\n",
""
],
"text/plain": [
" epoch metric value\n",
- "0 0 precision 0.7777\n",
- "1 1 precision 0.7596\n",
- "2 2 precision 0.7899\n",
- "3 3 precision 0.7593\n",
- "4 4 precision 0.7454\n",
+ "0 0 precision 0.7350\n",
+ "1 1 precision 0.7681\n",
+ "2 2 precision 0.7820\n",
+ "3 3 precision 0.7795\n",
+ "4 4 precision 0.7653\n",
".. ... ... ...\n",
- "595 295 recall 0.6464\n",
- "596 296 recall 0.6322\n",
- "597 297 recall 0.6163\n",
- "598 298 recall 0.6193\n",
- "599 299 recall 0.6242\n",
+ "135 65 recall 0.6157\n",
+ "136 66 recall 0.6175\n",
+ "137 67 recall 0.6058\n",
+ "138 68 recall 0.6024\n",
+ "139 69 recall 0.6407\n",
"\n",
- "[600 rows x 3 columns]"
+ "[140 rows x 3 columns]"
]
},
- "execution_count": 12,
+ "execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -529,7 +551,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 4,
"id": "e04f6713",
"metadata": {},
"outputs": [],
@@ -551,7 +573,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 5,
"id": "65aca46f",
"metadata": {},
"outputs": [],
@@ -577,7 +599,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAFbCAYAAADY/fSfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkLUlEQVR4nO3dd3xT1f8/8Fe6W7rYM4UyBGlxgPiBIALCB8pQBEfZitgy/AgOEEQEBBWhbESFgiACUhEU0LYiKkNSNkobhqy2KRvaJtDd5P37o7/cL6EtTRct4fV8PHxgknvPPTm9SV73nHPvVYmIgIiIiMiOOFR0BYiIiIjKGgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsjpOtCxqNRkRERAAAQkJCClwmOjoaAGAwGKBWq6HRaMqgikRERETFY3MPjlarRWpqaqGv6/V6aLVaBAUFITg4GOHh4WVRPyIiIqJis7kHJygoCAaDAUajscDXtVotvLy8lMdeXl7QarUl6sU5evQoRATOzs7FXpeIiIjsU05ODlQqFR5//PEil7U54BQlMTERvr6+ymNfX99Cw1BRRAQiguzs7DKqHRGVNbPZjIyMDLi7u8PBgdP5iKhyKbOAUxCDwVCi9ZydnSEiaNq0aRnXKE9GRgbi4+PRqFEjuLu7l8s27BXbruTsre2uXLmCNWvWYNiwYahdu3a5bsve2u5eYtuVHNuu5Mqr7c6cOQOVSmXTsmUWcPz8/Kx6bFJTU6FWq0tcnkqlgoeHR1lUrVDu7u7lvg17xbYrOXtpOzc3N+Xfe/V+7KXtKgLbruTYdiVX1m1na7gByuA0cUuo0Wg0iI2NVZ5PSkriWVRERERUIWzuwdFqtdi7dy9u3rwJtVqNoKAgAED//v2xefNmqNVq9OrVC9HR0TAYDAgNDS23ShMRERHdjc0BR6PRFNgjs2PHDuX/LaGHiIjoQWQymZCTk1PR1ahwWVlZyr8lPQnB2dkZjo6OJa5DuU4yJiIielDcunULSUlJEJGKrkqFM5vNcHJywsWLF0sccFQqFRo0aABPT88Src+AQ0REVEomkwlJSUnw8PBAzZo1izUZ1h6ZTCZkZWXB1dW1RL0wIoJr164hKSkJzZo1K1EZDDhERESllJOTAxFBzZo1eUo58gIOkHeWZUmHmWrWrIn4+Hjk5OSUqAxenYuIiKiMPOg9N2WptG3JgENERER2hwGHiIjoARMREWHzsmFhYRg7dmw51qZ8MOAQERE9YPbu3Wvzsh06dECvXr3KsTblg5OMiYiIHiARERFISkqyefn79a4EDDhERESVkFarxdy5cwEAM2fOhF6vh8FggE6nw4wZMxAREQEfHx9ERkZi5MiRCAgIsFo/PDwcarUaer1euQOB5a4Eer0e4eHhAICQkBBlWw0aNMCAAQOUHp5evXph7ty50Ov1Vhf2BfIPcwUHB5dXU5QIh6iIiIgqIY1Gg/Hjx8NoNMJgMCAoKAjBwcHQarUICwtDcHAwgoKC0KtXL3z44YdW644dO1YJNSEhIYiIiIBOp4NGo8GAAQOgVqsREhKCkJAQZVuhoaFKz45lSCogIADjx4/PV7fw8HAkJiYiODgYwcHB8PHxQXR0dDm3SPEw4BAREVVSPj4+0Ov1VsNEarXaapmAgADo9XrlsV6vx6+//mp1+6SgoKAiJxZ7e3srISggIAATJkwocDmj0Yi5c+di5MiRynORkZFWdagMOERFRERUid0ZaLy8vODn51fo8lqtFt7e3tBqtcpziYmJNgWQO7dVkLi4OHh7e8Pb21t5bvHixUWud68x4BAREdkRo9EItVpt1etzt4nCljk6AKxCy93Kvx9wiIqIiMiO3DlkZVFYMNHpdMUuv6CyKlvwYcAhIiK6j9y8efOur2s0GgQGBuab9BsVFQUAyplVQF7vzZ1nXxVFrVajR48eyllYQF64sZRfWTDgEBERVUI6nQ7Lli2zOqU7PDwccXFxiI6OhlarhU6nQ1hYGIxGo/IvAKxatQqxsbGIiIhAdHQ0oqOjldO41Wo1Xn75ZYSFhUGr1UKtVkOr1SI8PFzZliUAFVQHIG/OTWpqKsLDwxEdHY2oqKhKd5o45+AQERFVQgEBAfkm795+ardFYRN8CzsLqqDXNBpNgfN0CqqDLeVXBuzBISIiIrvDgENERER2hwGHiIiI7A4DDhEREdkdBhwiIiKyOww4REREZHcYcIiIiMjuMOAQERGRzbp161aq1+8VBhwiIiKy2apVq0r1+r3CgENEREQ2s9x5vKSv3ysMOERERGVMRJCRkVEu/4lIkdvXarVo27atci+qqVOnKveX0mq16NatG7RaLYYPH67cvyosLAzR0dEIDw9X7jAeHR2NiIgIpRydTodu3brBaDRCp9Mp98SaOnUqAFi9DgArV65U7oVlufmnTqdD27ZtodVqER0djbFjx5Z5+wO8FxUREVGZEhGMGDECx44dK5fyH330UaxYsQIqlarQZTQaDdRqNXr27Alvb28EBARg+PDh2LFjBzQaDby9veHj44NFixbB29sbERER8PX1RVBQEABg+PDhGD9+PCIjI7F48WLo9XqEhYVh8eLFSg9NZGQk/Pz8oNFo4OPjAyDv3lWW1zdt2gQASplTp06FWq1GQEAAAgMD4ePjA41GA71ej+joaGW5ssIeHCIiojJ2t/BxL3l7ewPIGzYyGAxKzwqQF0Ysr+t0OqSmpkKr1UKr1SrhpkOHDsr6d950c+TIkdDpdOjfvz+WLVuWb9snTpxAgwYNlMeWu5bfWbfywh4cIiKiMqRSqbBixQpkZmaWS/lubm42Byij0Qhvb28YjUb4+PgUGioCAgKQmJio3FFcp9PB19cXiYmJ+cqyiIqKwowZMwBAGQK7ff7Nww8/jKSkJOWxXq+36qWx9PqUFwYcIiKiMqZSqeDu7l7R1UBUVBR8fHwQGxurnN2k0+mg1+sRERGB4OBgAEBwcDDCw8MREREBHx8fqNVqhISEICwsDOHh4VCr1Up40ev1iIqKQmJiojKvxvK6pezo6Gi88MILWLduHaKjo2EwGBAQEACNRpNv+1qtFl5eXsrQWVlhwCEiIrJTlgBze89JQEAADh48mG/ZkJCQfM9NmDAh33M7duwodHsBAQHYsWMHTCYTMjMzMWLECDg6Oha4jEV5nVbOOThERER26vY5Nw8aBhwiIiI7c/sw0IOKQ1RERER2prBhqAcJe3CIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiIp05402b7+pZmXEgENERERFuv1Gmrf/f2XF08SJiIjKQUZGhtVjV1dXODg4IDMzEyKiPO/s7AwnJyfk5OQgNzdXed7BwQGurq4wmUzIzs5Wnq8Mt4C4HzDgEBERlYOOHTtaPY6IiECTJk0wduxYHDlyRHn+vffew8svv4yvv/4a4eHhyvNdu3bF7NmzcfToUYwaNUp5/tChQ0VuW6vVYurUqZgxYwbCw8OxaNEieHt7IywsDK1atYJer4dGo0FAQIByrygg7waYQUFBCAsLQ4cOHbB3714MGDCg0vfWFIRDVERERHbGcuNKHx8fJdxERETA19cXQUFBCAkJwdy5c6HT6RAZGYng4GBoNBpERkYCAHx9faHRaNChQwer0HU/YQ8OERFROdizZ4/VY1dXVwDA4sWL8w1RAcBrr72GYcOGKc87OOT1QTz++OP5yrJVQECA8v86nQ5eXl7QarUAgPHjxyMyMhIdOnQAkHdH8MWLFyvLR0REwGg0IjU1tUTbrmgMOEREROWgsLkybm5uBT7v7OyshJ3bOTo6lsm8m4CAACQmJkKj0QDICzy+vr5ITExUljEajYiKikJqaipCQkKg0+kQGxsLnU5nFZbuB8UaooqOjkZ0dDQiIiKUBFjYMpb/iIiI6N4q6GabwcHB8PX1RUREhPL7HBISAgAIDw9HdHQ09Ho9AgMDcfPmTWi1WmVujl6vtyrzfriZp809OHq9HlqtFjNmzAAADB8+XEmBFkajEXq9XmmwqVOnIigoqAyrS0REREUp7Gablt/n202YMCHfc5bfegBWv/U7duwo8P8rI5t7cLRaLby8vJTHt4/jWVgmMel0OmUZqlyOHTuGLVu2KI9NJhM+/PBDLFiwwOo0RCIiovuZzT04iYmJ8PX1VR77+voWeAXD8ePHo3///ggICMDq1atLXDERQXp6eonXvxvLtQnuvEbBg2DBggXYsmULEhISkJubi9deew3btm2DiGD58uXYtWsXPD09C13/QW670rK3tsvMzFT+La/PqoW9td29xLYrueK0XVZWFsxmM0wmE0wmU3lXrdKzTKIWkRK3h8lkgtlsRkZGBsxms1KeSqWyaf1STTK2jM3dLjY2Fps3b8bcuXPx6quvYvPmzSUqOycnBydOnChN9YoUHx9fruVXRqdPn0ZKSgq2bt2KQ4cO4eeff8acOXNQpUoVjBo1Clu3bsXjjz9eZDkPYtuVFXtpO8vn//z580hOTr4n27SXtqsIbLuSs7XtnJyckJWVVb6Vuc+Upj2ysrKQm5uLc+fOWT3v4uJi0/o2Bxw/Pz+rHpvU1NR8F/6Jjo5Ghw4dEBAQgFWrVmHq1KnQarX55urYwtnZGU2bNi32erbIyMhAfHw8GjVqVO5XhExMTESdOnVs/oOUt1u3bgEAEhIS8Ndff6FXr14YNWoUMjMzMXr0aOTk5ODhhx8udP172Xb2xt7a7sqVK9izZw/8/f1Ru3btct2WvbXdvcS2K7nitF1WVhYuXrwIFxeXQs+SepCICLKysuDq6mpzj0tBZTg5OcHPz085xf7MmTM2r29zwNFoNAgLC1MeJyUlKcHFaDTC29sbBoPBKvRoNBr4+PjYXJnbqVQqeHh4lGhdW7m7u2Px4sW4efMmPvnkkzIvPzs7G+3atcObb76JmTNnlnn5JXH58mUAwIYNGxAbG4t169bBw8MDHh4eaNCgAfR6vU3t7u7uXu5/H3tlL21n+RJ3c3O7Z+/HXtquIrDtSs6WtnN2doaDgwNMJhMcHR3vUc0qL8uwlEqlKnF7mEwmODg4wNPTUzl9vjhhyeaAo1ar0atXL+WSzqGhocpr/fv3x+bNmxEcHIzw8HDExcUByLvkc2U/b37Dhg0wGo3lEnAOHjwIg8GAr7/+GtOmTYOTU8Vedig3NxdXr15FkyZNEBsbC1dXV/Tp00d5vVmzZsVKx0RElMfJyQkeHh64du2aEnYeZCaTSRmeKknAMZvNuHbtGjw8PEr821mstQo75fv2U8UKOgWtssrOzsbx48eRk5Oj9EKVpZ07d8LJyQkXL17E9u3b0atXrzItv7iuXr0KEcGgQYMwc+ZM9OjRw+o9N23aFAcOHKjAGhIR3Z9UKhXq1q2L8+fPIyEhoaKrU+HMZjNyc3Ph5ORU4rDn4OAAPz+/Eg9xPZBXMt63bx8yMjKQm5uLnJwcAHmnTz/11FN3Xe+3335DUlIShg8frjy3a9cufPbZZ/jnn39w9OhRq7kIO3fuRPfu3ZGUlISVK1fek4BjMpmQnp5e4Cn6ly5dAgD06dMHv/zyi1UvHJAXcNavX1+sWepERJTHxcUFzZo14yU3kDd/6dy5c/Dz8yvx3C8XF5dS9YQ9kAHn448/BgAMHDgQQF7XYlEBJzc3FyNHjkRmZqZVwBk8eDB8fHxw+fJlREdH45VXXgGQ1zu0d+9ezJgxA87Ozhg/fjxu3rxp87WBxo8fj6tXryI8PFyZXGWLsLAwLFu2DOfPn8/32sWLFwHkDTcePnw43+vNmjXDrVu3cPXq1XKfNEoEAGlpaRgyZAjmzZuHxo0bV3R1iErNwcGBk4wB5bRuV1fXCmuPB3KQsFOnTti3bx8OHToEf39/tGzZEv/8889d19m0aRPOnz+PS5cuKT0hBoMBFy5cwJQpU9C6dWv8+uuvyvIHDx5ERkYGOnfujP/+97/Izc21efgnMTERCxcuxLfffotnn322wOsN3c5kMiE3NxcigjVr1iA+Ph7Xrl3Lt9ylS5fg4OCAWrVqFViO5ay106dP21RPqtyio6MxcODAAi/nUFn88MMP+Omnnyr9FVGJ6P7zQAacPn36ICMjA+vWrcNjjz2GRx999K4BR0QQFhamTJi29H5YrtPTokULBAUFYfv27cjNzcXChQsxZswYeHt747HHHkOLFi3g6+sLrVYLEcGuXbuQm5tb6PaWLFkCLy8vbNu2Dfv27cNjjz2GmJiYQpd//fXX8fTTT+PYsWNKnQq6htClS5dQq1atQid8WY6gOdH4/jd58mT07NkTGzZswJ9//lnR1SmU5WKgDNVEVNYeyIDTokULqNVqpKWl4dFHH8Wjjz6K2NjYQq+2ePz4cRw+fBizZ89GtWrVrAKOSqVC8+bN0aNHD9y4cQODBg3CO++8g0aNGuH7779XJli1a9cOWq0WW7ZsQefOnTFq1CikpaVh7dq12L9/P65cuYKVK1di0aJFWL58OUaOHIk+ffrg77//Rp06ddCxY0dMnToVkydPRo8ePfDRRx9Br9cjKSkJ3377LWJiYpQbqTk5OeH48eP53sfFixdRt27dQtvFcqr46dOnER8fXy5X4/zpp5+UoTIqHyKCFStWYPTo0ahTp06B96OpSCkpKZgxYwb++usv7Ny5E66urvj333+V1/fv348nnngCqampxSrXbDZj9+7dStc4ET3YHsiAo1Kp0LlzZwBQAk56enq+qyVaWJ5//PHH0aZNGxw5cgRAXsBp2LAhPDw80K5dO3h5eWHjxo2YPHkytmzZgh49eihlaDQa7Nu3D19//TVq1qyJlStXonbt2hg6dCjatWuHOnXqIDQ0FO+//z4A4H//+x+AvF6V3bt344MPPsAnn3yCL774AiqVCgsWLMAzzzyD2bNnw8PDA8HBwTh16hT69euHZs2aFRhwLl26hHr16t21bZo2bYrZs2fD398fzZo1wyeffIKYmBj89ttvCAsLw4gRI/DNN98ok7OLY8mSJejXrx9eeumlEoUno9GIbt26sYepCJcvX8a1a9fw3//+F23btsWhQ4cqukpWJk2ahGnTpqFjx47w9PTEkCFDrAJOdHQ0Dh8+jIULF9pcZmZmJgYNGoROnTrh22+/LYdal7/Y2Fjs3r37nm931qxZeO655+wmGJ47dw7Lly+v6GpQZSCV0LFjx+TYsWPlVn5aWpqsXbtWqlevLhcvXpRr166JSqWS5cuXK8skJCTItGnTxGw2y9KlS8XZ2VlMJpNMmjRJ6tevLyIiffr0kZ49eyrrvP766/Lf//5XcnJy8m1zx44dAkAAyJIlSyQ8PFzeeOMNOX36tOzcuVO++eYbuXr1qoiImEymAut98eJFSUtLExGRM2fOSNWqVQWAvPnmm3L16lV59NFHZe/evfLCCy9I165d863/xBNPyOuvv37XttmwYYOEhobKhg0bZMiQIVKlShWl3lWqVJE2bdqIo6OjPPbYY3Ljxo0iWvr/REVFiUqlkueff15UKpVMnTpVNm/eLKdPn7a5jJ9++kkAyIcffmjzOkXZvHmzvPPOO2I2m8uszMKkpaXJoUOHlL9hSSUkJNz19aioKAEgZ8+elY8++kiqVatWLu/v4sWLMn36dLl48aLV87du3ZLQ0FBZvXp1vvd66NAhUalUMnPmTHnrrbdk/vz58vnnn4uzs7Pk5uaKiEi/fv0EgPj4+EhKSoqIFN12r732mri5uUnDhg2lV69eZf5e74VnnnlGAMjMmTPL9O+1a9cumTRpUqFt95///EcAyOeff15m26woZrNZOnXqJADk1q1bpS6vrD6zD6Lyarvi5IMHNuDc2fA9e/aUtm3bKo9ffvllASAJCQkyadIkadSokYiIbNy4UQDI5cuXpUmTJvLOO+8o65hMpkK/mIxGozg4OIizs7Ncv369TN7Hr7/+Ko0bN5Z///3X6vkPP/xQ6tatqzzesmWLbN++XerXr1/scJCdnS0HDx6Uf//9V0wmk6SlpcmaNWvEzc1NPv30U2W5w4cPyyeffFJoOc8884x06NBBTCaTvPXWW0pocnNzk88//1zMZrOYTCb5+OOP5fPPP5eFCxdKkyZNZP78+UoZb7/9tgCQwMDAYr2Hu+nevbsAkHXr1pVZmYUpiw/8tm3bBIB89NFHhe5rs2bNEm9vbzGZTBIZGamEnbK2cOFCmT59upw4ccLqectnBIA0bNhQdDqd3Lp1S1auXCmNGzeWwMBAq4OA7du3W9XR399fBg8eLO7u7tKvXz85d+6cVdslJibKt99+q6xvNpulRo0aMnnyZFm8eLE4OztLcnJymb/f8mQymcTb21seffRRASCdO3eWn3/+WRYvXizr1q0r1d9Po9GIq6urpKam5nstJydH3NzcpHbt2lKlShWJj48vzdsoMbPZLNeuXbN6LiYmRnbs2FGscm7f9w4dOlTqejHglBwDTiEqIuBYegeOHDkiR44cUT4kv//+uwwaNEg6duwoIiLnzp0TALJhwwZxcHCQ8PBwm7fbtm1beemll8r8/dzpu+++EwCSnJwscXFx4uLiIm5ubuLg4CBffPFFqcq2tN2QIUOkYcOGkpubKwkJCVK7dm0BIEajMd86SUlJolKp5OuvvxaRvNC0e/duiY+PlzfeeEMAyBdffCFLly4VAOLs7CyOjo7SpEkTqVWrlmRkZIiIyOOPPy516tQRAMXq+SlMTk6OeHp6ipeXl1SrVk0uX75c6jLvpiw+8CEhIeLh4aEc6RdkwIAB8tRTT4mIyNWrV5X9tawNGDBApk+fLiNGjLB6fsSIEdKyZUs5deqUBAYGipeXl7i7u4tKpZI+ffqITqezWv78+fMCQKKioiQ1NVUAyJo1a2TNmjVSs2ZNcXZ2ll9++UVpuzFjxggAuXTpkoiIxMXFCQD57bff5MKFC6JSqWTVqlVW2xg9erRVWK5sTp06JQBk+/bt8ttvv4m/v78AEBcXFwEgKpVK3njjjQJDyt1Y2gaA7N27N9/rx44dEwDy888/S9WqVWXy5Ml3LW/37t2yZMmSYtXBFkuWLBEnJydZv369iIgkJydLjRo1xMXFRY4cOWJTGZmZmdKwYUOlJ2zNmjWlrhcDTskx4BSiIgJOTk6O1K9fX7p16yZPPPGENGvWTBwdHWXZsmXSsWNHGTRokIjkHWm0bdtWGR7666+/bN7ulStXxGAwlPn7udM///wjAGTnzp3Stm1badGihTz22GMCQH766adSlW1pu127dgkAmTNnjgQEBIi3t7cAkP3790t2drZ888038tZbb8mqVatk7ty5hR5BioiMGTNGXF1dxcvLS0JCQiQ9PV2uXbsmJ0+eFADy9ddfS0pKiqhUKlmyZIm4u7vLnDlzSvU+RPKGSwDI5s2bpUqVKlY9UuWhtB94s9ksarVa3nrrLXn33XfF09OzwDZt0aKFvPHGG8rjhg0byujRoyUpKanMhj7MZrMEBgbK9OnTpW7duuLn5yc1a9aUpKQkqV+/vtKzmZqaKuPGjZNZs2bJuXPnCiwrNzdXXF1dZfHixbJ7924BoHz+09LS5JlnnpG6devKjh075ObNm1K3bl0BoBxcLF26VJycnJQhiaefflq6d++ulJ+RkSGurq7SoEGDQod/K9ratWsFgDLsm56eLidPnpScnBy5ceOGLFiwQDw9PaVu3bqyceNGm/+Ob775ptSoUUMcHR1l8eLF+V5ftWqVcmDy2muvSZMmTZSyL1++LFOmTFGCZEpKinKA8fvvvxe5bbPZLElJSRIfHy9ms1nMZrMMGTJEJk6cKCJ5PTSWg57HH39cvLy8BIBMnDhRhg8fLl5eXvLII49I06ZNCzxwutOyZctEpVLJ8ePHxc/PTyZNmmRTG90NA07JMeAUoiICjkhe176jo6O0bNlSfv/9d2ncuLFMmDBBGjVqZPVhOX36tPJhLM48lHslIyNDHBwcxN3dXRwdHWXfvn1y5swZefrppyUxMbFUZVva7tatW9K6dWsBIC1atJD9+/crvTQ//vijMjxhmbvzwgsv3LW+jzzyiNSpU0eZc2HRu3dvadWqlWzatEkAyJkzZ6Rv377Kl993330naWlp8sILL8jChQuL9V4WLFggrq6ukpmZKd27d7eaT1Valy9floiICKvnCtvv0tPTZffu3SIiYjAY5MMPPyxwGFOn0yk9HRcuXBAnJydZsGBBvrLu7FkMDg5WjuI3b95cqvd18uRJOXr0qCQmJkrdunVl+vTpMn36dHn33XelevXqyvyH7du3F6vcgIAA+d///ieLFy8WFxcXyc7OVl5LSkqSatWqSZcuXZS5bDVq1JDnnntOREReeukl0Wg0yvJr1qxRAr6IyO+//668/z179pTq/ZeXcePGSZMmTe66TGJiovTt21cAyMCBA4vszUlMTBQfHx8ZP368NG/eXIYOHZpvmTfffFMeeughEckb8r59aKd///4CQKpVqybz5s2TYcOGiaenp3IAaOlZvXz5coEHbgsXLlTaPTg4WPkMu7q6ypUrV6RFixbi4OAg33//vQCQH374QWbMmCHu7u4CQBYsWCCnT58WDw8PGT9+fL7y33nnHfnggw9EJK9XuFGjRvLyyy+LSN6Ug2efffau7WMLBpySY8ApREUFHBGxmhvQvXt3ee6558TZ2VmWLl1qtdzmzZvv+qNd0YYNGybDhg2Tf/75p0zLvb3tDhw4IMuWLZOsrCwRyZs7MX78eHnvvfekQYMGIpLX9ezg4CA///zzXctNTU2VCxcu5Ht+z5494ujoKM7OzlK/fn0xm81y7NgxGT9+vPTq1UscHByU3ilvb2/lSz8rK0u++eYbuXLlSqHb7N+/vzz99NMiIvLxxx+Lt7e3MtG1tD766CMBIKtXr1aeK2y/Cw0NVXoDP/nkEwGg9BiKiPz1118yfPhwmTBhgri5uUl6erqIiAwaNEgaN25sVed9+/YJADlw4IDy3OXLl2Xbtm3SpEkTGTVqVKnel0ajEbVaLRs2bFACjmWS8fz58wWAuLu7Kz9+tnr++eele/fuMmLECHn88cfzvb5hwwYBIA899JDUqVNHZs+eLe7u7pKWlia1atWyGloxmUzSvn17CQgIkOzsbPnggw+kRo0a0qBBA6uerdIqTW/Y77//Lu+9957s3btXzGazdOjQQYKDg21ad/369eLj4yNdunQpdJm4uDipX7++NGzYUM6cOSP9+/eXhx9+WEwmk+j1emW5Dh06yMCBA0Uk77uvRo0a8t5778nWrVsFgCxdulQGDRqkDJUtWLBAdDqdODs7y+DBg+Xw4cNStWpVqVWrljK8ZNGnTx9p166dLF26VFQqlbi4uEinTp3Ezc1NCcLVq1cXFxcX8fHxUfaZpKQkWblypfJdPHPmTHF2dpZTp04pZZvNZqlVq5byuVmwYIFVz9+7775bZGC0BQNOyTHgFKIiA87txowZIzVq1BAAsnXr1nKrz/3kbm1nOausU6dOVuGvtMNyx44dk6CgIJk6darV8yaTSUaMGCGurq6yZs0acXFxkc8++0wOHz6sTNb08/OTo0ePWq136tQp2bZtm9SqVUs5ArQMudk63l+UZ599VlQqlbi7uyshMy0tTfbv3y9hYWEyduxY+fjjj+Xnn38WAOLh4SEdO3aUmjVrSsuWLZXelqysLHnooYeUI+EePXoo2zhw4IAAkFdeeUX27NkjgwYNEg8PD6latWqBf5/Q0FBp2bKliORN2J4+fXqxzjRJSEhQ6hEYGCiPPvqoVcCxzIHo06dPsdtrypQp4urqKlWrVpVXX3013+tpaWlKj8KoUaOUOSuWkwHu7DE6cuSIODg4yMcffyzt2rWTl19+Wd59912pVatWgWc5FofZbJaFCxdKzZo1JTIystjrvvnmmwJA6QUOCgoSDw8PmTt3rs3lrFy5UlQqVYE9fSaTSQIDAyUwMFA583Lq1KmiUqlk2LBh4ujoKAcOHJDc3Fzx8PCQsLAwZd2RI0eKSqVS9jVLiLt165bs379feRwRESFOTk7i6Ogojz/+uLz00kvK5HfL+6xWrZpMnz5dRPIOdGrUqCH//vuvDB8+XADIU089JREREQIg3zyu26Wnp0vDhg2VHjuRvN4py0GNr6+vAJDRo0fna5/S/rgy4JQcA04hKkvAsRyRAsj3I/mgulvbvffee1K/fv18X5rlyWw2KwHq9ddfVyaztmrVSn755Rdp06aNeHl5KcHFbDZLQECA8ne1nKWRkZEhLi4usmjRojKpV926deXtt9+Wxx57TBo1aiRXrlyRtLQ0+eyzzwSAtGzZUpks3KZNG/nhhx8EgDg4OMiZM2fk+eefF3d3d3nhhRfEwcFB/vjjDwkJCZHo6Gir7axevVopp3HjxjJr1qxCz4SxzPOwzHNRqVTi4+MjjRs3lnnz5hX5nsLCwsTV1VUJj4MHD853mnh8fHy+08ZtYTQaZerUqdKkSRP5/vvv872elpYmf/31lwwbNkyZpNymTRvx9fWVXr16Kb1at5s8ebI4OjqKg4ODLFu2TDl54K233ipR70t2draEh4dLUFCQAJDmzZuLm5vbXeejZGZmSnJysrI9y1lwc+fOlZycHPnpp5+kWrVqAkB27dplc10uXLggAOS7777L99rmzZut5gempaUpw0AApGbNmtKqVStZvHixAJA//vhDWVev18vcuXNl7dq1Rc572bp1q7zwwgvK2U+ffvqpAJB58+Yp8+duD56WnsYjR46Io6OjREZGitlslilTpsjJkyfvuq0VK1aISqWSpKQkERFlGDwyMlIaN24sX3zxhdXfNCYmpkwOWBhwSo4BpxCVJeBYumkBlNmp3fe7u7Xd6tWrK3Suw9mzZ6Vdu3by5ZdfKkfpN2/elCeeeEJq164tZ8+eVX7kvvnmGzl8+LDVl2KHDh3kxRdfLNY2X3/9dWV+Vlpamly/fl358dm8ebNyhlm7du3k4sWL0qxZM3nmmWdEROTatWsyZ84cOXXqlJjNZunYsaNynaL09HQZMmSIAJAxY8YU+b6joqKKHF6zHPW2bNlSqlatKsePH5ePPvpIWrdubXWJhDtZJog+8cQT0r9/f/nmm28EgMyaNavA6+CUh4L2u7tdlkEkL5BYrvFiOevOcqbenb2Btvj444/FwcFB2rVrJxs2bJDMzEzp0aOHeHt75zszzMIyFOPj4yNff/21BAQESJcuXazqffbsWZk5c6bVvCNbtGrVSuntsgwTm81mad26tXTu3FlZzjKcXLNmTXn99dfl6NGj4uTkJADk9ddfL7NhWRGRsWPHSpUqVWTevHmiUqkK7b2985TwoqSkpIiLi4sSxKdMmSK1a9cu9O9vMBiUkyD2799fvDdxGwackmPAKURlCTjHjx9Xhg/uxYXg7gd3a7uDBw8KAHF0dKxUXwhXrlyRxo0bi0ajkXHjxknNmjULHKZ4//33pWbNmvm+lC9cuCBDhw7NNxyRnZ0tVapUEU9PT7l165YEBwdLkyZNlKNLywX59u/fL97e3sqp9Hf2wljk5ORY7Wdms1l27NhRpm3ZqFEjAWA1FyUsLEw8PDwKPMPIEhJ8fHwEgEREREhGRoYMGDBA9u3bV6EBxxZ6vV65zpKFpRetOL2MJpNJGjduLMOHD7d63mg0SmBgoDRu3FiuXLkiJpNJFi9eLEePHlXmQ02dOlUJq3fOjyqNCRMmSJ06dWT06NFSs2ZN0ev1yiUibu9VsrTdhQsXlHbYuHFjuQy7X758WVxcXMTT01NatWpVpmU///zzShDv2bNnkRd09PPzU9q8sABalPs14JjNZiX0VhQGnEJUloCTkZEhKpVKmjdvXm51ud/cre1u3rwpAKR169YVULO7s8yxcXBwkLFjxxa4zMmTJ8XHx0eefvpp5f0dOnRI/Pz8xNXVVQBI3759Zdq0aXLlyhXRarXKF+iUKVOUuQuPPvqo1KxZ0+pH9cSJE9K0aVNp27ZtmVxhtaSGDRtmdaaMyP9d+fj207izsrLEbDbLZ599Jg4ODvLBBx/IpEmTrCYPF3Yl4/JQ1l+WkydPFgDy/vvvS0JCgrzzzjt37XX8888/C+2ZPH/+vNSpU0eaNm0qgwYNEgBSr1496dGjhzRt2lRyc3PFbDbLV199JR9//HGZ1F/E+urolv22WrVq8uKLL1rte/f6R3rEiBECQEaOHFmm5Vrm65w+fVpq1qxZ5EVLDxw4IFu2bBFnZ+cSX6X5fg047733njg6OkqbNm3K/EQTWzHgFKKyBByRvKOAbt26lVtd7jdFtV2zZs0KDRAVzXKBuIMHDxa6jFarlSpVqkjVqlWlbdu2SmDR6/WyfPlyad++vVSpUkWCg4Pl448/Fi8vL2UYonbt2tK+fXsBUOAp5waDQbRabYV+We7cuVNGjRpl9QNoGbqyHNFnZGRI7dq1pWnTpuLm5ibvvvtugWXdzwHHEt4cHR2VkNChQ4dClx86dKg0a9as0J7cc+fOyUMPPSQODg4yf/58pbeuPC6KZ5GZmSmtW7eWxYsXK1esrlOnTr7h9Hv9I63T6cTBwaHMrw6elpYmXl5e0qZNGwEgW7ZssWk9jUZjdYHVmzdvFjnnx8JoNMquXbvuu4DTrFkz6dSpk3h6et71CvPliQGnEJUp4Lz22mvKmQFUdNudP3/+nlzMsCQyMjJsmsh54sQJmTZtmvTr10/Wr1+fb27EokWLxMnJSR555BHp3bu3Mnn3008/Va6IPWXKlHzlVtajQbPZLN7e3jJr1iwREfnll18EgLz44ovSrVu3Qnuc7ueAYxETEyOzZs2SFStWCACJjY2VjIwMyczMFJG84clhw4aJSqUq8uKSKSkpytHyX3/9Jf369ZObN2+WaX3vZuXKlQUOf1XEfnfq1KkyndtjsXPnTmXoqaDLShTk/ffft5qvExwcLK6urjYNFS5evFhq1apVob2uxRUfHy8AZNOmTdKuXTsZNmxYhdSDAacQlSngkDW2XV5PjKenp3I2TGZmpnz22Wdy8+ZNyc3NldGjR0tcXFy+9Spz27Vv316GDBkiInmnkzdt2rTIeWf2EHAssrOzpU6dOtK3b1/x9/eXJk2ayMaNG6VBgwZSq1YtWbp0aalPL68olXm/KwlLT6itoqOjBYCcPHlSTp06JSqVSqpWrSoNGjQo8sKngwcPFgBW1w4qrfK+mnZ4eLg4ODhISkqKvPLKK/Lkk0+W6/YKUxkCjgOIqFi8vb3xyiuvAAC6dOkCV1dXTJw4EZ6ennB0dMQXX3yBgICACq5l8QQEBCAuLg5msxlbt25F3759oVKpKrpa94yzszNGjBiBLVu2wMPDA56ennjppZdQtWpVHD16FGPGjIGTk1NFV5OQ9/lr3769zctrNBo4Ojpi165d+Oyzz1CnTh0cOnQIZrMZDz30EMaPH4+cnJwC19XpdACAhISEMql7WloaAgICMH369DIpryC//fYb2rZtC19fXzRv3hynTp2CiJTb9iozfmKJSmDy5MmoUaMGHnvssYquSpkIDAzE2rVrERMTg8uXL+P555+v6Crdc2+//Tbc3Nzw5ptvwtnZGWvXrsXLL78MX1/fiq4alYKXlxdat26NN998E9nZ2Zg7dy4aN24MnU6HRYsW4ZNPPkFCQgLWr18PZ2dnZT2TyYSTJ08CAOLj49GhQ4dCtxEXF4fY2FhkZmaiffv2qFKlCm7evImHH37Y6kBh9uzZOHnyJD799FMMHDgQzZs3L9P3ajKZsGPHDowZMwYA0Lx5cxgMBly9ehW1a9cu023dD9iDQ1QC9erVw/Tp0+HgYB8foYCAAGRmZuLll19GrVq1inWEbC+qV6+OKVOmwMfHBx4eHggNDWW4sRPz58/HlClTsG7dOowbNw4A4Ovri2nTpmHjxo3YsmULXn31VZjNZmWdc+fOITMzE0BewCnI9evX8eqrr6JVq1YYNGgQXnvtNTz88MPw8/NDQEAABg8ejNTUVADAkSNHEBYWhrfffhsNGjTAuHHjyrRn5caNGxgwYACSk5PRu3dvAFAC1KlTp8psOwVJT0/H0KFDsWfPnnLdTnGxB4eI0LZtW3To0AEtWrTAqFGj4OjoWNFVIiozTz31FJ566qkCX+vbty/WrVuH4OBg+Pn5YdasWQDyemWAvOCbmJiYb72UlBQ888wzSEpKwvLlyxEcHAwHBwdotVqYTCZcvnwZ48aNw4YNG1CjRg1cu3YNjRs3xowZM9C+fXu8/PLLiI2NxSOPPFLq92cymdC9e3ecP38eERERaNeuHQCgadOmcHBwwKlTp/D000+XejuF2blzJ9auXYvvv/8eq1evxsCBA8ttW8XBgENE8PHxwV9//VXR1SCqEC+99BISExMxfvx49OnTBx06dEBsbCyqV6+Oli1bWvXgJCcnY/v27Vi4cCEuXLiAv/76Cy1btlRe7969u/L/3bp1w/bt25GQkIAnnngC//3vf+Hu7o7nnnsO3t7e+PHHH0sVcGJiYuDn54fIyEgcOXIEMTExSrgBAFdXVzRq1EjpwRERJCYmom7dunBxcSnxdu/0xx9/oF69eujatSuGDh2KunXr4sknnyyz8kvKPvrXiYiISuHtt99G06ZNsWzZMgB5PTgBAQGoX7++Msn45MmTePTRRzFw4ECkpqYiMjLSKtzcSa1WY8SIEZgxYwaee+45uLu7A8gLHr1798aPP/6I3NxcfPvtt8jOzi5WfaOiovDUU0+hRYsWmDhxIoYOHWoVbiwsE43//vtvdOnSBY0aNUKVKlXwyCOPYPjw4bh+/XqxtluQP/74A127dsXXX3+NTp064aWXXsLFixdLXW5pMeAQEdEDz8HBASEhIfj++++RnJyMuLg4tGzZEvXq1UNCQgLOnTuHjh07wsfHB+fPn8fJkyfxn//8p8Tb69evH/755x8MGzYMw4YNw6+//mrzuidPnsSAAQPQs2dPDB06FJ6ensrQ2p1atGiBHTt2oHXr1rh69SrWrl2LRYsWQaPR4IcffkBYWFiJ3wOQ16NlCU9OTk6IiIhA06ZNce7cuVKVWxYYcIiIiAC88sorMJlMGDRoEE6dOoXAwEDUq1cPmZmZ+OCDDwAAu3fvRqNGjUq9rZ49e8LV1RXfffcdgP87Jf12+/fvx+7du/NNRv7yyy/h5eWF7777Dl988QUSExNRv379ArfTqVMnVKtWDYsWLcI///yDwYMHY8yYMfjqq68QGhqK8PBwpKenl/h97Nq1CyKCZ555BgBQo0YNxMTEFDrn6V5iwCEiIgJQu3ZtvPjii/jzzz/x5ptvYuDAgUpw2LBhA4YPH45q1aqVybY8PT0xYsQIDB8+HO3atSsw4Lz88svo1KkTHnnkEVy9elV5/sCBA+jUqRO8vLyK3E7fvn1x4cIF5fIHt/vf//6H1NRUrF27tsTv448//kDjxo3RsGHDEpdRXhhwiIiI/r+VK1fiwoULWLhwIdzc3FC3bl3ltdDQ0DLd1tKlS/H1118jMDAwX8C5fPkyEhMTMWnSJCQkJGDu3LkAgJycHBw9ehRt27Yt9fb9/f3x3HPPYeHChTCZTEr5t8vJyVFOlxcRq94eEUFkZCS6detW6rqUBwYcIiKi/8/DwwM1atRQHnt6eqJatWro2rUrmjZtWi7bbNmyJU6cOKGEDAA4ePAgAGDUqFEYO3Ysli5dimvXriE2NhZZWVlldpbS5MmTceLECaxevRrz589H1apVsWnTJuX11157DX5+fli7di26dOkCb29vDBw4EPHx8dDpdDh37hz69u1bJnUpaww4REREdzF37lzMnz+/3Mq3XGjz9tPRDx48iJo1a8LPzw9vv/02HBwcMG/ePBw8eBCOjo5ldhX1J598EgMGDMCECRMwYcIE1KtXDy+++CKWLl2K48ePY926dfDx8cHQoUNx5swZTJs2Dbt27cIrr7yCLVu2oEqVKsr8m8qG18EhIiK6i+DgYHh4eJRb+ZZ71+l0OjRp0gRAXsBp27YtVCoVqlevjrfeegthYWHo2LEjAgMDy7Q+n376KTZv3oyuXbsiMjISEyZMwJtvvonAwEA0aNAAcXFx2L59OzQaDapXr442bdqgd+/eiI2NRc+ePeHm5lZmdSlL7MEhIiKqQPXq1YO3t7cyD0dEcPDgQathqIkTJ6J69erYsWNHmV9Ez9/fH7GxsdiyZQucnJwwb948BAcHIzY2FpMmTYKrqyueffZZVK9eHUDeGWCdOnVCSkpKpR2eAhhwiOj/S0lJQadOnTBgwICKrgrRA0WlUiEgIADHjx8HAJw/fx43btywmkjs6empXLOmLCYY3+mhhx5SLkTo4OCA1atXIyIiAiEhIQXWd/78+WjXrh369OlT5nUpKxyiIiIAeTcfdHd3R0REBObMmQM/P7+KrhLRA6NJkyZYt24ddu7cidzcXAD5g8zAgQNhMpnw/PPPl3t9XF1d8fLLLxf6euvWrRETE1Pu9SgN9uAQlUBOTg6ysrKQlpZW0VUpE2vWrEG7du2wYcMGbNy4ETVr1qzoKhE9UEwmE0QEAwcORLVq1VC1alX4+PhYLaNSqTB06FCbrn9DDDhUxpKTk5GVlVXR1ShQZmYm9uzZY9OyIgK9Xp/vCqIAYDAY0KhRI7i5uWH58uUAgEOHDuHYsWP466+/MHDgQBgMhjKte3mLiYlBWloafH19ERgYiPDw8Iqu0j13/vx5ZGVlITU1FdHR0QgNDYXJZML169dhNpsrunpUgS5cuKBccbi8xMXFITQ0FHPmzMHChQuRkpKCI0eOWC1jMBgwevRo6PX6cq2LLUwmE/7555+KrsZdMeBQmapevXqlnXT22muv4emnn8a+ffvuutyFCxfQrVs3+Pn5KZdnvz3ozJo1CykpKWjbti2+//577N27F0OHDsW4ceMwb948bNiwAYMGDSrX91LWkpOTlYmLhw4dwrhx43D48GEAsOsfdxFBdnY2srKy0Lt3b4SEhCA0NBQ9e/ZETEwMVCoVgoKCEBQUVCY3JaTK78aNGzh79qzyOCcnBxMnTsSgQYNw5syZctvutm3bMGnSJABA586d8fHHH1tdZNBsNmPw4MH46quvlCGssmQymYr1/iZOnIjHHnusyO/TisSAQ2UqNDQUBw4cKLDnoyKlpaXhwIEDeO655wo9AyErKwt79uyBj48PRATLli3DsGHDsG3bNvTs2RO9e/fGtWvXUKVKFUycOBHvv/8+fHx80KlTJ9SuXRs7d+7ETz/9hJYtW+L3339Xrv5pMpnw/fff29x7VBEiIiKwYsUKAMCzzz4LV1dXfP/99wgPD0efPn2wefPmCq5h2TKbzVi1ahUCAwMxbtw4fP/99zh9+jQmTJiASZMmISYmBseOHYODgwM+/fRTHDp0CBMnTqzoatM98Pzzz6Np06YYPXo00tPTkZCQgB9//BEAMHPmzHLZpk6nQ0REBGrXrg0AcHZ2RkhIiFVPzfnz53Hw4EGsWLHCKoCVhczMTMyaNQtPPvkkTpw4AbPZjPDwcDzxxBM4depUgeuMHj0aALB3794yrUtZYsApwvz588u9a9Je/PHHH/jzzz/Ro0ePUt28rTREBMnJyVbPbd++HQcOHMCxY8ewZMkSvPbaa7hy5Uq+defNm4fevXvD0dERf/zxB0JDQ9GiRQs4OTkhPj4e2dnZuHHjBsaPH4+pU6eiX79+6NatG0wmEzZv3owNGzbAYDBg1apVqFatmnImRJcuXRAcHIyff/4ZW7duxf79++9Vc+QTERGBjh07Wg0jxsXFoXPnzkhMTAQA+Pj44OTJk5g0aRL8/f2xe/dujBgxAsuWLcOCBQuQkJCAmjVr4ujRo/e8/sXtTbp16xYOHDiQr4zz589jzJgxaNasGcaNGwcfHx9MmzYNrVq1QuvWrdGuXTuoVCoAQPfu3fHDDz9g+vTphW4nIyMDb7/9Np588kkkJCRg4cKF6NmzJ3t9KgmTyWTzd9KSJUswZMgQPPbYY8jKylIuvvfLL79g/vz5iIyMtLogX1mIjo7G9OnT4eLiojy3fPly9OnTByaTCceOHYOnpyfOnj2Lq1evon///mXWi5OcnIyHHnoIdevWRb169TBixAgYDAZ88MEHiI+PV3poLKHqypUrePHFF5GUlIRbt27h3XffrXQHtAqphI4dOybHjh0rt/LT0tLk0KFDkpaWdtflzGazAJBK2kx31bNnT1m6dGmZl3u3ths/fryo1WrJzc2VS5culfm2C2IymZT/v3DhgmzatEl8fHxk4cKFkpGRIW+//bYAkFdffVVERG7cuCFubm7SuXPnfOX4+/vLK6+8Uqztf/rpp/LZZ59ZPWc2m8VsNovJZJLc3FwZOHCg7Nq1S4xGowQEBIi/v79cvnxZbty4IX///bfk5uaKiMjNmzclMzNTKScrK0s6deokUVFRxarT3dSrV08AyF9//aU8t3LlSlGpVHLz5s0C10lMTJTr16/LpEmTxMvLS5555hkBINu2bZPp06fLxYsXy6RuZrNZsrKyCnwtLS1Nfv75Z6lSpYps3rxZREQiIyNlzpw5snr1ajGbzQWuFxoaKgDk3LlzYjab5fPPP5c2bdpIenq6XLhwoVj127p1q4waNUpSUlLyvTZx4kRxc3OT1157TdLT06VJkybi6ekp06dPF7PZLAcPHpRff/21WNuzxc2bN2Xjxo3K4xs3buRbxtbvO3s2cOBAmTRpkmRlZUl8fHyBy1y/fl169+4thw8fFhGRf/75R3766SdZtWqVjBw5UkTyviceeeQR8ff3L3A/KC6z2Sw//PCDvPjii9KhQwer13bu3CkAJDIyUvz9/eW5554TEZG//vpLAMjBgwdLvX0RkXfeeUe8vb3l4sWLcuHCBVmxYoWI5LVHVlaWpKWlyQsvvCAvvfSS5OTkSP369aV27dpy4MAByc7OFo1GI1999VW+cstrvytOPqiUv9yVJeCYTCZZtmyZDBs2LN9rubm5cvToUcnOzi6vahapsPonJiYKAFmwYIGsX79eRowYIbt27ZLjx4/L1atXS71NS9vduHFDTp06pbzWsWNHefnll2XIkCHKhzU5OVm++OILMRgMRZZd0I9UamqqvP/++/L7779bPZ+bmys7duyQgIAAiY2NlVWrVomDg4NERETIqFGjRKVSydatW6VXr16ycOFCq7Jnz54tHTt2lEuXLsmBAwdEJC9MLFy4UA4dOlSidrnTRx99JABk/fr1ynNpaWmybt06cXd3l99++03Wr18vAKR3795y/PhxqVevnjzzzDNiMpnk999/l4yMDGnfvr3UrFlTzp49KxMmTJCdO3cWuL3k5ORCf+Rvd+HCBdm/f7/o9XoZM2aMaDQaGT9+vLRo0aLIdS9evCguLi7y6quvyrZt2+TPP/8ss4ATHx8vXbp0kTFjxhT4elpamnz55ZcCQJ566im5du2auLm5iaenpyxfvlxycnKslr9+/bps2bJFUlNTBYDMmjVLtmzZIgBk1KhRcuvWrWLXcePGjeLg4CCurq5y4sQJMZvNkpiYKL/99pukpKSITqdTlk1PT5fTp09LWlqa+Pv7CwDp1q2bLF26VN59912rcmNiYmTixImSkZFRrPqcPn1aPvnkEwEgzz77rGzbtk18fX3l6NGjVss96AHn1q1b4ubmJu+8844MGDBAHn/8casDIxGRuLg4adCggVSrVk3OnDkjIiJjxoyR5s2by2+//Wb1/XX+/Hnx9fWVjz/+uFT1SkxMlOeee04ASGhoqOzfv9/q9fT0dJk0aZK0aNFC6tSpI2fPnhWRvO+q6dOnFxrUimvatGl3fS+WOn7++edy/vx5eeWVV6w+871795b//Oc/+dZjwClEZQk4w4YNkxEjRihH4xaXL1+WOnXqCADlB7Ioubm5sn79ejlx4oSkpqaKiMipU6fkyJEjsmnTJsnKypLz58/L3r17Cw0hsbGxcu3aNWVdPz8/Wbt2rXJkuGHDBrlx44bs2rVL6tatK9evX5dvv/1WXFxcxNfXVwDIF198YVN9C2NpO71eLw8//LDUqlVLcnNzJSsrS27duqUcAahUKvnzzz9l3LhxAkDGjRtXaJnp6enSt29fadu2rdI2Fq+++qp4eHhIWFiYzJs3T+nh+PbbbwWAtG/fXv7++28BIE2bNlUC58mTJ5WelMIMHjxYHn74YTGbzbJly5Yy7XVasmRJvqMsS9slJSVJenq6JCcny/r166V27dqybNkyadGihbz00kvy66+/iqurqyxZskQuXbokLVq0kBUrVggAefLJJ5XysrOzZcqUKZKVlSUdO3aU9u3by6RJkwqt09dffy1fffWVmM1meeKJJ8TJyUneeustERGbf/AtX6qbNm2SunXrWgWc3NxcCQ0NlTlz5hS7vUaOHCm1atWSDz74QCZPnpzv9aioKNmxY4ecOHFCMjIyxGw2S1RUlNy4cUOOHDki27ZtU5ZNSEiQ5s2bS+3atSUlJUX2798vGRkZEhcXJ9OmTSt23W6XlJQk69atE5G8XlIAUr9+fUlPTy90ndmzZ8vPP/8sOTk58vnnnwsAGTBggIiIvPDCCwJA3njjjWIfLD377LOi0WhkypQp0qhRIzl79qy0bt1a6tWrZ/Udcvt+l5ubK2azWdatWycxMTElaAFrd37G/v33X3n//ffl9ddfl3nz5pW6/LIQFxcnzZo1k9OnT8vevXsFgKxatUq6dOkizz77rHz//fdy8+ZNeeWVV0Sv1yvrrV69WgCIWq3O17N74sQJMZlMkpiYWOJ6zZo1Szw8PGTYsGECQC5fvlzgcufPn5fk5GSr565fvy579+61aTvx8fHy6aefKj3Ftzt16pRVr3FBLl26JMePHy/09e+++04ee+yxfN8hDDiFqMiAc+vWLdm9e7cYDAbx9vaWd955R2rVqiU//PCDssy4cePE3d1dAMj8+fOV53/55Rd5/vnn8x1BiYhs375dGe4CIFevXpXXX39deXz48GGZOXOmABBXV1er4GQymeStt95Sjl7j4+PF0dFRWrRoITNmzBAASvf5hAkTRMS6NyQuLk5Onz4tDz30kPKDVtq2mzx5slStWlW2bt0qx48fFwDy+OOPS0pKimRmZsr06dPl7Nmzcu3aNfnwww9l5syZ+crKzc2Vixcvyu+//y5eXl6i0Wjk+PHj8sUXX8jChQvl77//loEDB8qKFStEp9MJANm4caNMnz5d4uLiZPfu3cqH9p9//in2kMOvv/4qAGTu3Lni7Owsc+fOLVXb3M5sNufrwi5sv7M8NplMYjabpUuXLvLUU08pXzyWcL1+/Xp55513lMdLliwRlUolhw8fll9//VU6d+4sPXv2lEuXLuUbqjh37pw0btxY+aK+ePGiGI3GEr+/5ORkqVevnkyfPl12794tR48elUOHDom7u7tUqVLFarhr3759RYbHXbt2yaZNm2TdunUCwOoIccuWLeLk5CQDBgyQtLQ0mThxogBQjmhHjx4tDRs2VPb5GTNmSIMGDeT06dNKXbt06SILFiywqZfLFjk5ObJs2TL54YcfitWDZTabJTw8XBk+fuedd2TlypWyc+dO+f77720u5+rVq+Lk5CRLliyxev7ixYsye/Zsqx+ztLQ00Wq10r17d7l27ZoMHDhQCd979uyx2ldOnDghe/bskdTU1Hz77+0Hebt375adO3fKa6+9JlOnThUREa1WK9WrV5fmzZtL586dRaPR2Px+bJWamiq//PJLsdbJycmx+rt/8skncvToUQkPD5e2bdsWGlD1er0sXLhQABTYw7Ft2zZxcXG560FuTEyMnD17VtLS0qx6u0VEHnnkERk4cKCkp6fLzJkzi/V5/Oyzz0SlUsmKFSvk8uXL8uKLLxbaS/7+++8LADGbzVY91N988434+/vL8OHDbd5uQSxtaxle3r17t4wdO1Zu3brFgFOQigo4ERER4ujoKF5eXpKUlCRdu3aV2NhYqVu3rnzwwQciknfU7O/vLx999JFMnTpVfv75ZxHJ++OmpKTI008/LQDkk08+sSp7yJAh8tBDD8l3330nAGTp0qWSmpoqWq1WkpKSRETEaDRKbGyszJo1S27evCm3bt2SLVu2iMlkkpCQEJk7d67ExsaKiMiaNWskJSVFcnJyxN/fX2rXri1vv/22VKtWTQICAmT16tX53ndYWJhy9Fkclu7/+Ph4+eKLL2T8+PFiNBqVHxCDwSAPP/ywACj0KDQ9PV2++eYbyczMlPj4eHnkkUfE3d1d6ZG4fv26mM1muXbtmjg5OYmrq6sMHjxYRP7vA/Too48qgdDSDqWRm5srH330kXh6ekrXrl0Lnf9RVmw5oklLS5OZM2fK9evXC3w9IyNDTpw4IdnZ2dKgQQMZMWKE1etZWVni7u5uFbxF8sJctWrVymwITkRk8uTJMn36dKlbt64AkDNnzsi///4rcXFxIpL3d7tx44Z4enqKk5OTfPjhhwWWk5qaKlFRUZKeni5Xr14VlUolq1atkuzsbDGbzRIYGCjPP/+87Nu3T9LS0qRv377KvBoRkR07dggAOXTokDLMc/uXfWZmprLf3Dk0UVm88cYb0qhRowIDWFJSkmRlZcmPP/4oAwcOlOnTp8uOHTtk/PjxBfb2ms1mmTx5skyePFnS09MlLS1NFi9eLA4ODrJp0yapUqWKrFmzRjIzMyUgIEC+/PJLZd2uXbvKJ598Ij/++KM8+uijkpycLEePHpX//Oc/ykHAxo0bxdXVVfr16ycff/yxAJCIiAjZtGmTdOrUSW7cuCHLli2TGjVqFNk7UBwZGRnSqFEjcXV1lTNnzhTa43G7gwcPSp06dWTt2rWFLnO30Ltnzx5Rq9USHR2d77WsrCx58sknxcPDQ1JSUqxCpdlsljVr1oizs7P89NNPMm3aNHF3d5fly5cry1y8eFEZDiuu7OxsGTVqlLRu3Vpu3rwpbm5uEhISUuCy3bt3l2effVZ++eUXASCdO3eW7Oxsee6556R+/fo2j0LczezZs6V58+aSlZUlY8aMkS5dusi1a9cYcApSUQFn2bJlMnjwYGUs/c8//xQRkaFDhyoBRyTvSCYrK0vMZrOcPn1azGazLFmyRJo1aya3bt2SDRs2yK5du2TBggVKF6ZWq1WOPCzDTHfz1VdfKV/Ku3btuuuyV65ckfj4eDl9+rQ0atRImQB6J7PZXOQcnE2bNsmUKVMkPT1dZs+eLe3atZMXXnhBRERq1aolAOSZZ57J1x2Zm5tb4ARHi+3bt4uLi4u0aNFCsrKyZOnSpbJgwQLRarX56pibmyuZmZn5vsD27t0r1atXl6CgoLu+h+I6d+5cvqGx8lAWXbYjRowQtVotP/30kyQmJsqVK1fyLdO1a1fp1auXiOR9Efbp00f27NlT5gHu4sWLMn36dFmwYIHs3btXCQ8HDhyQPn36SKtWreTatWty8uRJmT17tsydO1eOHTsmL7zwgtUR808//SQA5Pz58yIisn//fvn777+lefPmcvbsWdHpdJKSkqK0XXJystVnIicnR77++mv5+++/5bnnnpOhQ4fmq+uPP/6Yb1+rTH7++WcBICdOnJB9+/aJXq+XP/74Q9q0aSNOTk7y7bffyoEDB6RDhw5Sq1atIg9UZsyYIY6OjtKgQQM5d+6cvPTSS0qAuj10dO3aVbp37y4ieUfeAGTTpk0SFxcn1atXlz59+khmZqaEhobKW2+9JTExMfLss8/KgAEDJDMzU8xms7z33nuycuVKEfm/Xp7MzEyrH/yvv/5annnmGbl27ZocP35cEhISit1GkZGR4uDgIH///bfUrVtXJk6cWOQ6rVq1EgDyzz//FHt7IiJPP/20dOrUqdDP7PXr1+Wbb76RrKwsadeunbzyyisSFhYmJpNJnJycZNiwYZKdnS23bt2S119/XTw8PESv10ufPn2K3RN1J7PZLD/++KNkZGTIV199JZ6engX2Ju7bt09iYmLEbDbLzJkzpUqVKrJnz55SbftOkZGRAkCmTZsmOTk5kpmZySGqwlREwMnJybnrOLrFG2+8oYQdyxDHv//+K4888oj069dPWc5oNIqHh4d88sknsnHjRiUs2SoyMlIWLlyYr1uzKFFRUVKtWrUCuytXrFghDg4Odz2qCgwMlJo1a0pubq40atRI+vXrJxs2bBCRvPebkJBQ4p1Wq9VKvXr1ZOvWrcVe1+LSpUvFbpPKoiw+8Hv27BFXV1cZO3Zsoct8++23Spd6dHS0MgRa1iwB584v1bi4OHF3d5cXX3wx3xyFv//+W9zd3WXAgAFiNBplzpw58s4770iDBg2UI2nLcGRgYKAyJ8KWtnvzzTeV3tH7TVpamnzzzTcyfPhwASAffPCB7Nu3T4YMGSLz58+3aZL+nf799185cOCA3Lx5U3bv3i379u3Lt0xERIQyxPTPP//ImDFjlJBy+PBhGTJkSL65G+np6Tb1hE2ZMkVef/11uXXrlkybNk1cXFxkxIgR0q5dO/H29paxY8dKbm6uzJ8/v8jAY9k3LMu9+uqr0rJly0KXP378uLRu3Vp2794tR44cKbKuhWnXrp0AKPQMQ4vs7GyZPHmy+Pv7y/vvvy8ieYHx9t4hk8kk586dU6YV2DqHxhZms1mSkpLk4sWLMmfOHGW7V65ckXXr1lnVvzx6MS1/R0vvrch9OAcnKipKoqKiZMOGDXf94yxfvlxZtiQqIuD88ccfStfnnWJiYqRJkyaSmJgoVatWVbraU1JSBIAsXrxYevToke/9DhkyRKpXry5Vq1ZVTlO+FwrbgS2nHR4/flxu3LiRr2v21q1b4unpKatWrRIRKXBSWml32so6RHAvlNUH3pZ5JKmpqXL9+nWZOHGiNG3atMzmntyusIAjcve/89q1a6Vx48by559/ikqlku7duyv7nEjekMzEiROtetVsaTuDwSB//vlngfvt/eDKlSvSsGFDWbRoUZm9B4PBIO7u7uLn51foPCij0SivvPJKvrN4SuuNN94QALJo0SIxm83yyy+/KGcXTp8+XZlT16RJE6WXuCCWHvKnnnpKCXq//fabTJgwQZYvXy7z58+XW7duWfXqLVu2TBwdHYsMJkWJj4+XJUuWlOmPdI8ePZS5kmXNcvLFpk2bRCQvwAIosKe3vN1XAScxMdFqDL2wH+xXX31V2Qlv79EojooIOJMnT5aaNWsW+MV86dIl8fT0lFq1aomzs7PVmGXfvn0L7Z05efKkDBkyRHx9fStkB7vTlStXJCgoSH777TcBIKNHj863TFZW1l1PV33QTzktjXvVdmazWWrUqKHMISvtpQEKc7eAUxRLL+J7770nLVu2LHKC5YOy35XHPDC1Wi0ACu0Fsgxr3z4XpyxYzji7vcc4OTlZGc5q37699OrVSz7//HNxdHRU5lTdGcYHDRokAPJdrsNy4sbIkSNl1apV4uzsrBxkTpo0yeqMw5Iqj/3uzksalLV27dopv70TJkwQPz+/ct1eYSpDwHGy9YKAWq3W6g6mXl5e0Gq10Gg0ynM6nU5ZRqfTlery7iJSblfDzcjIgNlsRkZGhvKcm5sbgoODlcvr387b2xtbt27FmjVrMG/ePLi4uCh1W79+PQAUWFe1Wo0vv/wSb731Fjw9PSvs6r4Wnp6e2LRpk3LZ8SpVqljVaf78+cjIyMAHH3xQaF0tbXZ725Ft7mXbzZgxA4sXL8bUqVOxcuXKctn3LJ+VzMzMEpWfnp6OyZMnw8PDA6mpqXB0dCx02Qdpvyvr+wz9+eefOHLkCHJycgr8O61evRp6vR79+/cv0/2katWqeP75562uIuzq6ooBAwYgPT0dGzduxLVr19CgQQO4u7vj2LFjmDBhAhISErBr1y7odDrUr18fn376KQYPHozOnTtb1W/dunXo27cv5syZAxHBxo0bMWDAAMTGxuLDDz/EpEmTSv1+ymu/y87OLtPybhceHo66desiPT0dffr0QatWrSrkt6e82k5ElKuMF0UlYts1lsPCwuDr64uQkBAAwNSpU6HRaBAUFKQsExERgYiICOV+HREREZgxY0Zx64/Y2Nhy3QF27tyJNWvW4IsvvoCbmxuuX78ONzc3eHp6lts2K4v//e9/qFWrFt577z0AwKZNm9C7d2/4+vpi4MCBaNGiBaZNm1bBtaSyYjKZ7hocSsNgMGDPnj3o2LEjfHx8ymUb9GBISUnBp59+ioSEBPTo0QMBAQH43//+Bx8fH6xbtw516tQpsoysrCycP38enp6eGDduHObMmYMmTZrcg9pXPitWrIBOp8PTTz+Nbt26WXVO2AMXFxe0atWqyOVs7sEpiMFgsHpsNBrh4+ODgIAAAHn3uNHpdMrj4nB2dkbTpk1LU71Cpaen44MPPsCXX36JZcuW4fnnn4fRaMQff/xhczK8XyUkJGDfvn345ptvcPLkSXz77bf44YcfsGrVKiQkJGDChAl4+OGHC10/IyMD8fHxaNSoEdzd3e9hze9/9tZ2V65cwZ49e+Dv76/cJLC82Fvb3Uv3Q9vl5OQgLCwMLVq0gEqlgojg33//RU5ODjp37mzz9/Jjjz0Gf39/XL16FW3bti31fnk/tF1BLPeTa9iwIZo2bYpq1ard8zqUV9sV547nNgccPz8/GI1G5XFqairUarXVMmq12uo5Hx8f6PX6EgUclUoFDw+PYq9nizZt2uD9999HfHw8jh8/jh07dmDbtm2oUqVKuWyvMvnhhx9w4sQJ+Pr6ol27djh8+DCGDRuG9PR0JCcn29zu7u7u5fb3sXf20nZubm7Kv/fq/dhL21WEyt52bdq0sXq8aNGiEpXz+++/Y+fOnfD39y+LagGo/G13p88++wyfffZZRVcDQNm3XXE6IWwOOBqNBmFhYcrjpKQkZf6N0WiEt7c3NBoNIiIilGX0er3VHJ3KpE+fPmjatCni4uIwduxY9OnTp6KrdE9oNBqrv4mfnx927txZcRUiIipDgYGBCAwMrOhqUCVgc8BRq9Xo1asXoqOjYTAYEBoaqrzWv39/bN68Gd7e3ggODkZERASMRiPGjx8Pb2/vcql4WXB2dkaHDh3QoUOHiq4KERERlaFizcG5fULx7Xbs2FHkMkRERET3ikNFV4CIiIiorDHgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjtOxVk4OjoaAGAwGKBWq6HRaO66rLe3912XISIiIioPNvfg6PV6aLVaBAUFITg4GOHh4YUuazQasXz5chiNxjKpJBEREVFx2BxwtFotvLy8lMdeXl7QarUFLhsVFYWePXuWvnZEREREJWDzEFViYiJ8fX2Vx76+vgX20Oh0Omg0GmU4q6REBOnp6aUqozAZGRlW/5Lt2HYlZ29tl5mZqfxbXp9VC3tru3uJbVdybLuSK6+2ExGoVCqbli3WHJw7GQyGfM/p9XoEBQWVplgAQE5ODk6cOFHqcu4mPj6+XMu3Z2y7krOXtrN8/s+fP4/k5OR7sk17abuKwLYrObZdyZVH27m4uNi0nM0Bx8/Pz6rHJjU1FWq12mqZ8PBwqNVqREdHIzY2Fnq9Hmq1GgEBAbZuRuHs7IymTZsWez1bZGRkID4+Ho0aNYK7u3u5bMNese1Kzt7a7sqVK9izZw/8/f1Ru3btct2WvbXdvcS2Kzm2XcmVV9udOXPG5mVtDjgajQZhYWHK46SkJOUMKaPRCG9vb4SEhCivx8bGolWrViUKNwCgUqng4eFRonVt5e7uXu7bsFdsu5Kzl7Zzc3NT/r1X78de2q4isO1Kjm1XcmXddrYOTwHFmGSsVqvRq1cvREdHIyIiAqGhocpr/fv3t+rd0Wq1iImJQWRkJPR6vc2VISIiIioLxZqDU9jcmh07dlg91mg02Lx5c8lrRURERFQKvJIxERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsDgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsDgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsDgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsDgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsDgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsjlNxFo6OjgYAGAwGqNVqaDSaApcxGAzQ6XQICgoqcBkiIiKi8mRzwNHr9dBqtZgxYwYAYPjw4fnCi06nAwAEBwfDaDSia9euOHjwYBlWl4iIiKhoNg9RabVaeHl5KY+9vLyg1WqtljEYDMpz3t7e8PHxUUIPERER0b1icw9OYmIifH19lce+vr4wGo1Wy2g0GqteHYPBgICAgBJVTESQnp5eonWLkpGRYfUv2Y5tV3L21naZmZnKv+X1WbWwt7a7l9h2Jce2K7nyajsRgUqlsmnZYs3BuZPBYCj0talTp2LmzJklLjsnJwcnTpwo8fq2iI+PL9fy7RnbruTspe0sn//z588jOTn5nmzTXtquIrDtSo5tV3Ll0XYuLi42LWdzwPHz87PqsUlNTYVarS5w2ejoaGg0GgQFBdlafD7Ozs5o2rRpide/m4yMDMTHx6NRo0Zwd3cvl23YK7Zdydlb2125cgV79uyBv78/ateuXa7bsre2u5fYdiXHtiu58mq7M2fO2LyszQFHo9EgLCxMeZyUlKQMRxmNRnh7ewPIm6vj7e0NjUYDnU4Hb2/vQoPQ3ahUKnh4eBR7veJwd3cv923YK7ZdydlL27m5uSn/3qv3Yy9tVxHYdiXHtiu5sm47W4engGIEHLVajV69eimngYeGhiqv9e/fH5s3b4bBYMC4ceOU541GI06dOmVzZYiIiIjKQrHm4BQ25LRjxw4AeWdO8bRwIiIiqmi8kjERERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdsepOAtHR0cDAAwGA9RqNTQaTYmWISIiIipPNvfg6PV6aLVaBAUFITg4GOHh4SVahoiIiKi82RxwtFotvLy8lMdeXl7QarXFXoaIiIiovNk8RJWYmAhfX1/lsa+vL4xGY7GXsUVOTg5EBMeOHSv2urYQEQDA6dOnoVKpymUb9optV3L21nYmkwldunTB5cuXce3atXLdlr213b3Etis5tl3JlVfb5eTk2Fxesebg3MlgMJTJMneyVL68diiVSgUXF5dyKdvese1Kzt7azsnJCVWrVr0n27K3truX2HYlx7YrufJqO5VKVfYBx8/Pz6o3JjU1FWq1utjL2OLxxx8v9jpEREREFjbPwdFoNIiNjVUeJyUlKWdIWULN3ZYhIiIiuldUYhkos8Htp4D7+PggKCgIANCtWzds3rwZ3t7ehS5DREREdK8UK+AQERER3Q94JWMiIiKyOww4REREZHcYcIiIiMjuMOAQERGR3WHAISIiIrvDgENERER2hwGHiIiI7A4DDhEREdmdUt1s8350+5WW1Wo1byVRhLFjx2LkyJEAgMjISEyYMAEA27EgRqMRERERAICQkBDl+cLaim34fwprO+5/tomOjobBYIBOp0NQUFCR+xjb7/8U1nbc92wTHR0NtVqNuLg4AEBwcLDyPFDB+548QBITE+XDDz9UHr/66qsVWJv7Q79+/eSJJ56QV199VQwGg4iwHQsTFRUlc+bMkeXLlyvPFdZWbENrBbWdCPc/W8TFxUlUVJSIiBgMBnniiSdEhPueLQprOxHue7YwGAzSr18/5f8feughEak8+94DNUSl1Wrh5eWlPPby8oJWq63AGlV+oaGhOHjwIFatWgVvb28AbMfCBAUFwc/Pz+q5wtqKbWitoLYDuP/ZwmAwKO/f29sbPj4+0Ol03PdsUFjbAdz3bOHt7Y3NmzcDAPR6vdIbU1n2vQdqiCoxMRG+vr7KY19fX+VO6FQwy93hDQYDgLzuR7aj7QprK7ahbbj/FU2j0Vh18xsMBgQEBCAyMpL7XhEKazuA+15xREREYO/evVi0aBGAyvO990AFnIJYdl4qmGXcGci7a3zPnj0LXI7taLvC2optmB/3v+KZOnUqZs6cWejr3PcKd2fbcd+zXXBwMNRqNebOnYsZM2YUuExF7HsP1BDVnV3gqampUKvVFVSbyi86OhphYWHKY29vb+j1erZjMRTWVmzDonH/K57o6GhoNBoEBQUB4L5XHHe2Hfc921l6YDQaDaKioqDVaivNvvdABRyNRqN0OwJAUlLSAz8D/m7UajU6dOigPDYajQgICGA7FkNhbcU2LBr3P9tptVp4e3sjKCgIOp1OmQ/Bfa9oBbUd9z3bREREYNmyZcpjHx8f+Pj4VJp9TyUiUm6lV0K3n6Lm4+OjJHYqmKW9YmNjMWDAACVtsx3z02q12LBhA27evIng4GCro0Egf1uxDf9PUW3H/a9wer0e/fv3Vx4bjUacOnUKAPe9otjSdtz3Cmc0GpWAuHfvXvj6+iqXeagM+94DF3CIiIjI/j1QQ1RERET0YGDAISIiIrvDgENERER2hwGHiIiI7A4DDhEREdkdBhwiIiKyOww4RGQ3tFot+vfvj4iIiIquChFVMAYcIrIbGo0G7du3r+hqEFElwIBDRHbl9rsVE9GDiwGHiIiI7I5TRVeAiOyfVquFTqeDWq1GbGwsJkyYAK1Wi6lTpyo34TMYDNDpdBg/fjy8vb0BADqdDlqtFmq1Gnq9HkFBQco9gfR6PTZs2IBWrVrBYDCgZ8+eynqWe+To9Xrs3bsXixcvrrD3TkQVgwGHiMqVXq/H3LlzsXnzZgB5N9kLDw9HSEgIevToAV9fX6sb8Y0bNw6rVq1S1lu1apVSVv/+/bF69WoAwPDhw7F582Z4e3sjLCwMERERyo3+YmNjrW76p9PpEBAQcA/fNRFVNAYcIipXGzZsgI+PD7RarfJcbGys8v+WXhcACAoKwrhx42A0GrFhwwa0bNnSqqwGDRogKioKAKBWq5V1R44cabVcq1atlP/38vKCwWAouzdERPcFBhwiKnctW7aERqNRHgcHB5eqPKPRCC8vL+Xx7SGJiAjgJGMiKme9evVCTEyM1XO39+YYjUbl/6Ojo6HRaODt7V3gesePH0fPnj0RFBSE48ePF1omEZFKRKSiK0FE9k2r1WLv3r3K0JElxISFheHmzZsICgqC0WhEbGwsRo4cqfTI3Dk5uVevXspcmoLK1Ov1+PDDDwEAM2fOVObxtGzZEhMmTFAmKBOR/WPAIaIKExYWBj8/v1IPWRER3YlDVERERGR3GHCIqEJotVrExMQop3ETEZUlDlERERGR3WEPDhEREdkdBhwiIiKyOww4REREZHcYcIiIiMjuMOAQERGR3WHAISIiIrvDgENERER2hwGHiIiI7A4DDhEREdmd/wfjvW6Cfyzi1QAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAFbCAYAAADY/fSfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUoElEQVR4nO3deXhMZ/8/8PdkkUWWsdU6UYoiaJUuRilFRTzVom0spbTCY22r0ZUI2m9boYq2SrRoPUir6UKTeGprU2PXVgyKEpkg9sxkX2Y+vz/8ch4j2ySZbJP367pyxZw5y30+Zibvuc99zlGJiICIiIjIgThVdQOIiIiI7I0Bh4iIiBwOAw4RERE5HAYcIiIicjgMOERERORwGHCIiIjI4TDgEBERkcNhwCEiIiKHw4BDREREDsfF1hlNJhMiIyMBAMHBwYXOExsbCwAwGo3QaDTQarV2aCIRERFR6djcg6PT6ZCSklLk8waDATqdDgEBAQgKCkJERIQ92kdERERUajb34AQEBMBoNMJkMhX6vE6ng7e3t/LY29sbOp2uTL04f/zxB0QErq6upV6WiIiIHFNubi5UKhW6du1a4rw2B5ySJCYmQq1WK4/VanWRYagkIgIRQU5Ojp1aR1S7WCwWZGZmwsPDA05OHGpHRLWP3QJOYYxGY5mWc3V1hYigTZs2dm7RLZmZmUhISMDdd98NDw+PCtlGTcJ6FFTTa3L58mV89dVXGDt2LBo3blzu9dX0elQE1qQg1sQa61FQeWty5swZqFQqm+a1W8Dx8/Oz6rFJSUmBRqMp8/pUKhU8PT3t0bQieXh4VPg2ahLWo6CaWhN3d3fltz3bX1PrUZFYk4JYE2usR0FlrYmt4Qaww2ni+aFGq9UiPj5emZ6UlMSzqIiIiKhK2NyDo9PpsGfPHqSmpkKj0SAgIAAAMGzYMERFRUGj0SAwMBCxsbEwGo2YOHFihTWaiIiIqDg2BxytVltoj8z27duVf+eHHiIiotrIbDYjNzcXAJCdna385mD/W0pTE1dXVzg7O5d5WxU6yJiIiKi2SEtLQ1JSEkQEwK2zGV1cXHDx4kUGnP+vNDVRqVRo0aIFvLy8yrQtBhwiIqJyMpvNSEpKgqenJxo1agSVSgWz2Yzs7Gy4ubmVqyfCkdhaExHB1atXkZSUhLZt25apfgw4RERE5ZSbmwsRQaNGjZTTn81mM4BbZzMy4NxSmpo0atQICQkJyM3NLVP92GdGRERkJ6U5jZmKV95aMuAQERGRw2HAISIiqmUiIyNtnjc8PBwzZsyowNZUDAYcIiKiWmbPnj02z9uzZ08EBgZWYGsqBgcZExER1SKRkZFISkqyef6aelcCBhwiIqJqSKfTYdGiRQCABQsWwGAwwGg0Qq/XY/78+YiMjISvry+io6MxadIk+Pv7Wy0fEREBjUYDg8Gg3IEg/64EBoMBERERAIDg4GBlWy1atMCIESOUHp7AwEAsWrQIBoPB6sK+QMHDXEFBQRVVijLhISoiIqJqSKvVIiQkBCaTCUajEQEBAQgKCoJOp0N4eDiCgoIQEBCAwMBAzJkzx2rZGTNmKKEmODgYkZGR0Ov10Gq1GDFiBDQaDYKDgxEcHKxsa+LEiUrPTv4hKX9/f4SEhBRoW0REBBITExEUFISgoCD4+voiNja2gitSOgw4RERE1ZSvry8MBoPVYSKNRmM1j7+/PwwGg/LYYDBg27ZtVrdPCggIKHFgsY+PjxKC/P39MWvWrELnM5lMWLRoESZNmqRMi46OtmpDdcBDVERERNXYnYHG29sbfn5+Rc6v0+ng4+MDnU6nTEtMTLQpgNy5rcIcO3YMPj4+8PHxUaYtW7asxOUqGwMOERGRAzGZTNBoNFa9PsUNFM4fowPAKrQUt/6agIeoiIiIHMidh6zyFRVM9Hp9qddf2LqqW/BhwCEiIqpBUlNTi31eq9WiU6dOBQb9xsTEAIByZhVwq/fmzrOvSqLRaDBw4EDlLCzgVrjJX391wYBDRERUDen1eqxcudLqlO6IiAgcO3YMsbGx0Ol00Ov1CA8Ph8lkUn4DwJo1axAfH4/IyEjExsYiNjZWOY1bo9HgueeeQ3h4OHQ6HTQaDXQ6HSIiIpRt5QegwtoA3Bpzk5KSgoiICMTGxiImJqbanSbOMThERETVkL+/f4HBu7ef2p2vqAG+RZ0FVdhzWq220HE6hbXBlvVXB+zBISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRzfr371+u5ysLAw4RERHZbM2aNeV6vrIw4BAREZHN8u88XtbnKwsDDhERkZ2JCDIzMyvkR0RK3L5Op8ODDz6o3IsqNDRUub+UTqdD//79odPpMH78eOX+VeHh4YiNjUVERIRyh/HY2FhERkYq69Hr9ejfvz9MJhP0er1yT6zQ0FAAsHoegHKvqvwfADhx4gQeeeQR6HQ6xMbGYsaMGXavP8B7UREREdmViOCll17C0aNHK2T99913H1avXg2VSlXkPFqtFhqNBoMGDYKPjw/8/f0xfvx4bN++HVqtFj4+PvD19cXSpUvh4+ODyMhIqNVqBAQEAADGjx+PkJAQREdHY9myZTAYDAgPD8eyZcuUHpro6Gj4+flBq9XC19cXwK17V+U/HxkZCQDKOkNDQ9G8eXN06NAB/v7+8PX1hVarhcFgQGxsrDKfvbAHh4iIyM6KCx+VycfHB8Ctw0ZGo1HpWQFuhZH85/V6PVJSUqDT6aDT6ZRw07NnT2X5O2+6OWnSJOj1egwbNgwrV64ssG29Xm91uEqj0WDv3r0F2lZR2INDRERkRyqVCqtXr0Z6ejqysrLg7u4OZ2dnu63f3d3d5gBlMpng4+MDk8kEX1/fIkOFv78/EhMTlTuK6/V6qNVqJCYmFlhXvpiYGMyfPx8AlENgtwcaf39/5bAYABgMBgwYMEB5nN/rU1EYcIiIiOxMpVLBw8MDKpXK7gGnNGJiYuDr64v4+Hjl7Ca9Xg+DwYDIyEgEBQUBAIKCghAREYHIyEj4+vpCo9EgODgY4eHhiIiIgEajUcKLwWBATEwMEhMTlXE1+c/nrzsmJkZZZ2xsLIxGI/z9/aHVavHHH38gKSlJ2b5Op4O3t7dy6MxeGHCIiIgcVH6AuX18i7+/Pw4ePFhg3uDg4ALTZs2aVWDa9u3bi9yev7+/1fN3rtNsNqNDhw7Ytm2bEvoq6rRyjsEhIiJyULePualtGHCIiIgczO2HoWorHqIiIiJyMEUdhqpN2INDREREDocBh4iIiBwOAw4RERE5HAYcIiIicjgMOERERFSiO2+0eftNNasjBhwiIiIq0e030rz939UVTxMnIiKqAJmZmcjKyoKIwNnZGW5ubnByclKm5XN1dYWLiwtyc3ORl5enTHdycoKbmxvMZjNycnKU6R4eHpW6HzUVAw4REVEF6NOnj9XjyMhI3HPPPZgxYwaOHDmiTH/99dfx3HPP4csvv0RERIQyvV+/fvjwww/xxx9/4N///rcy/dChQyVuW6fTITQ0FPPnz0dERASWLl0KHx8fhIeHo3PnzjAYDNBqtfD391fuFQXcugFmQEAAwsPD0bNnT+zZswcjRoyo9r01heEhKiIiIgeTf+NKX19fJdxERkZCrVYjICAAwcHBWLRoEfR6PaKjoxEUFAStVovo6GgAgFqthlarRc+ePa1CV03CHhwiIqIKsHv3bmRlZSl3E3dzcwMALFu2rMAhKgB48cUXMXbsWGW6k9OtPoiuXbsiLi6uTG3w9/dX/q3X6+Ht7Q2dTgcACAkJQXR0NHr27Ang1h3Bly1bpswfGRkJk8mElJSUMm27qrEHh2q8bdu2oVu3bnj99dexb98+WCyWqm4SERE8PDysfvIDi7u7u9V0F5dbfQ2urq5W0/MDkbOzs9X0ssoPO1qtFlqtFsCtnprExERlHpPJhMjISKSkpCi9OsCtcFTTlCrgxMbGIjY2FpGRkUoCLGqe/B+iinTkyBEMHz4ceXl5WLduHXr06AE/Pz9Mnz4du3btshqwR0RUWxR2s82goCCo1WpERkYqf5+Dg4MBABEREYiNjYXBYECnTp2QmpoKnU6njM0xGAxW66wJN/O0+RCVwWCATqfD/PnzAQDjx49Xkl0+k8kEg8GgFCw0NBQBAQF2bC7R/yQkJGDw4MHo2LEjdu3aBXd3d+zZswdRUVGIiorCJ598goYNGyIoKAihoaG46667qrrJRESVoqibbeb/fb7drFmzCkzL/1sPwOpv/fbt2wv9d3Vkcw+OTqeDt7e38vj243j58gcx5Xdl3T4/kT3dvHkTgYGB8PDwwNatW1G3bl04Ozujd+/e+Pjjj3H+/HkcPHgQEyZMwIYNG9CuXTssX7683D06IgKtVosVK1bYaU+IiKgi2NyDk5iYCLVarTxWq9WFXsEwJCQEw4YNg7+/P9auXVvmhokIMjIyyrx8cTIzM61+13Y1rR7Z2dkYMmQILl++jB07dsDLy6vQ10rHjh3RsWNHTJ48GfPmzcPLL7+MlStX4qOPPsKjjz5a7DaKqsnRo0exd+9enD59GsOHD4eXl5f9dsyOsrKylN/2eB/VtNdIZWBNCqrNNcnOzobFYoHZbIbZbAYAZSCxiCjTarvS1MRsNsNisSAzM1MZWykiUKlUNm2rXGdR5R+bu118fDyioqKwaNEijBs3DlFRUWVad25uLk6cOFGe5pUoISGhQtdf09SEelgsFrzzzjs4cOAAPvvsM5jNZpteJ1OmTEGfPn2wcOFCDBw4EIMGDcKMGTPQqFGjYpe7sybr1q2Dp6cnUlJSsGDBAowbN64ce1Nx8t+b586dw40bN+y23prwGqlsrElBtbUmLi4uyM7OLjC9sGm1nS01yc7ORl5eHs6ePWs1vU6dOjZtw+aA4+fnZ9Vjk5KSUuDCP7GxsejZsyf8/f2xZs0ahIaGQqfTFRirYwtXV1e0adOm1MvZIjMzEwkJCbj77rt5RUjUrHrMnj0b27dvx/r16/H000+XatkOHTpg6NChWL9+PebMmYNnn30WH330EUaPHl1g3qJqcuDAAQQGBqJ+/frYsGED3nnnHfj4+JR3t4q0du1arF27Fhs3bkTTpk1tXu7y5cuIi4tDq1at0Lhx43K3oya9Rkrr2LFjWL9+Pd5//32bvxkCjl2TsqrNNcnOzsbFixdRp04duLu7A7jV25CdnQ03N7dSvbYcWWlqIiJwcXGBn5+fckbZmTNnbN6WzQFHq9UiPDxceZyUlKQEF5PJBB8fHxiNRqvQo9Vq4evra3NjbqdSqeDp6VmmZW3l4eFR4duoSap7PT777DMsWbIES5YswahRo8q8nn//+98YMWIEJkyYgFmzZmHMmDHKB9Kdbq/JhQsXcOTIEbz22mvo3bs31q1bh9WrV2P27Nllbktx0tPTERYWhqtXryIwMBC7d++2OeTk74+7u7td/0+r+2skPT0ddevWLdUyS5cuxYYNG/DUU0+hX79+pd5mYTXZs2cPNBoN/Pz8Sr0+R1DdXycVwdXVFU5OTjCbzXB2dgYA5RCMSqVSptV2pamJ2WyGk5MTvLy8lGsFlSYo2hxwNBoNAgMDlUs6T5w4UXlu2LBhiIqKQlBQECIiInDs2DEAty75fPtFhogMBgO2bdsGi8WCFi1aQKPRoEWLFlCr1VYv3CtXruDw4cM4fPgwjhw5gsOHDyMxMRGvvPIKXnnllXK3Q61WY8GCBfjuu+8QHR2NYcOGlbjMli1b4OzsjEGDBqFevXqYNGkSFi9ejGnTplmNT7OXzz//HDdv3sT27dvxwgsvoG/fvti1a1epenJqk/j4eHTv3h0//vijzWdvpqSkICoqCiqVCsuWLStTwLlTVlYWAgMD8eijj+Lnn38u9/qoZnBxcYGnpyeuXr1qFXbyD8Uw4Nxia00sFguuXr0KT09P5TpBpVWqpYr60Lj9VLHCTkFzBH/99ReWLl0KNzc3NGvWDM2bN7f6Xb9+/VJ3Qf7666+4du0ahg8fXkGtrnoWiwWHDx/Gli1bsGXLFvz5559wdnaGiFhdkK9u3bpo0aIFGjdujH/++QcXLlwAcCuIPPDAAwgKCsIjjzyCp556ym5t69ChA7p164b169fbFHB++ukn9O7dG/Xq1QMAvPnmm1i1ahU+/vhjhIWF2a1dAJCRkYGFCxdi3Lhx6NevH3bv3o0+ffrg8ccfx86dOxlyCvHGG28gJycHS5cutTngfPPNN8jJyUFYWBjCwsJw7tw5tGrVqlztiI6OhslkQnR0NE6dOoV27dqVa33lsW/fPuzatQv9+vVDt27d+Ee2AqlUKjRt2hTnzp3D+fPnAdz6/MvLy4OLi4tykb/arjQ1cXJygp+fX5kP7/FWDSW4cuUKZs+ejdWrV+Puu++Gr68vLly4gKtXr1rNp1ar8c4772DGjBklDoBKTU3F66+/js8//xwqlQrbt2/H448/XpG7YTfXrl3D8ePHodfrcfz4cVy/fl3pjr79t4eHB44dO4atW7fi0qVLUKvVCAwMxBtvvIGAgAB4eXkhOTkZBoMBSUlJMBgMMBgMSE5OhlarxQMPPIBu3bqhVatWFXrs+vnnn8cbb7yBGzduoH79+kXOl5aWhh07duDDDz9UpjVt2hSTJ0/GkiVL8PLLLyvBxx5WrVqF69ev4+233wYAtGnTBrt27ULfvn3x+OOPY9euXWjSpIndtlfT7dy5EzExMXj66afxww8/4J9//sE999xT4nJr167FwIEDERISgo8//hiffvopFi1aVK62bNy4EZ07d0ZycjKWL1+O5cuXl2t9ZWU0GjF8+HBcunQJb7/9NurXr48BAwbgiSeewMCBA9G8efNSr1NEYDAY0LhxY2VMhC1SU1Nx6dKlKg17laFOnTpo27atcufvzMxMnD17Fn5+frVuTFJRSlOTOnXqlC8YSjV09OhROXr0aIWtPz09XQ4dOiTp6elFzpOdnS3h4eHi4+MjarVaPv74Y8nJybF6/vz586LT6WTz5s0yZcoUcXZ2lnbt2klMTEyR692xY4e0bNlS6tatK5988on07dtXmjZtKleuXLHrPpZGcfX4559/ZOrUqdKnTx9p1KiRABAA4uLiIh06dJA+ffrIww8/LF26dJG2bdtK8+bNpX79+uLu7i5t27aVmTNnyq5du6xqV51cunRJnJycZOXKlVbT76zJd999JwDkzJkzVvMlJyeLh4eHzJ49225tysjIkCZNmsj48eMLPHfq1Clp1qyZtG/fXi5dulTkOi5evChhYWFy8eJFu7TJlvdMVTGbzdKtWzd55JFHJD09XerVqychISElLnfixAkBIJGRkSIiMmvWLFGr1ZKWlmbTdguridFoFDc3NwkPD5fZs2eLl5eXpKSklG3Hymny5Mni5eUlZ8+eld9//13mzJkjDz30kKhUKgEg/v7+Mn36dNm4caOcP39eLBZLoevJycmRHTt2yCuvvCL33HOPABB3d3fp37+/vP/++7J//37Jzc0Vkf/VxGg0ik6nk/nz50uvXr3ExcVFVCqV/Pbbb5VZgipXnd83VaW8NSlNPmDAuYPFYpEff/xR2rRpI05OTjJlyhS5evWqTes9evSo9O3bVwDIk08+KadPn1aeS01NlcmTJwsA6dOnj/zzzz8iInLhwgVp2LChBAYGitlsts8OllJR9UhJSZF27dpJkyZN5LnnnpOwsDD59ttvRa/XS3Z2dpW0tSIMHDhQevXqZTXtzpq88MIL4u/vX+jys2bNEi8vL7l27Zpd2rN06VJxdnYuEKby5YecDh06yNmzZwv9vyhtwMnLy5O4uDhZtGiRJCUlFXi+On9Qb9y4UQBIXFyciIjMnDlT6tevLxkZGcUu9+abb0q9evUkMzNTRETOnTsnTk5O8vnnn9u03cJqsnbtWlGpVGIwGOTChQvi4uIiS5YsKduOlUNcXJwAkOXLlxd47vr16xIZGSkvvviitG3bVvnS0rx5c3n22WdlyZIlotPpZP369RIUFCS+vr7K85MmTZLvvvtOFi9eLIMHDxYvLy8BIL6+vjJkyBCZPXu2PPbYY+Lj46NMHzp0qHz66afy8MMPS4cOHSQrK6vS61FVqvP7pqow4FRRwMnOzpbBgwcLABkwYIDEx8eXet0Wi0U2b94sfn5+UqdOHXnrrbfk559/lrvvvls8PT1l+fLlBYLMzz//LADko48+Ktd+lVVh9TCbzTJkyBBRq9VWQc0Rff311wJAzp07p0y7vSZ5eXnSoEEDefvttwtd/sqVK1K3bl158803y92WzMxMadasmYwdO7bY+f7++29p1qyZVY+aWq2W5s2by7333it9+/aVsLAwmT9/vvz888+FBp3U1FSJioqSF154QRo2bCgARKVSSYsWLQq8/6rrB3VWVpa0atVKnnrqKWXaqVOnBICsW7euyOXy8vKkWbNmMmXKFKvpTz/9tPj7+xfZm3G7wmoycOBA6d27t/J45MiR0rp1a8nLyyvFXpVPVlaWtG/fXnr06GHTdi9fviw//vijvPHGG/Loo4+Km5ub8rrq1q2bhIWFyeHDhwutSU5OjuzZs0cWLFggffr0ER8fH3nggQckNDRU9u7dq/TsiNz6XHdxcZEFCxbYdX+rs+r6vqlKDDhVFHBmzpwprq6uEhUVZdMHXEnbCAsLE3d3dwEgvXv3LvIb+e3bPnToULm2WxaF1WPevHmiUqnk559/rvT2VLbU1FTx9PSU9957T5l2e01+++03ASD79u0rch1vvfWW1K1bt9yHGj/55BNxcnKSU6dOlTjvpUuXZPPmzbJu3Tr57LPPZOHChRIaGiqvvfaaTJ06VcLCwqy+oTdp0kQCAwPl9ddfl8DAQOUPmb+/v7z11luyb98+SUpKkq5du4qPj4/88ssvhdajOvn444/FyclJjh8/bjV9wIAB8sgjjxS5XExMjACQAwcOWE3fuXOnAJAdO3aUuO07a3L58mVxdna26gHat2+fAJCffvqpNLtVLqGhoeLq6irHjh0r0/LZ2dly8ODBQnvySlLS6+TNN98UNzc3+fvvv8vUtpqmur5vqhIDThUEnOjoaAEgixcvtuu2EhISJDo6usTDT9nZ2dKtWzdp06aNmEwmu7ahJHfWY8uWLaJSqWT+/PmV2o6qNHr0aGnfvr0SbG+vSUhIiDRu3LjY/8Nr166Jt7e3zJo1y2p6Xl6enD9/Xnbt2iVRUVHFds9nZWVJixYt5Pnnny/3/uQforpw4YKcPXtWvvvuO3nnnXdk0KBB0qJFC+nbt68sWbKk0NBtMpkkICBAXFxcZM2aNSJSPT+oU1JSpEGDBhIcHFzguaioKAEgR44cKXTZoKCgQntqLBaLdOrUSZ5++ukSt39nTT755BNxcXEpcKjy4Ycfln79+tm6W+USHx8vrq6uEhoaWinbu1NJr5P09HRp1aqV9O3bt9xfImuC6vi+qWoMOJUccKrDOBgRkdOnT4uXl5dd/sCVxu31OHXqlPj6+spTTz1VpbWobPnf6A8fPiwi1jVp166dTJgwocR1zJkzRzw8PGTSpEnyxBNPSJs2bcTV1VXpQQEg9957r+zatavQ5VesWCEqlUpOnDhR7v0p7yDjnJwcmTBhggCQefPmSVpaWrX7oH7rrbfE09NTLly4UOC53Nxcad68eaHh58aNG8pA4MKsXLlSnJycrA5ZFubOzxGtViuDBw8uMN9//vMfAVDmHhVb5eXlySOPPCLt27evsnEutvzx2rZtmwCQtWvXVmLLqgYDTkGVGXBq/WniZrMZY8aMgaurK9auXVul1ypo06YNPv/8czz//PMYMGAAxo4dW+p15ObmKld8LK3U1FQ8/fTTaNKkCb766qtadd2G/v3746677sL69evxwAMPKNNPnTqFU6dO2XTq8KuvvooffvgB+/btQ+vWrfHUU0+hdevWaNWqFVq3bo3MzExMmzYNffv2xQsvvIBFixahYcOGAICcnBy8//77GDFiBNq3b19h+2krV1dXrFq1Cq1atcI777yD06dPY9q0aTYvb7FYkJKSgmvXruHGjRtITU2FyWRSfvIfN2rUCAMGDMB9991XqssBJCUlYcmSJQgJCUGzZs0KPO/i4oJJkybhgw8+wMKFC60uxLhp0ybk5eXh+eefL3Tdo0ePxhtvvIHPPvsMCxcutKk9CQkJ0Ol0WL9+fYHnnnnmGYSEhGDZsmVYuXKlbTtYBitWrMC+ffsQFxdXqlO4K9sTTzyBUaNG4bXXXsPgwYOV9wBVT2azGVeuXMGFCxdw8eJF5felS5cwcuRIu1wcs8KUKUJVsMrswXnvvfdEpVLZdMy9sowbN07q1q0rJ0+etHkZi8UiERERUrduXXnnnXdKtb309HQ5ePCgDB06VLy8vAqMZ6gtXn75ZWnSpInk5uYqr5F3331XPDw87PYNzGw2S0REhNSrV08aNGggX375pVgsFlm5cqWoVCrR6/V22Y49TxP/+uuvxdXVVe6//36ZPHmyTJkyRSZOnCjjx4+XMWPGyMiRI+Xpp5+WXr16SYcOHaRRo0bi5ORk1XN1+4+np6c0btxY2rRpI56engJAGjduLGPGjJH169fL5cuXS2zTiy++KI0aNRKj0VhsDVxcXGTp0qVW0x966CH517/+Vez6Q0JCpF69esX+v9/+OfL++++Lh4eHpKamFjrvggULxMPDQ65fv17sdsvq/Pnz4uXlJZMnT66Q9dvK1m/nly9flnr16skLL7xQOQ2rIjW5B+fUqVMycOBAcXZ2tnr/Ojs7S4sWLaRx48bSsWPHUh9q5CGqSgo4O3bsEGdnZ7tew8QeUlNT5d5775UGDRrIypUrSzwT4saNG/LMM88IAOnVq1eRp4cWJT09XaZNmyYAJCoqqrzNr7EOHjwoAGTbtm3Ka0Sr1cqQIUPsvq3Lly/L888/LwDkscceEz8/P3nuuefstn57XwcnOjpa2rdvLx07dpT7779funfvLo888oj06tVL+vbtKwEBAfL888/LK6+8Iu+++658/vnnsnnzZtm9e7f89ddfkpCQIDdu3LA6q0bk1rijHTt2yOuvvy733Xef8iHatWtXmTJlinz66aeya9cuq9ATHx8vTk5ONr3Gn332WauxVXq9XgDI5s2bi13u7NmzolKpZNWqVUXOc/sHdefOnSUoKKjIeS9fvix16tSRDz/8sMQ2l5bFYpHBgwdL8+bNq+yaO/lK88crIiKiyAHdOTk58uOPP8ozzzwjAQEB8p///KfE0/6ro5oYcLKysmT+/Pni5uYmrVq1kuXLl8uWLVvk8OHDkpycrAxdKM2A/Nsx4FRCwNm5c6doNBrp2bNngQ/d6iA5OVleeOEF5VRNnU5X6HxxcXGi0WhErVbLt99+KyK3zshSqVQlfojn++yzz8TJyUlef/11u7W/JrJYLHLvvffKmDFjJD09XX755RdxcnKS1atXV9g2f/nlF2nTpo2oVKoyXZagKDX1Qn+XLl2SdevWyejRo6Vjx47i4uKihJ6GDRtK7969pWPHjnLPPffYdC2m/A/hnTt3isitaxbVr1/fpjEqQ4YMkU6dOhX5DTW/JgcOHBAA8uOPPxa7vnHjxolGo7Hb543FYpH9+/crnxMlbb8ylOZ1YjabpVevXtK2bVvJzMwUi8Uihw4dkhkzZiiXLbjvvvvk0UcfFQCiVqtlypQpcujQoRozQLm6BJz8duRf86kou3fvlnvvvVdcXFzkrbfeKrbdFotF/P39bRqQX1hbGHAqSFpamjz++OOiVqvl/PnzFbYde9DpdNKtWzcBIGPHjlWuXpubmytz584VJycn6dWrl9V+mM1mGTlypLi5uRV75dDs7Gzl4oNDhw6t9LO3qqMFCxYop3vPnTtXVCqVJCcnV+g2MzMz7X5YsKYGnDvl5OTI8ePHZfPmzTJ//nwZMWKEdOvWzebLF1gsFmnfvr08++yzkpubK02aNJHp06fbtOz27dsFQJGDwvNrMmvWLKlXr16JgevIkSM29R6V5Pr167J06VLp3LmzABCNRlNl19C6U2lfJ8ePHxdXV1cJDAyUjh07KpczCAkJkb/++kuZ79SpU/LWW29J06ZNBYB06dJFPv74Y5svwlpV7P2+ycnJkW3btklCQoJN8yclJclbb70l9evXFwDi6uoqPXr0kJCQEPn++++Vy1pcvXpVxo0bJwCkZ8+eNn/ZWrFihTg5OdncHhEGnAoPOMuWLRMAsnHjxgrbhj3l5eXJqlWrpGHDhuLt7S3vvfee9OzZU5ycnGTevHmFfiPMyspSQlxhZ29cunRJHn30UXF1dZXly5dXi28Z1cE///wjAOTLL7+Uvn37ysMPP1zVTSoTRwk49rB06VJxcXGR1atXW50pVxKLxSIdO3aUfv36Fbrf+WPX7r77bpvOshMR6dWrV4GrZhe23ezsbDEajXLlyhVJTEyU06dPyy+//CKjRo0SNzc3cXFxkeHDh0tMTEylXkSwJGV5neSPTxo1apTExsYW28OVm5srW7dulWHDhomLi4u4uLjIk08+Kd98802JvROV7caNG/LNN9/IK6+8Im+88YZMmzZNxowZI08++aT06tVLunTpIs8++6xs27atxDNWU1NTZcmSJaLRaJQezfvvv19CQ0ML7dHav3+/jBw5UlxcXMTb21teeeUV2b17tyxfvlxGjBhhtZ62bdtKgwYNRK1Wy6pVq0p19mxqaqr4+vrKG2+8YfMyDDgVHHBGjx4tY8eOrXEf1jdu3JBp06aJk5OTtGzZUn7//fdi5zcajXLfffdJixYtJDExUZm+b98+ad68uTRt2lR0Ol2N/uNVEXr27Cm9e/cWd3d3mTdvXlU3p0wYcP7n5s2b4unpKe7u7tK5c+dSHd7YsmWLuLu7S/v27QtcUyc9PV3WrFljdQisJJs3bxYAMmrUKBk6dKg8/vjj0r17d2nbtq3cddddyoVBi/q59957JTw83KaB2FWhLK8Ti8VSpsN2V65ckWXLlsmDDz6o3BZiwoQJ8uuvv1bJJS6uXbsm33//vbz88sty//33K/f88vT0lBYtWkjnzp2lV69e8uSTT8qYMWNkypQp4u/vLwCkZcuWMm/ePKvP6fx9nDNnjtSrV09cXFxkzJgxsn//fomMjJTRo0eLWq0WANKsWTP597//LStWrJAePXoIAGndurV8/PHHRQ7EP3/+vGzYsEGmTp0q06ZNK3NP9SuvvCINGjSweYxUZQYclYiIvc7Ispf4+HgAQOfOnStk/RkZGThx4gQ6dOgAT0/PCtlGRTp79iwaNWoEb2/vEue9dOkSevToAS8vL8TFxeH777/H5MmT0a1bN2zevBnNmjWr8fWwt88//xyTJ08GABw6dAjdunWr4haV3qVLl7Bq1SpMnDgRTZs2Lff6avprJDg4GKtXr8ZHH32EV199tVTLHj9+HKNHj4Zer8eCBQsQEhICZ2dnZGRk4KWXXsLu3buRlJQEZ2fnEteVl5eH4cOH4+rVq/D19VV+fHx8lN8eHh5wc3ODm5sb3N3dlX/Xq1ev1KfTV7aqep2cPHkS69evx/r163H+/Hm0bNkSXbt2Rb169Qr81K9fH/fccw9atWoFF5eyXSnl5s2bOHr0qPJz4MABHD16FABw991347HHHkOfPn3w0EMPISMjAx07diy0HiKC/fv3Y/Xq1di0aRMyMzMREBCAMWPGYM+ePfjiiy+gUqkQHByMmTNnws/Pz2r53Nxc7NmzBz/99BN+/PFHnD17Fn379sUrr7yCwYMH2/SaLK8zZ86gbdu2+PLLLzF+/PgS5y/va6Q0+YABpwZ+WJfWyZMn0bNnT7i7u+PixYuYOHEili1bplwro7bVoyTXr19H06ZN0bhxY5w8eRJ169at6iaVGgOOtRMnTmD8+PHYsmULGjVqVOrlc3JyMGfOHISHh6N379746quvoFar0bp1a4wcORLLly+vgFbXPFX9OrFYLPj999+xadMmnDt3Djdv3rT6ycvLU+atU6cO2rVrh44dO6JDhw7o0KED2rRpg7y8PKSlpSE9PR1paWnKz7Vr1xAfH4+//voLBoNBWYe/vz+6du2Kxx57DI899hhatmxZpnqkpqZi06ZNWL16NQ4cOIAGDRpg+vTpmDZtGho0aFDivosIjEaj1TWfKktgYCCSk5Nx+PDhEgN4ZQacWn+hv9qgffv22Lp1K0aPHo2VK1di4sSJVd2kaq1BgwaYMWMGXFxcqvW3ZbJdhw4dsG/fvjIvX6dOHXz44YcYNGgQxo4diy5dumD06NG4fv06nnvuOTu2lMrDyckJvXv3Ru/evQs8JyJIT0/H9evXcfr0aZw4cQLHjx/HiRMnsHv3bly5cqXQdapUKtStWxf16tVDp06dMGrUKHTp0gX33Xcf2rVrV+YLq97J29sbwcHBCA4Oxrlz53DXXXeV6suVSqWqknADANOnT0dgYCD27t0LrVZbJW0oDANOLdGjRw+cPXu2qptRY8yfPx8nTpyo6mZQNdOnTx/89ddfmDJlCj777DNoNBqrK19T9aVSqeDl5QUvLy+0bNkS/fv3t3r+xo0bOHv2LNzc3FC3bl1lXg8Pj0r/otOqVatK3V55DRw4EG3atMEnn3zCgENEVFPVq1cPGzduxNChQ2E0GtnL5yDq16+P+vXrV3UzaiQnJydMnToVs2bNwuLFi+1yWNweas/NhoiI7Ohf//oXe2+I/r9x48ahTp06WLVqVVU3RcGAQ0REROWiVqsxduxYfP7558jJyanq5gBgwCEiIiI7mDp1KpKTkxEVFVXVTQHAgENERER20KlTJ/Tt27faXDaBAYeIiIjsYtq0adDpdDhy5EhVN4UBh4iIiOxjyJAhGDRoEDIyMqq6KTxNnIiIiOzDxcUF0dHRVd0MAOzBISIiIgfEgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEVEpmsxm//vor5syZU9VNIaIiMOAQkcPLzMzE5s2bYTaby7WemzdvYtKkSXjmmWdw/fp1xMTEID4+3k6tJCJ7YsAhukNWVhbS0tKwd+9eiEhVN4fs4M0338THH39crnWICPr27YuNGzeiX79+ePLJJ9G8eXN89dVX9mkkEdkVA04tcePGDbz22mvYvXt3VTel2luxYgUaN26M6dOnIy4urqqbQ/9fbm4uLl68iMzMzFItd/ToUXz66afo3r07Zs+ejezs7FItf+bMGTzzzDO4fPkyPvnkE5w8eRLTpk2Dq6srVqxYgQ8++KDUQbhfv35o0aIFOnbsCACYN28eHnvsMQQEBMBgMGDv3r349NNP8f333+Pq1avIyclBbm5uqbZBVNsx4NQgV69exeLFi5GXl4cTJ04gJyfHpuUyMzPRv39/LFu2DHv37oXRaERERESp/1DUBunp6fjggw8wduxYtGvXDosXL66wbZnNZnz11Vc4fvw4fvjhB/z3v/+tsG2Vl8FgwMqVK5GWloatW7dixowZmDp1Kk6dOoW9e/ciODgYs2bNwt69e5GSkoJNmzZh27Zt+OeffwAAJpOp2BAgIkhOTsa+ffsAAKtXr8aoUaPw+OOP48qVK/i///s/1KlTB82bN8dvv/2G9PR0m9vu7e2N4OBgvPjii1i4cCFWrVpl87LffPMNOnXqhEOHDiEpKQmPPvoomjVrpjzfrFkzvPfee3jxxRdtWl9YWBi2bNmCkSNH4qWXXsLw4cMBAE2aNEHLli1Rt25d1K1bF7/99htmzpyJYcOG4c8//8QPP/wAb29vDBs2DAcOHLC5/WQ7EUFGRgYsFktVN6VGM5vN1eewrVRDR48elaNHj1bY+tPT0+XQoUOSnp5eYduwt08//VTc3d3Fw8ND4uLipEmTJjJw4EBJS0srdrn09HSxWCwSHh4uf/31l+Tk5Mj3338vKpVKGjRoID/99FONrEdFuXjxojz77LNy/Phx+fzzz2XLli0Vsp3Tp09L586dBYB8+OGHEhgYKA0aNJDExES7rP/ixYsSFhYmFy9eLPe6vvjiC/Hw8JC6detKQkKCLF26VDp37iz333+/7N+/X2JjY+XBBx+Utm3bytdffy379+8XAAJApk2bJhkZGQJA3N3d5ZlnnhERkQkTJsi4cePkrbfeEhGRRx99VACIk5OTZGVlydy5c6VPnz4SFBQkFy5ckIMHD8rq1atl69atcurUKWndurV88cUXJbZ98+bN8t///ld5PH78eGnTpo2YzWab9j05OVk+/PDDQt9n+e+bjz76SJycnOTUqVPFrkun04lKpZKlS5fatG2LxSJXr16VzMxMOXv2rCxcuFAefPBB+eWXX2Tnzp0yYsQI+eGHHyQrK8um9VWG6vJZcuXKFTly5Ijs3LlTrl+/LidPnpSPPvpIQkNDZd++fXLq1CkZPHiw9OjRQz744AMxmUzi4uIiAKRPnz4iItKrVy/p1KmTDB48WEREli9fLsuXL5dDhw5JXl6eTe2oLvWoTJmZmfLqq69KQkJCoc+XtyalyQcMONWUxWKRmJgYGThwoOh0OomLi5P/+7//k2vXromIyPbt28XLy0tmzpxZ5Dpu3Lgh3bp1k7lz5xZ47syZMzJjxgw5efKkbNiwQZ588km5cuVKRe1OjWAymSQ2NlYsFovyGtm7d6989NFHdtvG/v375auvvpKMjAx59tlnZe/evSIicu3aNdFoNBIWFmaX7RQWcLKysuTy5csiIiUGYxGRrVu3yokTJ2TXrl3y8ssvy+7du216z1gsFjGZTJKYmCjJycmSlZUlGzdulKVLl8qGDRtERGT06NHyyCOPSGBgoIiI/PTTT/LDDz/I8ePHbQofwcHB4u7uLn/88UeR81y9elXq168vY8aMUaYlJyfLlStXxGKxFLt+s9ksI0eOlJ9//rnIefJfI9evX5cOHTrI999/X+w6X375ZenevbvNfxyL8/PPP0uXLl0EgHz77beSnZ0tOTk55V5veZX1s9WW12Nx/v77b1mxYoU8//zzkpKSIm+88YYSsv/73//Kpk2bpG7dutK8eXNZu3atnDt3ToYMGSLjxo2TDRs2iMVikc8++0y+/vpriY2NFRGR999/X6ZPny6vvfaaiNx6zbm6uoqzs7OkpaXJihUr5M0335QffvhBMjIy7FqPmspgMMjy5cuLfY0z4DDgyJdffikA5IEHHpBff/210Hn++usvMZlM8ssvvxT45p+bmysPPfSQ1K9fX/78889it7Vu3Trx9PSU3r17F/lGrQ3effddqVOnjly8eFF5jSxfvlxUKpWcPHmyxOVTU1PlhRdekNmzZ4uIyMSJE2X06NEya9YsERF59dVXBYA88sgjhf4Rv3jxolgsFjly5EiZ2p+WliYpKSly/fp1+eCDDyQsLEyWL18uubm5ctdddynbFhG59957pUOHDvLqq6+KxWKR3NxcZT3Jycnyr3/9SwAoPSzV7T2TmZkpL730kpw/f77Ied5//31Rq9WSnJxsNX3Pnj3Svn175ctCYT777DMBIL/88kuR89xeE7PZLOnp6UWu8/z582KxWOTmzZvF71gpHT9+XDIyMuTJJ5+UMWPG2NwzVVHK8jq5efOmdO7cWTp37iwzZ84Us9lc5H7kB9Ndu3ZJWFiY/Otf/5LMzEyZOnWqODs7y4MPPignT56UCxcuyKFDh+TMmTOSmZlZYqC1VWZmpvL+fPvtt6Vp06YCQK5duyaLFy+WIUOGSFhYmFy6dEny8vJKXY9Lly7J2rVr5ejRo5Kbm2v310tFslgs8tRTT0nTpk0lJSWlyPkYcGpxwNm6dassWLBAzGaz7Nu3r8Q3Zm5urnTo0EE0Go2cOHFCRG71ROTl5cmaNWuK/YabLz09XVavXi2TJk2SvLy8Kv+QrAopKSmiVqtl2rRpIvK/18iNGzekadOmMmPGjBLXMWrUKPHy8pL3339fRESGDx8ujz32mDz77LMiIjJ58mRZs2ZNsd9utm/fLgAkKiqq2G1ZLBb5/vvv5Y8//pDff/9d+aANDQ2VS5cuSevWrSUsLEzpEQoPD5c1a9bI77//LhaLRSIjIyU4OFhGjBghIiIPPfSQPPzww7J69WrJyMiQ3r17y+bNm5XXX3V9z/z+++8yefLkAu+TjIwMMZvNhQbTK1euiJeXl4SEhBS53tGjR8ukSZOK3fbtNbFYLNKpUyeZOHFigfn++ecf8fDwkK+//trGvSq9TZs2iUqlktdff73CtmGL0rxOsrKyZOzYsXLo0CHZtWuXjB8/Xjkc1K9fP+nZs6fMnTtXcnNzZd68eaLVaqVJkyaSl5cn48aNk4YNG8rAgQMlKSlJrly5Uu5eoLKwWCySlJQkIiJr1qyRAQMGSP369eX8+fPywQcfSJMmTaRHjx6i0+kkMTFR/vvf/0pCQoLyGZubmytxcXGSkJAgW7duFQCiUqnko48+km+//Va8vLxk2rRpcu7cuUrft9I6cuSIAJDNmzcXOx8DTi0NOLNnzxYAMmTIkFJ1YyclJYm/v79MnjxZUlJS5KGHHpLJkyfbvPzt9VixYoUMGDCg1vXkmM1m+eabb+TChQsiYl2Tv/76SzIzM4td3mKxyC+//FLiYYqSWCwWGT58uPj4+CiHk+508eJFpYflyy+/lMTERAkNDZWvvvpKTp48KRaLRS5cuFCqMTirV6+W5557Trp06VLseJPq9p758ccfBYAsWrRImZaTkyP33XefLFy4sMjlwsLCZOTIkQWCkdlsll27donFYinxkM+dNfnwww/F1dXVqjfVYrHIwIEDxc/PT1JTU8uyizZbtWqV/Pbbb1V6qMrW10lmZqYEBgaKm5ubxMTEFHg+IiJChg8fLg8//LCI3Or9HDVqlHzwwQeSkZFh114Ze7NYLGKxWGTfvn0ya9Ys6d27txw+fFjpFQQgK1eulPj4eFGr1QJA3nvvPblx44Z8/fXXylCBS5cuSWhoqDRq1Eh++eUXiY+Pl+3bt1t96Th8+LB8/fXXcuPGDdm4caN0795dZs6cWeJ4MHvLzMwUs9ksR48eLfH/hQGnCgPO9u3bi/zDUlEuXLggmZmZsnz5cgkPDy/TG/fmzZuSnZ0tY8eOFW9vbzl06JDNy95ej927d4unp6cMGDCgWhzTrwzXr1+XSZMmWYWBO18j7733nsyZM6fQ5XU6nfTv31+uX79ul/akpKTIxo0bCxw6ys3NlWPHjsm1a9eka9euxYYpew4yFqm+AUdE5PXXX5f+/fsr34oXL14sTk5Oxb4H8v8IHTt2zGr6J598IgAkPj6+xO3eWROTySTjx4+3+rZtsVhkzZo1hf4RrwhpaWny4IMPysqVKytle3ey5XVisVgkLS1NAgICrAaAO6Lb65GbmytnzpyR6OhoSUxMlEOHDklYWJjs37+/2C+0+WEuJCREAMg999wjJpNJXnvtNSUw7dq1S+Li4uT555+Xxo0by65du2THjh0yadIkiY2Nlezs7ALrzR8rd+7cuXKPv5w8ebIEBgba9LeLAaeKAk5+F9uBAwfs9u0gLi5OZs+erZyNc+TIEblw4YLygo6NjZWGDRsqYx3Kw2KxyDvvvCOHDx8u1XJ31mPnzp0SFhZW4A+so3rnnXfE09PTaqzGnTWZM2eOeHp6ytWrV62WvXz5sjRv3lx69uxp90D40ksvyb///W8RETl48KB07dpVGjVqJBkZGSW+PmtTwMnNzZXc3FzZvn27XLp0SVatWmXT+2nDhg3i7Owsf//9t4jc+qLh6elpc+9nYTWxWCyydetWuXjxoty4cUNmzJhht+BrC4vFItOmTRMnJyf57rvvyryesr7vS3qdpKWlSWBgoGzbtq3a9sDYkz3fNxaLRXbu3Cnjx48Xg8Egf//9t+zbt0+MRqPVfPljmL755htp3bq1AJCffvpJoqKipHfv3uLv7y8///yzREdHKwHptddek+zsbDl9+nSp2/X7778LAJvPDmTAqaKAM3jwYGnbtq38888/cv/998uBAwfKvI20tDRJSEgQJycnadiwoUybNk1ycnJEpVIJAHn44YflypUr4unpKQEBAQX+cFamouoRFhYmgYGB1eo0VHvLyckRPz+/AmMX7qzJ1atXpV69evLTTz9Zzffnn39Kt27dlOPw9rRq1SoBIN99952MHDmyVK/J2hRwRG6NuWnWrJkAkBs3bti0TGZmpmg0GnnuueeUHp1NmzbZfCipsJoYjUbx9fWVmTNnysSJE8Xb21s57FlZzGazzJgxQ44dO1ZkiMjNzZWUlBRZt26dvPvuu7JhwwbJy8uT+++/X+rXr68MRn/ttddk7ty5EhMTU+i6DAaD/PDDD/Lee++JxWKRGTNmSJ8+fSQsLKzA2WppaWnSu3dv8fLykt9++61idr6aqer3jcVikT///FMyMzMlNjZWRo0aJdOnT5dDhw5JcnKybNy4UWJjY+X69euyZs0acXJyklGjRpUq6MTFxUlQUFClnTpfmnzgUppr5sTGxgIAjEYjNBoNtFptofNFRERAo9EAAAICAkqziSo1ZswYeHt7w9fXF+7u7ujbty9iYmLQq1cvm9dx9OhRzJkzB0lJSTh06BD27t2L7t27w8nJCWazGUeOHEFSUhJcXV3RqFEj7NmzB126dIGTU/W75qJWq8X777+PF198Ef/5z38QHh4OAGjevDlGjRoFvV4Pk8mEtLQ09O/fH3v27MGff/6J1NRUTJgwAQaDAb/99hvq16+P3r17o2HDhkhKSkK9evXg6emJvLw8fPvtt0hISED79u0xYsQItGvXDnfddRcef/xxfPDBB9i1axfq16+Ptm3bwtPT0+776OTkhKNHj5Y4X37b69Spg+zsbLi5uWHVqlV44okncPDgQahUKru3bcKECfj999+Rm5uLzz//HJ6ennBxKdVbttbw8PDAhg0b0K9fP+zcuVO5gF5x3N3dsXTpUuTm5mL58uU4dOgQ1q5dW673oo+PD2bMmIEFCxYAAD755BOrCwNWBicnJyxduhRJSUno3r07Xn31VfTs2RMmkwnTp0/HiRMnMGXKFEyePBkvvPACGjZsiFGjRmHkyJEYMGAA6tWrh/bt2wMAEhMTsXPnTnz11Vc4e/YsJk+erFy0ccOGDZgwYQK2bduGBg0aYOLEiXj00Uexd+9eLF68GJMmTcJ7772H//znP3jooYfw5ptvonXr1vjggw/Qo0ePSq1JbaVSqXDfffcBAAYOHIiBAwdaPT9ixAirf2dkZODDDz/E9evXkZ6ejtzcXHTv3r3I9UdGRuLBBx/Epk2bKmYHysvW1JSYmGg1BmHcuHGFzjdu3Dily2zo0KG2rt5KVfTghIeHW51ympaWJlOnTpWrV68WezppvuTkZLFYLNK9e3e555575Ouvv64xZyOVNCZpwYIFIiLStWtX8fX1lXbt2omISO/evZUuzqysLJkyZYq4ublJgwYN5K+//pIVK1aIp6enAJDIyEjZtm2bMv/8+fMlMTFRnJycpGXLlvL222+LiMi8efNk/PjxSo9K/tlBd911l4iIXXtKkpOTpWXLloV+myysJtnZ2dK+fXtZtGiRbNmypcDg1opgNpvFZDKVerna1oOTryy9jX/++adyUcLSKKom169fl6ioKLl48aJdrnlTVmlpafLII48IAPnoo4/k7NmzMmLECJk3b57odDqxWCw2nUxgsViUcYlvv/229OjRQ4YPHy65ubly8uRJSUpKKnC2XX4v2I4dO2Tq1KnSvXt3OXPmTMXtbDVVU943t8s/PDlu3DgBIF26dJHLly/Lr7/+Kl988YX8+uuvkpaWJn///be4ubkpn922qsweHJWIbTdRiYyMRGJiImbNmgUAmDFjBkaMGGHVi6PX67Fy5Uq8++67MBgM8Pf3L1Poio+Ph4igTZs2ZVq+JJmZmUhISMDdd98NDw8P7N69G4MHD8amTZvw5JNPWs2bmJiIHj164I033sCMGTOs1uHh4YE1a9Zg9erVOHbsGPbv34+6deuiSZMmcHV1rZC2V4Q761ESi8UCJycnJCYmIjU1Fd7e3mjRogUAFPrtNysrC05OTsjIyIBer8fNmzfRtm1btGvXDnl5ecXW6vr16zh9+jRSUlLQvXt33HfffRg0aBAWL14MX1/fMu1v/i0uHn/8cfzzzz/Q6/WoX7++1TxF1WTSpEnYvn07GjZsiJYtW2LTpk3Vsvft8uXL+OqrrzB27Fg0bty43Osr7WukJtm1axc+/fRTrFu3DnXr1rV5uZpQk7y8PFy4cAEtWrSAs7NzhW+vJtSkMtXkepjNZnz//ff49ddfsWTJEsydOxdLly6FiCAuLg7btm3Dhg0bcODAgVLtW3lrcubMGahUKnTu3LnEeW0OOOHh4VCr1QgODgYAhIaGQqvVWh2CioyMRGRkpNI9GxkZifnz55d6B+Lj422+z5I9TJ8+HUajEevWrStwqEFE8Nlnn2HNmjUIDQ2FiGDr1q04duwYtm7dih07diA+Ph4PP/wwnnjiCdSpU6fS2l3biAiio6OxcOFCDBkyBK+99prNy5rNZmzcuBE7d+6ESqXCF198gSVLlkCr1eLhhx+2eT0JCQkIDw/HzJkzcdddd8Hb27ssu1LhjEYj4uLi0KtXrzIHQSKi22VnZ+PixYto1qwZTpw4AS8vrwrriChOnTp1bAo45TqgbzQarR6bTCb4+voqPTfHjh2DXq8vU0+Oq6trpfXgfPvtt7hy5QruvffeQuf/5JNP0KtXLwwePBgrVqyARqPBmDFj4O/vj0cffbRC2liZatK3jI4dO+K5556Dj48PYmNjcfToUcydOxdubm5W84kItm3bhn379iEzMxMffvghfvvtN2g0GgwdOhQdOnQo9qaLRdWkQ4cOGDRoUIXtn71cvnwZcXFxaNWqFXtwKghrUhBrYs0R63H//fdb/S4te/Tg2MrmgOPn5weTyaQ8TklJUQYS59NoNFbTfH19y3yoSqVSVcig0tu5ublh+PDhmDBhQomDEsePHw8AmDt3boW2qSp5eHhUeM3tIX8AZGZmJlasWIFdu3Zh9+7d2Lp1K/bs2QNXV1csX74cM2fORGZmJgYMGAAPDw8cPHiw1IeTakpN7uTu7q78tmf7a2o9KhJrUhBrYo31KKisNSnNCR02f9prtVqrW6AnJSUp42/yg49Wq4XBYFDmMRgMRZ5pVR389NNPiI2NxV133VXVTaEymDp1Kg4ePIihQ4dCrVYjJCQEcXFxyh/3gwcPIjk5GevXr4dKpaqWY2WIiKhi2NyDo9FoEBgYiNjYWBiNRkycOFF5btiwYYiKioKPjw+CgoIQGRkJk8mEkJAQ+Pj4VEjD7eGPP/5AQEBAqU4Dp+qlS5cu6NKlCwDg3LlzVt8IGjVqVFXNIiKiKlaqMThFXdNm+/btJc5T3Vy9ehVhYWEcFOxA2AVMRET5amWffW5uLiZMmIA5c+bUqNO5iYiIyDa1MuB8/fXXuHjxotVVHImIiMhx1MqAo9Fo8OKLL6JTp05V3RQiIiKqALXyxjYDBgxQrrxLREREjqdW9uAQERGRY2PAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOx6U0M8fGxgIAjEYjNBoNtFptsfP6+PgUOw8RERFRRbC5B8dgMECn0yEgIABBQUGIiIgocl6TyYRVq1bBZDLZpZFEREREpWFzwNHpdPD29lYee3t7Q6fTFTpvTEwMBg0aVP7WEREREZWBzYeoEhMToVarlcdqtbrQHhq9Xg+tVqscziorEUFGRka51lGUzMxMq9+1HetRUE2vSVZWlvLbHu+jml6PisCaFMSaWGM9CipvTUQEKpXKpnlLNQbnTkajscA0g8GAgICA8qwWAJCbm4sTJ06Uez3FSUhIqND11zSsR0E1tSb5781z587hxo0bdltvTa1HRWJNCmJNrLEeBZWnJnXq1LFpPpsDjp+fn1WPTUpKCjQajdU8ERER0Gg0iI2NRXx8PAwGAzQaDfz9/W3djMLV1RVt2rQp9XK2yMzMREJCAu6++254eHhUyDZqEtajoJpek8uXLyMuLg6tWrVC48aNy72+ml6PisCaFMSaWGM9CipvTc6cOWPzvDYHHK1Wi/DwcOVxUlKScoaUyWSCj48PgoODlefj4+PRuXPnMoUbAFCpVPD09CzTsrby8PCo8G3UJKxHQTW1Ju7u7spve7a/ptajIrEmBbEm1liPgspaE1sPTwGlGGSs0WgQGBiI2NhYREZGYuLEicpzw4YNs+rd0el02Lt3L6Kjo2EwGGxuDBEREZE9lGoMTlFja7Zv3271WKvVIioqquytIiIiIioHXsmYiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOx6U0M8fGxgIAjEYjNBoNtFptofMYjUbo9XoEBAQUOg8RERFRRbI54BgMBuh0OsyfPx8AMH78+ALhRa/XAwCCgoJgMpnQr18/HDx40I7NJSIiIiqZzYeodDodvL29lcfe3t7Q6XRW8xiNRmWaj48PfH19ldBDREREVFls7sFJTEyEWq1WHqvVaphMJqt5tFqtVa+O0WiEv79/mRomIsjIyCjTsiXJzMy0+l3bsR4F1fSaZGVlKb/t8T6q6fWoCKxJQayJNdajoPLWRESgUqlsmrdUY3DuZDQai3wuNDQUCxYsKPO6c3NzceLEiTIvb4uEhIQKXX9Nw3oUVFNrkv/ePHfuHG7cuGG39dbUelQk1qQg1sQa61FQeWpSp04dm+azOeD4+flZ9dikpKRAo9EUOm9sbCy0Wi0CAgJsXX0Brq6uaNOmTZmXL05mZiYSEhJw9913w8PDo0K2UZOwHgXV9JpcvnwZcXFxaNWqFRo3blzu9dX0elQE1qQg1sQa61FQeWty5swZm+e1OeBotVqEh4crj5OSkpTDUSaTCT4+PgBujdXx8fGBVquFXq+Hj49PkUGoOCqVCp6enqVerjQ8PDwqfBs1CetRUE2tibu7u/Lbnu2vqfWoSKxJQayJNdajoLLWxNbDU0ApAo5Go0FgYKByGvjEiROV54YNG4aoqCgYjUa8/PLLynSTyYS///7b5sYQERER2UOpxuAUdchp+/btAG6dOcXTwomIiKiq8UrGRERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcl9LMHBsbCwAwGo3QaDTQarVlmoeIiIioItncg2MwGKDT6RAQEICgoCBERESUaR4iIiKiimZzwNHpdPD29lYee3t7Q6fTlXoeIiIioopm8yGqxMREqNVq5bFarYbJZCr1PLbIzc2FiODo0aOlXtYWIgIAOH36NFQqVYVsoyZhPQqq6TUxm83o27cvkpOTcfXq1XKvr6bXoyKwJgWxJtZYj4LKW5Pc3FyblyvVGJw7GY1Gu8xzp/zGV9QLQqVSoU6dOhWy7pqI9SioptfExcUF9erVs9v6ano9KgJrUhBrYo31KKi8NVGpVPYPOH5+fla9MSkpKdBoNKWexxZdu3Yt9TJERERE+Wweg6PVahEfH688TkpKUs6Qyg81xc1DREREVFlUkn9AzAa3nwLu6+uLgIAAAED//v0RFRUFHx+fIuchIiIiqiylCjhERERENQGvZExEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIodTrptt1kS3X2lZo9HUyltJmEwmREZGAgCCg4OV6bW5NrGxsTAajdDr9QgICFD2vbbXRKPR4NixYwCAoKAgZTpQO2sC3Np/Hx8fvkYAzJgxA5MmTQIAREdHY9asWQBqd00iIiKUezDmX8m/NtdjxowZePfdd+Hj42M1vVJqIrVIYmKizJkzR3k8bty4KmxN1YmJiZGFCxfKqlWrlGm1uTbHjh2TmJgYERExGo3SvXt3EandNTEajTJ06FDl3+3atROR2l0Tkf/VJf/1UtvrMXToUOnevbuMGzdOjEajiNTumtxeh/z3T22uR2JiorRr1066d+8u3bt3l3bt2smqVasqrSa16hCVTqeDt7e38tjb2xs6na4KW1Q1AgIC4OfnZzWtNtfGaDQq++rj4wNfX1/o9fpaXRMfHx9ERUUBAAwGg/LtqjbXBABiYmIwaNAg5XFtr8fEiRNx8OBBrFmzRvmGXltrotfrlf3W6/XK+6e21gO49dlx8OBB5Wf+/PkIDg6utJrUqkNUiYmJUKvVymO1Wq3cCb22q8210Wq1Vt2jRqMR/v7+iI6OrrU1yRcZGYk9e/Zg6dKlAGr360Sv10Or1Spd60DtrgcAxMfHA7j1ngFuHcasrTU5duwYkpKSYDAYAAChoaGYP39+ra0HAKvP1cjISOXLQWXVpFYFnMLkvzGpoNpYm9DQUCxYsKDI52tbTYKCgqDRaLBo0SLMnz+/0HlqS00MBoMypqI4taUeAJQxNwDQv39/q96t29WGmphMJvj6+sLf3x/ArcCj1+sLnbc21ON2BoMBJpOpwDic21VETWrVIao7D8ukpKQog8FqO9bm1qA3rVar/BGr7TXJ/0al1WoRExMDnU5Xa2sSEREB4NZrJD4+HjqdDnq9vtbWA7hVi/DwcOWxj48PDAZDra2JRqOx2k9fX99aXY/bbdq0SQl+QOV9ttaqgKPVapUuVQBISkqqVaPZi1Pba6PT6eDj44OAgADo9Xpl3EltrUlkZCRWrlypPPb19YWvr2+trUlwcDACAgIQEBCgnPHh7+9fa+sB3PqD3rNnT+WxyWSq1TXRarXK4Sngf2PXams9brdt2zarAFNZNVGJiNh9rdXY7aem+fr62tTl7Gh0Oh02bdqE1NRUBAUFFXoqY22qjcFgwLBhw5THJpMJf//9N4DaWxOTyaSEvj179kCtViuXFKitNQFuvXcWLVqEFi1aYNasWdBoNLW6Hvn7Hh8fjxEjRih/xGprTfIvN2EymaDRaGr9Z2u+YcOGYe3atVaHqCqjJrUu4BAREZHjq1WHqIiIiKh2YMAhIiIih8OAQ0RERA6HAYeIiIgcDgMOERERORwGHCIiInI4DDhE5DB0Oh2GDRuGyMjIqm4KEVUxBhwichharRY9evSo6mYQUTXAgENEDuX2uxQTUe3FgENEREQOx6WqG0BEji//7tsajQbx8fGYNWsWdDodQkNDlRsSGo1G6PV6hISEKPes0ev10Ol00Gg0MBgMys0ugVv3ENu0aRM6d+4Mo9GIQYMGKcvl30vLYDBgz549WLZsWZXtOxFVDQYcIqpQBoMBixYtQlRUFIBbN9eLiIhAcHAwBg4cCLVabXVTwpdffhlr1qxRlluzZo2yrvyb9gHA+PHjERUVBR8fH4SHhyMyMlK5IWh8fLzVzUH1ej38/f0rca+JqKox4BBRhdq0aRN8fX2h0+mUafHx8cq/b7/DcEBAAF5++WWYTCZs2rQJHTt2tFpXixYtEBMTAwDQaDTKspMmTbKar3Pnzsq/vb29YTQa7bdDRFQjMOAQUYXr2LEjtFqt8jgoKKhc6zOZTPD29lYe3x6SiIgADjImogoWGBiIvXv3Wk27vTfHZDIp/46NjYVWq4WPj0+hyx0/fhyDBg1CQEAAjh8/XuQ6iYhUIiJV3Qgicmw6nQ579uxRDh3lh5jw8HCkpqYiICAAJpMJ8fHxmDRpktIjc+fg5MDAQGUsTWHrNBgMmDNnDgBgwYIFyjiejh07YtasWcoAZSJyfAw4RFRlwsPD4efnV+5DVkREd+IhKiIiInI4DDhEVCV0Oh327t2rnMZNRGRPPERFREREDoc9OERERORwGHCIiIjI4TDgEBERkcNhwCEiIiKHw4BDREREDocBh4iIiBwOAw4RERE5HAYcIiIicjgMOERERORw/h+8WlSO1OMUwAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
@@ -591,11 +613,11 @@
"sns.lineplot(x='epoch', y='value', style='metric', dashes=[\"\", (2,1)], data=df_aranged,\n",
" color='black', linewidth=1)\n",
"ax.set_ylim([0, 1])\n",
- "ax.set_xticks(np.arange(0, 350, 50))\n",
+ "#ax.set_xticks(np.arange(0, 70, 50))\n",
"ax.set_ylabel('')\n",
- "ax.axvline(133, 0, 1, lw=1, color='grey')\n",
+ "ax.axvline(27, 0, 1, lw=1, color='grey')\n",
"fig.tight_layout()\n",
- "fig.savefig(fig_save_dir + 'precision_recall.pdf', format='pdf', bbox_inches='tight')"
+ "fig.savefig(fig_save_dir + 'precision_recall_final.pdf', format='pdf', bbox_inches='tight')"
]
},
{
@@ -608,13 +630,13 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 14,
"id": "bc5a84dd",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAACoCAYAAADtjJScAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqKElEQVR4nO3dfVBU570H8O8i77LLEiWGhEVNjClvURsSy+pMU2N1YXInSmvWZhJrTMSkvQkzV5w00+gU8XrnRuxU722skBetN62rN9zEtuxqrE1qOBhNYyusxLcEORAkvsBZkHc49w9nT0VZ2F3YF85+PzOOnrPPOb/nHPTxt895zvNoZFmWQURERKQiYYGuABEREdFYY4JDREREqsMEh4iIiFSHCQ4RERGpDhMcIiIiUh0mOERERKQ6THCIiIhIdZjgEBERkeowwSEiIiLVCQ90BYiIfMFmswEAJEmCwWCA0Wh0u4zD4YDFYgEArF692qNzElFwYA8OEamOKIoQBAEmkwlmsxllZWUelREEAa2trR6fk4iCR0j24Jw8eRKyLCMiIiLQVSEal3p7e6HRaDBnzpxAV2VIgiBAq9Uq21qtFoIgDOpxGa6MyWSCJElwOBwendMdbH+IvOdJ2xOSCY4syxhpjVFZltHb24uIiAhoNBo/1Uzd8QcGBuBwOKDT6RAWNnznYSCvX433fqzjB/savfX19dDr9cq2Xq8flKy4W2Y05V1xtj89PT0eH0veGRgYQGdnJ2JiYkZse0g9QjLBcX5zyszMdFmmo6MDtbW1mDFjBmJjY/1VNVXHb2pqwvvvv4/8/HwkJSX5Pb671Hjvxzp+dXW1n2s1epIkjUmZ0ZQHbrQ/sixjxowZLst0dnairq4O06ZNQ0xMjMcxRiuQ8X0Ru7m5Gb/97W+xYsUKTJkyxe/xPRHK8d2Jff78ebe/+IVkgkNE6paSkjKod6W1tRUGg8HjMqMpPxyNRuNW8hoTExOQJDcY4o9l7OjoaOV3d88Zyvc+0PGHi+1Jrzb76ohIdYxG46BepoaGhkFvSI1UxtNzElHwYQ8OEamOwWBAbm4ubDYbJElCfn6+8lleXh7Ky8uHLSMIAiorK9HW1gaDwQCTyTRseSIKPkxwiEiVTCbTkPsPHz48Yhmj0Thk74yr8kQUfPiIioiIiFSHCQ4RERGpDhMcIiIiUh0mOERERKQ6THCIiIhIdZjgEBERkeowwSEiIiLVYYJDREREqsMEh4iIiAKuu7t7TM/HBIeIiIgC4uuvv8aePXuwZMkSJCYmoqqqaszOzaUaiIiIyK+OHDmCF198EWfPngUAzJo1C1u3bsXDDz88ZjECkuDYbDYAgCRJMBgMQ675MlyZsrIyGAwGAFwbhoiIaDyQZRkHDhzA7t278Yc//AHz58/Ha6+9BpPJhMTERHR0dKC2tnbM4vn9EZUoihAEASaTCWazGWVlZR6VefbZZ2E2m2EymVBaWurPqhMREZGHZFnGwYMHMX/+fCxZsgT19fXYsGEDDh48iGeeeQaJiYk+iev3HhxBEKDVapVtrVYLQRAG9dC4KhMfH6/st9vtKC8v91/FiYiIyCMNDQ1YtWoVPvzwQ2RlZeHgwYNYtGiRX2L7PcGpr6+HXq9XtvV6PRwOh1tlRFFEQ0MDRFEEAGzYsAEbN270qh6yLKOjo8Pl552dnYN+9zc1xu/q6lJ+H+7e+yq+u9R478c6vizL0Gg0/qoSEY0zX375JcrKyvCb3/wGsbGx+OMf/4jc3Fy/thtBMchYkiS3yjgcDsTHxyM9PR0AUFNTA7vdrmx7ore3161nfXV1dR6feyypKb7z5/zVV1/h2rVrfo/vKTXde1/Ej4yM9E9FiGhc+d///V88++yziIyMxI9+9CNs2rQJd9xxh9/r4fcEJyUlZVCPTWtrqzJgeKQyDodjUNn4+HiIouhVghMREYEZM2a4/LyzsxN1dXWYNm0aYmJiPD7/aKkxfnNzM44ePYrp06djypQpfo/vLjXe+7GOf/78eZ/Xo6SkBFOnToXJZEJBQQF0Oh1yc3P91r1NRJ7p6OjA+vXr8ctf/hJmsxlvvvkm4uLiAlYfvyc4RqMRW7ZsUbYbGhqU8TcOhwM6nc5lGYfDAYvFouwXRXHIN7DcodFoEBsbO2K5mJgYt8r5ipriR0dHK7+7e85AXr+a7v1Yx/dHN3NmZiYWL16MN998E+np6Vi7di327dvn87hE5BlZlrFjxw4UFxfjypUr+NWvfoWXX3454I+x/Z7gGAwG5ObmwmazQZIk5OfnK5/l5eWhvLzcZRmdTgez2QyLxQKHw4HCwkLodDp/XwIR+YHz37bVasWmTZsA3Oi1JaLg0d3djZ/+9Kd466238OMf/xgbNmzAvffeG+hqAQjQGBxXc9ccPnx4xDKc94YoNDhfJhBFEampqRBF8bYXEogocP7yl7/AbDbj6tWr+O1vf4tnnnkm0FUahEs1EFFQysnJwenTp/Hee++hvb0d+/btY4JDFCTOnz+PJUuWIDMzE6dOnQq65AYIkreoiIhutXPnTkydOhUJCQl4+eWXodVqkZmZGehqEYW8y5cvY8mSJZgyZQrKy8uD9tExe3CIKChlZmZi2bJl2Lt3L9LT07Ft2za0trYGulpEIW337t2477770NzcjA8++CBokxuACQ4RBambBxnn5uYC4CBjokD6z//8T6xcuRJ5eXmorq5GampqoKs0LK8fUXGOCiLyJQ4yJgoex44dw89//nO8+uqr2Lx5c6Cr4xavExzOUUFEvpSTkwOLxYL33nsPbW1tsFgsSEhIcPt4m80G4MYM2gaDYcg5s1yVcbXfYrEoE4wajUavJhklGk9kWcb+/fuRn5+Phx9+GEVFRYGuktu8fkTF7mMi8iWtVovly5fj2LFjsNlseOGFF/Dcc8+5dawoihAEASaTCWazGWVlZW6XcbXfbrejsrISJpMJq1evRklJydhdLFEQ6uvrw9NPPw2z2YxFixbBarUiIiIi0NVym9cJjiiKqKqqYvcxEfmEKIpYsWIFPvnkE3zyySfIy8tza/04ABAEAVqtVtnWarUQBMGtMsPtv3VZGbvd7s2lEQU9WZaxatUq7Nu3D7/73e9gsVgGLYI9Hnj9iConJwf79u0bNEfFeLt4Igpehw4dQnl5+aB9W7dudWtgY319/aD2SK/X3/YFzFUZV/sNBgOqq6uV/aIoer0WnizL6OjocPn5eFhRfjzF7urqUn4f7r77Kr4ngiW+xWLBnj178Oabb+KJJ57wS33cuXZZlt1eAsLrBIdzVBCRLyUnJ9+2LyMjw+vzOVez96aMJEkwm82oqKiAw+FATU0NAHi9VExvb69bvVHBvqL8eInt/Ll+9dVXuHbtmt/jeyOQ8U+ePIlXXnkF3/ve9zB79my3e07HykjXHhkZ6dZ5OMiYiIKS8y2qmzU0NLh1bEpKyqAem9bW1tseLw1XxtX+7du3w263IyMjAzqdzuuEKyIiAjNmzHD5+XhYUX48xW5ubsbRo0cxffp0TJkyxe/xPRGo+LIsw2q1YufOnTh8+DBmzZqFsrIyJCUl+a0O7lz7+fPn3T6f1wkOF8IjIl8yGo1YtWqV8ghIEAQUFha6feyWLVuU7YaGBuVNKIfDAZ1O57KMKIpD7nc4HHjttdewfft2iKKoJDne0Gg0bq0UH8wryo+n2NHR0crv7p4zlO59d3c38vLyUFFRgdmzZ2PTpk0oKChAXFycX+Lfarhr92SFcq8THM5RQUS+lJaWhqKiIlgsFgBAcXEx0tLS3DrWYDAgNzcXNpsNkiQhPz9f+SwvLw/l5eUuy7jar9PpMG/ePNhsNoiiiI0bN47xFRP5X2NjI/Lz83H48GG8//77WLhwIb744guEhY3/eYBHNch4NHNUEBGNxGAwDOq1qa2tdXv2VJPJNOT+w4cPj1jG1X6z2exWbKJgt3//fuzYsQPHjx9HXFwc3nvvPTz++OMjDsIeT7xOcJxzVFitVgDACy+8ELDuLCIa//bv3z/s55IkwWq14r333vNTjYjUp7e3F2vXrsV//dd/4dFHH8VPfvITvPrqq6rsoBjVI6qCggJl8F1ZWRm2bdsW9GtTEFFw+v3vf69MGuqKLMt+qg2RekiShL/+9a/YunUrzp49i8uXL+PXv/41XnzxRY/GtIw3Xic4o5mjgojoVuvWrUN2dvawZYZaboGIBmtubsann36Kuro67Nq1CydPngQAZGdn4+mnn8aTTz6JrKysANfS97xOcMZ6jgoiCm0jJTcA3B5kTBSKrl69is2bN+ONN95AV1cXIiIisGDBAuzZswcZGRmYNWuWqntsbjXqt6hu5u4cFeOFLMv40Y9+hFdffRXf+c53Al0dIiKiIQmCgOeffx6NjY145ZVXsHr1aiQlJanibShveZ3gjGaOivFCkiQcOHAAjY2N+OyzzwJdHSIiokE+//xzrF27Fh999BFSU1Nx/PhxPPDAA4GuVlDwOrVzzlEhyzJkWUZxcbFbXczjiXPGxJsX3iMiIgq0/v5+bN68GQ899BCamppQXl6OmpoaJjc38boHBxjdHBXB7sKFC3jhhRcAABMnTgxwbYiIKJR1dnaivr4edXV1ePfdd3HkyBE0NjZi3bp1+Pd//3dEREQEuopBx+0EJ9TmqLh5EHV7e3sAa0JERKGmra0NV69eRV9fH44fP46CggI0NzcDAL71rW9h2bJlMJvNmDt3bkgNHPaE2wlOqM1RERUVhQULFuDIkSP4+OOPsWnTJphMppB4tY4oGDQ0NChfNNra2iAIAtLT04d8g5NILerr67Flyxb83//9H3p6epT9CxYswK9//WtMmzYN3/72t5nUuMHtBCcU56h4/fXXUV5ejs2bN2P9+vVYv349Ll26NOJqtEQ0elVVVVi2bBmAG+PgFi9ejP379yv7iNREkiQUFhbi3XffhUajwc9+9jMYjUaEhYXhgQcegMFgYFLjIbcTnFCdo+LW8TdPPPEE/vSnP2HSpEkBqhGRerW1tcFqtUKj0aCysvK2z2tqapjgkOrY7XY89dRTuHjxIl566SU8/vjjeOihhwK6mrkajGqQcSh48cUXsXDhQpw6dQo9PT0oLCzEihUr8Morr2DevHmYMGFCoKtIpBparRbZ2dkoKytDfX39bY+jnn/++QDVjGhs1dXV4cSJE9i1axcqKiowffp0VFZWYvr06aitrQ109VSBCc4IoqKi8Mgjj+CRRx4BANxzzz348Y9/jO9+97vQ6XRIS0vDAw88gPDwcMiyjOTkZEyZMgVRUVGYPn06pk+fjvj4eMTFxSEyMjLAV0MU/AwGAzZu3IiqqirVTT1BoaO9vR01NTXQarU4d+4crl69iu7ubvT19WHPnj3K3Gr33HMP9uzZgx/+8IeIjo5W1WregcYEx0NPPPEELl26hJMnT+Ljjz/G6dOncebMGWU+IKvVim+++QYDAwODBl1HRUVh1qxZyMrKQlZWFmJjY9Hb24v+/n7IsoyJEyciPj4eAKDX69Hb26uqQdtEnsrIyMBbb70Fs9mMuLg4VFVVITMzE3FxcYGuGpFLVqsVP/nJT1BXV3fbZ+Hh4ejr64PJZMLu3buxaNEi3HnnnSE927AvMcHxQnR0NLKzs11+u5RlGT09Paivr8eXX34JSZJw6dIlfPbZZ/jzn/+MN954w604EyZMwNy5c3Hvvfdi0qRJmDx5MqKiotDS0oLOzk50d3ejq6sL3d3d0Gq1mDZtGlJSUqDT6dDT0wNZlhEXF4e4uDhMnDgRcXFxiIqKQlRUFBITEzlgjQAAPT09kCQJ/f396O/vD5rn/larFS0tLcp2dnY2Dh06hEWLFgWwVkRDO3nyJLZv345du3Zh8eLF2LRpE+6//35cv35daZvDwsLQ3t7OyWP9xOsE56233sJzzz034r5QpNFoEBUVhfvvvx/333//bZ9fv34dAwMDCA8PR3h4uLKvtbUVsixDkiS0tbWhoqICZ86cwcWLF/H555/jypUr6OzsxKRJkxAbG6skK1FRUZAkCfv27Rv0H8JwdDqd8jgtOTkZ06dPR0xMjNKz9PXXX+PChQvo7+9He3s77rzzTqSmpqKzsxPt7e2Ij4/H1KlTodfrER0djZiYmEH1iY6ORkJCAiZPnqxcI/mWLMtoa2tDT08P4uLi0NfXh9raWvztb3/DxYsXcf36daVsW1sbLl68iLq6Oly8eBEDAwPKZzk5OSguLg7EJQyi1+vx5JNPBroaRApZlnH58mVMmjQJEyZMQG1tLc6cOYNDhw5hx44dSEpKwo4dO7BmzRqXXyCZ3PiP1//z7N27V+k6BoCDBw+itLSUCY4bhpoZWa/XQ6/XK9sdHR2IjY1FamqqR9+o29vb0dbWhsjISGg0GrS3t+P69eu4fv062tvb0d3djY6ODpw9exZff/01mpubceHCBfz5z39WPgsPD8ekSZMwceJEJCcn4+6774Yoivj444+VHqGWlhY0Njaiv79/2PpoNBpMmjQJCQkJCA8Ph9lsxvLly9HY2IiOjg5ERkYq54yOjsbkyZMxZcoUREdHo6WlBYmJiYiMjMTAwICSFCYlJaGlpQUnTpxAU1MTtFotdDod7rrrLjz44IOYPHkyJk+ejMjISLS2tt72q6WlBQ6HAzqdDgkJCYiLi0NCQgL6+voAAPHx8bh+/Tp6e3txzz33YNKkSYiJifGqx6upqQlXrlzB+fPncfbsWZw9exbnzp3D9evXERYWBo1Gg5aWFoSHh6O/vx+TJ0/GXXfdhfDwcOj1ekRERGDatGmIi4tDV1cXIiMjIcuyci1tbW1obW3FuXPncObMmSGf34eHhyM5OXlQwxobG4upU6ciKysLM2bMQGJiopJwz5gxAw6Hw+NrHWunTp2C0Wgc9EiqurqaPTjkV/39/fjoo49w7Ngx/PGPf8SxY8dw9913K4OCgRu97SUlJSgoKOAXuiDi9U/CbDbDarUiIyMDFRUVqK+vx+rVq8eybuQFZ7LgdMcdd3h1no6ODmXpDVcJVn9/Pzo7O5Vf3d3dyq+uri5cu3YNzc3N+Oabb3Dt2jXo9Xr09/dj9uzZ+M53voPY2Fj09PQoSVl3dzcuX76Ms2fPor29HT09PcpbamFhYQgLC0N3dzcuXboErVaLhx56CBkZGWhvb4fD4cCRI0dQWlo6ZNIVHh6OhIQEJZHU6XT48ssv0draivb2dly7dg0REREYGBhAZ2fnbccnJCQgKysLaWlpGBgYQEdHB7q7u9Ha2gqdTgeNRqM8LnRe/+XLl/HFF18o59DpdJg5cyZmzpwJrVYLWZbR39+P+Ph4JXm7fPky6urq0NTUhJiYGMiyjN27d6OrqwvR0dHo7u6GRqNRrsWZ3GVlZeHpp59GcnIyIiMjldm3Z86ciQcffBDR0dEe/eyDIcExm81YunQpUlJSoNVqcfr0aRQVFQW6WhQCZFnG8ePHUV5ejn379qG5uRl6vR4ZGRl4++238fnnn0MURezevRuPPvooACAlJSWwlabbeJ3gPP/882hra0NeXh7S09Oxbds2t4+12WwAbkxsZDAYhpwgcKQyNpsNOp1OdZMLjicTJky4LaEaTlNTE0pLS/Gzn/0MSUlJw5YdLsGSZdllb8rAwAAkScKVK1fQ09OjJDSxsbFu9cAMDAzg6tWr+PTTT6HT6dDR0YGrV6/iyy+/xIkTJ3Do0CGEh4cjNjYWERER0Ov1aGhoUB5LRkdHK4/tMjMz8Ytf/AIGgwH33Xcf7rzzTrfqcOu133q9w12/mhgMBpSXl8NqtcLhcGDt2rUwGAyBrhaNI01NTTh27JjSs1lXV4euri6kpKQMmuJDlmXU19fjH//4B44fP44//OEPOHXqFO6++2489dRTWL58OR5++GHl392zzz4bkOshz3id4CxatAharRbbtm2DVqvFvn370NbWNuIjKlEUIQgCNm7cCODGX5Rbk5SRyjgcDpSWliI/P9/b6tM4Ntx/7mFhYUhISEBCQoJX5w4LC8PEiRORlJTk8eNBX7n1ekMhuXGyWCyoqanBr371K1RVVSmPFIluJcsympqa0NjYiL///e9466238OmnnwIAkpKSsGbNGvzgBz9AU1MT7r33XsyaNQstLS1oa2tDe3s7zpw5AwCYNGkSUlNTsW/fPuTl5XGus3HM6wQnLi4Ou3btUp7rx8fH4wc/+MGICY4gCIPGAmi1WgiCMCiBGamM1WpFTk6Ot1UnonGgpKQEKSkpyr97vkVFt+rt7cUHH3yAr776Ch999BEqKioA3PgSsHjxYvz+97/H/PnzcfHiRRw+fBhvvPEGIiMj8e677+LKlSuYMGECUlJSEBkZiddffx3f/va3kZCQgC+++AKpqalMbsY5rxMc5yhx5yrjOTk5bo3Bqa+vHzSYVq/X3/a8f7gydrsdRqNReYTlLVmWh51QyTkOY6jxGP6gxvhdXV3K7yNNZhXI61fjvR/r+P54TJaZmYnFixejqqrKp3FofDl79iyOHj2KU6dO4X/+539w7do15dHwf//3f2P27NmYOXMmEhMTlWOcicrcuXORlJQ07MLRnGhPPbxOcNLS0rBixQrlmXhZWZlH43BuJkmS22VEUYTJZPIqzs16e3vdmg57qMma/ElN8Z0/w6+++grXrl3ze3xPqene+yK+r2fmbmhouG0f36JSv97eXhw/fhyVlZX47LPPcOHCBTQ2NuLOO++EXq/HX//6V3R3d0Ov12PNmjV46qmnkJGRAQCcMI8G8TrBOXToEMrLywft27p1K1JTU4c9LiUlZVCPTWtr620DB12VKSsrg8FggM1mQ3V1NURRhMFgQHp6usf1j4iIwIwZM1x+3tnZibq6OkybNg0xMTEen3+01Bi/ubkZR48exfTp00dckT2Q16/Gez/W8c+fP+/zeqSlpSEvLw8JCQkQBAGCIKCwsNDnccn/WltbYbPZ8MEHH8BqtSpfhtLT0zFr1izMnz9feSvztddew9q1axEdHR1S49HIc14nOLcuggdAyaKHYzQasWXLFmW7oaFBecbunJvEVZmbx+lUV1cjMzPTq+QGuPGM1p0BpM7J7wJFTfGdrypHR0e7fc5AXr+a7v1Yx/fHfyzZ2dnYtm0bLBYLZFlGcXEx0tLSfB6XfOcvf/kLjhw5gm+++QYXLlzAxYsXIcsyLl68iL6+PsyZMwf/+q//irS0NDz++OPQ6XSBrjKNY14nOKIo3rZvqC7lWxkMBuTm5sJms0GSpEFvQuXl5aG8vHzYMsCNQchVVVUQRRHp6el8dZRIpQwGg9e9NqOZjmKk/U5j8bhcrZwDgC9cuICpU6eioqICe/bsQWJiInQ6HTIzM7FkyRKEhYUhJSUF//Iv/4KUlBRlmgROmEej5fXfIKPRiFWrVik9KJ50H7tqFA4fPjxiGWfsWx+PEdH49txzz+H5559X1nj7/ve/73LCwYyMDBQVFQ3ZkwyMbjoKV/sdDgdEUVReptiwYYNfE5w9e/Zg//79uO+++1BSUhKUb/j09/fj5MmT+NOf/oSysjI0NjYiNjYWHR0dSElJwW9+8xvk5+fz0RL5xagGGRcVFcFisQAAu4+JaFQWL148qDc2OztbSTJuJYoiDh486HJaitFMRyGKostjLRYLjEYj0tPTR7WmkDdvcW7cuFEZ+/Too4/i+9//vtfxR+Lpm3y1tbXYvn07Dhw4gNbWVkycOBHLli3DmjVrkJGRgatXrypvNY10zlB+gzPU44/1G5yj6gM0GAx44YUXAICTbxHRqNy6sOa6detclrVYLMNO5jia6SiGO7awsFCZvX3Xrl0jX5QLnrzF+c0330AQBJw/fx4lJSV444038MMf/hAzZ87EggULcOXKFTz22GOYM2eO1/UZLj5w4z+VkydPor6+Hh0dHejr68MjjzyCS5cu4YMPPsDRo0eRmJiIZcuWYe7cuUhPT0dERAQAKBPoXblyxavYY2G8vcEZ6vHH6g1OrxOctrY2FBQUQBAEaDQaGI1GbNu2jYkOEY0JZw+Jc12tm9uWmycAdJcn01G42l9dXY3y8nKUlJRg5cqVXj8q9+QtzmeeeUZJhp566ik8+uij2LNnDz799FPs2LEDCQkJ2L9/PzZu3IiCgoIxefzjjO9wOHDq1CkcOHAAR44cAQBERUUBALZv3w4ASE1Nxc6dO/Hkk0+OydQBofwGZ6jHH+s3OL1OcHbu3InVq1fj7bffBgCcPn0aVqsVy5Yt8/aURESK4b5E3drbc6vRTEcBYMj9NpsN8+bNQ3p6Ot555x1s2LDhtsde7nLnLc76+nocOHBgUE9PUlISkpKS8NBDDwG4sXbawMAA1q9fj5///Of43e9+h9LS0lGt0dfX14eTJ0+iqKgIH374IcLDw5Geno73338fixcvhizL6O7uRm1tLZKTk5GcnOyTMTWh/AZnqMcfqzc4vZ4VKTMzUxkMCNwYk+PtK9tERLdyfon64osvUFtbi7Vr18Jqtbp1rNFoRHV1tbJ963QUw5VxtV+SJMTHxw+KcfP2WPvlL3/pcgySU1hYGMLDw/Ef//EfOHr0KKKiojBv3jwsWLAAH374IXp6etyOd+nSJRQVFeHee+/F/PnzIQgC3n77bbS3t+Pvf/87nnjiCURHRyMmJgZ6vR7Z2dkwGAwcMExBy+senKHmJ+CcBUQ0Vob6EuWu0UxH4Wq/2WxGWVkZampqANxYf8+XX+qcj+aAG4+Fbp4bbCjz589XVsJ+6aWXsGjRIkyePBk//elPsXDhQnzrW98CcGMtv6ioKNx1113Q6XS4dOkSSktLUVFRgYiICJjNZixfvhyxsbGYPXu28kiKaLxxO8E5dOjQoO3KykqcPn1aSWocDgcMBoPL1zaJiDwx2i9Ro5mOwtV+d9bbGwsDAwM4e/as8ibZwoUL3TpuwoQJWLJkCXJycnD69Gls374dRUVFKCoqGva49PR0bN68Gc8++ywSEhKUuWiIxjO3E5wtW7bAaDQqA/+0Wi1aWlrQ0tKilGltbeU6MUTkFX6J+idJktDR0aH0vngqKioKc+bMwTvvvIOtW7fi3LlzaGpqQmdnJ7773e8iIiICLS0tkCQJEydORGpqKh81keq4neBs3LhxUHcxEdFY4peof3LO1TJx4sRRn+uOO+7A3Llzb9t/82rbRGrkdoLD5IaIfIlfov5pqFfjicgzXOyDiILCUMlNe3u78uZUTk5OyPyH7+zBCeRrwkTjndeviRMR+ZIoilixYgU++eQTfPLJJ8jLywuZga/swSEaPfbgEFFQOnTo0G0zBW/duhWpqakBqpH/XL9+HcDYjMEhClXswSGioDTU21IZGRkBqIn/ORMcPqIi8h4THCIKSqIo3ravoaEhADXxP/bgEI0eH1ERUVAyGo1YtWqVMluwIAgoLCwMcK38o6OjA5GRkQgPZxNN5C324BBRUEpLS0NRURFkWYYsyyguLg6Z18jb29sDspI0kZrw6wERBS2DwRAyvTY36+joYIJDNErswSEiCjLt7e0cYEw0SkxwiIiCTEdHB6KjowNdDaJxjQkOEVGQ4RgcotHjGBwioiDz4IMPQq/XB7oaROMaExwioiDzb//2byGzLAWRr/ARFREREakOExwiIiJSHSY4REREpDpMcIiIiEh1mOAQERGR6jDBISIiItVhgkNERESqwwSHiIiIVIcJDhEREakOExwiIiJSnYAs1WCz2QAAkiTBYDDAaDS6XcZms0GSJNjtdphMpiGPJSIabTsz1P6XX34ZmzZtgk6n88clENEo+L0HRxRFCIIAk8kEs9mMsrIyt8vY7XYAgNlsRmFhIQoKCvxadyIaH0bTzgy3/+DBg3jsscfw8MMP44EHHhjyvEQUHPzegyMIArRarbKt1WohCMKgb1euyjg/M5lM0Ol0iI+Ph91uR3p6ukd16O3thSzLOHXqlMsysiwDAM6dOweNRuPR+ceCGuP39/fje9/7Hi5duoTLly/7Pb671Hjvxzp+b29vQOrmrtG0M6Ioumx/Tpw4ofTeWCwWmM1mj+vG9sf/scdL2xPq8ce67fF7glNfXw+9Xq9s6/V6OBwOt8rc+khKkiSPkxsAys0Z7iZpNBpERkZ6fO6xosb44eHhSEhICFh8d6nx3o91fI1GE9QJzmjameHaHyeLxYKcnByv6sb2x/+xx0vbE+rxx7rtCcgYnFtJkuRxmQ0bNqC4uNireHPmzPHqOCIav7xpZ4baL4oiHA6H1+Nw2P4Q+Yffx+CkpKQM2m5tbYXBYPCojM1mg9FoHPSNiojIaTTtzEjH7t2716ueYyLyL78nOEajEdXV1cp2Q0OD8tjJ2YU8XBlBEKDT6WAymWC32yGKoh9rT0TjwWjameGOBYCDBw/eliwRUfDRyM5RPX508yuY8fHxSk/MwoULUV5eDp1ON2QZURSRl5ennMfhcODMmTP+rj4RjQPetjPDHQsAeXl52LVrF18VJwpyAUlwiIiIiHyJMxkTERGR6jDBISIiItVhgkNERESqwwSHiIiIVIcJDhEREakOExwiIiJSHSY4REREpDpMcIiIiEh1gmKxzWB080ymBoNh0FTtvvDyyy9jzZo1AICKigqsW7fOp/VwOBywWCwAgNWrVyv7XcUb63q4iu/P+2Cz2SBJEux2+6CV6v1xD1zF9tf122w2GAwG1NTUAADMZvOwcfz97yGUBeJeh1L7E+ptz3DxVdf+yHSb+vp6ef369cr2ypUrfR5z6dKlclZWlrxy5UpZkiSf18Nqtcqvv/66XFpaquxzFc8X9Rgqviz77z7U1NTIVqtVlmVZliRJzsrKGjbWWNbBVWxZ9s/1S5IkL126VPnzzJkzh40TiH8PoSpQ9zqU2p9QbnuGiy/L6mt/+IhqCIIgQKvVKttarRaCIPg0Zn5+Pk6cOIF33nlHWePGl/UwmUy3rZrsKp4v6jFUfMB/90GSJOUcOp0O8fHxsNvtfrkHrmID/rl+nU6H8vJyAIAoioMWsvXXz5+GFqh7HUrtTyi3PcPFB9TX/vAR1RDq6+uh1+uVbb1er6xA7CvO1YslSQJwo8vO3/VwFc+f9fDXfXCuGu0kSRLS09NRUVHh83vgKjbg378HFosFlZWV2LZtG4Dg+PmHukDda7Y/odH2DBcfUF/7wwTHTc4fuK84n3UCN1Y7zsnJCUg93I3nq3oE4j5s2LABxcXFLj/35T24NbY/r99sNsNgMKCkpAQbN270KI6//x6GMn/ca7Y/odf2DBVfbe0PH1EN4dbuy9bWVhgMBp/Fs9ls2LJli7Kt0+kgiqLf6+Eqnr/qEYj7YLPZYDQaYTKZAPj3Htwa25/X7/wGZDQaYbVaIQhCwH/+5P+2B2D7A4Re2zNUfDW2P0xwhmA0GpWuOgBoaGjw6ZsMBoMB8+bNU7YdDgfS09P9Xg9X8fxVD3/fB0EQoNPpYDKZYLfblefB/rgHQ8X21/VbLBbs3LlT2Y6Pj0d8fHzAf/7k/7YHYPsDhFbb4yq+GtsfjSzLstc1VbGbX0uLj49Xslxfx6uursby5cuVDNVX9RAEAXv37kVbWxvMZvOgLH6oeGNdj5Hi+/o+iKKIvLw8ZdvhcODMmTPDxhqrOrgT25fX73A4lAausrISer1eeV3WXz9/ci0Q9zqU2p9Qbnvcja+W9ocJDhEREakOH1ERERGR6jDBISIiItVhgkNERESqwwSHiIiIVIcJDhEREakOExwiIiJSHSY4NK4JgoC8vDxYLJZAV4WIQgjbnuDHBIfGNaPRiOzs7EBXg4hCDNue4McEh8a9m1eaJSLyF7Y9wY0JDhEREalOeKArQOokCALsdjsMBgOqq6uxbt06CIKADRs2KAuoSZIEu92OwsJC6HQ6AIDdbocgCDAYDBBFESaTSVkPRRRF7N27F5mZmZAkCTk5OcpxzvVNRFFEZWUltm/fHrBrJ6LAYdtDCplojNXX18tLly5Vtvfu3SuXlpbKsizLr7/+uvJnWZZlq9Uqr1y5UjnO+WenpUuXypIkyZIkyY899pgsSdJt5yktLZVfeukl5ZiVK1fKNTU1vrk4IgpabHvoZuzBoTG3d+9exMfHQxAEZd/Ny907v/kAgMlkQkFBARwOB/bu3Yu0tLRB50pOTobVagUAGAwG5dg1a9YMKpeZman8WavVQpKksbsgIhoX2PbQzZjgkE+kpaXBaDQq22azeVTnczgc0Gq1yvbNDRURkRPbHnLiIGMac7m5uaiqqhq07+ZvVA6HQ/mzzWaD0WiETqcb8rjTp08jJycHJpMJp0+fdnlOIiK2PXQzjSzLcqArQeojCAIqKyuV7ltnQ7Jlyxa0tbXBZDLB4XCguroaa9asUb4V3TpAMDc3F+np6S7PKYoi1q9fDwAoLi6GKIooKSlBWloa1q1bpwwSJKLQwLaHnJjgkF9t2bIFKSkpo+42JiLyBNue0MNHVERERKQ6THDIbwRBQFVVFWw2G+x2e6CrQ0Qhgm1PaOIjKiIiIlId9uAQERGR6jDBISIiItVhgkNERESqwwSHiIiIVIcJDhEREakOExwiIiJSHSY4REREpDpMcIiIiEh1/h9GaxAUuXZgzgAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAACoCAYAAADgkuTbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAs8klEQVR4nO3de1BUZ5o/8G+DKKB9ujV454BcvEDDGuIloc1kN8FLNzXZKkgmODcXL5Gpmo1mEsnWbiJZwaqZHXESJ0ltKUllNlUzEbPhj90IrWOcmUQPm5gJWaG9xQv2wWiMKN0oqCjn9we/PksrDX2jr99PVQr77fec874cffKc97znPRpFURQQERERxYC4UDeAiIiIKFiY+BAREVHMYOJDREREMYOJDxEREcUMJj5EREQUM5j4EBERUcxg4kNEREQxg4kPERERxQwmPkRERBQzxoTioBaLBQBgt9shiiKMRqPHdSwWC0RRRFtbGwCgrKxsxPojHYuIope/8Wao8g0bNmDr1q0QBMHrYxFRiClBZrPZlM2bN6ufy8vLPa5jt9uVkpIS9c9z5swZtr4nxyKi6OVPvBmufM6cOcrChQuVhQsXKnPmzFF27drFeEMUIYI+4iNJErRarfpZq9VCkiSXK6Ph6jQ0NAAAZFlWt3FXX5blEY/liZaWFiiKgoSEBO86SxTD+vr6oNFoUFBQELI2+BNv3MUPADhy5Ig62lNfX4+ysjLU19cz3hCFiDfxJuiJj81mg16vVz/r9Xo4HA6v6tTX1+Pw4cPYsWPHsPU9OZYnFEWBoii4ffu219vS/+nv70dvby+SkpIQF8fpZTT6/Ik37spNJpNaVl9fD7PZ7PGxPMF4EziMOTSUkMzxuZfdbveqTllZGURRRG1tLaqrq73apyfHuldCQgIURUF2drbbOr29vWhvb8esWbOQlJTk9THCVSD79e233+K9997DqlWrMHXq1AC10Hc8Z6Pr9OnT0Gg0ITu+O97GG3flsizD4XDcN8/H22Pdy5N4A4TPeQ60aI05PF+jy5t4E/TEJy0tzeUqqKurC6IoelzHGWiMRiM2btwIk8k0Yv3hjuUpjUaD5OTkEeslJSV5VC/SBKJfiYmJ6s9w+h3xnI2OcEh6AhFv3G27e/duLFmyxKtjecrTeAOE/jyPlmiNOTxfo8ObeBP0sT+j0YjW1lb1c0dHh3oP3Bk03NWpr6/Hzp071XKdTgedTue2/nDHIqLo50+8GSl+7Nu3zyWxYbwhigxBH/ERRRHFxcWwWCyw2+1Yv369+l1paSkaGhrc1jGbzZAkCZIk4fDhwygrK4PBYACAIesPd6xA++abb9De3o6cnJxROwYRecefeDNS/BAEATqdzqNjEVH4CMkcn8GTAwc7cODAsHUEQVDL772ScrdPd+WB9tZbb2Hv3r3qREciCg++xpvhygGoT5h6Wp+IwgOnuQdIdnY2zpw5gxs3boS6KUREROQGE58AKSgoQH9/v8s9fiIiIgovTHwCJDc3FwkJCfjyyy9D3RQiIiJyg4lPgIwdOxazZ89GS0tLqJtCREREbjDxCaCcnBwmPkRERGGMiU8A5eTk4OTJk5zgTEREFKaY+ARQTk4O+vv78dVXX4W6KURERDQEJj4BlJWVhXHjxuGvf/1rqJtCREREQ2DiE0BjxoxBXl4evvjii1A3hYiIiIbAxCfAHnroIY74EBERhSkmPgFWUFCA48eP4/r166FuChEREd2DiU+AFRQUQFEUTnAmIiIKQ0x8AiwnJweJiYlYuXIlFixYgBUrVuDq1auhbhYRERGBiU/AJSQk4J133sEzzzyD/Px87N+/H5999lmom0VEREQAxoS6AdHoRz/6EX70ox/h7t27+MMf/oAzZ86EuklEREQEjviMqvj4eGRmZjLxISIiChMc8RllWVlZOH36dKibQRTRamtrkZ6eDpPJhI0bN0IQBBQXF2P58uWhbhoRRZiQJD4WiwUAYLfbIYoijEajx3UsFgvsdjusVitMJpNavmHDBmzduhWCILjsZ8OGDaioqAAANDY2orKyctT6NZSsrCwcOHAgqMckijb5+flYsWIF3n77bRgMBrz44ovYs2ePR9v6G2/cbVtXVwdRFAEAJpMJQOjjDRGNLOi3umRZhiRJMJlMKCsrQ11dncd1rFYrAKCsrAybNm3Cxo0b1fr79u1DUVERFi1ahLlz56rbdHR0oLy8HLW1tWpACqasrCycPXsW/f39QT82UbRwXtA0NTWhuLgYAKDT6Ubczp94M9y2q1evRllZGUwmE3bt2qWWhzreENHIgj7iI0kStFqt+lmr1UKSJJcrKXd1nN+ZTCYIggCdTger1Qq73Y4jR46owbG+vh5lZWUAgPXr16tXY/5QFAU9PT1uv+/t7XX56ZSamopbt27hzJkzmDlzpt/tCDZ3/fLFzZs31Z/D/S6DJZB9Cyfh0i9FUaDRaAKyL1mW1Z85OTmQZRkOh2PE7fyJN7IsD1mu0+nUcqvVioaGBrVOsOINED7nOdCiNebwfI0ub+JN0BMfm80GvV6vftbr9fcFMHd1Bt/aAgaGnw0Gg8u29fX1MJvN6ufW1la1LgA1IfJWX18fjh8/PmK99vZ2l8+KogAA/vSnP2HBggU+HTsc3NsvXzjPwblz58JqbaNA9C0chUO/xo4dG5D9mM1m7NmzBx9++CGuX7+OPXv2uMQId/yJN+7KZVlGR0eHmoxVVVWhuroaQPDjDRAe53k0RGvM4fkaPZ7Gm7CY3Oz8y+lNnaqqKtTU1LiUOa8CB8/zGXyPfenSpTCbzffNA/JEQkICsrOz3X7f29uL9vZ2zJo1C0lJSWp5RkYGNBoN7t69i5ycHK+PG2ru+uWLb7/9Fp9++ikyMjIwderUALXQd4HsWzgJl34FclL/zp07kZ6ejokTJ2LDhg3QarXIz8/3aV++xJvB5Q6HAzqdTr3oamtrg9VqhcFgCFq8AcLnPAdatMYcnq/R5U28CXrik5aW5nLF1dXVpU4Q9LSOxWKB0Wi8b0h59+7dWLJkiUu91tZWNRgJggBZlu8bJfKERqNBcnLyiPWSkpJc6iUnJ2PmzJno6OjwaPtwdW+/fJGYmKj+DKffRSD6Fo5C3a9A3eYCfJ/c7G+8Garc4XC47EOn00GWZciyHPR4A4T+PI+WaI05PF+jw5t4E/TJzUajUR0OBgYmAzpvXzmDzHB1JEmCIAgwmUywWq3qcDMA7Nu3zyUgiaLokgg5HA6fgpC/srOz+Ug7kR98ndzsT7wZrnxw3JFlGUajMWziDRENz+cRH1/X1RBFEcXFxepj6evXr1e/Ky0tRUNDg9s6siyrT3IBA4Hl5MmT6mfnhGcng8EAi8Wijvy8++67vnbXL1lZWXxpKZEffJ3c7E+8cVcuCALKyspQX18Ph8OBTZs2QRCEsIk3RDQ8nxMff9bVcPfUw+D1boaqI4oijhw54na/g5+uuHc/gXjSwldZWVn48MMPQ3Z8okhnNptRX1+PDz/8EN3d3aivr8fEiRM92tbXeONPeSjjDRENz+fEZ/DQ89atWwF4NvQci7KystDV1YWrV69i0qRJoW4OUcTRarVYuXIlmpqaAAA/+9nPMGHChBC3iogikc9zfGRZRnNzs9dDz7EoKysLAPjOLiIfybKMVatW4dChQzh06BBKS0s9ftybiGgwn0d8fF1XIxYNTnwWLVoU4tYQRZ79+/ffdyt7+/btEblEBBGFls8jPjt37oQgCOq6Gjab7b7HRGmAXq/HpEmTOOJD5KPU1NT7yvLy8kLQEiKKdD4nPvn5+fjBD36A3bt3w2AwYMeOHejq6gpg06ILH2kn8t3gx8edOjo6QtASIop0Pic+vq6rEauysrLQ0tKCrVu34sEHH0RRURGamprUV1oQkXtGoxFr1qzB9u3bsX37djz11FPIzc0NdbOIKAJxcnOQzJkzB//7v/+LX/3qV8jNzUV3dzeKi4sxf/582Gy2UDePKKzl5uZiy5YtUBQFiqKgpqYGhYWFoW4WEUUgvyY3+7quRizasGEDFi9ejL/7u79DcnIyFEXBJ598gr//+7/H7373O1RVVYW6iURhTRRFbNq0Sf18/PhxTm4mIq/5nPhwXQ3vTJo0Sb0lCAy8V+Rv//Zv8fjjj+PgwYNMfIgG+eCDD4b93m63o6mpiQuDEpHX/LrVxXU1/FdUVITm5mb09PSEuilEYeP999+H3W53+x8Azo8jIp/4POLDdTUCo6ioCLdv38ahQ4dGfM8ZUayorKwccQ6P82WjRETe8HnEh+tqBEZOTg6mTZuGjz/+ONRNIQobnkxc5lNdRNHvxo0bePPNN/HXv/41YPv061bXvbiuhvc0Gg2eeOIJHDx4MNRNISIiCgs3b97E66+/jszMTLzwwgs4e/ZswPbt860u57oaBoMBACBJkssTF+S5oqIivP/++7h27RqfjCMiopjV29uLuro6/OpXv8Lly5dRXl6OzZs3Iz09PWDH8HnEh+tqBE5RUREURcGf//znUDeFiIgo6G7cuIHf/OY3yMrKwi9+8QssX74cx48fx9tvvx3QpAfwY8QH4LoagZKeno6srCx8/PHHKCkpCXVziIiIgsJut+PNN9/Ea6+9Brvdjp/85Cf4l3/5F8yePXvUjulx4sN1NUZXUVERLBaLui5SXl4eX/pKRERRqaurC2+88QZ+85vfoLe3F2vXrsVLL70U8NGdoXic+Lz//vsuC/ANxdN1NSwWC4CBZEkUxSEfS3VXx2KxwG63w2q1wmQyqeUbNmxARUUFAKCxsRGVlZUeHyscfP/738euXbvU37Fer8fBgwdRUFAQ4pYRhV5HR4f6JGl3dzckSYLBYBjy6dJ7+Rtv3G1bV1enXpyYTCaPj0UUqxRFweeff46dO3di9+7d6O/vR0VFBf7pn/4JM2bMCFo7PE58ArWuhizLkCQJ1dXVAIDVq1fft527OlarFQBQVlYGh8OBoqIiHDlyBMBAYCwvL0deXh527Njh8bHCxZNPPonLly+jr68Pt27dwsqVK7Fs2TL8+c9/5jIBFPOam5vxgx/8AMDAqvErVqzABx98oJa540+8GW7b1atXY8eOHRAEAaWlpTCZTBEVb4iCpb29HR9++CE++eQTSJKEK1euID09HS+//DLWrl2LadOmBb1NHic+gVpXQ5IkaLVa9bNWq4UkSS4Bwl0d53cmkwmCIECn08FqtcJgMGD9+vXqVZc3x/KUoijDrq7c29vr8tMX48ePV//c0NCA4uJiPPHEE6isrERKSgpEUURhYSE0Go3Px/BWIPrldPPmTfVnOKxUHci+hZNw6ZeiKH79Xe3u7kZTUxM0Gg0OHz583/dtbW0jJj7+xBtZlocs1+l0arnValUXcg1mvAHC5zwHWrTGnFg6X+fOncNHH32EhoYGfP7550hKSsLixYuxbt06PProo3jssccQHx8PAAE7L97EG78mN/vCZrNBr9ern/V6/X1vdXdXZ/CtLWBgONn5OH1ra6taBgyMCnlyLE/19fV59EqO9vZ2n/Y/lO3bt6OyshKbN2/GrVu3AADr16/H+vXrA3YMTwWiX85zc+7cOVy9etXv/QVKIM9ZOAmHfo0dO9bnbbVaLQoLC1FXVwebzXbfba1169aNuA9/4o27clmW0dHRoa5lVlVVherq6pDEGyA8zvNoiNaYE43nS1EU7N+/HwcPHsSf/vQnnDlzBgkJCXjkkUewdetWPPbYY0hOTlbrnzp1alTa4Wm8CXriMxTnX05v6lRVVaGmpkb97JzTAwBLly6F2Wz2+VhDSUhIQHZ2ttvve3t70d7ejlmzZiEpKcmnYwzl8OHD6tXfW2+9hS1btiAvLw9r164N2DGGE8h+ffvtt/j000+RkZGBqVOnBqiFvhutcxZq4dKv06dP+70PURRRXV2N5ubmgC2X4Uu8GVzucDig0+nUi662tjb1NrwvxxrKSPEGCJ/zHGjRGnOi7XzdunULhw4dwt69e7F37150dHRAr9fDbDajuroaS5cuDeqLy72JN0FPfNLS0lyugrq6uu57emmkOhaLBUaj0WVCYWtrq5r8CIIAWZY9OpanNBqNS8bqTlJSkkf1vDV+/Hi8+uqruHr1Kp5//nmkpqYG9dH3QPQrMTFR/TkavyNfjdY5C7VQ9yuQt2Tz8vLwzjvvoKysDBMmTEBzczPy8/NHDKz+xpuhyh0Oh8s+dDpdyOINEPrzPFqiNeZE8vk6efIkPvroI/zxj3/EJ598gt7eXsycOROLFy/GG2+8geLiYr9Gef3hTbzxeQFDXxmNRvW2FDAwKdl5+8oZNIarI0kSBEGAyWSC1WqFLMsQRRFLlixR6zscDhgMhmH3E4k0Gg1ef/11PP3003j66afxyiuv4Pbt26FuFtGoa2pqwrVr19TPhYWF6ry/4fgTb4YrH/zKHlmWh61PFKlu3LiB5uZm/Nu//RsKCgowb948bN68GQBQXV2N1tZWnDx5Ei+//DKWL18esqTHWz6P+Lzzzjv33W4ZquxeoiiiuLhYfSx98HyV0tJSNDQ0uK0jyzI2btyo1nc4HDh58iSAgVEf58jPu+++O+KxIlVcXBx+//vfIz8/H1u2bEFjYyPee+89PvlFUU2v1+OZZ57xejt/4o27ckEQUFZWhvr6ejgcDmzatAmCIEAQhKiLNxQ7Ojs70dLSgpaWFnz55ZdoaWnBqVOnoCgKkpKS8OSTT6Kqqgpms1kdSQMCNzk5mHxOfHbv3q0OOwPAvn37sGvXLo/mntz79JXTgQMHhq0jiqL6+Lq7fd67nbtjRbIxY8bglVdegdlsxqpVq1BQUIAXXngBVVVVLk+GEUWLo0ePwmg0utzaam1txfLly0fc1td4E8hyonBy7do1fPnllzhy5Ag+//xzfPHFF+oo5vjx4zF//nwsXboUlZWVeOihh5Cbm4tx48aFuNWB43PiU1ZWhqamJuTl5aGxsRE2mw3PPvtsINtGI1iwYAG+/PJL1NbWYuvWrXj//fexefNm/PSnP3XJyIkiXVlZGUpKSpCWlgatVotjx45hy5YtoW4WUVjr6enBF198gaNHj+Ls2bM4c+YMjh49qj5ZptVqsXDhQvzwhz9EQUEBCgoKkJ2drT5qHq18TnzWrVuH7u5ulJaWwmAwqIsGUnCNGzcOL7/8Mn74wx/ipZdeQkVFBTZv3oy1a9ciMzMTDzzwAPR6PZKTk5GUlIQxYwZOeUJCAjIzMxEXF/RpXkReE0URDQ0NaGpqgsPhwIsvvshXuhD9f9euXYPVaoXVakV7eztkWcapU6fQ0tKCO3fuICEhARkZGcjMzMRTTz2lJjlz586N+iRnKD4nPsuXL4dWq8WOHTug1WqxZ88edHd3B+0xa3KVmZmJ//zP/8SpU6ewfft27Ny5E52dncNuo9PpUFhYiCVLlsBoNOLhhx/mrTIKW/X19Whra8Prr7+O5uZmTJw4MaiPyxKF0p07dyDLMs6ePYuzZ8/i1KlTaG1tRVtbGy5cuAAAiI+PR2pqKkRRxLx581BeXo4lS5YgLy8vJhMcd3xOfCZMmIDf/e536kqlOp0OTz31FBOfEJszZw527tyJnTt34s6dO7h27Rq6urrQ29uLnp4e3L17F8DAbP0jR47g8OHDqK2thd1uR3x8PERRREpKClJSUpCZmYnMzEyMHz8es2bNithHMMl7N2/eVBfpk2UZNpsNsizjypUruHLlCubNm4edO3cGrT21tbVIS0tTn5IqLCzE/v37PZrjQxQJFEXBN998oyY27e3tsNlssNlsOHfuHM6fP487d+4AGHjIJT09HXl5eVi1ahUMBgPy8/Mxd+7cqJqLM1p8TnwqKiqg0WjUt7abzWbO8QkzY8aMweTJkzF58uQhv3f+T6O/vx/Hjh2DJElob2/HlStXcPnyZfzlL3/B22+/jdu3b+P555/Ho48+ikceeQRpaWlIS0vDggUL3O6bwlN/fz8uX76MM2fO4MSJE/j6669x6dIlXLlyBZ2dnWpi09XV5bLd5MmTkZqaiilTpkAURcyfPz+o7c7Pz8eKFSvQ3Nwc1OMSBdLNmzdx/PhxfPPNN7h48aIaa1tbW/HVV1+5rC49depUpKWlQRRFlJSUIDMzExkZGcjKykJ6enrEPDoejnxOfHJzc7Fq1Sr1PntdXR3n+USouLg45OXlDflIfHd3NxobG3H+/Hn85S9/wXvvvYcLFy6gv78fAPDggw9i6dKlWLhwoToxjvOG/KMoivpuIeerShRFQV9fH3p6enDjxg1cu3bNJVHp7OyE3W5HT08Puru71duct27dgqIoAAZWjr1w4YK69pNGo0F6ejpmzJiBBx54APPmzcPkyZPxwAMPYOrUqRBFUf0v1CvNdnR03Ffm6VNd0erf//3fMXfuXOTk5IS6KYSBf2vnz5/HxYsXcenSJXR0dKgjpc6Rm++++06tr9FoMGnSJKSkpCA3NxfPP/885s+fj+zsbGRkZIT831w08znx2b9/v/pyPqft27fzH2GUiY+PR3Z2Np588km89NJLAP7vXvOhQ4dw4MAB1NfXo7a2FsDAZGvn/ywffPBBLFu2TH1Pi/OFgefOncOZM2dcXmqn1WqRkpKCSZMmYfz48Rg7diw0Gg3u3LmD3t5ejBs3zuMrHEVR0NXVhQsXLqiJwfXr1++rd+vWLXR2duLs2bPQ6XTqyp8TJkyAKIqYPn26el9cURTcuHEDnZ2duHTpknoLqK+vD8nJyS7/KYqi3ibq7u5Wt7916xZ6enqGfEmhoii4cuUKZFnGN998o96SHMnYsWPVW5N6vR7jx49HcnIyxowZg+nTp2PChAlqIjp27FiIooi0tDRkZGQgOzs7YoJrbm4uSktLMXHiREiSBEmSsGnTplA3K6TeeustPPzww3jiiSdC3ZSY09/fj6+//hqff/65+t9XX33lsqDs+PHj1RGbgoICmM1mxMfHY8mSJcjNzcW0adM47yZEfE587n1hIAAuohcjxowZg4yMDGRkZOCnP/0pAODKlStoaWnB8ePHIcsyzp8/jw8++ACvvfYa4uLioCgKpk2bhoqKCjz99NO4ePHisMeIi4tDfHw8+vr61DJncpSSkoIHHngA48ePx9WrV3HlyhU1mXDeyhkq0fFWXFycer/8zp07Lm0BgOTkZIwbN85lZMYpISEBqampLglVYmIikpKSkJiYOOTy6llZWXj88ceRmpoKQRCQnJysJoDAwO99/PjxSEpKwqRJk9Tfwb376unpwfHjx5GTkxM187IKCwuxY8cO1NfXQ1EU1NTUIDc3N9TNCqlly5bho48+Ukf0QuXatWtoaWnB119/rSbugiAgLS0N6enpmD17NmbPnh1WSbaiKOjt7YXdbkdXV5d6gdTd3Y3e3l7cvHkT8fHxSEhIgKIo6jvabDYbTpw4gZMnT6oXNXPmzMGiRYvwk5/8BPn5+Zg+fTqmTZsGQRBc/m1G47/LSOVz4jN4yXanoYajKTakpKRg2bJlWLZsmVqmKApOnTqFTz/9FIqiIC4uDh0dHXj77beRkZGB5ORkaDQaKIoCh8OBzs5OdHZ2oqenBz09Pbhz5476GP7NmzfVWzvOn93d3Zg6dSpyc3PVfQFQ56GkpqZi8uTJSElJwYQJE+5LEG7cuIGjR49CFEWX23N2ux02mw0dHR1qQhMXF6cOS0+ZMgVpaWmYOHGius+7d++qE8j7+/sxZcoU3vILMFEUY36UZzCz2Yxdu3bh2LFjWLRoUUD2eefOHXz22WcwGo1u333U09ODP/7xj/iv//ovHDx4UF0TJi4uDjNnzsSMGTPUJOHGjRsA/u+2jnOfqampKCgowIMPPojp06cjJSVFvUjo7e3F+fPnoSgKBEFAQkKCOtrrvNBx7ldRFNy+fRs9PT24fv06Ll++jIsXL6qvNxk3bhyysrKwcuVKnDp1Cr29vejr68OtW7fcjqrGxcUhMTERd+/eVS92dDoddDodZsyYgfz8fDz99NNYsGABFi5cCL1eH5DfPQWPz4mP0WjEmjVr1DcUc+iZ7qXRaDB37lzMnTsXAHDx4kXs2rULBQUFmD59eohbNzAqk5ycjClTptx3BZafn+/VvuLj4zFhwgQ+Xh0ga9euxbp169Q3si9btszlBaCD5eXlYcuWLUOOQkezxx57DElJSWhsbAxY4vPyyy/j17/+NTZu3IjXXnvNJfm5c+cOfvvb3+LVV1/F9evXMW/ePJSUlKjz+2bPnq2uEwYMJCWdnZ04deoUTpw4gcuXLwMYGJU9e/YsWlpa8Pvf/z5g7xuMi4vD1KlTMW3aNDXJci7PMX/+fBQVFSE5OVlNpARBgE6ng16vV0eRBUFwGWV19iOQL9yl0PNrcvOWLVtQX18PABx6JqKAWbFihcsChYWFhaiurh6yrizL2LdvX8wtpZGYmIhHHnkEjY2NePXVV/3e36FDh7Bt2zYsX74cO3bswO3bt/Hmm2+ir68Pzc3NePHFF9HS0oKf//zneO655zBnzpxh96fRaNRb0+5e1trf3w+73a5OzgcGnnw6c+YMUlNT1dvdfX19UBRFHXUdfIt33Lhx990WdnJebP3zP/+zzxdbTHqij8+JDzAw9Pyzn/0MAHilS0QBc+8LSSsrK93Wra+vx8SJE0e7SWHpe9/7HmpqanD58mVMmTLFq2337t2L7777Ds888wz6+/vxD//wDygsLERjYyP+4z/+A+vWrcP+/fths9nQ19eHv/mbv8H//M//YPHixQFrf1xcHCZOnOhy/np6epCYmMi5MDRqfE58uru7sXHjRkiSBI1GA6PRiB07djABIqKAcy6U6py0PjjODF7YMNY8+uijAAaSmNWrV3u83VtvvYXnnnsOiqLghRdewJw5c3Dp0iXs27cP8fHxWLNmDXQ6HRobG/HQQw9h0aJFeOihh1xuZRFFKp9nX+7cuRPPPvssTpw4gePHj+PFF19EU1NTINtGRARg4EJrzZo1WLhwIRYtWoS1a9eqSdAzzzwTc/N7nCZNmoTFixfjv//7vz2q39/fjy1btuAf//Ef8Ytf/AKnT5/G2rVr0d7ejjfeeAPZ2dlq3aeeegrvvPMOfv7zn2Px4sVMeihq+Jz45OfnqxMPgYE5P86JzkREgcQLLffMZjP27duHP/zhD0O+n+/EiRPIz8+HIAiIj4/Hv/7rv+KXv/wlamtrkZWVhW3btuHSpUtYs2ZNCFpPFHw+p/CCIHhURkTkr6EutGjAj3/8Y3z00Uf48Y9/jLi4OBQXF+Pdd99FSkoKOjs78f3vfx8JCQl49dVXodPpMHfuXHzve98LdbOJQsbjxGf//v0unw8fPoxjx46pyY7D4VDXTiEiCiReaLk3Y8YMHDlyBBcuXMDevXvxyiuvYOHChdizZw9eeukl2O12fPbZZ8jMzAx1U4nCgseJz7Zt22A0GtVJhlqtFteuXVMXigKArq4uj96dY7FYAAwsFCeK4pATE93VsVgssNvtsFqtMJlMI5Zv2LABFRUVAIDGxsZhnw4hovAQyAstf+PNUOXu4koo483MmTOxfv16mEwmlJSU4OGHH8bYsWPx8ccfM+khGsTjxKe6utplqNlXsixDkiR1TY7Vq1ffF4jc1bFarQCAsrIyOBwOFBUV4ciRI27LgYHVpMvLy5GXl8eXqBJFiEBdaPkTb4bb1l1cCYd4k5aWhkOHDuGVV17Bo48+qj75RUQDPE58ApH0AAMrPDuDGTAQ0CRJcglG7uo4vzOZTOqqm1arFXa7fchyg8GgXgH5S1EU9PT0uP3e+a6ooV5AGckC2S/nS0qdbx4PNZ6z0eXPireButDyJ97Isux2W3dxJVjxBhj5PNfU1ABAWPxb80a0xpxw+XcZaOHSL2/iTdCfT7TZbC7vNtHr9fctRe+uzuBbWMDA8LPzSTJ35a2trWoZMDAq5Iu+vj4cP358xHrO99ZEm0D0y3kOzp07h6tXr/q9v0DhORs9zncseWuopOf69evqk1xms9mjNcP8iTfDbesurgQ73gDhcZ5HQ7TGHJ6v0eNpvAmLhRmcfzm9qVNVVaVe0QxXPvge+9KlS2E2m32aFJmQkOCyxsW9ent70d7ejlmzZoXVW4j9Fch+ffvtt/j000+RkZGBqVOnBqiFvuM5G12nT58O2L5kWcbGjRvV11jU1dVhx44dyMnJ8XpfvsSbe8vdxZVgxRsgfM5zoEVrzOH5Gl3exJugJz5paWkuV1xdXV0u7+TxpI7FYoHRaLxvSPnecovFgtbWVjUYCYIAWZZ9Wm9Io9F4tHx6UlJSVC6zHoh+JSYmqj/D6XfEczY6AvmOo/3796OhocGlbPv27SMmPv7Gm6HK3cUVWZaDHm+A0J/n0RKtMYfna3R4E298XsDQV0ajUR0OBgYmAzpvUzmDzHB1JEmCIAgwmUywWq2QZdltuSiKWLJkibofh8PBRRaJItBQT2/l5eWNuJ0/8cZdubu4wnhDFBmCPuIjiiKKi4vVx8/Xr1+vfldaWoqGhga3dZzD3U4OhwMnT550Ww4MjPo4r9DefffdIPWSiALJeYEzWEdHx4jb+RNv3JUbDIYh44q7ciIKLyGZ4+PuqYcDBw4MW0cURfUxdU/KB+8nEE9aEFFoGI1GrFmzRh1BkSQJmzZt8mhbX+ONJ+X3fs94QxT+gn6ri4jIW7m5udiyZQsURYGiKKipqQnYEhtEFFvC4qkuIqKRiKLo8SgPEZE7HPEhIiKimMHEh4iIiGIGEx8iIiKKGUx8iIiIKGYw8SEiIqKYwcSHiIiIYgYTHyIiIooZTHyIiIgoZjDxISIiopjBxIeIiIhiBhMfIiIiihlMfIiIiChmMPEhIiKimMHEh4iIiGIGEx8iIiKKGWNCcVCLxQIAsNvtEEURRqPR4zoWiwV2ux1WqxUmk8ml3F39kY5FRNHL33gzVPmGDRtQUVEBAGhsbERlZaXHxyKi0Ar6iI8sy5AkCSaTCWVlZairq/O4jtVqBQCUlZVh06ZN2Lhx47D1PTkWEUUvf+LNcNt2dHSgvLwctbW1agLEeEMUGYI+4iNJErRarfpZq9VCkiSXKyN3dZzfmUwmCIIAnU4Hq9WKtra2IevLsjzisTzR19cHRVFw9OhRt3UURQEAfP3119BoNF7tP5wFsl93797F448/jkuXLuG7774LRPP8wnM2uvr6+kL+e/Un3gwXP9avXw+TyeT1sTzhSbwBwuc8B1q0xhyer9HlTbwJeuJjs9mg1+vVz3q9Hg6Hw6M6g29tAQPDyQaDAY2NjUPW9+RYnnD+Mof7pWo0GowdO9brfYe7QPZrzJgxmDhxYkD2FQg8Z6PfjlAHeH/izXDbtra2AhiIQcDAKHQw443z+3A4z4EWrTGH52v02xG2ic9QnMHDmzpVVVWoqanxep+eHOteBQUFXm9DROHJl3hzb7lzTg8ALF26FGaz2edj3Yvxhmh0BX2OT1pamsvnrq4uiKLoVR2LxQKj0agONbur78mxiCh6+RNv3JVbLBZs27ZNLRcEAbIsM94QRYigJz5Go1EdJgYGJgk6b185h4WHqyNJEgRBgMlkgtVqhSzLbusPtx8iin7+xBt35aIoYsmSJWq5w+GAwWBgvCGKEBrFOTMpiAY/8qnT6dSRm6VLl6KhoQGCIAxZR5ZllJaWqvtxOBw4efLksPt0V05EscHXeDPcts7y1tZWrFy5Uh3ZYbwhCn8hSXyIiIiIQoErNxMREVHMYOJDREREMYOJDxEREcUMJj5EREQUM5j4EBERUcxg4kNEREQxg4kPERERxQwmPkRERBQzwuIlpZFu8GqtoihG9DL1FosFdrsdVqsVJpNJ7Uu09VEQhKjqW11dnbp68FCrDkdqv2ho0XRuoz3mRGO8ASI85ijkF5vNpmzevFn9XF5eHsLW+KetrU1pampSFEVR7Ha7snDhQkVRoquPdrtdKSkpUfsZDX0rLy9X7Ha7oiiKUlJSoihKdPSLhhZN5zbaY040xhtFifyYw1tdfpIkCVqtVv2s1WohSVIIW+Q7u92utl0QBOh0Olit1qjqY1NTE8xms/o50vtmtVrV9lutVjQ0NACI/H6Re9F0bqM95kRbvAGiI+Yw8fGTzWaDXq9XP+v1evWtz5HGaDSiurpa/Wy322EwGKKmj1ar9b6h10jvW1tbGzo6OiDLMgCgqqoKQOT3i9yLpnMbzTEnGuMNEB0xh4nPKLDb7aFugt+qqqpQU1Pj9vtI7KMsy+o96eFEUt8cDgd0Oh0MBgMMBgPa2tpgtVqHrBtJ/SLvRMO5jbaYE43xBoiOmMPEx09paWkun7u6ujz6yx7OLBYLjEajOmEtGvpYV1cHYKBvra2tkCQJVqs14vsmiqJLe3U6HWRZjvh+kXvReG6jLeZEa7wBoiPmMPHxk9FoRGtrq/q5o6MjfGeye0CSJAiCAJPJBKvVClmWo6KPzz77LEwmE0wmk/q0gcFgiPi+GY1GdcgZgHq+Ir1f5F60ndtojDnRGm+A6Ig5GkVRlFA3ItINfoRPp9OpVy2RRpZllJaWqp8dDgdOnjwJIHr6KEkSamtrkZqaisrKSoiiGPF9cz4O7HA4IIrikI+WRmK/yL1oObfRHnOiMd4AkR9zmPgQERFRzOCtLiIiIooZTHyIiIgoZjDxISIiopjBxIeIiIhiBhMfIiIiihlMfIiIiChmMPGhmCBJEkpLS1FfXx/qphBRDGDMCV9MfCgmGI1GFBYWhroZRBQjGHPCFxMfihmD3xxMRDTaGHPCExMfIiIiihljQt0Aim3OtxaLoojW1lZUVlZCkiRUVVWpL76z2+2wWq3YtGkTBEEAAFitVkiSBFEUIcuy+jJAYOD9P7t370Z+fj7sdjvMZrO6ncPhgCRJkGUZhw8fxm9/+9uQ9Z2Igo8xh6AQhYjNZlNKSkrUz7t371Z27dqlKIqi/PrXv1b/rCiK0tTUpJSXl6vbOf/sVFJSotjtdsVutytFRUWK3W6/bz+7du1SnnvuOXWb8vJypa2tbXQ6R0RhhzGHFEVROOJDIbN7927odDpIkqSWtba2qn92XjEBgMlkwsaNG+FwOLB7927k5ua67Cs1NRVNTU0AAFEU1W0rKipc6uXn56t/1mq1sNvtgesQEYU1xhwCeKuLQiw3NxdGo1H9XFZW5tf+HA4HtFqt+nlwICMiYswhTm6mkCkuLkZzc7NL2eArMYfDof7ZYrHAaDRCEIQhtzt27BjMZjNMJhOOHTvmdp9EFLsYcwgANIqiKKFuBMUuSZJw+PBhdTjYGWi2bduG7u5umEwmOBwOtLa2oqKiQr2auneCYnFxMQwGg9t9yrKMzZs3AwBqamogyzJqa2uRm5uLyspKdZIiEUU3xhxi4kNhadu2bUhLS/N7GJqIyBOMObGDt7qIiIgoZjDxobAjSRKam5thsVhgtVpD3RwiinKMObGFt7qIiIgoZnDEh4iIiGIGEx8iIiKKGUx8iIiIKGYw8SEiIqKYwcSHiIiIYgYTHyIiIooZTHyIiIgoZjDxISIiopjx/wDwyJ3tc2Ex0gAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
@@ -627,20 +649,20 @@
"fig, ax = plt.subplots(1, 2, figsize=set_size(width, subplots=(1,2)))\n",
"sns.lineplot(x=df.index, y='val/box_loss', data=df, ax=ax[0], color='black', linewidth=1)\n",
"sns.lineplot(x=df.index, y='val/obj_loss', data=df, ax=ax[1], color='black', linewidth=1)\n",
- "ax[0].set_ylim([0.02, 0.07])\n",
- "ax[0].set_xticks(np.arange(0, 350, 50))\n",
+ "ax[0].set_ylim([0.02, 0.03])\n",
+ "#ax[0].set_xticks(np.arange(0, 350, 50))\n",
"ax[0].set_xlabel('epoch')\n",
"ax[0].set_ylabel('box loss')\n",
- "ax[0].axvline(133, 0, 1, lw=1, color='grey')\n",
+ "ax[0].axvline(27, 0, 1, lw=1, color='grey')\n",
"\n",
- "ax[1].set_ylim([0.007, 0.01])\n",
- "ax[1].set_xticks(np.arange(0, 350, 50))\n",
+ "ax[1].set_ylim([0.005, 0.007])\n",
+ "#ax[1].set_xticks(np.arange(0, 350, 50))\n",
"ax[1].set_xlabel('epoch')\n",
"ax[1].set_ylabel('object loss')\n",
- "ax[1].axvline(133, 0, 1, lw=1, color='grey')\n",
+ "ax[1].axvline(27, 0, 1, lw=1, color='grey')\n",
"\n",
"fig.tight_layout()\n",
- "fig.savefig(fig_save_dir + 'val_box_obj_loss.pdf', format='pdf', bbox_inches='tight')"
+ "fig.savefig(fig_save_dir + 'val_box_obj_loss_final.pdf', format='pdf', bbox_inches='tight')"
]
},
{
@@ -653,13 +675,20 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 18,
"id": "fe9b6f1c",
"metadata": {},
"outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.61718\n"
+ ]
+ },
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAFQCAYAAADayYZkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKK0lEQVR4nO3deVxU9f4/8NeAgwIyYJloOqiJhSwZ5DpuuSVYppJCieWOt6uZ3SDbruaSZVo3bXULKxemm5j5S0YzLckht8xwXG6a5JBLuTCDLIrw+f3hg/N1HEiWw5xZXs/HowfOcM6Z97w7MC8+53POUQkhBIiIiIhu4KV0AUREROR8GBCIiIjIDgMCERER2WFAICIiIjsMCERERGSHAYGIiIjsMCAQERGRHQYEIiIistNA6QKUcODAAQghoFarlS6FiIjIYUpLS6FSqRAdHX3LZT1yBEEIATkvICmEwNWrV2XdpitjP+y5Yk/Ky8uRn5+P8vJy2bftiv2oT+yHLfbDlpz9qMnnn0eOIFSMHERFRcmyvaKiIhw5cgShoaHw8/OTZZuujP2w54o9OXPmDL788kskJyejRYsWsm7bFftRn9gPW+yHLTn7kZOTU+1lPXIEgYiIiP4eAwIRERHZYUAgIiIiOwwIREREZIcBgYiIiOwwIBAREZEdRU5zNBgMAACLxQKtVgudTlfpcsuXL4dWqwUAxMbGAgCsViv0ej0AYNKkSQ6oloiIyPM4fATBbDbDaDQiNjYWiYmJWL58eaXLjRs3DomJiYiNjcWyZcuk541GI/Lz8x1ULRERkWdyeEAwGo0ICAiQHgcEBMBoNNosYzKZpGVMJhMyMjKk78XGxiIkJMQxxRIREXkohx9iOHXqFIKCgqTHQUFBsFqtNsscOnQIeXl5MJvNAICZM2dizpw5stYhhEBRUZEs2youLrb56unYD3uu2JN9+/YBAEpKSmT7Wangiv2oT+yHLfbDlpz9EEJApVJVa1mnuNSyxWKxeWy1WhEYGIiIiAgA1wODyWSSHsuhtLQUR44ckW17AJCbmyvr9lwd+2HPVXpy8uRJTJs2DZMnT8YLL7yA1NTUav9SqQlX6YejsB+22A9bcvXDx8enWss5PCCEhITYjBjk5+dLExEraLVam+cCAwNhNptlDQhqtRqhoaGybKu4uBi5ublo06YNfH19ZdmmK2M/7LlaT7Zs2YKGDRsCALKystCvXz888cQT0vevXr1a7V8ylXG1ftQ39sMW+2FLzn4cP3682ss6PCDodDosXLhQepyXlyedxWC1WqHRaKDT6aQzFYDrExurOtOhtlQqlew3AfH19eWNRW7AfthzlZ5s27YNnTt3BgA8/PDDSElJweOPPw6NRoMdO3agX79+aNGiBd5++2089thjtX4dV+mHo7AfttgPW3L0oyYjgQ6fpKjVajF48GAYDAbo9XokJydL34uPj5dCQmJiIvR6PZYvX46UlBRoNBoA1yc57tq1C0ajUTpdkpzDhg0bcO7cOenx5cuX7W4VLISAXq/HXXfdhXXr1jm6RPobQgisW7cOBoMBWVlZ6NGjBwDgH//4By5fvowNGzYAAD7++GPcdddd6Ny5M8aNG4dffvlFybKJqL4ID/TLL7+IX375RbbtFRYWin379onCwkLZtulq5s+fLwCIoUOHiv/973+iU6dOwsvLS0RHR4v9+/cLq9UqFixYIMLDwwUA0aZNG+Hr6ysOHjyodOkOUd19xGAwiFatWon//Oc/wmq1isuXLzukvvPnz4thw4YJANJ/e/bsEa+++qo4ffq06N27t3jwwQdFYWGh8Pf3F3PnzhVFRUWiY8eOIjw8XJSWltbo9fgzY4v9sMV+2JKzHzX5/OOVFKna/vzzT1y7dg3nzp3D119/jW+//RbFxcV4//338dJLL6F///7YuHEjHnroIZjNZrzxxhsoKSnB/fffj8DAQLzyyiuIjo7Gli1bYDKZcM8996BPnz5YvXq10m+t1hYvXoxOnTohKSmpTjP9hRBIT0/H0KFD0bhxYzz77LPQaDRo166dzczly5cvIywsDBs3bqxz7UIIfPfdd1i4cCHuu+8+7Ny5ExkZGXjnnXcwdepUtGrVSlo2KSkJ27Ztw6JFi1BYWIjHH38cvr6++Pjjj3H48GF8/PHHda6HiJxMneOIC+IIQs3t2bNHeHt7Cz8/P+Hl5SX9lXnHHXcIAGL69OmirKxMdOzYUajVarFq1SpRWFgoiouLRWZmpnjvvffEqVOnbLZ58eJFkZSUJACIH374weZ7ZWVlory83JFvscZOnTolGjVqJHr27CkAiDVr1lS57N/tI99++63o37+/ACASEhJESUmJ2LVrl/jwww/ttvuf//xHABCDBg2qU+0//PCD6NWrlwAg/P39xeDBg4XZbLZZ5vTp09IIwsWLF4Wfn58AIHQ6nc1ySUlJonnz5qKgoKDar+8JPzM1wX7YYj9sKTWCwIAgA3ffmcvLy0XPnj1FeHi4ePPNN8WKFStEbm6uOHjwoJgwYYJISUmRPsxPnDghtmzZUu1+lJWVifvuu0/07NlT2sb3338vWrVqJaZNm1av76uuRo8eLYKDg4XVahXdu3cXQ4YMkb5XXl4uJkyYIO644w4RGRkpLl68WGlP0tPTBQDRsWNHsXHjRrvX6N27t+jXr58QQoirV68KrVYr7rjjDuHl5SXOnj1bq7pffPFF6TW//vrrKoPYjQFBCCHOnDkjDh48KC5evGiz3MmTJ4WPj4+YPXt2tWtw95+ZmmI/bLEfthgQHIgB4dbKy8vFtm3bxLvvviv9lb9ly5ZqrVvTfmRmZgoAYunSpeLTTz8V3t7eIjQ0VAAQq1evFqdOnRLjx48XaWlpdXhH8tq7d68AIJYtWyaEEGLJkiVCrVaLn376SWRlZYmPPvpIABBPP/20UKlU4r333rPrSWFhodBqtWLYsGFVfkh/8sknAoA4ePCgNM/j+++/F2q1WixevLjGde/bt0+oVCoxa9YsUVZW9rfL3hwQ/s5zzz0nGjduXO3Q4o4/M3XBfthiP2wxIDgQA8KtrVy5UgAQarVaREVFiVdffbXa69a0H+Xl5WLixInSYYsJEyaI0tJS8eijj0rPqVQq0bRpU6focXl5uejVq5eIjIwU165dE0IIcfbsWZtDLxXvQwgh4uPjRbt27cTu3bul+n///Xfx2GOPCbVaLX799dcqX6uwsFB06NBBaDQaAUC8/PLLQgghhg4dKkJDQ2s0ibGsrEx06dJFREVFVWtSYU0CwoULF0RQUJAYMWJEtQ4NuePPTF2wH7bYD1tKBQSnuJIiKatiEty1a9cwatQo3HvvvVixYgUef/xxrF69Gl5e9TuXVaVSYdmyZejWrRv++OMPvPLKK/Dy8sK6devw/fffIy8vD/feey86d+6MTz/9VDrtDgAaN25cp9cWQuD06dPw9/e3uQR4hT179uDixYvo168ffHx8UFZWhlmzZiErKwsGgwHe3t4AgODgYLz33ntQq9Xo0KEDsrKyMGXKFADAiy++iM6dO2P27NlYuXIlTp8+jZiYGKjVanz44Yd/e8EuPz8/GI1GjBs3Dk2bNpUuOb5gwQLExMRg3LhxuPfeexEfH4/w8PBKt7Fx40Y0bNgQFosFe/bswffff48GDeT90b/tttuwcuVKPProo5g7dy5mzpwp6/aJSAF1jiMuiCMIth577DHRtGlT0b17d+Hv7y/UarXw9/cXeXl5tdpeffVj5MiRIjg4WEycOFEEBgaK1q1bi6NHj9Z6ewcPHhR33323ACBuu+02YTQabb5fXl4u7rzzTgFABAYGivj4eHH33XcLLy8v8dprr9XotZYuXSr8/PxE69atRceOHUW7du3EpUuXal27EEKsWLFCABDe3t6iXbt2wmKxCCGEWLt2rdi6dasQQoj9+/cLtVotGjRoIJo3by4efvjham+/JiMIFV5++WWhVqvFhQsX/nY5V/+ZkRv7YYv9sMXTHEkRxcXF+Oqrr+Dv74+9e/di/fr1yMnJwY4dO9CyZUuly7OxYMEC9O7dGzt37sSYMWPg7++PHj164NChQ5UuL4Socls5OTno0aMH/Pz8sH79ekRERKB///42dxb96aefcPr0aXz44YeYPn06zp49i169emHnzp146aWXalT76NGjsW7dOtx55504dOgQPvvss0pHLGpiwoQJOHfuHI4dO4Y///wTkydPRm5uLp588kkMGjQIEydOxKOPPoqoqCg89NBD+PPPPzF//vw6veatPP300ygrK8P69evr9XWIqP7xEIOH2759O4qKipCZmYlWrVrZ3Irb2bRt2xaff/659PjixYvo378/Bg4ciJSUFERGRqJ///44cOAAZsyYgX379mHw4MFYvHgxgoODbba1atUqNG7cGFlZWWjcuDEGDx6MBx98EEOHDsWPP/6Idu3aYdOmTQgMDMSECROgVqvx6quv1qn+li1bYsuWLSgoKMCdd95Zp21VaNasGZo1a4bly5fjsccew88//4ygoCBMnDgR69atQ4cOHfDuu++idevWyM3NRfv27WV53aoEBwejf//+WLt2LSZNmlTlcr/++iuuXr1ar7UQUd1wBMHDbdq0CaGhoQgLC3PqcFCZ2267DVu2bEFoaChmzZqF2NhYNG7cGF26dMHp06cxbdo07NixA8OGDUNJSYm0nhACGzduxCOPPCLNYWjUqBE2bNiAJk2aYPDgwbhw4QI2bdqE2NhYqNVq2Wr29vaWLRzcKDExEZMmTcLRo0fx/PPP4/XXX0dubi4yMzMRGhoKtVpd7+GgwqhRo6S5Izfas2cP3n33XcyaNQvR0dGYO3euQ+ohotphQPBgQghs2rQJQ4YMqZdb+TpCs2bNkJWVhYKCAuzZswezZs3CN998g5ycHMybNw//7//9P/z888948MEHcfToUQDA0aNHceLECTzyyCM227r99tuxefNmXLx4Effccw9++uknDBkyRIm3VSuLFy/GsmXLMHXqVEXrGD58OBo1aoTPPvvM5vnk5GRMmzYNc+bMwcCBA5GZmYlvv/1WoSqJ6FZ4iMGDnTx5EqdPn8aAAQOULqXOVCoVOnfuLN2BsELnzp2RmZmJiRMnIjo6GuvWrcOePXvg5+eH/v37220nNDQU27Ztw7p163D77bfj0UcfddRbqDNfX9+/HdZ3lMDAQCQkJGDFihWYMWMGvLy8YDKZcPDgQaSnp6NPnz4ICAhAnz598K9//Uv2URoikgcDggc7cOAAACAmJkbhSurXAw88gJycHIwePRrDhw8HAIwfPx6NGjWqdPmOHTuiY8eOjizR7UycOBGffPIJRowYgZMnTyI8PByBgYEYNmwYGjZsiKKiIqSmpmLUqFFYunSp4qMeRGSPhxg82E8//YTmzZujefPmSpdS73x9ffH5558jPT0du3btwrJly5Quya316NED4eHhMBgMsFgsWLt2LUaMGIGGDRtKy4SGhmL06NGYPXs2CgoKFKyWiCrDgODBDhw44PajBzfy9vZGYmIidDqddIEjqh8qlQpbt27F8ePHsWfPHowdOxb/+te/7JZ78cUXcf78eXz99dcKVElEf4cBwQMVFBSgtLQUBw4cQHR0tNLlkJtq2bIl7rzzTjRt2hRpaWmVXukxJCQE9913HzZt2qRAhUT0dxgQPNDIkSMRFRWFs2fPMiCQ4oYMGYLMzExcu3atRusJIZCdnY3S0lJkZGRg5syZf3txLCKqGQYED1NaWoqdO3fi2LFjAMCAQIp7+OGHcenSJZurWFZHZmYmdDod2rRpI90DYuPGjfVUJZHnYUDwMCaTCcXFxXj11VcxatQotG3bVumSyMN16tQJzZs3x9tvv43y8vJqr5eeno527dqhZ8+eeOuttxAbG4tnn31WuvnYlStXMHXqVPz8888Arl9WfNKkSdi+fXt9vA0it8OA4GH27NkDb29vpKSkYM2aNS57gSRyH15eXvjoo4+wadMmPPvss9U6TFBSUoIvv/wSTzzxBPR6Pf71r3/hnXfewe+//w69Xg8AeOONN/D+++9j6NChOHbsGEaNGoUVK1Zg5MiRMJvN9f22iFweA4KH2bNnDyIjI+Hv7690KUSSoUOH4v3338eSJUswf/58bNu2Db/99luVy1fc0yIhIUF67p577kHfvn3x2Wef4ejRo5g/fz4mTJiAoqIihIWFYdOmTfj000/h7++PpKSkGo1WEHkiXijJw+zZswfdunVTugwiO//4xz/wxx9/4JVXXgFw/doV77zzDiZNmoRVq1bBy8sLY8aMAQBkZGQgMjISHTp0sNnG6NGjMWHCBIwYMQKtW7fGu+++ixdeeAE///wzunbtCq1WC61Wi759+2Lp0qV46qmnHP4+iVwFRxA8SH5+PkwmE7p27ap0KUSVmjNnDrZv346DBw/iySefxOTJk9G5c2eMHz8ekyZNwq+//ory8nJkZmbi4Ycftlv/0UcfRcOGDXH06FGsXr0avr6+CA0NxYgRI6DVagFcv7LmpEmTMGPGDPz111+OfotELoMBwYPMmzcPDRs2RGxsrNKlEFVKpVKhb9++uPfee/HRRx9h/fr1OH36NF599VW0bNkS06dPx/79+/HXX38hLi7Obn2NRoP58+dj+fLl6NKlS5Wv89prr6GoqAgZGRn1+XaIXBoPMXiAhQsX4sSJE1i5ciVmz56Nli1bKl0SUbXEx8dj+PDhUKlU6NixI4YPH46zZ89Co9Gge/fula7z7LPP3nK7d9xxB/r27YsvvvgCkydPlrtsIrfAEQQ39+233+L555/H1q1b0alTJzz33HNKl0RUIxVn2gwbNgwTJkzATz/9hIEDB9b5DpAjRozAjh07cP78eTnKJHI7DAhuaP/+/bhw4QIKCwvxz3/+E7169cKJEyeQnZ1tc7McIlezZMkSPProo5gyZUqdtzVs2DAIIfDCCy/gxIkTMlRH5F54iMHFXLlyBePHj8fhw4eRlJSElJQUAIBer0deXh569uyJHj16IDg4GE2bNsUff/yBDRs28HoH5Bb8/PzwxRdfyLKt4OBgvPTSS1i8eDEyMjJw4sQJNGnSRJZtE7kDjiC4mG3btmHt2rVo2rQpnn/+eWRnZ+PcuXOYOHEiUlJS0K9fP9x33324++67YbFYYDQaK71JDhEBc+fOxf/+9z+UlJTg7bffVrocIqeiyAiCwWAAAFgsFmi1Wuh0ukqXW758uXRqUsXM++qu6642bdqEdu3awWAwQKfTISkpCffccw8aNGiAt956Cx988AHWrl2L9u3bo6ysDA0acJCI6O80b94cU6dOxTvvvIPp06fj9ttvV7okIqfg8BEEs9kMo9GI2NhYJCYmYvny5ZUuN27cOCQmJiI2NhbLli2r0bruqLy8HEIIbNq0CY888gi8vb2xevVqtG7dGgaDATNnzsS//vUvHD9+HHfffTdUKhXDAVE1paamoqSkRLpMsxy+/vprrF27VrbtETmawwOC0WhEQECA9DggIMDuLm4mk0laxmQySecqV2ddd9W3b1+EhYXh9OnTGDJkCACgffv22LFjB/766y9Mnz5d2QKJXFjFaY8Vv2vKy8uxaNEivPvuu/j2229rfEGlwsJCjBkzBklJSXjxxRd5WWdySQ7/E/PUqVMICgqSHgcFBcFqtdosc+jQIeTl5Uk3VJk5cybmzJlTrXWrSwiBoqKiWq17s4q7x1V8lVtxcTF27doFPz8/BAcHIyYmxqZ2Pz+/envt2qjvfrgiV+xJSUmJ9FWun5UKztiPIUOG4Nlnn4XZbMb27duRmpoKHx8fXL16FQCg0+mwcOFC3Hfffbfc1kcffYT8/Hw8++yzWLBgAfbu3Yunn34aXbp0QWBgoN3yztgPJbEftuTshxCi2pPWnWIM2mKx2Dy2Wq0IDAxEREQEgOuBwWQyVWvd6iotLcWRI0dqtW5VcnNzZd1eBZPJhLKyMrzzzju46667cPz48Xp5HbnVVz9cmSv1pOJn6+TJk7h48WK9vIYz9eOee+5BeXk55s+fj02bNqFXr15YuHAh8vLykJOTgzVr1iA+Ph5r1qyR/lApKCjAH3/8gbCwMGk7JSUleOuttzBw4EAkJSWhXbt2mDVrFoYNG4YOHTrg008/rfIXtDP1wxmwH7bk6oePj0+1lnN4QAgJCbH5qz8/P1+aiFih4oYqFQIDA2E2m6u1bnWp1WqEhobWat2bFRcXIzc3F23atIGvr68s27x27Rq8vb2hUqmQnZ0Nb29vDB06VLbt16f66Ierc8WenDt3DllZWWjbti2Cg4Nl3baz9mPIkCH46KOP4O3tja+++gphYWGIiopCXFwckpKSoNPp8Prrr2PDhg3w9vZGQkICNm/ejPnz5+Ppp5+GSqXCU089hfz8fLz22msICwtDhw4d8OSTTyIjIwNjx47FtWvXcO+999q8rrP2Qynshy05+1GTPzAdHhAqhukq5OXlSWciWK1WaDQa6HQ6m8lCZrMZOp0OFoulynVrSqVSwc/Pr5bvonK+vr6ybPPAgQOIjY1FSkoKUlNTYTKZEBYW5nKzq+XqhztxpZ40atRI+lpfNTtbPzIyMnDs2DFcuXIF0dHRNt9r37491q5di0GDBuHNN9/EAw88gK+//hoPPvggXnzxRaSlpeH2229HdnY20tLSEBMTY7P+qFGj8Nxzz2HDhg1V3lHV2fqhNPbDlhz9qMk1cRw+SVGr1WLw4MEwGAzQ6/VITk6WvhcfHy+FhMTEROj1eixfvhwpKSnQaDR/u667+P3339GvXz9YLBYsWLAAhYWFOHDggN0vGyKSn7e3N8LDw+3CQYWBAwdi9uzZmDdvHgYMGIBu3brBYDDg+++/R/fu3dG6dWukpaVh7Nixduuq1WokJCRg3bp1nLRILkGROQhV3U1w27Ztt1zG3e9E+N133yE/Px/79u1D165d8f777+OXX35BYmKi0qUREYBXXnkF3bt3x5EjRxAXFweVSoXevXujd+/et1w3KSkJH374IbKystCnTx8HVEtUe04xSZH+z/Hjx3HnnXfi/vvvR1JSEmbMmAEAHEEgchIqlQoDBgzAgAEDaryuTqdDmzZtsGbNGgYEcnq81LKT+fXXX9G+fXsA168kuXnzZqxZswa9evVSuDIiqiuVSoXHH38cX3zxBa5cuaJ0OUR/iwHByRw/flw6u8LHxwdxcXEYNWoUvLz4v4rIHSQlJeHSpUvYvHmz0qUQ/S1+6jgRIYTNCAIRuZ+IiAj06tULU6dOlS4GR+SMGBCcyPnz52G1WmW7PgMROafPP/8carUaQ4YMka7USORsGBCcSMUFLDiCQOTemjdvji+//BImkwmvv/660uUQVYoBwYn8+uuvAIB27dopXAkR1bf77rsPL7zwAl577TWPuekcuRYGBCchhMCRI0fQokUL+Pv7K10OETnAK6+8Ap1Oh+HDhyMnJ0fpcohsMCAozGg0omXLltBoNHjjjTekG1QRkftr2LAhvv76a4SFhWHevHm3vMKiEAKPP/440tPTHVQheTIGBIUZjUZcunQJr776KtavX4+1a9cqXRIROZC/vz8WLFiAEydO4Msvv/zbZXfs2IH09HS8/PLLKCsrc0yB5LEYEBSWl5eHNm3a4LnnnkN8fDzuuOMOpUsiIgfr1q0bunXrhvnz50MIUeVyixYtQosWLfDbb79h48aNDqyQPBEDgsLy8vLQqlUrpcsgIoU9+eSTOHLkCLKzsyv9/u7du5GZmYkFCxagd+/eeO2111BSUuLgKsmTMCAojAGBiACgU6dO0Gq1WLVqld33zp8/j4SEBHTp0gWPPfYY3nzzTRw+fBgjRozA22+/jUOHDjm+YHJ7DAgKY0AgIgDw8vLCqFGjoNfrodPp0Lx5c4wYMQKnTp1CQkICioqK8MUXX0CtVqNr16744osvsGPHDqSkpOCf//yn0uWTG2JAUNC1a9dw5swZaLVapUshIieQlJSEy5cvo6CgABMnToTRaET79u2xa9cuZGRk2PyueOihh2CxWLBmzRpkZWXhf//7n4KVkztiQFDQ2bNnUV5ezhEEIgJw/SJpR48exf79+zFv3jzs3r0b/fv3x9q1ayu9o2uDBg0wbNgwBAUFVXpogqguGBAUlJeXBwAMCEQkad++PXx8fAAAWq0WmzdvxqOPPlrl8r6+vhg1ahQ++eQTXLt2zVFlkgdgQFAQAwIRyWH8+PE4ffo0tm7dqnQp5EYYEBSyc+dOnDhxAn5+fggKClK6HCJyYTExMbj33nvx8ccfK10KuREGhHr2xRdfICUlxea5s2fPok+fPpg3bx5atWoFlUqlUHVE5A5UKhXGjx+Pr776Cn/99ZfS5ZCbYECoZx999BGWLl1qc3W0ih/gy5cv8/ACEckiKSkJPj4+mDFjhtKlkJtgQKhHV65cwa5du3D58mWcPn1aev7SpUsAgD59+qB///5KlUdEbqRp06Z47733kJaWhnXr1ildDrmBBkoX4M5+/PFH6VKoR48eRcuWLQH8X0DQ6/UIDg5WrD4ici9jxozBN998g8mTJ6NLly5o166d0iWRC+MIQj3asWMHgoKCoFarcfToUen5/Px8AODkRCKSlUqlwocffohmzZohISHBZuSSqKYYEOrR9u3b0bdvX4SGhuLYsWPS85cuXYKvry8aNmyoYHVE5I40Gg0+//xz/PHHHwgPD0dWVpbSJZGLYkCoR0eOHEF0dDTCwsJw9OhRfPDBB9i5cycuXbqEJk2aKF0eEbmpmJgYHD58GBERERg/fjzv+ki1woBQj65du4aGDRsiLCwMP/74I6ZOnYpVq1YhPz+fAYGI6tVtt92GlStX4vfff8cbb7yhdDnkghgQ6tG1a9fQoEEDhIWFoaCgAEIInDlzhiMIROQQYWFhmDJlCt5//31ehplqjAGhHpWVlaFBgwaIjIwEALRs2RJnz57FpUuXOEGRiBziiSeewPnz57Fjxw6lSyEXo0hAMBgMMBgM0Ov1MBqNlS4zbdo0mEwmmEwmLFy4UHper9fDYDBg+fLlMJlMjiq5VipGEGJiYrB3714kJyfjzJkzPMRARA4THR2Ndu3aQa/XK10KuRiHBwSz2Qyj0YjY2FgkJiZi+fLllS6Xl5eHsWPHYtGiRZg8eTIAwGQyYdeuXYiNjcWkSZOwaNEiR5ZeYxUBAQA6deqEFi1a4M8//8T58+cZEIjIIVQqFRISEpCRkYGrV68qXQ65EIcHBKPRiICAAOlxQEBApaMIycnJ2Lt3L9LS0qDRaKR1tVqtzXLOOopQXl4OIYQUEACgefPmEELgxIkTDAhE5DBJSUm4dOkS0tPTlS6FXIjDr6R46tQpm+PvQUFBsFqtdsvl5OQAACwWCwAgMTERWq1Weh64PhphNpsRERFR4zqEECgqKqrxepUpLi62+QpASurXrl2TXqciFJSWlsLf31+213c2lfXD07liTypOjSspKZF9X3XFftSn+u5H27ZtERcXh/nz5yM+Ph5eXs49/Yz7hy05+yGEqPYNAp3iUssVIeBGqamp0r8HDBiAuLg4xMbGYvPmzbBarTh06BAASKMLNVVaWoojR47UruAq5ObmSv+u+OX6559/Sq9TUFAgfb+oqEj213c2N/aDrnOlnlT8XJ48eRIXL16sl9dwpX44Qn32IyEhAePGjcMHH3zgMveA4f5hS65++Pj4VGs5hweEkJAQmxGD/Px8u8MGBoMBOTk5UkjQaDTSSMGSJUtgMpkQGRkJjUYjnSFQU2q1GqGhobV/IzcoLi5Gbm4u2rRpA19fXwCQ3mNISAg6dOgAAAgNDYVKpYIQAuHh4dLz7qayfng6V+zJuXPnkJWVhbZt28p+zxBX7Ed9ckQ/OnToIN3IacqUKU59m3nuH7bk7Mfx48ervazDA4JOp7M5KyEvLw86nQ7A9Q9VjUYDrVZrMzJgtVoREREBq9WKV155BUuWLIHZbJZCQm2oVCr4+fnV7c3cxNfXV9pmxQiCv7+/zes0bdoUf/31F5o3by776zubG/tB17lSTxo1aiR9ra+aXakfjlDf/fj3v/+NgQMH4vPPP8eVK1cwdOhQtGjRot5er664f9iSox81CYYODwharRaDBw+GwWCAxWJBcnKy9L34+HhkZGQgIiJCOhUyJycHaWlpAK6PJPTo0QMGgwFmsxlz5sxxdPnVVlZWBgA2kxQBoEWLFvjrr784SZGIHK5///7o0qULxo8fD+D6odx+/fohMjISr732msLVkbNRZA5CbGxspc9v27bNbpmbl01MTKy/wmRUcdWymwNC8+bN8csvv/BCSUTkcCqVCsuWLcOOHTsQHx+PDz74AEajEfPnz0dSUhLCw8OVLpGciFNMUnRHVQWEiuE8jiAQkRI6duyIjh07AgDeeOMNXLlyBc2bN8eaNWs4ikA2nPtcFxf2dwFBrVbzuBoROYWGDRti5MiRWLt2LcrLy5Uuh5wIA0I9qQgI3t7eNs/369cPI0eOdOoZxETkWUaPHo3c3FxkZ2crXQo5EQaEelLVCMLAgQOxZs0aJUoiIqpUz5490axZM2zatEnpUsiJMCDUk6oCAhGRs/Hy8kJcXBw2b96sdCnkRBgQ6klVpzkSETmjwYMHIycnB2azWelSyEkwIMjg4MGDmDp1qs0EH44gEJErGThwILy9vZGZmal0KeQkGBBkcOTIEfz44482t1JlQCAiV9KkSRN0794dW7ZsUboUchIMCDKouDMaRxCIyJX17NkTP/74o9JlkJNgQJABAwIRuYMuXbrg9OnTyMvLU7oUcgIMCDKoCAgVExMBBgQicj1du3YFAOzevVvhSsgZMCDIoOJiSJWNINx8oSQiImd15513olWrVtizZ4/SpZATYECQAQ8xEJG76Nq1K0cQCAADgiwqCwi8DgIRuaKuXbti3759KCkpUboUUhgDggw4gkBE7mL48OG4cuUKlixZonQppDAGBBlU3HiJAYGIXF1oaCj+8Y9/YP78+bhw4YLS5ZCCGBBkUDGCIISQnmNAICJXNXPmTABAamqqwpWQkhgQZMDTHInIndxxxx146623kJaWBoPBoHQ5pBAGBBnwNEcicjfjx4/HwIEDMW3aNJs/fshzMCDIoKpJiiqVSvoeEZErUalUmDdvHn799Vds3LgRW7duxblz55QuixyIn14yqCog8PACEbmyLl26oE+fPpgwYQIGDRqE5ORkpUsiB2JAkEFV10FgQCAiV/fyyy+juLgYI0aMwFdffYX9+/crXRI5CD/BZMARBCJyVwMHDkRBQQFUKhVycnLw0ksvwWAwSKd3k/viCIIMGBCIyJ2p1Wo0aNAAixYtwtatW/HWW28pXRI5AAOCDKo6zZEBgYjcycMPP4wZM2bghRdewHfffad0OVTPGBBkUNVpjgwIRORu5s2bh969eyMxMRF//PGH0uVQPWJAkEFVl1pmQCAid9OgQQOkp6fDx8cHMTEx0Ov1SpdE9aTWAWHRokX473//i4KCAowfPx7Tp0/H1q1b5azNZVR1qWVeJImI3FGzZs2we/du9OnTB4899hhmzpxp8/uP3EOtA0JUVBRGjhwJvV6PiIgIvPPOO8jPz5exNNfBSYpE5GnuvPNO6PV6LFiwAHPnzsXq1auVLolkVutPMI1GAwDIzMzEvHnzAACBgYHVWrfi2t4WiwVarRY6nc5umWnTpmHy5MkAgM2bN0s3Dbn5uuCxsbG1ewMy4nUQiMgTqVQqPP/889i1axdee+01jBo1iiOnbqTWIwhmsxnZ2dkwm83o0KEDzGYzrFZrtdYzGo2IjY1FYmIili9fXulyeXl5GDt2LBYtWiQFBavVCrPZjNjYWMTGxsJoNNa2fFlxBIGIPNnLL7+MY8eOISUlBatXr+bhBjdR64AQFxeHw4cPY/369bh8+TI+//zzagUEo9GIgIAA6XFAQEClH/TJycnYu3cv0tLSpNEKjUYDvV4Pk8kkresMeJojEXmyLl26YOjQoViyZAmeeOIJvPjii0qXRDKo9SfY0qVL0bp1azRp0gTTpk1DQEAAoqKibrneqVOnEBQUJD0OCgqqNFjk5OQAuH4YAgASExMBACkpKYiPj0dERARWrVpV2/IhhEBRUVGt179RaWkpAKC4uFjaZklJCby8vGR7DVdSXFxs85VcsyclJSXSV7n3Y1fsR31yh36sWbMGQgi8//77eOGFFxAWFoaEhIRabcsd+iEnOfshhKj2VTBrHRCioqIwaNAgrFixAhEREXjuuefw+eef12pbFSHgRhVzDgBgwIABiIuLg0ajQU5ODjIyMrBo0SKMHTsWGRkZtXrN0tJSHDlypFbr3uzMmTMAgNOnT0vbPH/+vKyv4Ypyc3OVLsHpuFJPKn4uT548iYsXL9bLa7hSPxzBHfoxYMAA9OrVC7NmzUJ4eHid5iS4Qz/kJFc/fHx8qrWcwycphoSE2IwY5OfnQ6vV2ixjMBiQk5MjhQSNRgOz2Qyz2YwePXogIiICaWlpmDlzJoxGY6WTHG9FrVYjNDS0xutVpiKNNWvWDB06dAAANG7cGAEBAdJjT1JcXIzc3Fy0adMGvr6+SpfjFFyxJ+fOnUNWVhbatm2L4OBgWbftiv2oT+7Wj/nz56NXr144fPhwrUYR3K0fdSVnP44fP17tZWsdEMxms/S1JpMUdTodFi5cKD3Oy8uTPuCtVis0Gg20Wq0UQCqej4iIwKFDh2zChE6nq/aZEzdTqVTw8/Or1bo3q9iOWq222ebNjz2Nr6+vR7//yrhSTxo1aiR9ra+aXakfjuAu/ejZsycGDx6M+fPnY9SoUdX+i/Vm7tIPucjRj5rcZKvOkxQzMjJQUFAAvV5frYCg1WoxePBgGAwG6PV6m/uLx8fHS2HAarXCYDBg4cKFSEtLA3B9HoLRaIRer5eu3hUREVHbtyAbnsVARGRrwYIF+O2337B48WKlS6FaqvUnWEBAAIQQWLRoEd555x306NGjWpMUgaqvXbBt2za7ZW5edtKkSbWsuP7wOghERLYiIyMxZcoUzJ49G3fffTeGDh2qdElUQ3W61LJGo5EOD3Tv3t1prkvgaLwXAxGRvblz56Jfv34YNmwYpk+fbvM7kpxfnS61nJCQYDfB0BPxbo5ERPY0Gg02btyI9957D0uWLMFDDz2EjRs3Kl0WVVOtA0JeXp7dcxXXLvA0nINARFQ5lUqFKVOmYP369Thz5gyGDRtmd8l8ck61/gQLDw9HfHw8mjRpAqPRCKPRiJSUFDlrcxkMCEREf2/48OEYNmwYIiMj8dlnnznFfXTo79V6BKF79+5YvHgxOnToACEE5s6di+7du8tZm8tgQCAiujWVSoXRo0djw4YNKCgoULocuoVaBwTg+imLKSkpSElJQXh4eKWHHTwBAwIRUfWMGjUKxcXF+PLLL5UuhW6hTgHhyJEjyM7Olv5btGiRXHW5lKpOc+RtT4mIbLVu3RpdunTB5s2blS6FbqHWf+I+88wzKCgosLmjoqfed4B3cyQiqr4ePXpwBMEF1PoTrEePHnbX2N6yZUudC3JFPM2RiKj6unbtiv/85z/4888/0axZM6XLoSrU+hBDZdc/CAkJqVMxropzEIiIqq9bt24AgN27dytcCf2dOt2sSa/XS5dXFkIgMzMT69evl604V8GAQERUfSEhIQgODsaPP/6IIUOGKF0OVaHWIwjp6elo1aoVhBAQQgCA9NXTMCAQEVWfSqVCt27dOILg5Gr9CZaammp33YOK+zJ4mop7MdwYkBgQiIiqptPpMGfOHBQWFsLf31/pcqgSssxBKCgowJYtW6DRaGQpyhV5eXnxLAYiomoaOXIkCgsLkZGRoXQpVIVaB4Ts7Gzp3wEBARg0aJDNc55GpVKhvLwcp06dwtGjR3kdBCKiv9G2bVs88MADWLVqldKlUBVq9CduQUEBMjMzoVKpsGvXLrvvHzp0CCNHjpStOFfi7e2N8vJyzJ49GydOnOAIAhHRLYwbNw5jxoxBbm4u2rRpo3Q5dJMajSAEBASge/fuyMnJwalTp/D777/b/Ddx4sT6qtPpVYwgFBUV4cKFCwwIRES3EB8fDx8fH3z11VdKl0KVqPEnmFarxZw5c5Cdne2xN2eqjJeXF8rLy1FWVgar1cqAQER0C40bN0bPnj2xdetWTJs2Tely6CZ1upvjzS5fvlynYlzZjQHBYrEwIBARVcPAgQPx3Xff4erVqzbP79+/H3Fxcbh48aJClVGNAsKNAeDIkSN2/y1cuFD2Al1FxSGGihGE0tJSBgQiolsYOHAgCgsLkZ2djT179mDgwIFITU3FjBkzsHPnTqxevVrpEj1WtT/BtmzZgunTp+Obb75Bq1atMGbMGERFRdmc+28ymTB79ux6KdTZVZzmWFZWBiEERxCIiKohOjoat99+O8aMGYO8vDyEhYVh9+7daNy4MaKjo7FixQo8/fTT0vVmyHGq/Qmm0Whs7taYkJCAlJQUm2U89WZNgO0IQgUGBCKiv+fl5YXU1FT88MMPSE1NRXJyMs6fP4+jR48iPz8f8fHx2LdvHzp37qx0qR6n2p9geXl5No8rS3OeerMm4PppjkIIm4DA6yAQEd3ajBkzMGPGDOlxYGAgNBoNOnXqhFatWmHlypUMCAqo0QjCrFmz0KNHDwDXb9a0detW6fsWiwUGgwErV66Uv0oXwBEEIiJ5eXt7Y+zYsViyZAnefvtt+Pn5KV2SR6n2J9igQYOg0WikCyRZrVb88ssvNsvk5+fLWpwrufEshgoMCEREdTNu3DjMmzcPX3zxBZ588kmly/EoNfoE6969u3R6Y2XXQfDkSy0zIBARye+uu+5Cv379sGrVKgYEB5P1OgiefOEkHmIgIqofsbGx2LNnj81Zc1T/ah0QyNaNpzlWYEAgIqq7iIgIFBYW4tSpU0qX4lEYEGTCEQQiovoRHh4OADh8+LDClXgWRQKCwWCAwWCAXq+H0WisdJlp06bBZDLBZDLZXKFx2rRpsFqtjiq12iru5siAQEQkr5CQEPj7+8NkMildikdx+CeY2WyG0WjEnDlzAFyfoarT6eyWy8vLw9ixYxEZGYnFixdL627ZskWaDGm1WpGSkoJJkyY57g1UgSMIRET1w8vLCx06dOAIgoM5/BPMaDQiICBAehwQEACj0WgXEpKTkxEbG2vznNlsxt69e6HRaAAAer0eiYmJ9V90NVR2FgMvlEREJI/w8HCOIDiYwwPCqVOnEBQUJD0OCgqq9JBBTk4OgOsXYAKAxMREmxCh1+sRFxdX6zqEECgqKqr1+jcqLi6GSqXC1atXce3aNen5a9euyfYarqS4uNjmK7lmT0pKSqSvcu/HrtiP+sR+2KqsH+3bt0dGRgYKCws97r4Mcu4fQohq988pxsArQsCNUlNTpX8PGDAAcXFx0siB2WyG1WqVHtdGaWmpzb0l6srLywsWi8Xmf6DZbLYZLfE0ubm5SpfgdFypJxU/lydPnqy3W+66Uj8cgf2wdWM/GjdujMuXL+O7775D8+bNlStKQXLtHz4+PtVazuEBISQkxGbEID8/H1qt1mYZg8GAnJwcKSRoNBqYzWZEREQAANLT06VLPteWWq1GaGhonbZRobi4GF5eXvD397c5rBAaGooOHTrI8hqupLi4GLm5uWjTpg18fX2VLscpuGJPzp07h6ysLLRt2xbBwcGybtsV+1Gf2A9blfWj4kNNCOFxv1fl3D+OHz9e7WUdHhB0Op3NWQl5eXnSoYOKUQGtVmszOmC1WqVwAFy/a+Rjjz1WpzpUKpWs1/VWqVTSPIQKAQEBHn3tcF9fX49+/5VxpZ40atRI+lpfNbtSPxyB/bB1Yz/CwsLg7e2NP/74w2N7JMf+UZPDMw4PCFqtFoMHD4bBYIDFYkFycrL0vfj4eGRkZCAiIkI6FTInJwdpaWk229BoNAgMDHR06X/rxtMcg4KCkJ+fz7MYiIhkolarERISghMnTihdisdQ5BPs5rMTKmzbts1umcqWzcjIqJ/C6uDG0xxvu+02BgQiIpm1a9eOAcGBeCVFmdx4mmOTJk0A8DoIRERyYkBwLAYEmdw4ghATE4POnTvjjjvuULosIiK3UREQeNMmx2BAkMmNIwjt27fHnj174O/vr3RZRERuo127drh8+TL++usvpUvxCAwIMrnxbo68giIRkfzatWsHADzM4CAMCDK58RADAwIRkfzuuusuAAwIjsKAIJMbT3NkQCAikl9AQACaNWtWo4v9UO0xIMhEpVJBCMGAQERUjzp37oxvvvlG6TI8AgOCTG6cpMiAQERUP0aNGgWj0YiTJ08qXYrbY0CQiUqlQllZGYQQDAhERPXkkUcegZ+fH9atW6d0KW6PAUEmXl5eKC0tBQAGBCKietK4cWMMGzaMAcEBGBBkolKpGBCIiBxg8ODBOHToEC5duqR0KW6NAUEmXl5euHr1KgAGBCKi+tSpUycAwP79+xWuxL0xIMjEy8sL165dA8CAQERUn9q3b4+AgAAGhHrGgCATzkEgInIMLy8vxMTEYN++fUqX4tYYEGTCgEBE5Dj333+/NIIghOB8hHrAgCATTlIkInKcTp064eTJk7hw4QI+/PBDNG/eHLt371a6LLfCgCATzkEgInKczp07AwC++uorLFq0CKWlpUhISMDevXtRXl6ucHXugQFBJhxBICJynNDQUIwYMQLJyck4efIk1q9fj2vXrqFLly5ISEhQujy3wIAgE57mSETkWB9++CFuv/129OjRA8OHD8fJkyexePFirF+/Hr/88ovS5bk8BgSZcJIiEZFjNW3aFPv378eXX34JAPDx8cFTTz2FkJAQLFq0SNni3AADgkw4B4GIyPFatmyJpk2bSo/VajWmT5+OdevW4ezZswpW5voYEGTCEQQiIucwZswYqFQqpKenK12KS2NAkAknKRIROYfbbrsNDz30ENasWaN0KS6NAUEmHEEgInIeo0ePxr59+3D06FGlS3FZDAgyUalUnINAROQkHnroIQQEBGDDhg1Kl+KyGBBk4uX1f61kQCAiUlajRo0QExPDGzrVAQOCTBgQiIicS3R0NH7++Wely3BZDAgyYUAgInIu0dHROHHiBCwWi9KluCQGBJkwIBAROZfo6GgAwMGDBxWuxDU1UOJFDQYDAMBisUCr1UKn09ktM23aNEyePBkAsHnzZqSmpkrfW758ObRaLQAgNjbWARXfmkqlkv7NgEBEpLywsDA0bNgQBw4cQO/evZUux+U4PCCYzWYYjUbMmTMHADBu3LhKA0JeXh7Gjh2LyMhILF68WHp+3LhxWLx4MTQaDeLj450mIHAEgYjIuajVakRGRuLAgQNKl+KSHB4QjEYjAgICpMcBAQEwGo12ISE5Odnuw99kMknrmkwmZGRk1H/B1cQRBCIi53P//fdj8+bNsFqt0Gg0SpfjUhweEE6dOoWgoCDpcVBQEKxWq91yOTk5ACBNLklMTMShQ4eQl5cHs9kMAJg5c6Y0ElFTQggUFRXVat2bFRcX24wgXL16VbZtu6Li4mKbr+SaPSkpKZG+yr0/u2I/6hP7YUvOfkydOhXp6el44oknsHbtWps/5lyFnP0QQlS7B4rMQbhZZTNMb5xzMGDAAMTFxcFqtSIwMBAREREAgEOHDsFkMkmPa6K0tBRHjhypfdE3uTEgcNbsdbm5uUqX4HRcqScV+/DJkydx8eLFenkNV+qHI7AftuTqx0svvYQXXngBX3zxBSIjI2XZphLk6oePj0+1lnN4QAgJCbEZMcjPz5cmHFYwGAzIycmRQoJGo4HZbIZWq7VZNjAwEGazuVYBQa1WIzQ0tJbvwtbNIwhhYWG44447ZNm2KyouLkZubi7atGkDX19fpctxCq7Yk3PnziErKwtt27ZFcHCwrNt2xX7UJ/bDltz9aNu2LV5++WVcvnwZHTp0kKFCx5KzH8ePH6/2sg4PCDqdDgsXLpQe5+XlSfMPKo4RabVam2NFVqsVERER0Gq10Ov10vNms7nSCY7VoVKp4OfnV8t3Ufn2KgQEBMi6bVfl6+vLPtzElXrSqFEj6Wt91exK/XAE9sOWXP3w8/ND+/btcezYMZfurxz9qMkhFocHBK1Wi8GDB8NgMMBisSA5OVn6Xnx8PDIyMhAREQGDwSCNJKSlpQG4PpKQmJgIvV4Pq9WKlJQUp5l0wrMYiIicV1RUlDS3japHkTkIVZ2auG3bNrtlbl7WWU5rvBkDAhGR84qMjMSSJUtqNEnP0/FKijLhaY5ERM4rKioKFy5cwNmzZ5UuxWUwIMiEIwhERM4rKioKAHiYoQYYEGTCgEBE5Lzuuusu+Pn5MSDUAAOCTG4MCDf+m4iIlOfl5YX7778fO3fuVLoUl8FPMplUzEHw8vLiBBgiIif0yCOPYOvWrSgsLFS6FJfAgCCTilEDHl4gInJOw4YNQ0lJCbZs2aJ0KS6BAUEmDAhERM4tNDQUkZGR+PLLL5UuxSUwIMik4rACAwIRkfMaOnQoNm/eDCGE0qU4PQYEmXAEgYjI+XXv3h0XLlzA77//rnQpTo8BQSYMCEREzi8mJgYA8NNPPylcifNjQJAJAwIRkfNr0aIFmjdvzoBQDQwIMuEcBCIi1xATE1PtgFBUVISVK1di69atKC0ttfnepk2bEBkZiaKiovooU3EMCDLhCAIRkWu4//77sX//fgghcPXqVfzwww/4+eefUV5ebrNcaWkpEhISMHHiRAwaNAhjx461+f7ixYthMpmQnp7uwOodhwFBJgwIRESuISYmBn/++SfOnDmDjz76CL169UJ0dDQ+/vhjm+VeeuklbN26FQaDAUuXLsXatWvxwQcfYNq0afjuu++wfft2aDQavPvuu255VgQDgkx4iIGIyDV06tQJALB9+3ZkZGRgwIAB6Nu3L1avXi0t89tvv2Hx4sWYOXMmBg0ahEmTJqFXr16YMmUKPvjgA/Tv3x++vr5Yvnw5fv75Z2RnZyv1duoNA4JMOIJAROQaWrVqhQceeACLFi1CVlYWEhMTMWbMGOzcuRN5eXkQQuCFF15A06ZN8eyzzwK4/kfg2rVrkZ6ejpMnTyIqKgrjxo3DiBEjEBISgk8//VThdyW/BkoX4C4YEIiIXMdTTz2FxMREqFQqDBkyBI0aNcLkyZPx+uuvIz8/H//973/x2Wefwd/fX1qnVatWSExMBAAcOHAAQgh4eXlh1KhRWLZsGZYsWQJvb29MmDAB9913H55++mmX/kxgQJAJAwIRkesYNmwYmjVrhtDQUAQHBwMAhg8fjg8++AB+fn5IT0+XwkBlVCqVdGg5KSkJb7zxBgwGA86dO4dPPvkEn3zyCb7++mts3LgRfn5+DnlPcmNAkAnnIBARuQ4fHx/897//RUBAgPTcp59+irfffhtNmjRBo0aNqr2tyMhI3HvvvUhNTcWlS5eQlJSEcePGYejQoRg2bBjWr19v8zo1ceLECTRu3LhW69YV5yDIhCMIRESupXfv3oiOjpYeq9VqtGjRokbhoMKKFSsQGhqKhg0b4vXXX0f//v2xadMmZGdnIyYmBiaTSVr26NGj+Ouvv265zfPnzyM6Ohpr166tcT1yYECQCQMCEZHn6ty5M77++muYzWZotVoAQN++fXHgwAE0bNgQI0eOxG+//Ya+ffuiQ4cOGDly5C23+frrrwMAHn300XqtvSoMCDLhIQYiIrpZaGgo0tPTcfz4cURERODEiRN4/vnn8f333yMrK6vK9c6cOYP3338fzz33HJo2berAiv8PA4JMOIJARESViYyMxPz58xEaGoqdO3fi9ddfR1RUFObNm1flOl9++SXKysrwzDPPOLBSWwwIMmFAICKiqqSkpCAnJwdt2rSBl5cXZs+eja1bt9pdvbFCZmYmdDodgoKCHFvoDRgQZMKAQERE1TV8+HBMmjQJU6ZMwd69e22+d+XKFWzfvh1xcXEKVXcdT3OUCecgEBFRTSxZsgQ5OTkYNGgQduzYgY4dO2L16tXIy8tDYWEhYmNjFa2PAUEmHEEgIqKaaNSoETIzM9GvXz888sgjeOONN/DEE08AAFq0aIGOHTsqWh8PMciEAYGIiGoqKCgIGzZsgMViwahRozBw4EB89913yMjIkEamlcKAIBMeYiAiotpo3bo1VqxYgbZt2+Kjjz5Cnz590K1bN6XLUiYgGAwGGAwG6PV6GI3GSpeZNm0aTCYTTCYTFi5ceMvnlcYRBCIiqq0RI0bgxIkTuOuuu5QuReLwOQhmsxlGoxFz5swBAIwbNw46nc5uuby8PIwdOxaRkZFYvHjxLZ9XGgMCERHVhdKHFG7m8IBgNBptbloREBAAo9FoFxKSk5MrncFZ1fNKY0AgIiJ34vCAcOrUKZsLPwQFBcFqtdotl5OTAwCwWCwAIN12s6rna0oIgaKiolqte7Pi4mKb5CfXdl1VcXGxzVdyzZ6UlJRIX+Xep12xH/WJ/bDFftiSsx9CiGqPVDjFaY4VH/Y3Sk1Nlf49YMAAxMXFQaPRVPl8TZWWluLIkSO1K7gSFSMIly9flnW7riw3N1fpEpyOK/Wk4ufy5MmTuHjxYr28hiv1wxHYD1vshy25+uHj41Ot5RweEEJCQmxGDPLz86U7X1UwGAzIycmRwoBGo4HZbIbZbK70+YiIiBrXoVarERoaWod38n+Ki4tx/PhxAECTJk3QoUMHWbbrqoqLi5Gbm4s2bdrA19dX6XKcgiv25Ny5c8jKykLbtm0RHBws67ZdsR/1if2wxX7YkrMfFZ9V1eHwgKDT6WzOPsjLy5PmH1itVmg0Gmi1WptRAavVKoWAqp6vKZVKBT8/v1qtW9X2AKBhw4aybteV+fr6shc3caWeNGrUSPpaXzW7Uj8cgf2wxX7YkqMfNZkI6fCAoNVqMXjwYBgMBlgsFiQnJ0vfi4+PR0ZGBiIiIqRTIXNycpCWlgYAVT7vDDhJkYiI3IkicxCqOgth27ZtdsvcvGxVzyuNAYGIiNwJr6QoEwYEIiJyJwwIMuGllomIyJ0wIMiEIwhEROROGBBkwoBARETuhAFBJjzEQERE7oQBQSYcQSAiInfCgCATBgQiInInDAgyYUAgIiJ3woAgE85BICIid8KAIBOOIBARkTthQJAJAwIREbkTBgSZ8BADERG5EwYEmXAEgYiI3AkDgkwYEIiIyJ0wIMiEAYGIiNwJA4JMOAeBiIjcCQOCTDiCQERE7oQBQSYqlQp+fn7QaDRKl0JERFRnDZQuwF2oVCpkZ2cjLCxM6VKIiIjqjCMIMgoNDYWPj4/SZRAREdUZAwIRERHZYUAgIiIiOwwIREREZIcBgYiIiOwwIBAREZEdBgQiIiKyw4BAREREdhgQiIiIyA4DAhEREdlRCSGE0kU42k8//QQhhGxXPRRCoLS0FGq1WrqroydjP+y5Yk/KyspgtVqh0WhkvwmZK/ajPrEfttgPW3L24+rVq1CpVIiJibnlsh55Lwa5dziVSsVLLN+A/bDnij3x9vZGkyZN6mXbrtiP+sR+2GI/bMnZD5VKVe3PQI8cQSAiIqK/xzkIREREZIcBgYiIiOwwIBAREZEdBgQiIiKyw4BAREREdhgQiIiIyA4DAhEREdlhQCAiIiI7DAhERERkhwGBiIiI7DAgEBERkR2PvFmTnAwGAwDAYrFAq9VCp9MpXJEypk2bhsmTJwMANm/ejNTUVACe0x+r1Qq9Xg8AmDRpkvR8Ve/f3ftSVT88eT8xGAywWCwwmUyIjY295b7g7j2pqh+euo8YDAZotVocOnQIAJCYmCg9Dyi0fwiqtVOnTol///vf0uOxY8cqWI2yhg8fLjp16iTGjh0rLBaLEMKz+pOZmSnefPNNsWzZMum5qt6/J/Slsn4I4bn7yaFDh0RmZqYQQgiLxSI6deokhPDcfaSqfgjhmfuIxWIRw4cPl/599913CyGU3z94iKEOjEYjAgICpMcBAQEwGo0KVqSc5ORk7N27F2lpadBoNAA8qz+xsbEICQmxea6q9+8JfamsH4Dn7icWi0V6TxqNBoGBgTCZTB67j1TVD8Az9xGNRoOMjAwAgNlslkYDlN4/eIihDk6dOoWgoCDpcVBQEKxWq3IFKSgnJwfA9R984PrwmKf3p6r378l98dT9RKfT2QwBWywWREREYPPmzR65j1TVD8Bz9xEA0Ov12LVrFxYvXgxA+d8hDAgyq9ipPU3FcUIAGDBgAOLi4ipdzlP7U6Gq9+8pfeF+AsycORNz586t8vueto/c3A9P3kcSExOh1WqxaNEizJkzp9JlHLl/8BBDHdw8hJqfnw+tVqtQNcoxGAxYuHCh9Fij0cBsNnt8f6p6/57aF+4n13ug0+kQGxsLgPvIzf3w5H2kYgRAp9MhMzMTRqNR8f2DAaEOdDqdNBwGAHl5eW43s7Y6tFotevToIT22Wq2IiIjw+P5U9f49tS+evp8YjUZoNBrExsbCZDJJx5o9dR+prB+euo/o9XosXbpUehwYGIjAwEDF9w+VEELIvlUPcuOpJoGBgVIS9jQVfcjJycFjjz0mpVlP6Y/RaER6ejoKCgqQmJho8xcRYP/+3b0vt+qHp+0nZrMZ8fHx0mOr1Ypjx44B8Mx9pDr98KR9xGq1SoFp165dCAoKkk4PVnL/YEAgIiIiOzzEQERERHYYEIiIiMgOAwIRERHZYUAgIiIiOwwIREREZIcBgYiIiOwwIBCR0zIajYiPj5duHU1EjsOAQEROS6fToXv37kqXQeSRGBCIyKndeNc6InIcBgQiIiKyw9s9E1GNGY1GmEwmaLVa5OTkIDU1FUajETNnzpRuJmOxWGAymZCSkgKNRgMAMJlMMBqN0Gq1MJvNiI2Nla61bzabkZ6ejqioKFgsFsTFxUnrVVyr3mw2Y9euXViyZIli753IUzAgEFGNmM1mLFq0CBkZGQCu3yxm+fLlmDRpEgYNGoSgoCCbG8o888wzSEtLk9ZLS0uTthUfH49Vq1YBAMaNG4eMjAxoNBosXLgQer1eumFNTk6Ozc1rTCYTIiIiHPiuiTwPAwIR1Uh6ejoCAwNhNBql52689WzFX/0AEBsbi2eeeQZWqxXp6ekIDw+32VarVq2QmZkJ4PrtoCvWnTx5ss1yUVFR0r8DAgJgsVjke0NEVCkGBCKqsfDwcJv7zycmJtZpe1arFQEBAdLjG0MGESmDkxSJqEYGDx6M7Oxsm+duHE2wWq3Svw0GA3Q6HTQaTaXrHT58GHFxcYiNjcXhw4er3CYROZ5KCCGULoKIXIvRaMSuXbukof+KELBw4UIUFBQgNjYWVqsVOTk5mDx5sjQicPPkxsGDB0tzCSrbptlsxr///W8AwNy5c6V5DOHh4UhNTZUmOBKR/BgQiEg2CxcuREhISJ0PORCR8niIgYiIiOwwIBCRLIxGI7Kzs6XTEInItfEQAxEREdnhCAIRERHZYUAgIiIiOwwIREREZIcBgYiIiOwwIBAREZEdBgQiIiKyw4BAREREdhgQiIiIyA4DAhEREdn5/5eAASHH6nR9AAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAFQCAYAAADayYZkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDjklEQVR4nO3de1xUdf4/8NegIFAzjK4tmg5CYgpoanmJQVPLcqDMxAu2bSUp4KXVTUXb9GuFlqVsibWaolF2kzKyiziW2Sp6rLx0GUbUMIkZM7OUGZWLqPP7g9+cZRxQGA5zObyej4cPnJlzzrzfcnv5OZ/zOQqbzWYDERERUS1+ni6AiIiIvA8DAhERETlhQCAiIiInDAhERETkhAGBiIiInDAgEBERkRMGBCIiInLCgEBEREROWnu6AE/47rvvYLPZ4O/v7+lSiIiI3Ka6uhoKhQJ9+/a95rYeCQh6vR4AYLFYoNFooNVq69wuOzsbGo0GAKDT6cR9LRYLjEYjdDpdvftejc1mg5QLSNpsNlRXV8Pf3x8KhUKy43oj9up9Ll++DKvVCpVKBT8/1wcFfaVfKbBXeWKvDduvodweEEwmEwRBQEZGBgAgOTm5zl/yycnJyMrKgkqlQmJiInQ6HYxGIwAgKSkJVqsVd911F/bu3dvoGuwjB7169WpCJ/9TXl6OoqIiREZGIjg4WJJjeiv26n1OnDiBTZs2ITU1FR07dnT5OL7SrxTYqzyx12szGAwN3tbtAUEQBCiVSvGxUqmEIAgOIcFoNIrbGI1G5OXlAagZcRAEATqdDiqVCiEhITAajYiJiWl0HTabDeXl5U3spkZFRYXDRzljr96nsrJS/NiUr2lf6VcK7FWe2Ou12Wy2Bo84uD0glJaWQq1Wi4/VajWsVqvDNoWFhTCbzTCZTACAhQsXIiMjA1qt1iFIWCwWl8IBUHMepqioyKV961NSUiLp8bwZe/UeFosFAHDs2DGcPn26ycfz9n6lxF7lib1eXUBAQIO284pJivYfcHZWqxUhISHiL//CwkKnkYKFCxdi0aJFLr+nv78/IiMjXd6/toqKCpSUlCA8PBxBQUGSHNNbsVfvc/LkSRQUFCAiIgKhoaEuH8dX+pUCe5Un9nptxcXFDd7W7QEhLCzMYcSgrKxMnIhop9FoHJ4LCQmByWQSA4Jer4dWqxUnLrpCoVBIfo4qKChI9ue97Nir9wgMDBQ/SlGnt/crJfYqT+y1fo2Z0Oj2dRC0Wq3DJAmz2SyeNrAHB61WK55eAGomNtq3EQQBKpVKnLRYezsiIiKShttHEDQaDRISEsTLFVNTU8XXEhMTkZeXB5VKhaSkJOTm5sJqtWLOnDlQqVQwmUyYOXOmuL3VasXhw4fd3QIREZHseWQOQn2nBrZt23bVbTQajUuXNRIREVHjcKllIiIicsKAQERERE684jJHIrq2U6dOobS0FBcuXHD4Y79MWMrlw4mIGBCIvJzJZMKSJUuwbt06XLhwwen1jh07Ii0tDSNHjsSAAQMwYsQI3HnnnVCpVB6olojkggGByEuVlpaKwUCpVOLpp5+GTqdDmzZtEBAQgICAAPj7++PPP/9EXl4eBg8ejM2bN+O1115D69atodVq0bt3b3Tt2lX8ExERIa6b0Byqqqpw5swZdOjQodneg4jcgwGByIvYbDYcPHgQK1asQE5ODlQqFTIyMjB9+nSHe5jUZl/4ZN68eVi+fDmOHj2KrVu3Ytu2bdi2bRvWrFmDqqoqcdtOnTqhS5cu4oJk9j8dOnRw6W6Q586dw5YtW5CXl4fNmzfj7Nmz6Nq1K4YNG4Y777wTw4YNY2Ag8kEMCEQedPnyZRgMBuzcuRM7duzAzp07cerUKbRv3x6LFy/GtGnTcP311zfqmF27dsW0adMwbdo08T2OHz+Oo0eP4ueff8bRo0dRWloKk8mEb7/9FmazWTx1oVarkZCQgAceeAD33HMPQkJCnI5fUVGBo0ePYt++ffjoo4+wdetWVFVVoU+fPpgzZw569OiBgoICbN++HWvXrgUAREVF4d5778X06dMRHh7etH80InILBgQiN7p48SK+//57MRAUFBTgzJkzCAgIwIABA5CamoohQ4YgLi5OsqVi/fz8xFGCoUOHOr1++fJl/P777/jxxx+xYcMGfPvtt3j33XfRunVr3HHHHRg0aBBOnDiB4uJi/PTTTzCbzQBqRiO0Wi2ee+45jB49GjfddJN4zPHjxwMAfvvtN/z3v//F9u3bsW7dOrz00ksYM2YMZs2ahdtvv12S/oioeTAgEDWzo0ePYuPGjdixYwd27dqFs2fPIjAwELGxsZg5cyaGDBmCgQMHeuzmMn5+fujQoQNUKhX+8pe/4NVXX8WpU6ewefNmfPbZZ1i1ahU6d+6Mbt26ITY2Ft26dUO3bt3QvXt3tG/f/qrH7tChAyZMmIAJEybg5ZdfxptvvomXX34ZsbGxiI2NxaxZs/DAAw+gdWv+KCLyNvyuJGomgiAgMzMTmzZtQnBwMOLi4jBv3jwMGTIE/fv3R5s2bTxdYr26dOnicJpCCtdddx2mTZuGKVOmYPPmzXjppZcwbtw49OnTB3l5eYiIiJDsvYio6bhQEpGELl26hI0bNyI2NhZxcXE4ePAgXnvtNZw6dQpbt27F/PnzMWjQIK8OB83Nz88PI0eOxFdffYWvv/4aVqsVt912Gz7//HNPl0ZEtTAgEEng0qVLeP3119GtWzeMGzcOgYGB+PTTT3Hw4EGkpqbK/t70rho4cCD27duH22+/HTqdDkuWLOGCT0ReggGBqAlsNhvy8/PRu3dvTJo0Cf369cO+ffvw1Vdf4b777nPpssGWpm3btvj000+xYMECPPXUUxg7dizOnj3r6bKIWjz+9CJy0b59+3DXXXfh3nvvRfv27fHtt9/i/fffx2233ebp0nxOq1atkJGRgU2bNuGLL77AwIEDYTQaPV0WUYvGgEDUAJcuXUJpaSl27tyJ9evX48EHH0T//v1x8uRJfPrpp/jqq6/Qv39/T5fp80aNGiXe0r13795ISUnB8ePHPVwVUcvEqxiI6nDhwgW88847WLt2LX7//XeYzWZcvHhRfD08PBzZ2dmYOHEiL9GTWPfu3XHgwAGsWrUKzz33HN5++23MnDkT8+bNQ9u2bT1dHlGLwREEolrOnDmDF154AREREUhNTQUAjB49GitWrEB+fj4OHjyI8+fP49ixY5g8eTLDQTMJDAzEE088gaNHj2LOnDl45ZVXcNNNN2Hp0qUoLy/3dHlELQJ/uhEBOHbsGJYvX45169bh4sWLePjhhzFlyhQANcsES7WqITVOSEgIFi1ahOnTp2PRokWYP38+li5diqlTp2L69Om8xwNRM+IIArVoR44cwSOPPILIyEi88847mD17Nn755RdkZ2cjKirK0+XR/9ehQwf85z//weHDh/HQQw/h5ZdfRpcuXZCcnIwff/zR0+URyRIDArVIhw4dwt///ndERUVh+/btyMrKQmlpKZ599lmEhoZ6ujyqx0033YSsrCyYzWYsXrwY27ZtQ+/evTF8+HBs27aNaygQSYgBgVqUoqIi/O1vf0N0dDR27NiBV155BcXFxXj88cd5GsGHqNVqpKen4+eff8Z7772HsrIy3H333dBqtdiyZQuDApEEGBCoRbBYLJgxYwZ69uyJXbt24T//+Q+Ki4sxbdo0BAYGero8cpG/vz8mTJiAvXv3YsuWLVAoFEhISMCAAQPwySefMCgQNQEDAsmazWbDW2+9he7du+P111/Hiy++iJ9++glTp05t0fdDkBuFQgGdTofdu3dj27ZtCA4OxqhRo9C3b1/s2LHD0+UR+SQGBJKtwsJCDB06FI888giGDh2KQ4cOYc6cOQwGMqZQKHDXXXdhx44d+O9//4vrrrsOQ4cOxbRp07h8M1EjeeQyR71eD6Bm2Fej0UCr1da5XXZ2NjQaDQBAp9MBAKxWK3JzcwEAKSkpbqiWPO3y5ct455138P333+PChQtOfxQKBfz9/dG6dWvx47lz57BhwwZERkbiiy++wPDhwz3dBrnZkCFDUFBQgJUrV+LJJ5/E5s2bsWbNGowYMcLTpRH5BLcHBJPJBEEQkJGRAQBITk6uMyAkJycjKysLKpUKiYmJYkAQBAFlZWVQq9XuLJs8pKioCKmpqdi1axe6d++ONm3aICAgQPzj7+8Pm82Gixcvorq6GhcvXsTFixdx+fJlLF68GLNmzUJAQICn2yAP8fPzw+OPP4777rsPKSkp0Ol0SE5OxqJFizxdGpHXc3tAEAQBSqVSfKxUKiEIgkNIMBqN4jZGoxF5eXniazqdDhaLBVar1X1Fk8hms+HkyZPNvkZAVVUVlixZgueffx4RERH46quvMHTo0GZ9T5Kv8PBwfP7553j99dcxa9Ys5OfnY+TIkUhNTUW/fv2gUCg8XSKR13F7QCgtLXX4379arXb6ZV9YWAiz2QyTyQQAWLhwoTjiIBWbzSbZkq0VFRUOH+Vs1apVSE9Px6RJk/Diiy8iKChI8vfYtWsX/vGPf+Dnn3/G7NmzMXfuXAQGBrp9iV1f+bxWVlaKH5vyb+Qr/TbFgw8+iDvuuAPPPvsscnNzsXbtWvTo0QOJiYkYPXo0oqOjPV2i5FrC59WOvV6bzWZrcCD2iqWWLRaLw2Or1YqQkBDExMQAqAkMRqNRfCyF6upqFBUVSXY8ACgpKZH0eN7m/PnzeP755xEVFYW3334bX331FZ5//nlERkY26jiVlZX44YcfUFJSAqvV6vDnzJkzKCwsxC233IK3334bkZGROHbsWDN11DDe/nm1f/8cO3YMp0+fbvLxvL1fKTzxxBN4/PHH8c033+CLL75AVlaWOFrVv39/9O3bF3379kX79u09XapkWsLn1Y69Xl1DT7u6PSCEhYU5jBiUlZWJExHtNBqNw3MhISEwmUySBgR/f/9G/2KrT0VFBUpKShAeHt4s/6P2FosXL0Z5eTmWLVuGkJAQpKWl4dFHH8Xzzz+PtLS0elNpeXk5vvnmG+zcuRMFBQXYt28fqqurERAQgHbt2qFt27ZQq9Vo27YtNBoNpk6dikceeQR+fp69yMZXPq8nT55EQUEBIiIimrQKpK/0KwV7r3//+9+RkpKCqqoqfPnll/j000+xe/duvP/++wCArl27QqvVYtiwYRg7dixatWrl4cobryV+Xtlr/YqLixu8rdsDglarxbJly8THZrNZnH9gtVqhUqmg1WrFKxWAmomN9V3p4CqFQiH5ynlBQUGyXY3vxIkTyMrKEm+QExUVhf3792Pu3LmYPXs2tm/fjlWrVqGsrAxFRUU4dOgQioqKUFRUhIMHD6K6uhrt27fH0KFD8dBDD2Ho0KGIjo72iXO/3v55tS/0FBgYKEmd3t6vlOy9BgcHY+zYsRg7diyAmq/3goIC8c9bb72F7OxsvP766+jRo4eHq3ZNS/y8tgSN7bUxP3PdHhA0Gg0SEhKg1+thsVjEW+oCQGJiIvLy8qBSqZCUlITc3FxYrVbMmTMHKpUKQM0kx927d+Ps2bPQaDTi1Q3UvJ555hkEBgZi9uzZOHHiBICaX0grVqzAiBEjMHHiRISFhYnb33DDDYiKisLtt9+OlJQUnwoERB07dsT48eMxfvx4ADXzYh577DH06dMHGRkZmDVrFm/1TbLnka/w+n6pb9u27ZrbaLVayUcTWgKbzYZVq1YhMTGx0bfILSoqwtq1a/Hvf/8barVaDAh29957LwwGA7744gtEREQgKioKf/nLX6Qsn8ijBg0ahO+//x4LFy7Ek08+iQ8//BA5OTmynNRIZMeVFFsIQRAwffp0rFixotH7Pvnkk+jSpQumTp1a7zYdOnTAww8/jEGDBjEckCwFBwcjMzMTu3fvhsViQd++ffHUU0/hiy++wMmTJz1dHpHkGBBaiJUrVwIAPvjgg0bdwKagoACffPIJnn/+eS5RTAQgNjYW3333Hf75z39ixYoVuOeee9ChQwd06NABI0aMQHp6OvLy8lBVVeXpUomahAGhBTh58iQ++OADjBgxAsXFxfjhhx8atJ/NZkN6ejpuu+028VwsEdVMDHvxxRdhtVpx5MgRbNy4EampqQgMDMQHH3yAMWPGoFOnTnjiiSdQWFjo6XKJXMJZNi3AunXr0KpVK7z55puIiorCxo0b0adPn2vu9+GHH+Kbb77B9u3bPX7JIZE38vPzQ7du3dCtWzeMGTNGfL6oqAjr1q3D+vXrsXz5cgwcOBCTJk1CUlKSOOGayNvxp77MXbp0Ca+99hoefPBBhIaG4oEHHmjQaYYLFy7gX//6FxISEjBs2DA3VUskD1FRUcjMzITZbMaHH36Idu3aYcqUKfjrX/+K+++/Hzk5Ofjzzz89XSbRVTEgyNzmzZthMpkwbdo0AMC4ceNw5MgRGAyGq+73zjvvoLi4GC+88II7yiSSpYCAACQmJiI/Px+//PILlixZgrKyMkyaNAmhoaG466678Oqrr+L333/3dKlEThgQZG7lypUYMGAA+vXrBwC46667oFar8cEHH9S7z+XLl7F06VKMGjUKvXr1clepRLLWuXNnPPHEE9i5cydOnDiBlStXwt/fH7NmzcLNN9+M1atX4/Lly54uk0jEgCBjxcXF2Lp1qzh6ANT8j2bUqFFXPc3w6aef4tChQ5g3b567SiVqUUJDQ5Gamgq9Xo9ff/0VY8eOxZQpUzB06FAcOnTI0+URAWBAkLXXXnsN7dq1c7oCYdy4cTh8+DCMRqPTPjabDS+88AIGDx6M2NhYd5VK1GK1b98ea9euxfbt23HixAn07t0bixYtwoULFzxdGrVwDAg+4NixY42+Y1dFRQVef/11PPbYY0438rj77rsREhJS52mGgoICfP311xw9IHKzYcOG4ccff8SsWbPw7LPP4tZbb8WuXbs8XRa1YAwIPmD8+PGIiorCa6+91uBFjjZs2IAzZ85gypQpTq/VPs1wpRdffBE9e/ZEQkJCk+smosYJCgrCkiVLsG/fPgQHB2Pw4MEYM2YMfvrpJ0+XRi0QA4KXKysrw/79+xEdHY2pU6di9OjR+OOPP66538qVK6HT6dC1a9c6Xx87diyKioocTjMYDAbk5+dj7ty5vKkSkQf16dMHX3/9NdavX4+9e/ciOjoaM2bMaND3PpFUGBC83K5du2Cz2ZCbm4tNmzZh165duOWWW/Dll1/Wu8/evXuxb98+TJ8+vd5t7rnnHqhUKmzcuFF8bunSpQgLC8OECRMk7YGIGs/Pzw8PP/wwDh8+jMWLF+PNN99E165d8eKLL6KiosLT5VELwIDg5Xbs2IEbb7wRXbt2xahRo/Djjz8iOjoad999N+bNm4fi4mIUFhZi7969KCgowOeff47FixejS5cuiI+Pr/e4bdq0wf333y+eZvjll1/w3nvvYdasWfD393dXe0R0DUFBQeL3+qOPPooFCxYgLCwMzzzzDNdPoGbFgODlduzYgaFDh4pD/jfeeCM+//xzvPjii3jppZfQrVs39OrVCwMGDMAdd9yBESNG4JNPPsGMGTPQqlWrqx573LhxMBqNKCoqwksvvYSQkBBMnjzZHW0RUSPdcMMNWLFiBQ4fPowJEyZg2bJlCAsLQ1paGg4fPuzp8kiGGBC8mNVqxf79+zFkyBCH5/38/JCeno5Dhw7hyy+/hCAI+O6773Do0CH88ssvOHXqFJ544olrHv+ee+6BUqnEa6+9hrVr1+Lxxx/Hdddd11ztEJEEbrrpJrzyyiswmUxYuHAhPvnkE/To0QMjR47E+vXr8fPPPzfqjq1E9eHNmrzY7t27cfnyZaeAYNe1a9d6JyE2RGBgIEaOHIkVK1YgKCgI//jHP1w+FhG5V7t27fDUU09h9uzZePfdd/Hqq6/i0UcfBQB06NABgwYNwqBBg9C/f38EBAR4uFryRRxB8GI7duxAaGgobr755mZ7j3HjxgEAJk2ahPbt2zfb+xBR82jTpg2Sk5Oxf/9+/Pnnn/jss88wceJE/Pbbb5g3bx7i4uLw0ksvcVSBGo0jCF7syvkHzSE+Ph4zZ87kwkhEMtCuXTvce++9uPfeewEAVVVVWLFiBebOnYu2bdvi1Vdf5SXM1GAMCF7q3Llz2LdvHx555JFmfZ82bdpg+fLlzfoeROQZbdq0wfTp03H69Gm88MIL8Pf3x8svv8yQQA3CgOClBEHAxYsX651/QETUUGPHjkXHjh0xc+ZM2Gw2LF++nCGBrokBwUvt2LEDN9xwA6KiojxdChHJwOTJkxEQEICpU6cCAEMCXRMDgpfasWMHhgwZwm9gIpLMlClToFAoMGXKFHEkwc+Pc9WpbgwIXqi8vBzffvstXnrpJU+XQkQyk5aWBoVCgbS0NBw9ehRvvvkmr2CiOjE6eqE9e/agurqa8w+IqFmkpqYiPz8f3377Lfr06YOdO3d6uiTyQh4ZQdDr9QAAi8UCjUYDrVZb53bZ2dnQaDQAAJ1O16h9fdmOHTvQrl07xMTEeLoUIpKp+Ph4fP/99/jb3/6GYcOG4dlnn8W//vWvay7RTi2H20cQTCYTBEGATqdDUlISsrOz69wuOTkZSUlJ0Ol0WLNmTaP29XX2+Qc8N0hEzalTp0748ssvsWDBAixcuBAjRozAb7/95umyyEu4fQRBEAQolUrxsVKphCAIDiMBRqNR3MZoNCIvL6/B+zaUzWZDeXm5q204sN96VYpbsFZWVuKbb77BokWLJKtPSlL26u18pdfKykrxY1O+ZnylXymwV0fz5s3DwIED8dhjj+GWW27Bq6++ivvuu89dJUqGn9drs9lsDZ787vaAUFpaCrVaLT5Wq9WwWq0O2xQWFsJsNsNkMgEAFi5ciIyMjAbt21DV1dUoKipyad/6lJSUNPkY+/fvR1VVFTp16iR5fVKSoldf4e29WiwWAMCxY8dw+vTpJh/P2/uVEnv9n9DQUKxfvx6LFy9GUlISEhISMGfOHKhUKvcUKCF+Xq+uoffm8IqrGOw/4OysVitCQkLEc/CFhYUwGo0N2reh/P39ERkZ6dK+V6qoqEBJSQnCw8MRFBTUpGN99NFHUKvVGDlypFeeC5SyV2/nK72ePHkSBQUFiIiIQGhoqMvH8ZV+pcBe67dlyxa8++67SE9Px4EDB/Cf//xHnAPm7fh5vbbi4uIGb+v2gBAWFubwv/6ysjJxIqKdRqNxeC4kJAQmk6lB+zaUQqFAcHCwS/vWJygoqMnHFAQBd9xxh8OpFG8kRa++wtt7DQwMFD9KUae39ysl9lq3lJQUJCQkICUlBWPGjEFycjJefvllhISENHOV0uDntX6NWVvH7bPgtFotDAaD+NhsNotzCOy//LVarXh6AaiZnKjVaq+6rxxUVVVhz549vLyRiDyuU6dO2Lx5M9auXYuNGzciOjoaq1evxoULFzxdGrmJ2wOCRqNBQkIC9Ho9cnNzkZqaKr6WmJgIq9UKlUqFpKQk5ObmIjs7WzwPdrV95WDv3r2orKxkQCAir6BQKDBp0iQUFhbijjvuwNSpU9GjRw+88cYbuHjxoqfLo2bmkTkI9Z3P2rZt2zW38ZVzYa7YsWMHVCoV+vTp4+lSiIhEYWFheO+99zB//nw8/fTTSE5OxpIlS/DMM88gKSmJl2TLFD+rXuTAgQPo37+/V05OJCLq2bMnPvzwQ+zfvx/dunXD3/72N/To0QP/+te/8PXXX+Py5cueLpEkxIDgRcxmM8LCwjxdBhHRVd1666347LPPsGfPHsTFxWHt2rWIjY1Fp06dkJqais2bN4vrc5DvYkDwIsePH0enTp08XQYRUYPcfvvtyMnJwW+//YadO3fioYcewldffYX77rsPnTt3xtKlS3H+/HlPl0kuYkDwEhcvXsRvv/3GgEBEPqdVq1YYPHgwMjMzceTIERiNRowbNw4LFixAREQE/v3vf3vlyrB0dQwIXuLkyZO4dOkSOnfu7OlSiIhcplAoEB0djVWrVuHIkSMYNWoU5s2bh5tuuglZWVktYhlkuWBA8BLHjx8HAI4gEJFshIeHIzs7G0eOHEF8fDxmzZqFyMhIrFy5kusp+AAGBC/BgEBEcnXTTTchJycHhw4dwp133onHH38cN998M9atW4fq6mpPl0f1YEDwEsePH4e/vz/at2/v6VKIiJpFt27d8NZbb6GwsBADBgzA5MmTER0djbfffhuXLl3ydHl0BQYEL3H8+HHceOONXHCEiGQvOjoa77//Pr777jtER0fj4Ycfxu23344jR454ujSqhb+NvITZbOYERSJqUfr06YOPP/4Yu3fvhsViQd++fbFmzRrYbDZPl0ZgQPAaXAOBiFoqrVaLAwcO4KGHHkJaWhpGjx6NU6dOebqsFo8BwUswIBBRS3b99ddjzZo1+Oijj7Br1y7ccsst0Ov1ni6rRWNA8AI2m40BgYgIwAMPPACDwYDevXsjPj4e8+fP5ykHD2FA8AJWqxXnz59nQCAiAtCxY0fk5+fjhRdewPPPP48pU6bwKgcP8MjtnsmRfQ0ETlIkIqrh5+eHefPm4a9//SsmT56MsrIyvPXWWwgICPB0aS0GRxC8gNlsBsBFkoiIrpScnIyNGzdi06ZNuP/++3nzJzdiQPAC9hGEG2+80cOVEBF5n9GjRyM/Px+7du3CPffcgzNnzni6pBaBAcELHD9+HO3bt0ebNm08XQoRkVe66667sH37dhw6dAhDhgzBzp07eYfIZsY5CM2orKwMR44cwYABA666Ha9gICK6tgEDBqCgoADx8fEYMmQIWrVqhZ49e2LAgAEYMGAAbrnlFq5GKyH+SzajnJwcDBs27Jqzb48fP84JikREDRAdHY2jR4/i+++/x6pVq9C/f3988803SEtLw8CBAzFr1iz88ccfni5TFhgQmpHFYkF5eTlKSkquup3ZbOYIAhFRA7Vu3Rq9e/dGSkoKsrOz8cMPP8BqtWL9+vUwGAwYOHAgtm3b5ukyfR4DQjOqqKgAABQVFV11O55iICJqmuuuuw5jxozBhg0bEB0djbvvvhvp6em4cOGCp0vzWQwIzcgeEA4ePFjvNhcuXMDvv//OgEBEJIH27dvj448/RmZmJrKyshAbG4vDhw97uiyfxIDQjBoygnDixAkAXAOBiEgqfn5+mD17Nr7++mucP38et956K6ZNm4Z9+/Zx2eZGYEBoRg0ZQeAqikREzePWW2/F/v37MWvWLHz88cfo378/evfujeXLl/NukQ3gkYCg1+uh1+uRm5sLQRDq3GbGjBkwGo0wGo1YtmyZ+Hxubi70ej2ys7NhNBrdVbJLao8g1JdauYoiEVHzue6667Bo0SKUlpYiPz8f3bt3x9y5c9GpUyeMHTsWP/zwg6dL9FpuDwgmkwmCIECn0yEpKQnZ2dl1bmc2mzFx4kRkZmYiLS0NAGA0GrF7927odDqkpKQgMzPTnaU3WkVFBdq0aYOzZ8/i119/rXOb48ePIygoCGq12r3FERG1IK1atUJ8fDw++OAD/Prrr8jMzMSPP/6Ivn37YuLEiTCZTJ4u0eu4faEkQRCgVCrFx0qlEoIgQKvVOmyXmpoKnU7ntK9Go3F4zmg0IiYmptF12Gw2yVbhso8U2D/anT9/Hr169cK+fftw4MABtG3b1mnfkpIS3HjjjU77eqv6epUjX+m1srJS/NiUr2lf6VcK7FWeGtprcHAwJk+ejEcffRRvvPEGnnvuOeTm5mLatGmYPXu2T/yHzdXPq81mg0KhaNC2bg8IpaWlDv/4arUaVqvVaTuDwQCgZi0BAEhKSoJGoxGfB2pGI0wmk0sBobq6+pqXHzbWlesdnD59GhEREQgICMDOnTvrvNfCoUOHEBISInktze1aazvIibf3av8eOXbsGE6fPt3k43l7v1Jir/LUmF4HDRqEjRs34u2338bKlSuxbt06pKSkICkpqcG/SD3Jlc9rQ++I6RVLLdt/wNWWnp4u/n348OGIj4+HTqdDfn4+rFYrCgsLAQAqlcql9/T390dkZKRrBV+hoqICJSUlCA8PR1BQkMNrnTp1Qrdu3XDmzBlERUU57Xv+/Hl069atzte80dV6lRtf6fXkyZMoKChAREQEQkNDXT6Or/QrBfYqT03ptV+/fpg3bx6ee+45ZGZmory8HEuXLvXakOBqr8XFxQ3e1u0BISwszGHEoKyszOm0gV6vh8FgEEOCSqUSRwpWrFgBo9GInj17QqVSoWfPni7VoVAoEBwc7HojdQgKCnI4ZlVVFZRKJXr27Imffvqpzvc7ceIE4uLiJK+luV3Zq5x5e6+BgYHiRynq9PZ+pcRe5cnVXrt27YrXX38dAwcOxJQpUxAcHOzVIQFofK+N6cXtkxS1Wq3DaQKz2SzOP7AHB41Gg7i4OHEbq9WKmJgYWK1WzJgxAzExMbBYLGJI8FYVFRUICgpCVFRUnacQbDYbV1EkIvIyaWlpeOWVV5CZmYn58+e32LUT3D6CoNFokJCQAL1eD4vFgtTUVPG1xMRE5OXlISYmRrwU0mAwICcnB0DNSEJcXBz0ej1MJhMyMjLcXX6j2ANC165dcerUKfzxxx9o3769+Pqff/6JqqoqBgQiIi/z+OOPo7q6GrNmzYK/vz+effZZT5fkdh6Zg3Dl1Ql2tW+uYd/mym2TkpKarzCJlZeXiyMIQM16CIMHDxZf5yJJRETe64knnkB1dTXmzZsHf39/LFiwwNMluZVXTFKUI5vNJo4gdOvWDX5+fvUGBI4gEBF5p7lz56K6uhoLFiyAv78/5s2b5+mS3IYBoZlUVVUBqJlA0qZNG0RGRjotuXz8+HH4+fmhQ4cOniiRiIgaYP78+bhw4QKefPJJdOzYEY888oinS3ILBoRmYl+8wn75SV0TFc1mM0JDQ9G6NT8NRETe7JlnnsHx48cxefJkdOnSBUOGDPF0Sc2ON2tqJlcGhOjo6DpHEHh6gYjI+ykUCqxatQp33HEHRo8ejSNHjni6pGbHgNBM6hpBMJvNOHv2rLjN8ePHOUGRiMhH+Pv7Y+PGjejQoQPuvfde/PHHH54uqVkxIDSTugICULO0sh1HEIiIfItarcbmzZthsVgwevRocb6ZHDEgNJMrA0KPHj0AwOE0AwMCEZHviYiIwMcff4y9e/fisccek+1CSgwIzeTKgHD99dcjLCxMnKhYUVGB06dPMyAQEfmg2NhYrF+/Hu+++65sF1Hi9PlmYg8ItdfIrj1RkWsgEBH5tvHjx+Onn37CggUL0LdvX4waNcrTJUmKIwjN5MoRBMDxUkeuokhE5PueeuopJCYm4pFHHpHdlQ0uB4TMzEx88MEHOHv2LB577DH885//xOeffy5lbT6tvoDw888/o7KykiMIREQyoFAokJOTg44dOyIxMRHnzp3zdEmScTkg9OrVC+PGjUNubi5iYmKwfPlylJWVSViab6srIERHR+Py5cs4cuQIjh8/DpVKheuvv95TJRIRkQRUKhXy8vJQUlKCyZMny2bSossBwX6b5S1btiAhIQEAEBISIk1VMlBRUYGAgAD4+f3vn7j2TZt4BQMRkXxER0cjJycHubm5yMrK8nQ5knB5kqLJZBI/RkVFwWQywWq1SlaYr7PfqKm2du3aITQ0FAcPHoTZbGZAICKSkXHjxmH27NmYM2cObrvtNoeb8/kil0cQ4uPjcfDgQXz44Yc4d+4c3n//fQaEWuoKCMD/JipyFUUiIvl54YUXMHjwYIwbNw6//vqrp8tpEpcDwurVq6FSqdC2bVvMmDEDpaWl0Gg0Utbm0+oLCNHR0TzFQEQkU61bt8aGDRvQunVrjB07FpWVlZ4uyWVNnqS4YcMGxMTEICsri5MUa7naCMLhw4dx4sQJBgQiIhkKDQ1FXl4evvvuO6SkpPjspEVOUmwmVwsI1dXVuHjxIgMCEZFMDRgwADk5OXj77bexZMkST5fjEk5SbCZXO8Vgx4BARCRfEyZMQFFREebPn4/u3btjzJgxni6pUZo8STEvLw9nz55Fbm4uA0It9QWEDh06iCMtnKRIRCRvTz/9NMaPH4+HH34YBw4c8HQ5jeJyQFAqlbDZbMjMzIRSqURcXBySkpKkrM2n1RcQFAoFoqOj4e/vjxtuuMEDlRERkbv4+fnhjTfeQM+ePTFy5EifurKhSUstq1QqaLVaADV3thIEQbLCfF19AQGomYfQsWNHh0WUiIhInoKCgvDxxx9DoVDg/vvvR3l5uadLapAmXcUwfvx4XtpYj6sFhLlz52L16tVuroiIiDylY8eO+PTTT1FUVITExESfuOrP5YBgNpudnjMYDE0qRk6uFhC6d+8OnU7n5oqIiMiT+vbti02bNuGbb75B//79vf53pstXMURHRyMxMRFt27aFIAgQBAFz5sxp0L56vR4AYLFYoNFoxNMUtc2YMQNpaWkAgPz8fKSnpzvsa+etv2ivFhCIiKhluvvuu7Fv3z4kJibi9ttvx7p16zBhwgRPl1Unl0cQYmNjkZWVhaioKNhsNixatAixsbHX3M9kMkEQBOh0OiQlJSE7O7vO7cxmMyZOnIjMzEwxKFitVphMJuh0Ouh0Oq+e81BeXs6AQERETrp27Yo9e/Zg9OjRePDBBzFr1ixUV1d7uiwnLo8gAIBGo3EYNTCbzde8dE8QBCiVSvGxUqmEIAhOowipqalOowMqlQq5ubnQarWIiYlxOI634QgCERHVJzg4GG+99RYGDhyIWbNm4cCBA8jNzUVoaKinSxM1KSAUFRU5TLTIzc3F8uXLr7pPaWkp1Gq1+FitVte5foL93IzFYgEA8RLKOXPmIDExETExMXjjjTdcrt1ms0k2k7SiosLho/3vrVq18pnZqg1VV69y5Su92td6r6ysbNLXm6/0KwX2Kk++2OukSZMQFRWFv//97xg8eDC2bt3aoJDgaq82mw0KhaJB27ocEGbOnImzZ886/C++qKjIpWPZQ0Bt9jkHADB8+HDEx8dDpVLBYDAgLy8PmZmZmDhxIvLy8lx6z+rqapfrrU9JSYn494qKClgsFsnfw1vU7lXuvL1X+/fPsWPHcPr06SYfz9v7lRJ7lSdf67Vt27ZYvXo1Jk+ejLvvvhurV692+I/01bjSa0BAQIO2czkgxMXFYfz48Q7Pbd269Zr7hYWFOYwYlJWVOV0qqdfrYTAYxJCgUqlgMplgMpkQFxeHmJgY5OTkYOHChXWenmgIf39/REZGNnq/ulRUVKCkpATh4eEICgpCdXU1Ll26hPDwcERFRUnyHt7iyl7lzFd6PXnyJAoKChAREdGk4Ulf6VcK7FWefLnXqKgobN26FSNGjEB6ejo2b9581fsbudprcXFxg7d1OSDUtf5BWFjYNffTarVYtmyZ+NhsNou/4K1WK1QqFTQajXgzKPvzMTExKCwsdHhfrVbr8g2iFAoFgoODXdq3PkFBQQgODhYDkFqtlvw9vIW915bA23sNDAwUP0pRp7f3KyX2Kk++2uutt96Kbdu2YejQoRg3bhy2bt2K66677qr7NLbXhp5eAJp4s6bc3Fz06tULQM15jS1btuDDDz+86n4ajQYJCQnQ6/WwWCxITU0VX0tMTEReXh5iYmKg1+vFkYScnBwAEK96KCwsBFBz98iYmBhXW2g29nNCvpZgiYjIs3r37g29Xo/hw4fj/vvvx2effeax3yUuB4QNGzZAq9U63Oe6ofe8rm/tgm3btjltc+W2KSkpjS3V7RgQiIjIVQMHDsTmzZuh0+kwduxYfPTRRw2eNyAllwNCenq607oHrswFkCMGBCIiaoo77rgDmzZtwsiRI/Hmm2965D/HksxBOHv2LARB8Mrhfk9gQCAioqa65557cPDgQY+tjeDySop79uwR/65UKjFixAiH51oye0DwxUkyRETkPbp27Yrrr7/eI+/dqBGEs2fPYsuWLVAoFNi9e7fT64WFhRg3bpxkxfkqjiAQEZGva1RAUCqViI2NRXZ2NkpLS52WVZ48ebKkxfkqBgQiIvJ1jZ6DoNFokJGRgT179jTo5kwtEQMCERH5uibdzfFK586da1IxcsGAQEREvq5RIwjnzp0TJ0vUdY+BDRs24Nlnn5WmMh9mv1GTv7+/p0shIiJySYMDwtatW/HPf/4TX3zxBTp37oxHH30UvXr1clgcyWg0MiCAt3omIiLf1+CAoFKpHEYNxo8fjzlz5jhs05CbNbUEDAhEROTrGjwHwWw2Ozyu64YPDblZU0vAgEBERL6uUSMITz/9NOLi4gDU3Kzp888/F1+3WCzQ6/VYt26d9FX6GAYEIiLydQ0OCCNGjIBKpRIXSLJarfjxxx8dtikrK5O0OF/FgEBERL6uUVcxxMbGipc31rUOApdarsGAQEREvk7SdRC4cFINBgQiIvJ1LgcEqh8DAhER+ToGhGbAgEBERL6OAaEZMCAQEZGvY0BoBgwIRETk6xgQmkF5eTkDAhER+TQGhGbAEQQiIvJ1DAjNgAGBiIh8HQNCM2BAICIiX8eA0AwYEIiIyNcxIEjs0qVLuHDhAgMCERH5NI8EBL1eD71ej9zcXAiCUOc2M2bMgNFohNFoxLJlyxyet1qt7iq10SorKwGAAYGIiHxao27WJAWTyQRBEJCRkQEASE5OhlarddrObDZj4sSJ6NmzJ7KyssR9t27dKt4Uymq1Ys6cOUhJSXFfA9dQUVEBgAGBiIh8m9sDgiAIUCqV4mOlUglBEJxCQmpqKnQ6ncNzJpMJe/fuhUqlAgDk5uYiKSnJpTpsNhvKy8td2vdK9lBQUVGB06dPAwAUCoVkx/cmtXuVO1/p1T5qVVlZ2aSvOV/pVwrsVZ7Y67XZbDYoFIoGbev2gFBaWgq1Wi0+VqvVdZ4yMBgMAACLxQIASEpKcggRubm5iI+Pd7mO6upqFBUVubx/XUpKSvDLL78AAH7//XfJj+9NSkpKPF2C23h7r/bvkWPHjokBtSm8vV8psVd5Yq9XFxAQ0KDt3B4Q6mL/AVdbenq6+Pfhw4cjPj5eHDkwmUywWq3iY1f4+/sjMjLS5f1rq6ioQElJCcLDw1FdXQ0AiIqKQlRUlCTH9ya1e5X7aRRf6fXkyZMoKChAREQEQkNDXT6Or/QrBfYqT+z12oqLixu8rdsDQlhYmMOIQVlZGTQajcM2er0eBoNBDAkqlQomkwkxMTEAgA0bNiAuLq5JdSgUCgQHBzfpGFeq/Ulq27at5Mf3JkFBQbLurzZv7zUwMFD8KEWd3t6vlNirPLHX+jX09ALggasYtFqtePoAqJmMaD91YA8OGo3GIQBYrVYxHADA1q1bnUKFt+AkRSIikgO3jyBoNBokJCRAr9fDYrEgNTVVfC0xMRF5eXmIiYkRL4U0GAzIyclxOIZKpUJISIi7S28QBgQiIpIDj8xBuPLqBLtt27Y5bVPXtnl5ec1TmAQYEIiISA64kqLEGBCIiEgOGBAkVlFRAYVCgTZt2ni6FCIiIpcxIEisoqICgYGBjZopSkRE5G0YECTGOzkSEZEcMCBIjAGBiIjkgAFBYgwIREQkBwwIEmNAICIiOWBAkBgDAhERyQEDgsQYEIiISA4YECTGgEBERHLAgCAxBgQiIpIDBgSJlZeXMyAQEZHPY0CQGEcQiIhIDhgQJMaAQEREcsCAIDEGBCIikgMGBIkxIBARkRwwIEiMAYGIiOSAAUFiDAhERCQHDAgSstlsDAhERCQLDAgSqqqqAgAGBCIi8nkMCBKqqKgAwIBARES+jwFBQpWVlQAYEIiIyPcxIEjIPoIQHBzs4UqIiIiahgFBQjzFQEREcsGAICGeYiAiIrlo7Yk31ev1AACLxQKNRgOtVuu0zYwZM5CWlgYAyM/PR3p6uvhadnY2NBoNAECn07mh4obhCAIREcmF2wOCyWSCIAjIyMgAACQnJ9cZEMxmMyZOnIiePXsiKytLfD45ORlZWVlQqVRITExkQCAiImoGbg8IgiBAqVSKj5VKJQRBcAoJqampTr/8jUajuK/RaEReXp7LddhsNpSXl7u8f232YGC1WiU/trex92r/KGe+0qv91FZlZWWTvu58pV8psFd5Yq/XZrPZoFAoGrSt2wNCaWkp1Gq1+FitVou/WGszGAwAak5DAEBSUhIKCwthNpthMpkAAAsXLhRHIhqruroaRUVFLu1bn9LSUvHjqVOnJD22tykpKfF0CW7j7b3av0eOHTuG06dPN/l43t6vlNirPLHXqwsICGjQdh6Zg3Al+w+42mrPORg+fDji4+NhtVoREhKCmJgYAEBhYSGMRqP4uDH8/f0RGRnpetG1VFRUoKSkRBzd6NOnD/z85Dn/095reHi47E+l+EqvJ0+eREFBASIiIhAaGurycXylXymwV3lir9dWXFzc4G3dHhDCwsIcRgzKysrECYd2er0eBoNBDAkqlQomkwkajcZh25CQEJhMJpcCgkKhkHy9gkuXLiEgIADXX3+9pMf1RkFBQS1mvQdv7zUwMFD8KEWd3t6vlNirPLHX+jX09ALggcsctVqtePoAqJmMaJ9/YA8OGo0GcXFx4jZWqxUxMTHQarXi6QWgZsJjXRMcPYU3aiIiIrlw+wiCRqNBQkIC9Ho9LBYLUlNTxdcSExORl5eHmJgY6PV6cSQhJycHQM1IQlJSEnJzc2G1WjFnzhyoVCp3t1CvyspKBgQiIpIFj8xBqO/SxG3btjltc+W23nRZ45U4gkBERHIhz5l0HsKAQEREcsGAICGeYiAiIrlgQJAQRxCIiEguGBAkxBEEIiKSCwYECZWXlzMgEBGRLDAgSIinGIiISC4YECTEUwxERCQXDAgS4ggCERHJBQOChDiCQEREcsGAICGOIBARkVwwIEiIAYGIiOSCAUFCPMVARERywYAgIY4gEBGRXDAgSOTixYu4dOkSAwIREckCA4JEKisrAQDBwcEeroSIiKjpGBAkUlVVBQAcQSAiIllgQJAIAwIREckJA4JEGBCIiEhOGBAkwoBARERywoAgEfskRQYEIiKSAwYEiXAEgYiI5IQBQSIMCEREJCcMCBJhQCAiIjlhQJAIAwIREcmJRwKCXq+HXq9Hbm4uBEGoc5sZM2bAaDTCaDRi2bJl13ze0yorK9GqVSv4+/t7uhQiIqIma+3uNzSZTBAEARkZGQCA5ORkaLVap+3MZjMmTpyInj17Iisr65rPe1pVVRVHD4iISDbcHhAEQYBSqRQfK5VKCILgFBJSU1Oh0+mc9q/veU+rqqpCYGCgp8sgIiKShNsDQmlpKdRqtfhYrVbDarU6bWcwGAAAFosFAJCUlHTV5xvLZrOhvLzcpX2vVFFRIQYEqY7prSoqKhw+ypmv9Gpfg6OysrJJX3++0q8U2Ks8sddrs9lsUCgUDdrW7QGhLvZf9rWlp6eLfx8+fDji4+OhUqnqfb6xqqurUVRU5FrBdaiqqkKrVq0kPaY3Kykp8XQJbuPtvdq/f44dO4bTp083+Xje3q+U2Ks8sderCwgIaNB2bg8IYWFhDiMGZWVl0Gg0Dtvo9XoYDAYxDKhUKphMJphMpjqfj4mJaXQd/v7+iIyMbEIn/2MfQVCpVIiKipLkmN6qoqICJSUlCA8Pl/2cC1/p9eTJkygoKEBERARCQ0NdPo6v9CsF9ipP7PXaiouLG7yt2wOCVqt1uPrAbDaL8w+sVitUKhU0Go3DqIDVahVDQH3PN5ZCoUBwcLBL+9alsrISwcHBkh7TmwUFBbFXL2Gf+xIYGChJnd7er5TYqzyx1/o19PQC4IGAoNFokJCQAL1eD4vFgtTUVPG1xMRE5OXlISYmRrwU0mAwICcnBwDqfd4bVFZWcpIiERHJhkfmINR3FcK2bductrly2/qe97SqqqoWk1iJiEj+uJKiRLgOAhERyQkDgkS4DgIREckJA4JEOIJARERywoAgEY4gEBGRnDAgSIQjCEREJCcMCBKprKxkQCAiItlgQJAITzEQEZGcMCBIhKcYiIhIThgQJHDp0iVUV1czIBARkWwwIEjAfrtdBgQiIpILBgQJ2O/HzYBARERywYAgAfsIAicpEhGRXDAgSIAjCEREJDcMCBJgQCAiIrlhQJAATzEQEZHcMCBIgCMIREQkNwwIEmBAICIiuWFAkABPMRARkdwwIEigdevWCAgIQHBwsKdLISIikgQDggRGjBiB9957D23atPF0KURERJJgQJCAv78/unTp4ukyiIiIJMOAQERERE4YEIiIiMgJAwIRERE5YUAgIiIiJ6098aZ6vR4AYLFYoNFooNVqnbaZMWMG0tLSAAD5+flIT093OoZKpapzXyIiImoat48gmEwmCIIAnU6HpKQkZGdn17md2WzGxIkTkZmZKQYFO6vVijVr1sBqtbqjZCIiohbH7SMIgiBAqVSKj5VKJQRBcBoJSE1NhU6nq/MYW7ZsQXx8fJPqsNlsKC8vb9Ix7OxLLds/yhl79T72lTwrKyub9DXtK/1Kgb3KE3u9NpvNBoVC0aBt3R4QSktLoVarxcdqtbrOkQCDwQCg5jQEACQlJQEAjEYjtFqteJrCVdXV1SgqKmrSMa5UUlIi6fG8GXv1HvbvkWPHjuH06dNNPp639ysl9ipP7PXqAgICGrSdR+YgXMn+A6622nMOhg8fjvj4eKhUKphMpnpHFhrD398fkZGRTT4OUJPgSkpKEB4eLvsbNrFX73Py5EkUFBQgIiICoaGhLh/HV/qVAnuVJ/Z6bcXFxQ3e1u0BISwszGHEoKysDBqNxmEbvV4Pg8EghgR7MBAEARqNRnzdZDJBo9EgJiamUTVUV1fDZrPh6NGjTW8INUM2AHD8+PEGD934KvbqfS5duoRhw4bBYrHg3LlzLh/HV/qVAnuVJ/Z6bdXV1d57ikGr1WLZsmXiY7PZLM4/sFqtUKlU0Gg0UKlU4jZWqxUxMTEOQcBgMKBXr16NDgcAJP/CUSgUDR6y8XXs1fu0atUKbdu2bfJxfKVfKbBXeWKvDduvob8DFTZ7DHGj2pc5hoSEiKcMhg8fjry8PKhUKnEbg8GACRMmOIwyCIKAzMxMdO7cGenp6U4jEERERNQ0HgkIRERE5N24kiIRERE5YUAgIiIiJwwIRERE5IQBgYiIiJwwIBAREZETBgQiIiJywoBAREREThgQiIiIyAkDAhERETlhQCAiIiInDAhERETkxO13c5Sb2jee0mg04p0p5cJqtSI3NxcAkJKSIj4v1771ej0sFguMRiN0Op3Ylxz71ev10Gg0KCwsBAAkJSWJzwPy6tVOr9dDpVLJ+vM6Y8YMpKWlAQDy8/ORnp4OQJ69AkB2drZ4wz77jf/k2OuMGTOwePFihzsdA83cq41cVlpaavu///s/8fHEiRM9WE3z2LJli23p0qW2NWvWiM/Jte/CwkLbli1bbDabzWaxWGz9+vWz2Wzy7NdisdhGjx4t/v3mm2+22Wzy7NXO3rP9cyzXXkePHm3r16+fbeLEiTaLxWKz2eTba+0e7V/Pcuy1tLTUdvPNN9v69etn69evn+3mm2+2rVmzptl75SmGJhAEAUqlUnysVCohCIIHK5KeTqdDWFiYw3Ny7dtisYh9qFQqhISEwGg0yrJflUqFvLw8AIDJZBL/1yHHXu22bNmC+Ph48bFce01NTcXevXuRk5Mj/m9Tjr0ajUaxJ6PRKH49y7FXk8mEvXv3in8yMjKQkpLS7L3yFEMTlJaWQq1Wi4/VajWsVqvnCnITufat1WodhucsFgtiYmKQn58vy34BIDc3F7t370ZWVhYA+X5ujUYjtFqtOBwLyLdXg8EAoObrF6g5dSTHXgsLC2E2m2EymQAACxcuREZGhix7rf1zKTc3Vwy6zd0rA4LE7N+ULY3c+l64cCEWLVpU7+ty6TcpKQkajQaZmZnIyMiocxs59GoymcTz01cjh17tcw4AYPjw4Q6jJrX5eq9WqxUhISGIiYkBUBMYjEZjndv6eq92JpMJVqvVaR5CbVL2ylMMTXDl0HtZWZk4WUbO5N63Xq+HVqsVf6HItV/7/zS0Wi22bNkCQRBk2Wt2djaAms+rwWCAIAgwGo2y7FWv12PZsmXiY5VKBZPJJMteNRqNQw8hISGy7dVuw4YNYiACmv9nEwNCE2i1WnE4DwDMZrMsZstei5z7FgQBKpUKOp0ORqNRPD8vt35zc3OxevVq8XFISAhCQkJk2WtKSgp0Oh10Op04yzsmJkaWvWo0GsTFxYmPrVarbHvVarXi6QXgf3Np5Nir3datWx0CQHP3qrDZbDbJjtYC1b7EJCQkpEHDmL5EEARs2LABZ8+eRVJSUp2XEcmlb5PJhMTERPGx1WrF4cOHAcivX6vVKoah3bt3Q61Wi5exyq1XO0EQkJmZic6dOyM9PR0ajUaWvdp7MhgMmDBhgvgLRa69WiwWWK1WaDQaWf98AoDExES88cYbDqcYmrNXBgQiIiJywlMMRERE5IQBgYiIiJwwIBAREZETBgQiIiJywoBAREREThgQiIiIyAkDAhF5LUEQkJiYKN5ynIjchwGBiLyWVqtFbGysp8sgapEYEIjIq9W+Wx0RuQ8DAhERETnh7Z6JqNHsd0TUaDQwGAxIT0+HIAhYuHCheMMci8UCo9GIOXPmiGvHG41GCIIAjUYj3oLZfq8Ak8mEDRs2oFevXrBYLIiPjxf3s987wmQyYffu3VixYoXHeidqKRgQiKhRTCYTMjMzkZeXB6DmJjHZ2dlISUnBiBEjoFarHW6aM3PmTOTk5Ij75eTkiMey33wGAJKTk5GXlweVSoVly5YhNzdXvIGUwWBwuJmU0Wh0uO0tEUmPAYGIGmXDhg0ICQmBIAjic7VvOVv7TnM6nQ4zZ86E1WrFhg0bEB0d7XCszp07Y8uWLQBqblVs3zctLc1hu169eol/VyqVsFgs0jVERHViQCCiRouOjna473xSUlKTjme1WqFUKsXHtUMGEXkGJykSUaMkJCRgz549Ds/VHk2wWq3i3/V6PbRaLVQqVZ37HTx4EPHx8dDpdDh48GC9xyQi91PYbDabp4sgIt8iCAJ2794tDv3bQ8CyZctw9uxZ6HQ6WK1WGAwGpKWliSMCV05uTEhIEOcS1HVMk8mE//u//wMALFq0SJzHEB0djfT0dHGCIxFJjwGBiCSzbNkyhIWFNfmUAxF5Hk8xEBERkRMGBCKShCAI2LNnj3gZIhH5Np5iICIiIiccQSAiIiInDAhERETkhAGBiIiInDAgEBERkRMGBCIiInLCgEBEREROGBCIiIjICQMCEREROfl/7AlxeTGH59sAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
@@ -671,11 +700,19 @@
"source": [
"fig, ax = plt.subplots(1, 1, figsize=set_size(width, subplots=(1,1)))\n",
"ax = sns.lineplot(x=df.index, y='fitness', data=df, color='black', linewidth=1)\n",
- "ax.axvline(133, 0, 1, lw=1, color='grey')\n",
+ "ax.axvline(27, 0, 1, lw=1, color='grey')\n",
"ax.set_xlabel('epoch')\n",
- "df['fitness'].max()\n",
- "fig.savefig(fig_save_dir + 'model_fitness.pdf', format='pdf', bbox_inches='tight')"
+ "print(df['fitness'].max())\n",
+ "fig.savefig(fig_save_dir + 'model_fitness_final.pdf', format='pdf', bbox_inches='tight')"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4580a3cb",
+ "metadata": {},
+ "outputs": [],
+ "source": []
}
],
"metadata": {
diff --git a/thesis/graphics/classifier-hyp-metrics.pdf b/thesis/graphics/classifier-hyp-metrics.pdf
index f93f28c..9e1968b 100644
Binary files a/thesis/graphics/classifier-hyp-metrics.pdf and b/thesis/graphics/classifier-hyp-metrics.pdf differ
diff --git a/thesis/thesis.pdf b/thesis/thesis.pdf
index 34d8e4c..1a16369 100644
Binary files a/thesis/thesis.pdf and b/thesis/thesis.pdf differ
diff --git a/thesis/thesis.tex b/thesis/thesis.tex
index 0bdb94b..999971c 100644
--- a/thesis/thesis.tex
+++ b/thesis/thesis.tex
@@ -79,6 +79,8 @@
\newacronym{resnet}{ResNet}{Residual Neural Network}
\newacronym{cnn}{CNN}{Convolutional Neural Network}
\newacronym{sgd}{SGD}{Stochastic Gradient Descent}
+\newacronym{roc}{ROC}{Receiver Operating Characteristic}
+\newacronym{auc}{AUC}{Area Under the Curve}
\begin{document}
@@ -294,6 +296,135 @@ for the \emph{Plant} class.
\label{fig:yolo-ap}
\end{figure}
+\subsection{Hyper-parameter Optimization}
+\label{ssec:yolo-hyp-opt}
+
+To further improve the object detection performance, we perform
+hyper-parameter optimization using a genetic algorithm. Evolution of
+the hyper-parameters starts from the initial 30 default values
+provided by the authors of YOLO. Of those 30 values, 26 are allowed to
+mutate. During each generation, there is an 80\% chance that a
+mutation occurs with a variance of 0.04. To determine which generation
+should be the parent of the new mutation, all previous generations are
+ordered by fitness in decreasing order. At most five top generations
+are selected and one of them is chosen at random. Better generations
+have a higher chance of being selected as the selection is weighted by
+fitness. The parameters of that chosen generation are then mutated
+with the aforementioned probability and variance. Each generation is
+trained for three epochs and the fitness of the best epoch is
+recorded.
+
+In total, we ran 87 iterations of which the 34\textsuperscript{th}
+generation provides the best fitness of 0.6076. Due to time
+constraints, it was not possible to train each generation for more
+epochs or to run more iterations in total. We assume that the
+performance of the first few epochs is a reasonable proxy for model
+performance overall. The optimized version of the object detection
+model is then trained for 70 epochs using the parameters of the
+34\textsuperscript{th} generation.
+
+\begin{figure}
+ \centering
+ \includegraphics{graphics/model_fitness_final.pdf}
+ \caption[Optimized object detection fitness per epoch.]{Object
+ detection model fitness for each epoch calculated as in
+ equation~\ref{eq:fitness}. The vertical gray line at 27 marks the
+ epoch with the highest fitness of 0.6172.}
+ \label{fig:hyp-opt-fitness}
+\end{figure}
+
+Figure~\ref{fig:hyp-opt-fitness} shows the model's fitness during
+training for each epoch. After the highest fitness of 0.6172 at epoch
+27, the performance quickly declines and shows that further training
+would likely not yield improved results. The model converges to its
+highest fitness much earlier than the non-optimized version discussed
+in section~\ref{ssec:yolo-training-phase}, which indicates that the
+adjusted parameters provide a better starting point in general.
+Furthermore, the maximum fitness is 0.74\% higher than in the
+non-optimized version.
+
+\begin{figure}
+ \centering
+ \includegraphics{graphics/precision_recall_final.pdf}
+ \caption[Hyper-parameter optimized object detection precision and
+ recall during training.]{Overall precision and recall during
+ training for each epoch of the optimized model. The vertical gray
+ line at 27 marks the epoch with the highest fitness.}
+ \label{fig:hyp-opt-prec-rec}
+\end{figure}
+
+Figure~\ref{fig:hyp-opt-prec-rec} shows precision and recall for the
+optimized model during training. Similarly to the non-optimized model
+from figure~\ref{fig:prec-rec}, both metrics do not change materially
+during training. Precision is slightly higher than in the
+non-optimized version and recall hovers at the same levels.
+
+\begin{figure}
+ \centering
+ \includegraphics{graphics/val_box_obj_loss_final.pdf}
+ \caption[Hyper-parameter optimized object detection box and object
+ loss.]{Box and object loss measured against the validation set of
+ 3091 images and 4092 ground truth labels. The class loss is
+ omitted because there is only one class in the dataset and the
+ loss is therefore always zero.}
+ \label{fig:hyp-opt-box-obj-loss}
+\end{figure}
+
+The box and object loss during training is pictured in
+figure~\ref{fig:hyp-opt-box-obj-loss}. Both losses start from a lower
+level which suggests that the initial optimized parameters allow the
+model to converge quicker. The object loss exhibits a similar slope to
+the non-optimized model in figure~\ref{fig:box-obj-loss}. The vertical
+gray line again marks epoch 27 with the highest fitness. The box loss
+reaches its lower limit at that point and the object loss starts to
+increase again after epoch 27.
+
+\begin{table}[h]
+ \centering
+ \begin{tabular}{lrrrr}
+ \toprule
+ {} & Precision & Recall & F1-score & Support \\
+ \midrule
+ Plant & 0.633358 & 0.702811 & 0.666279 & 12238.0 \\
+ \bottomrule
+ \end{tabular}
+ \caption{Precision, recall and F1-score for the optimized object
+ detection model.}
+ \label{tab:yolo-metrics-hyp}
+\end{table}
+
+Turning to the evaluation of the optimized model on the test dataset,
+table~\ref{tab:yolo-metrics-hyp} shows precision, recall and the
+F1-score for the optimized model. Comparing these metrics with the
+non-optimized version from table~\ref{tab:yolo-metrics}, precision is
+significantly higher by more than 8.5\%. Recall, however, is 3.5\%
+lower. The F1-score is higher by more than 3.7\% which indicates that
+the optimized model is better overall despite the lower recall. We
+feel that the lower recall value is a suitable trade off for the
+substantially higher precision considering that the non-optimized
+model's precision is quite low at 0.55.
+
+The precision-recall curves in figure~\ref{fig:yolo-ap-hyp} for the
+optimized model show that the model draws looser bounding boxes than
+the optimized model. The \gls{ap} for both \gls{iou} thresholds of 0.5
+and 0.95 is lower indicating worse performance. It is likely that more
+iterations during evolution would help increase the \gls{ap} values as
+well. Even though the precision and recall values from
+table~\ref{tab:yolo-metrics-hyp} are better, the \textsf{mAP}@0.5:0.95
+is lower by 1.8\%.
+
+\begin{figure}
+ \centering
+ \includegraphics{graphics/APpt5-pt95-final.pdf}
+ \caption[Hyper-parameter optimized object detection AP@0.5 and
+ AP@0.95.]{Precision-recall curves for \gls{iou} thresholds of 0.5
+ and 0.95. The \gls{ap} of a specific threshold is defined as the
+ area under the precision-recall curve of that threshold. The
+ \gls{map} across \gls{iou} thresholds from 0.5 to 0.95 in 0.05
+ steps \textsf{mAP}@0.5:0.95 is 0.5546.}
+ \label{fig:yolo-ap-hyp}
+\end{figure}
+
\section{Classification}
\label{sec:resnet-eval}
@@ -421,6 +552,89 @@ figure~\ref{fig:classifier-training-metrics}.
\label{fig:resnet-hyp-results}
\end{figure}
+Table~\ref{tab:resnet-final-hyps} lists the final hyper-parameters
+which were chosen to train the improved model. In order to confirm
+that the model does not suffer from overfitting or is a product of
+chance due to a coincidentally advantageous train/test split, we
+perform stratified $10$-fold cross validation on the dataset. Each
+fold contains 90\% training and 10\% test data and was trained for 25
+epochs. Figure~\ref{fig:classifier-hyp-roc} shows the performance of
+the epoch with the highest F1-score of each fold as measured against
+the test split. The mean \gls{roc} curve provides a robust metric for
+a classifier's performance because it averages out the variability of
+the evaluation. Each fold manages to achieve at least an \gls{auc} of
+0.94, while the best fold reaches 0.98. The mean \gls{roc} has an
+\gls{auc} of 0.96 with a standard deviation of 0.02. These results
+indicate that the model is accurately predicting the correct class and
+is robust against variations in the training set.
+
+\begin{table}
+ \centering
+ \begin{tabular}{cccc}
+ \toprule
+ Optimizer & Batch Size & Learning Rate & Step Size \\
+ \midrule
+ \gls{sgd} & 64 & 0.01 & 5\\
+ \bottomrule
+ \end{tabular}
+ \caption[Hyper-parameters for the optimized classifier.]{Chosen
+ hyper-parameters for the final, improved model. The difference to
+ the parameters listed in Table~\ref{tab:resnet-hyps} comes as a
+ result of choosing \gls{sgd} over Adam. The missing four
+ parameters are only required for Adam and not \gls{sgd}.}
+ \label{tab:resnet-final-hyps}
+\end{table}
+
+\begin{figure}
+ \centering
+ \includegraphics{graphics/classifier-hyp-folds-roc.pdf}
+ \caption[Mean \gls{roc} and variability of hyper-parameter-optimized
+ model.]{This plot shows the \gls{roc} curve for the epoch with the
+ highest F1-score of each fold as well as the \gls{auc}. To get a
+ less variable performance metric of the classifier, the mean
+ \gls{roc} curve is shown as a thick line and the variability is
+ shown in gray. The overall mean \gls{auc} is 0.96 with a standard
+ deviation of 0.02. The best-performing fold reaches an \gls{auc}
+ of 0.99 and the worst an \gls{auc} of 0.94. The black dashed line
+ indicates the performance of a classifier which picks classes at
+ random ($\mathrm{\gls{auc}} = 0.5$). The shapes of the \gls{roc}
+ curves show that the classifier performs well and is robust
+ against variations in the training set.}
+ \label{fig:classifier-hyp-roc}
+\end{figure}
+
+The classifier shows good performance so far, but care has to be taken
+to not overfit the model to the training set. Comparing the F1-score
+during training with the F1-score during testing gives insight into
+when the model tries to increase its performance during training at
+the expense of generalizability. Figure~\ref{fig:classifier-hyp-folds}
+shows the F1-scores of each epoch and fold. The classifier converges
+quickly to 1 for the training set at which point it experiences a
+slight drop in generalizability. Training the model for at most five
+epochs is sufficient because there are generally no improvements
+afterwards. The best-performing epoch for each fold is between the
+second and fourth epoch which is just before the model achieves an
+F1-score of 1 on the training set.
+
+\begin{figure}
+ \centering
+ \includegraphics[width=.9\textwidth]{graphics/classifier-hyp-folds-f1.pdf}
+ \caption[F1-score of stratified $10$-fold cross validation.]{These
+ plots show the F1-score during training as well as testing for
+ each of the folds. The classifier converges to 1 by the third
+ epoch during the training phase, which might indicate
+ overfitting. However, the performance during testing increases
+ until epoch three in most cases and then stabilizes at
+ approximately 2-3\% lower than the best epoch. We believe that the
+ third, or in some cases fourth, epoch is detrimental to
+ performance and results in overfitting, because the model achieves
+ an F1-score of 1 for the training set, but that gain does not
+ transfer to the test set. Early stopping during training
+ alleviates this problem.}
+ \label{fig:classifier-hyp-folds}
+\end{figure}
+
+
\subsection{Class Activation Maps}
\label{ssec:resnet-cam}
@@ -438,7 +652,7 @@ One such method, \gls{cam}~\cite{zhou2015}, is a popular tool to
produce visual explanations for decisions made by
\glspl{cnn}. Convolutional layers essentially function as object
detectors as long as no fully-connected layers perform the
-classification. This ability to localize regions of interest which
+classification. This ability to localize regions of interest, which
play a significant role in the type of class the model predicts, can
be retained until the last layer and used to generate activation maps
for the predictions.
@@ -567,10 +781,95 @@ the cutoff for either class.
\label{fig:aggregate-ap}
\end{figure}
-Overall, we believe that the aggregate model shows sufficient
-predictive performance to be deployed in the field. The detections are
-accurate, especially for potted plants, and the classification into
-healthy and stressed is robust.
+\subsection{Hyper-parameter Optimization}
+\label{ssec:model-hyp-opt}
+
+So far the metrics shown in table~\ref{tab:model-metrics} are obtained
+with the non-optimized versions of both the object detection and
+classification model. Hyper-parameter optimization of the classifier
+led to significant model improvements, while the object detector has
+improved precision but lower recall and slightly lower \gls{map}
+values. To evaluate the final aggregate model which consists of the
+individual optimized models, we run the same test as in
+section~\ref{sec:aggregate-model}.
+
+\begin{table}
+ \centering
+ \begin{tabular}{lrrrr}
+ \toprule
+ {} & precision & recall & f1-score & support \\
+ \midrule
+ Healthy & 0.664 & 0.640 & 0.652 & 662.0 \\
+ Stressed & 0.680 & 0.539 & 0.601 & 488.0 \\
+ micro avg & 0.670 & 0.597 & 0.631 & 1150.0 \\
+ macro avg & 0.672 & 0.590 & 0.626 & 1150.0 \\
+ weighted avg & 0.670 & 0.597 & 0.630 & 1150.0 \\
+ \bottomrule
+ \end{tabular}
+ \caption{Precision, recall and F1-score for the optimized aggregate
+ model.}
+ \label{tab:model-metrics-hyp}
+\end{table}
+
+Table~\ref{tab:model-metrics-hyp} shows precision, recall and F1-score
+for the optimized model on the same test dataset of 640 images. All of
+the metrics are significantly worse than for the non-optimized
+model. Considering that the optimized classifier performs better than
+the non-optimized version this is a surprising result. There are
+multiple possible explanations for this behavior:
+
+\begin{enumerate}
+\item The optimized classifier has worse generalizability than the
+ non-optimized version.
+\item The small difference in the \gls{map} values for the object
+ detection model result in significantly higher error rates
+ overall. This might be the case because a large number of plants is
+ not detected in the first place and/or those which are detected are
+ more often not classified correctly by the classifier. As mentioned
+ in section~\ref{ssec:yolo-hyp-opt}, running the evolution of the
+ hyper-parameters for more generations could better the performance
+ overall.
+\item The test dataset is tailored to the non-optimized version and
+ does not provide an accurate measure of real-world performance. The
+ test dataset was labeled by running the individual models on the
+ images and taking the predicted bounding boxes and labels as a
+ starting point for the labeling process. If the labels were not
+ rigorously corrected, the dataset will allow the non-optimized model
+ to achieve high scores because the labels are already in line with
+ what it predicts. Conversely, the optimized model might get closer
+ to the actual ground truth, but that truth is not what is specified
+ by the labels to begin with. If that is the case, the evaluation of
+ the non-optimized model is too favorably and should be corrected
+ down.
+\end{enumerate}
+
+Of these three possibilities, the second and third points are the most
+likely culprits. The first scenario is unlikely because the optimized
+classifier has been evaluated in a cross validation setting and the
+results do not lend themselves easily to such an
+interpretation. Dealing with the second scenario could allow the
+object detection model to perform better on its own, but would
+probably not explain the big difference in performance. Scenario three
+is the most likely one because the process of creating the test
+dataset can lead to favorable labels for the non-optimized model.
+
+\begin{figure}
+ \centering
+ \includegraphics{graphics/APmodel-final.pdf}
+ \caption[Optimized aggregate model AP@0.5 and
+ AP@0.95.]{Precision-recall curves for \gls{iou} thresholds of 0.5
+ and 0.95. The \gls{ap} of a specific threshold is defined as the
+ area under the precision-recall curve of that threshold. The
+ \gls{map} across \gls{iou} thresholds from 0.5 to 0.95 in 0.05
+ steps \textsf{mAP}@0.5:0.95 is 0.4426.}
+ \label{fig:aggregate-ap-hyp}
+\end{figure}
+
+Figure~\ref{fig:aggregate-ap-hyp} confirms the suspicions raised by
+the lower metrics from table~\ref{tab:model-metrics-hyp}. More
+iterations for the evolution of the object detection model would
+likely have a significant effect on \gls{iou} and the confidence
+values associated with the bounding boxes.
\backmatter