmIDExETExMXjjjTdcrt1ms0k2k7SiosLho/3vrVq18pnZqg1VV69y5Su92td6r6ysbNLXm6/0KwX2Kk++2OukSZMQFRWFv//97xg8eDC2bt3aoJDgaq82mw0KhaJB27ocEGbOnImzZ886/C++qKjIpWPZQ0Bt9jkHADB8+HDEx8dDpVLBYDAgLy8PmZmZmDhxIvLy8lx6z+rqapfrrU9JSYn494qKClgsFsnfw1vU7lXuvL1X+/fPsWPHcPr06SYfz9v7lRJ7lSdf67Vt27ZYvXo1Jk+ejLvvvhurV692+I/01bjSa0BAQIO2czkgxMXFYfz48Q7Pbd269Zr7hYWFOYwYlJWVOV0qqdfrYTAYxJCgUqlgMplgMpkQFxeHmJgY5OTkYOHChXWenmgIf39/REZGNnq/ulRUVKCkpATh4eEICgpCdXU1Ll26hPDwcERFRUnyHt7iyl7lzFd6PXnyJAoKChAREdGk4Ulf6VcK7FWefLnXqKgobN26FSNGjEB6ejo2b9581fsbudprcXFxg7d1OSDUtf5BWFjYNffTarVYtmyZ+NhsNou/4K1WK1QqFTQajXgzKPvzMTExKCwsdHhfrVbr8g2iFAoFgoODXdq3PkFBQQgODhYDkFqtlvw9vIW915bA23sNDAwUP0pRp7f3KyX2Kk++2uutt96Kbdu2YejQoRg3bhy2bt2K66677qr7NLbXhp5eAJp4s6bc3Fz06tULQM15jS1btuDDDz+86n4ajQYJCQnQ6/WwWCxITU0VX0tMTEReXh5iYmKg1+vFkYScnBwAEK96KCwsBFBz98iYmBhXW2g29nNCvpZgiYjIs3r37g29Xo/hw4fj/vvvx2effeax3yUuB4QNGzZAq9U63Oe6ofe8rm/tgm3btjltc+W2KSkpjS3V7RgQiIjIVQMHDsTmzZuh0+kwduxYfPTRRw2eNyAllwNCenq607oHrswFkCMGBCIiaoo77rgDmzZtwsiRI/Hmm2965D/HksxBOHv2LARB8Mrhfk9gQCAioqa65557cPDgQY+tjeDySop79uwR/65UKjFixAiH51oye0DwxUkyRETkPbp27Yrrr7/eI+/dqBGEs2fPYsuWLVAoFNi9e7fT64WFhRg3bpxkxfkqjiAQEZGva1RAUCqViI2NRXZ2NkpLS52WVZ48ebKkxfkqBgQiIvJ1jZ6DoNFokJGRgT179jTo5kwtEQMCERH5uibdzfFK586da1IxcsGAQEREvq5RIwjnzp0TJ0vUdY+BDRs24Nlnn5WmMh9mv1GTv7+/p0shIiJySYMDwtatW/HPf/4TX3zxBTp37oxHH30UvXr1clgcyWg0MiCAt3omIiLf1+CAoFKpHEYNxo8fjzlz5jhs05CbNbUEDAhEROTrGjwHwWw2Ozyu64YPDblZU0vAgEBERL6uUSMITz/9NOLi4gDU3Kzp888/F1+3WCzQ6/VYt26d9FX6GAYEIiLydQ0OCCNGjIBKpRIXSLJarfjxxx8dtikrK5O0OF/FgEBERL6uUVcxxMbGipc31rUOApdarsGAQEREvk7SdRC4cFINBgQiIvJ1LgcEqh8DAhER+ToGhGbAgEBERL6OAaEZMCAQEZGvY0BoBgwIRETk6xgQmkF5eTkDAhER+TQGhGbAEQQiIvJ1DAjNgAGBiIh8HQNCM2BAICIiX8eA0AwYEIiIyNcxIEjs0qVLuHDhAgMCERH5NI8EBL1eD71ej9zcXAiCUOc2M2bMgNFohNFoxLJlyxyet1qt7iq10SorKwGAAYGIiHxao27WJAWTyQRBEJCRkQEASE5OhlarddrObDZj4sSJ6NmzJ7KyssR9t27dKt4Uymq1Ys6cOUhJSXFfA9dQUVEBgAGBiIh8m9sDgiAIUCqV4mOlUglBEJxCQmpqKnQ6ncNzJpMJe/fuhUqlAgDk5uYiKSnJpTpsNhvKy8td2vdK9lBQUVGB06dPAwAUCoVkx/cmtXuVO1/p1T5qVVlZ2aSvOV/pVwrsVZ7Y67XZbDYoFIoGbev2gFBaWgq1Wi0+VqvVdZ4yMBgMAACLxQIASEpKcggRubm5iI+Pd7mO6upqFBUVubx/XUpKSvDLL78AAH7//XfJj+9NSkpKPF2C23h7r/bvkWPHjokBtSm8vV8psVd5Yq9XFxAQ0KDt3B4Q6mL/AVdbenq6+Pfhw4cjPj5eHDkwmUywWq3iY1f4+/sjMjLS5f1rq6ioQElJCcLDw1FdXQ0AiIqKQlRUlCTH9ya1e5X7aRRf6fXkyZMoKChAREQEQkNDXT6Or/QrBfYqT+z12oqLixu8rdsDQlhYmMOIQVlZGTQajcM2er0eBoNBDAkqlQomkwkxMTEAgA0bNiAuLq5JdSgUCgQHBzfpGFeq/Ulq27at5Mf3JkFBQbLurzZv7zUwMFD8KEWd3t6vlNirPLHX+jX09ALggasYtFqtePoAqJmMaD91YA8OGo3GIQBYrVYxHADA1q1bnUKFt+AkRSIikgO3jyBoNBokJCRAr9fDYrEgNTVVfC0xMRF5eXmIiYkRL4U0GAzIyclxOIZKpUJISIi7S28QBgQiIpIDj8xBuPLqBLtt27Y5bVPXtnl5ec1TmAQYEIiISA64kqLEGBCIiEgOGBAkVlFRAYVCgTZt2ni6FCIiIpcxIEisoqICgYGBjZopSkRE5G0YECTGOzkSEZEcMCBIjAGBiIjkgAFBYgwIREQkBwwIEmNAICIiOWBAkBgDAhERyQEDgsQYEIiISA4YECTGgEBERHLAgCAxBgQiIpIDBgSJlZeXMyAQEZHPY0CQGEcQiIhIDhgQJMaAQEREcsCAIDEGBCIikgMGBIkxIBARkRwwIEiMAYGIiOSAAUFiDAhERCQHDAgSstlsDAhERCQLDAgSqqqqAgAGBCIi8nkMCBKqqKgAwIBARES+jwFBQpWVlQAYEIiIyPcxIEjIPoIQHBzs4UqIiIiahgFBQjzFQEREcsGAICGeYiAiIrlo7Yk31ev1AACLxQKNRgOtVuu0zYwZM5CWlgYAyM/PR3p6uvhadnY2NBoNAECn07mh4obhCAIREcmF2wOCyWSCIAjIyMgAACQnJ9cZEMxmMyZOnIiePXsiKytLfD45ORlZWVlQqVRITExkQCAiImoGbg8IgiBAqVSKj5VKJQRBcAoJqampTr/8jUajuK/RaEReXp7LddhsNpSXl7u8f232YGC1WiU/trex92r/KGe+0qv91FZlZWWTvu58pV8psFd5Yq/XZrPZoFAoGrSt2wNCaWkp1Gq1+FitVou/WGszGAwAak5DAEBSUhIKCwthNpthMpkAAAsXLhRHIhqruroaRUVFLu1bn9LSUvHjqVOnJD22tykpKfF0CW7j7b3av0eOHTuG06dPN/l43t6vlNirPLHXqwsICGjQdh6Zg3Al+w+42mrPORg+fDji4+NhtVoREhKCmJgYAEBhYSGMRqP4uDH8/f0RGRnpetG1VFRUoKSkRBzd6NOnD/z85Dn/095reHi47E+l+EqvJ0+eREFBASIiIhAaGurycXylXymwV3lir9dWXFzc4G3dHhDCwsIcRgzKysrECYd2er0eBoNBDAkqlQomkwkajcZh25CQEJhMJpcCgkKhkHy9gkuXLiEgIADXX3+9pMf1RkFBQS1mvQdv7zUwMFD8KEWd3t6vlNirPLHX+jX09ALggcsctVqtePoAqJmMaJ9/YA8OGo0GcXFx4jZWqxUxMTHQarXi6QWgZsJjXRMcPYU3aiIiIrlw+wiCRqNBQkIC9Ho9LBYLUlNTxdcSExORl5eHmJgY6PV6cSQhJycHQM1IQlJSEnJzc2G1WjFnzhyoVCp3t1CvyspKBgQiIpIFj8xBqO/SxG3btjltc+W23nRZ45U4gkBERHIhz5l0HsKAQEREcsGAICGeYiAiIrlgQJAQRxCIiEguGBAkxBEEIiKSCwYECZWXlzMgEBGRLDAgSIinGIiISC4YECTEUwxERCQXDAgS4ggCERHJBQOChDiCQEREcsGAICGOIBARkVwwIEiIAYGIiOSCAUFCPMVARERywYAgIY4gEBGRXDAgSOTixYu4dOkSAwIREckCA4JEKisrAQDBwcEeroSIiKjpGBAkUlVVBQAcQSAiIllgQJAIAwIREckJA4JEGBCIiEhOGBAkwoBARERywoAgEfskRQYEIiKSAwYEiXAEgYiI5IQBQSIMCEREJCcMCBJhQCAiIjlhQJAIAwIREcmJRwKCXq+HXq9Hbm4uBEGoc5sZM2bAaDTCaDRi2bJl13ze0yorK9GqVSv4+/t7uhQiIqIma+3uNzSZTBAEARkZGQCA5ORkaLVap+3MZjMmTpyInj17Iisr65rPe1pVVRVHD4iISDbcHhAEQYBSqRQfK5VKCILgFBJSU1Oh0+mc9q/veU+rqqpCYGCgp8sgIiKShNsDQmlpKdRqtfhYrVbDarU6bWcwGAAAFosFAJCUlHTV5xvLZrOhvLzcpX2vVFFRIQYEqY7prSoqKhw+ypmv9Gpfg6OysrJJX3++0q8U2Ks8sddrs9lsUCgUDdrW7QGhLvZf9rWlp6eLfx8+fDji4+OhUqnqfb6xqqurUVRU5FrBdaiqqkKrVq0kPaY3Kykp8XQJbuPtvdq/f44dO4bTp083+Xje3q+U2Ks8sderCwgIaNB2bg8IYWFhDiMGZWVl0Gg0Dtvo9XoYDAYxDKhUKphMJphMpjqfj4mJaXQd/v7+iIyMbEIn/2MfQVCpVIiKipLkmN6qoqICJSUlCA8Pl/2cC1/p9eTJkygoKEBERARCQ0NdPo6v9CsF9ipP7PXaiouLG7yt2wOCVqt1uPrAbDaL8w+sVitUKhU0Go3DqIDVahVDQH3PN5ZCoUBwcLBL+9alsrISwcHBkh7TmwUFBbFXL2Gf+xIYGChJnd7er5TYqzyx1/o19PQC4IGAoNFokJCQAL1eD4vFgtTUVPG1xMRE5OXlISYmRrwU0mAwICcnBwDqfd4bVFZWcpIiERHJhkfmINR3FcK2bductrly2/qe97SqqqoWk1iJiEj+uJKiRLgOAhERyQkDgkS4DgIREckJA4JEOIJARERywoAgEY4gEBGRnDAgSIQjCEREJCcMCBKprKxkQCAiItlgQJAITzEQEZGcMCBIhKcYiIhIThgQJHDp0iVUV1czIBARkWwwIEjAfrtdBgQiIpILBgQJ2O/HzYBARERywYAgAfsIAicpEhGRXDAgSIAjCEREJDcMCBJgQCAiIrlhQJAATzEQEZHcMCBIgCMIREQkNwwIEmBAICIiuWFAkABPMRARkdwwIEigdevWCAgIQHBwsKdLISIikgQDggRGjBiB9957D23atPF0KURERJJgQJCAv78/unTp4ukyiIiIJMOAQERERE4YEIiIiMgJAwIRERE5YUAgIiIiJ6098aZ6vR4AYLFYoNFooNVqnbaZMWMG0tLSAAD5+flIT093OoZKpapzXyIiImoat48gmEwmCIIAnU6HpKQkZGdn17md2WzGxIkTkZmZKQYFO6vVijVr1sBqtbqjZCIiohbH7SMIgiBAqVSKj5VKJQRBcBoJSE1NhU6nq/MYW7ZsQXx8fJPqsNlsKC8vb9Ix7OxLLds/yhl79T72lTwrKyub9DXtK/1Kgb3KE3u9NpvNBoVC0aBt3R4QSktLoVarxcdqtbrOkQCDwQCg5jQEACQlJQEAjEYjtFqteJrCVdXV1SgqKmrSMa5UUlIi6fG8GXv1HvbvkWPHjuH06dNNPp639ysl9ipP7PXqAgICGrSdR+YgXMn+A6622nMOhg8fjvj4eKhUKphMpnpHFhrD398fkZGRTT4OUJPgSkpKEB4eLvsbNrFX73Py5EkUFBQgIiICoaGhLh/HV/qVAnuVJ/Z6bcXFxQ3e1u0BISwszGHEoKysDBqNxmEbvV4Pg8EghgR7MBAEARqNRnzdZDJBo9EgJiamUTVUV1fDZrPh6NGjTW8INUM2AHD8+PEGD934KvbqfS5duoRhw4bBYrHg3LlzLh/HV/qVAnuVJ/Z6bdXV1d57ikGr1WLZsmXiY7PZLM4/sFqtUKlU0Gg0UKlU4jZWqxUxMTEOQcBgMKBXr16NDgcAJP/CUSgUDR6y8XXs1fu0atUKbdu2bfJxfKVfKbBXeWKvDduvob8DFTZ7DHGj2pc5hoSEiKcMhg8fjry8PKhUKnEbg8GACRMmOIwyCIKAzMxMdO7cGenp6U4jEERERNQ0HgkIRERE5N24kiIRERE5YUAgIiIiJwwIRERE5IQBgYiIiJwwIBAREZETBgQiIiJywoBAREREThgQiIiIyAkDAhERETlhQCAiIiInDAhERETkxO13c5Sb2jee0mg04p0p5cJqtSI3NxcAkJKSIj4v1771ej0sFguMRiN0Op3Ylxz71ev10Gg0KCwsBAAkJSWJzwPy6tVOr9dDpVLJ+vM6Y8YMpKWlAQDy8/ORnp4OQJ69AkB2drZ4wz77jf/k2OuMGTOwePFihzsdA83cq41cVlpaavu///s/8fHEiRM9WE3z2LJli23p0qW2NWvWiM/Jte/CwkLbli1bbDabzWaxWGz9+vWz2Wzy7NdisdhGjx4t/v3mm2+22Wzy7NXO3rP9cyzXXkePHm3r16+fbeLEiTaLxWKz2eTba+0e7V/Pcuy1tLTUdvPNN9v69etn69evn+3mm2+2rVmzptl75SmGJhAEAUqlUnysVCohCIIHK5KeTqdDWFiYw3Ny7dtisYh9qFQqhISEwGg0yrJflUqFvLw8AIDJZBL/1yHHXu22bNmC+Ph48bFce01NTcXevXuRk5Mj/m9Tjr0ajUaxJ6PRKH49y7FXk8mEvXv3in8yMjKQkpLS7L3yFEMTlJaWQq1Wi4/VajWsVqvnCnITufat1WodhucsFgtiYmKQn58vy34BIDc3F7t370ZWVhYA+X5ujUYjtFqtOBwLyLdXg8EAoObrF6g5dSTHXgsLC2E2m2EymQAACxcuREZGhix7rf1zKTc3Vwy6zd0rA4LE7N+ULY3c+l64cCEWLVpU7+ty6TcpKQkajQaZmZnIyMiocxs59GoymcTz01cjh17tcw4AYPjw4Q6jJrX5eq9WqxUhISGIiYkBUBMYjEZjndv6eq92JpMJVqvVaR5CbVL2ylMMTXDl0HtZWZk4WUbO5N63Xq+HVqsVf6HItV/7/zS0Wi22bNkCQRBk2Wt2djaAms+rwWCAIAgwGo2y7FWv12PZsmXiY5VKBZPJJMteNRqNQw8hISGy7dVuw4YNYiACmv9nEwNCE2i1WnE4DwDMZrMsZstei5z7FgQBKpUKOp0ORqNRPD8vt35zc3OxevVq8XFISAhCQkJk2WtKSgp0Oh10Op04yzsmJkaWvWo0GsTFxYmPrVarbHvVarXi6QXgf3Np5Nir3datWx0CQHP3qrDZbDbJjtYC1b7EJCQkpEHDmL5EEARs2LABZ8+eRVJSUp2XEcmlb5PJhMTERPGx1WrF4cOHAcivX6vVKoah3bt3Q61Wi5exyq1XO0EQkJmZic6dOyM9PR0ajUaWvdp7MhgMmDBhgvgLRa69WiwWWK1WaDQaWf98AoDExES88cYbDqcYmrNXBgQiIiJywlMMRERE5IQBgYiIiJwwIBAREZETBgQiIiJywoBAREREThgQiIiIyAkDAhF5LUEQkJiYKN5ynIjchwGBiLyWVqtFbGysp8sgapEYEIjIq9W+Wx0RuQ8DAhERETnh7Z6JqNHsd0TUaDQwGAxIT0+HIAhYuHCheMMci8UCo9GIOXPmiGvHG41GCIIAjUYj3oLZfq8Ak8mEDRs2oFevXrBYLIiPjxf3s987wmQyYffu3VixYoXHeidqKRgQiKhRTCYTMjMzkZeXB6DmJjHZ2dlISUnBiBEjoFarHW6aM3PmTOTk5Ij75eTkiMey33wGAJKTk5GXlweVSoVly5YhNzdXvIGUwWBwuJmU0Wh0uO0tEUmPAYGIGmXDhg0ICQmBIAjic7VvOVv7TnM6nQ4zZ86E1WrFhg0bEB0d7XCszp07Y8uWLQBqblVs3zctLc1hu169eol/VyqVsFgs0jVERHViQCCiRouOjna473xSUlKTjme1WqFUKsXHtUMGEXkGJykSUaMkJCRgz549Ds/VHk2wWq3i3/V6PbRaLVQqVZ37HTx4EPHx8dDpdDh48GC9xyQi91PYbDabp4sgIt8iCAJ2794tDv3bQ8CyZctw9uxZ6HQ6WK1WGAwGpKWliSMCV05uTEhIEOcS1HVMk8mE//u//wMALFq0SJzHEB0djfT0dHGCIxFJjwGBiCSzbNkyhIWFNfmUAxF5Hk8xEBERkRMGBCKShCAI2LNnj3gZIhH5Np5iICIiIiccQSAiIiInDAhERETkhAGBiIiInDAgEBERkRMGBCIiInLCgEBEREROGBCIiIjICQMCEREROfl/7AlxeTGH59sAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -671,11 +700,19 @@ "source": [ "fig, ax = plt.subplots(1, 1, figsize=set_size(width, subplots=(1,1)))\n", "ax = sns.lineplot(x=df.index, y='fitness', data=df, color='black', linewidth=1)\n", - "ax.axvline(133, 0, 1, lw=1, color='grey')\n", + "ax.axvline(27, 0, 1, lw=1, color='grey')\n", "ax.set_xlabel('epoch')\n", - "df['fitness'].max()\n", - "fig.savefig(fig_save_dir + 'model_fitness.pdf', format='pdf', bbox_inches='tight')" + "print(df['fitness'].max())\n", + "fig.savefig(fig_save_dir + 'model_fitness_final.pdf', format='pdf', bbox_inches='tight')" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4580a3cb", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/thesis/graphics/classifier-hyp-metrics.pdf b/thesis/graphics/classifier-hyp-metrics.pdf index f93f28c..9e1968b 100644 Binary files a/thesis/graphics/classifier-hyp-metrics.pdf and b/thesis/graphics/classifier-hyp-metrics.pdf differ diff --git a/thesis/thesis.pdf b/thesis/thesis.pdf index 34d8e4c..1a16369 100644 Binary files a/thesis/thesis.pdf and b/thesis/thesis.pdf differ diff --git a/thesis/thesis.tex b/thesis/thesis.tex index 0bdb94b..999971c 100644 --- a/thesis/thesis.tex +++ b/thesis/thesis.tex @@ -79,6 +79,8 @@ \newacronym{resnet}{ResNet}{Residual Neural Network} \newacronym{cnn}{CNN}{Convolutional Neural Network} \newacronym{sgd}{SGD}{Stochastic Gradient Descent} +\newacronym{roc}{ROC}{Receiver Operating Characteristic} +\newacronym{auc}{AUC}{Area Under the Curve} \begin{document} @@ -294,6 +296,135 @@ for the \emph{Plant} class. \label{fig:yolo-ap} \end{figure} +\subsection{Hyper-parameter Optimization} +\label{ssec:yolo-hyp-opt} + +To further improve the object detection performance, we perform +hyper-parameter optimization using a genetic algorithm. Evolution of +the hyper-parameters starts from the initial 30 default values +provided by the authors of YOLO. Of those 30 values, 26 are allowed to +mutate. During each generation, there is an 80\% chance that a +mutation occurs with a variance of 0.04. To determine which generation +should be the parent of the new mutation, all previous generations are +ordered by fitness in decreasing order. At most five top generations +are selected and one of them is chosen at random. Better generations +have a higher chance of being selected as the selection is weighted by +fitness. The parameters of that chosen generation are then mutated +with the aforementioned probability and variance. Each generation is +trained for three epochs and the fitness of the best epoch is +recorded. + +In total, we ran 87 iterations of which the 34\textsuperscript{th} +generation provides the best fitness of 0.6076. Due to time +constraints, it was not possible to train each generation for more +epochs or to run more iterations in total. We assume that the +performance of the first few epochs is a reasonable proxy for model +performance overall. The optimized version of the object detection +model is then trained for 70 epochs using the parameters of the +34\textsuperscript{th} generation. + +\begin{figure} + \centering + \includegraphics{graphics/model_fitness_final.pdf} + \caption[Optimized object detection fitness per epoch.]{Object + detection model fitness for each epoch calculated as in + equation~\ref{eq:fitness}. The vertical gray line at 27 marks the + epoch with the highest fitness of 0.6172.} + \label{fig:hyp-opt-fitness} +\end{figure} + +Figure~\ref{fig:hyp-opt-fitness} shows the model's fitness during +training for each epoch. After the highest fitness of 0.6172 at epoch +27, the performance quickly declines and shows that further training +would likely not yield improved results. The model converges to its +highest fitness much earlier than the non-optimized version discussed +in section~\ref{ssec:yolo-training-phase}, which indicates that the +adjusted parameters provide a better starting point in general. +Furthermore, the maximum fitness is 0.74\% higher than in the +non-optimized version. + +\begin{figure} + \centering + \includegraphics{graphics/precision_recall_final.pdf} + \caption[Hyper-parameter optimized object detection precision and + recall during training.]{Overall precision and recall during + training for each epoch of the optimized model. The vertical gray + line at 27 marks the epoch with the highest fitness.} + \label{fig:hyp-opt-prec-rec} +\end{figure} + +Figure~\ref{fig:hyp-opt-prec-rec} shows precision and recall for the +optimized model during training. Similarly to the non-optimized model +from figure~\ref{fig:prec-rec}, both metrics do not change materially +during training. Precision is slightly higher than in the +non-optimized version and recall hovers at the same levels. + +\begin{figure} + \centering + \includegraphics{graphics/val_box_obj_loss_final.pdf} + \caption[Hyper-parameter optimized object detection box and object + loss.]{Box and object loss measured against the validation set of + 3091 images and 4092 ground truth labels. The class loss is + omitted because there is only one class in the dataset and the + loss is therefore always zero.} + \label{fig:hyp-opt-box-obj-loss} +\end{figure} + +The box and object loss during training is pictured in +figure~\ref{fig:hyp-opt-box-obj-loss}. Both losses start from a lower +level which suggests that the initial optimized parameters allow the +model to converge quicker. The object loss exhibits a similar slope to +the non-optimized model in figure~\ref{fig:box-obj-loss}. The vertical +gray line again marks epoch 27 with the highest fitness. The box loss +reaches its lower limit at that point and the object loss starts to +increase again after epoch 27. + +\begin{table}[h] + \centering + \begin{tabular}{lrrrr} + \toprule + {} & Precision & Recall & F1-score & Support \\ + \midrule + Plant & 0.633358 & 0.702811 & 0.666279 & 12238.0 \\ + \bottomrule + \end{tabular} + \caption{Precision, recall and F1-score for the optimized object + detection model.} + \label{tab:yolo-metrics-hyp} +\end{table} + +Turning to the evaluation of the optimized model on the test dataset, +table~\ref{tab:yolo-metrics-hyp} shows precision, recall and the +F1-score for the optimized model. Comparing these metrics with the +non-optimized version from table~\ref{tab:yolo-metrics}, precision is +significantly higher by more than 8.5\%. Recall, however, is 3.5\% +lower. The F1-score is higher by more than 3.7\% which indicates that +the optimized model is better overall despite the lower recall. We +feel that the lower recall value is a suitable trade off for the +substantially higher precision considering that the non-optimized +model's precision is quite low at 0.55. + +The precision-recall curves in figure~\ref{fig:yolo-ap-hyp} for the +optimized model show that the model draws looser bounding boxes than +the optimized model. The \gls{ap} for both \gls{iou} thresholds of 0.5 +and 0.95 is lower indicating worse performance. It is likely that more +iterations during evolution would help increase the \gls{ap} values as +well. Even though the precision and recall values from +table~\ref{tab:yolo-metrics-hyp} are better, the \textsf{mAP}@0.5:0.95 +is lower by 1.8\%. + +\begin{figure} + \centering + \includegraphics{graphics/APpt5-pt95-final.pdf} + \caption[Hyper-parameter optimized object detection AP@0.5 and + AP@0.95.]{Precision-recall curves for \gls{iou} thresholds of 0.5 + and 0.95. The \gls{ap} of a specific threshold is defined as the + area under the precision-recall curve of that threshold. The + \gls{map} across \gls{iou} thresholds from 0.5 to 0.95 in 0.05 + steps \textsf{mAP}@0.5:0.95 is 0.5546.} + \label{fig:yolo-ap-hyp} +\end{figure} + \section{Classification} \label{sec:resnet-eval} @@ -421,6 +552,89 @@ figure~\ref{fig:classifier-training-metrics}. \label{fig:resnet-hyp-results} \end{figure} +Table~\ref{tab:resnet-final-hyps} lists the final hyper-parameters +which were chosen to train the improved model. In order to confirm +that the model does not suffer from overfitting or is a product of +chance due to a coincidentally advantageous train/test split, we +perform stratified $10$-fold cross validation on the dataset. Each +fold contains 90\% training and 10\% test data and was trained for 25 +epochs. Figure~\ref{fig:classifier-hyp-roc} shows the performance of +the epoch with the highest F1-score of each fold as measured against +the test split. The mean \gls{roc} curve provides a robust metric for +a classifier's performance because it averages out the variability of +the evaluation. Each fold manages to achieve at least an \gls{auc} of +0.94, while the best fold reaches 0.98. The mean \gls{roc} has an +\gls{auc} of 0.96 with a standard deviation of 0.02. These results +indicate that the model is accurately predicting the correct class and +is robust against variations in the training set. + +\begin{table} + \centering + \begin{tabular}{cccc} + \toprule + Optimizer & Batch Size & Learning Rate & Step Size \\ + \midrule + \gls{sgd} & 64 & 0.01 & 5\\ + \bottomrule + \end{tabular} + \caption[Hyper-parameters for the optimized classifier.]{Chosen + hyper-parameters for the final, improved model. The difference to + the parameters listed in Table~\ref{tab:resnet-hyps} comes as a + result of choosing \gls{sgd} over Adam. The missing four + parameters are only required for Adam and not \gls{sgd}.} + \label{tab:resnet-final-hyps} +\end{table} + +\begin{figure} + \centering + \includegraphics{graphics/classifier-hyp-folds-roc.pdf} + \caption[Mean \gls{roc} and variability of hyper-parameter-optimized + model.]{This plot shows the \gls{roc} curve for the epoch with the + highest F1-score of each fold as well as the \gls{auc}. To get a + less variable performance metric of the classifier, the mean + \gls{roc} curve is shown as a thick line and the variability is + shown in gray. The overall mean \gls{auc} is 0.96 with a standard + deviation of 0.02. The best-performing fold reaches an \gls{auc} + of 0.99 and the worst an \gls{auc} of 0.94. The black dashed line + indicates the performance of a classifier which picks classes at + random ($\mathrm{\gls{auc}} = 0.5$). The shapes of the \gls{roc} + curves show that the classifier performs well and is robust + against variations in the training set.} + \label{fig:classifier-hyp-roc} +\end{figure} + +The classifier shows good performance so far, but care has to be taken +to not overfit the model to the training set. Comparing the F1-score +during training with the F1-score during testing gives insight into +when the model tries to increase its performance during training at +the expense of generalizability. Figure~\ref{fig:classifier-hyp-folds} +shows the F1-scores of each epoch and fold. The classifier converges +quickly to 1 for the training set at which point it experiences a +slight drop in generalizability. Training the model for at most five +epochs is sufficient because there are generally no improvements +afterwards. The best-performing epoch for each fold is between the +second and fourth epoch which is just before the model achieves an +F1-score of 1 on the training set. + +\begin{figure} + \centering + \includegraphics[width=.9\textwidth]{graphics/classifier-hyp-folds-f1.pdf} + \caption[F1-score of stratified $10$-fold cross validation.]{These + plots show the F1-score during training as well as testing for + each of the folds. The classifier converges to 1 by the third + epoch during the training phase, which might indicate + overfitting. However, the performance during testing increases + until epoch three in most cases and then stabilizes at + approximately 2-3\% lower than the best epoch. We believe that the + third, or in some cases fourth, epoch is detrimental to + performance and results in overfitting, because the model achieves + an F1-score of 1 for the training set, but that gain does not + transfer to the test set. Early stopping during training + alleviates this problem.} + \label{fig:classifier-hyp-folds} +\end{figure} + + \subsection{Class Activation Maps} \label{ssec:resnet-cam} @@ -438,7 +652,7 @@ One such method, \gls{cam}~\cite{zhou2015}, is a popular tool to produce visual explanations for decisions made by \glspl{cnn}. Convolutional layers essentially function as object detectors as long as no fully-connected layers perform the -classification. This ability to localize regions of interest which +classification. This ability to localize regions of interest, which play a significant role in the type of class the model predicts, can be retained until the last layer and used to generate activation maps for the predictions. @@ -567,10 +781,95 @@ the cutoff for either class. \label{fig:aggregate-ap} \end{figure} -Overall, we believe that the aggregate model shows sufficient -predictive performance to be deployed in the field. The detections are -accurate, especially for potted plants, and the classification into -healthy and stressed is robust. +\subsection{Hyper-parameter Optimization} +\label{ssec:model-hyp-opt} + +So far the metrics shown in table~\ref{tab:model-metrics} are obtained +with the non-optimized versions of both the object detection and +classification model. Hyper-parameter optimization of the classifier +led to significant model improvements, while the object detector has +improved precision but lower recall and slightly lower \gls{map} +values. To evaluate the final aggregate model which consists of the +individual optimized models, we run the same test as in +section~\ref{sec:aggregate-model}. + +\begin{table} + \centering + \begin{tabular}{lrrrr} + \toprule + {} & precision & recall & f1-score & support \\ + \midrule + Healthy & 0.664 & 0.640 & 0.652 & 662.0 \\ + Stressed & 0.680 & 0.539 & 0.601 & 488.0 \\ + micro avg & 0.670 & 0.597 & 0.631 & 1150.0 \\ + macro avg & 0.672 & 0.590 & 0.626 & 1150.0 \\ + weighted avg & 0.670 & 0.597 & 0.630 & 1150.0 \\ + \bottomrule + \end{tabular} + \caption{Precision, recall and F1-score for the optimized aggregate + model.} + \label{tab:model-metrics-hyp} +\end{table} + +Table~\ref{tab:model-metrics-hyp} shows precision, recall and F1-score +for the optimized model on the same test dataset of 640 images. All of +the metrics are significantly worse than for the non-optimized +model. Considering that the optimized classifier performs better than +the non-optimized version this is a surprising result. There are +multiple possible explanations for this behavior: + +\begin{enumerate} +\item The optimized classifier has worse generalizability than the + non-optimized version. +\item The small difference in the \gls{map} values for the object + detection model result in significantly higher error rates + overall. This might be the case because a large number of plants is + not detected in the first place and/or those which are detected are + more often not classified correctly by the classifier. As mentioned + in section~\ref{ssec:yolo-hyp-opt}, running the evolution of the + hyper-parameters for more generations could better the performance + overall. +\item The test dataset is tailored to the non-optimized version and + does not provide an accurate measure of real-world performance. The + test dataset was labeled by running the individual models on the + images and taking the predicted bounding boxes and labels as a + starting point for the labeling process. If the labels were not + rigorously corrected, the dataset will allow the non-optimized model + to achieve high scores because the labels are already in line with + what it predicts. Conversely, the optimized model might get closer + to the actual ground truth, but that truth is not what is specified + by the labels to begin with. If that is the case, the evaluation of + the non-optimized model is too favorably and should be corrected + down. +\end{enumerate} + +Of these three possibilities, the second and third points are the most +likely culprits. The first scenario is unlikely because the optimized +classifier has been evaluated in a cross validation setting and the +results do not lend themselves easily to such an +interpretation. Dealing with the second scenario could allow the +object detection model to perform better on its own, but would +probably not explain the big difference in performance. Scenario three +is the most likely one because the process of creating the test +dataset can lead to favorable labels for the non-optimized model. + +\begin{figure} + \centering + \includegraphics{graphics/APmodel-final.pdf} + \caption[Optimized aggregate model AP@0.5 and + AP@0.95.]{Precision-recall curves for \gls{iou} thresholds of 0.5 + and 0.95. The \gls{ap} of a specific threshold is defined as the + area under the precision-recall curve of that threshold. The + \gls{map} across \gls{iou} thresholds from 0.5 to 0.95 in 0.05 + steps \textsf{mAP}@0.5:0.95 is 0.4426.} + \label{fig:aggregate-ap-hyp} +\end{figure} + +Figure~\ref{fig:aggregate-ap-hyp} confirms the suspicions raised by +the lower metrics from table~\ref{tab:model-metrics-hyp}. More +iterations for the evolution of the object detection model would +likely have a significant effect on \gls{iou} and the confidence +values associated with the bounding boxes. \backmatter