From b7057ff456e9cc8c4dda46d2d2d79a25e42a6cb1 Mon Sep 17 00:00:00 2001 From: Tobias Eidelpes Date: Sun, 18 Jun 2023 18:34:32 +0200 Subject: [PATCH] Add report for hyper-parameter optimization --- classification/classifier/hyp-metrics.csv | 276 +++++----- classification/classifier/hyp-metrics.ipynb | 250 +++++---- classification/classifier/train.ipynb | 13 +- classification/evaluation/detection.py | 15 +- .../evaluation/eval-test-model.ipynb | 151 ++++- .../evaluation/eval-test-yolo.ipynb | 160 +++++- .../evaluation/eval-train-yolo.ipynb | 519 ++++++++++-------- thesis/graphics/classifier-hyp-metrics.pdf | Bin 147639 -> 147639 bytes thesis/thesis.pdf | Bin 718067 -> 792394 bytes thesis/thesis.tex | 309 ++++++++++- 10 files changed, 1151 insertions(+), 542 deletions(-) diff --git a/classification/classifier/hyp-metrics.csv b/classification/classifier/hyp-metrics.csv index 60c41c8..a3c99e3 100644 --- a/classification/classifier/hyp-metrics.csv +++ b/classification/classifier/hyp-metrics.csv @@ -1,139 +1,139 @@ ,summary,config,name -0,"{'test/epoch_loss': 0.5664619127909343, 'train/epoch_acc': 0.8230958230958231, 'train/batch_loss': 0.33577921986579895, 'epoch': 9, '_wandb': {'runtime': 363}, '_timestamp': 1680692970.2016854, 'test/recall': 0.6170212765957447, 'test/precision': 0.8285714285714286, '_step': 2059, '_runtime': 367.13677954673767, 'test/f1-score': 0.7073170731707318, 'test/epoch_acc': 0.7333333333333334, 'train/epoch_loss': 0.4241055610431793}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.0003}",fiery-sweep-26 -1,"{'test/recall': 0.8222222222222222, 'test/precision': 0.6851851851851852, '_runtime': 341.8420207500458, '_timestamp': 1680692589.503975, '_wandb': {'runtime': 338}, 'test/f1-score': 0.7474747474747475, 'test/epoch_acc': 0.7222222222222222, 'test/epoch_loss': 0.6454579922888014, 'train/epoch_acc': 0.7125307125307125, 'train/batch_loss': 0.7014500498771667, '_step': 1039, 'epoch': 9, 'train/epoch_loss': 0.649790015355375}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0003}",radiant-sweep-25 -2,"{'test/recall': 0.7837837837837838, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.935483870967742, 'train/batch_loss': 0.01956617273390293, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 333}, '_runtime': 336.8275649547577, 'train/epoch_loss': 0.01614290558709019, '_timestamp': 1680692234.39516, 'test/f1-score': 0.8529411764705881, 'test/epoch_loss': 0.34812947780333664, 'train/epoch_acc': 0.9987714987714988}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",blooming-sweep-24 -3,"{'test/epoch_acc': 0.8, 'train/batch_loss': 0.5222326517105103, 'train/epoch_loss': 0.5324229019572753, 'epoch': 9, '_wandb': {'runtime': 327}, '_runtime': 331.57809829711914, 'test/f1-score': 0.7954545454545455, 'test/epoch_loss': 0.5553177932898203, 'train/epoch_acc': 0.8353808353808354, '_step': 529, '_timestamp': 1680691883.3877182, 'test/recall': 0.8333333333333334, 'test/precision': 0.7608695652173914}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.0003}",visionary-sweep-23 -4,"{'test/f1-score': 0.7076923076923076, 'train/epoch_acc': 0.5577395577395577, '_step': 410, 'epoch': 1, 'test/recall': 0.8846153846153846, 'test/epoch_acc': 0.5777777777777778, 'test/precision': 0.5897435897435898, 'test/epoch_loss': 1.5602711306677923, 'train/batch_loss': 0.5083656311035156, 'train/epoch_loss': 0.7508098256090057, '_wandb': {'runtime': 70}, '_runtime': 71.64615154266357, '_timestamp': 1680691538.7247725}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.01}",ancient-sweep-22 -5,"{'test/precision': 0.6885245901639344, 'test/epoch_loss': 0.4844042791260613, 'train/epoch_loss': 0.49390909720111537, '_step': 529, 'epoch': 9, '_timestamp': 1680691453.5148375, 'test/f1-score': 0.8, 'test/epoch_acc': 0.7666666666666667, 'train/epoch_acc': 0.769041769041769, 'train/batch_loss': 0.4559023082256317, '_wandb': {'runtime': 328}, '_runtime': 331.44886469841003, 'test/recall': 0.9545454545454546}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.003}",fresh-sweep-22 -6,"{'test/epoch_loss': 0.26263883135527266, 'train/epoch_acc': 0.9975429975429976, 'train/batch_loss': 0.0031523401848971844, 'train/epoch_loss': 0.018423480946079804, '_wandb': {'runtime': 355}, '_runtime': 358.66950702667236, '_timestamp': 1680691110.042932, 'test/recall': 0.8867924528301887, 'test/f1-score': 0.9306930693069309, 'test/epoch_acc': 0.9222222222222224, 'test/precision': 0.9791666666666666, '_step': 2059, 'epoch': 9}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.01}",pleasant-sweep-21 -7,"{'train/batch_loss': 0.003317732596769929, 'epoch': 9, '_wandb': {'runtime': 329}, '_runtime': 332.6156196594238, 'test/f1-score': 0.8865979381443299, 'test/epoch_loss': 0.3669874522421095, 'train/epoch_acc': 1, 'train/epoch_loss': 0.0014873178028192654, '_step': 279, '_timestamp': 1680690741.3215847, 'test/recall': 0.9148936170212766, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.86}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.01}",fragrant-sweep-20 -8,"{'test/recall': 0.82, 'test/precision': 0.7592592592592593, 'test/epoch_loss': 0.5786970999505785, 'train/epoch_acc': 0.8206388206388207, '_step': 149, 'epoch': 9, '_runtime': 342.05230498313904, 'test/epoch_acc': 0.7555555555555555, 'train/batch_loss': 0.58731609582901, 'train/epoch_loss': 0.5623220165765842, '_wandb': {'runtime': 338}, '_timestamp': 1680690397.165603, 'test/f1-score': 0.7884615384615384}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.001}",treasured-sweep-19 -9,"{'test/precision': 0.8536585365853658, 'test/epoch_loss': 0.6037532766660054, 'train/epoch_acc': 0.7788697788697788, 'epoch': 9, '_wandb': {'runtime': 357}, '_runtime': 360.5366156101227, 'test/f1-score': 0.7865168539325843, 'test/epoch_acc': 0.788888888888889, 'train/batch_loss': 0.5736206769943237, '_step': 2059, '_timestamp': 1680690042.488695, 'test/recall': 0.7291666666666666, 'train/epoch_loss': 0.5984062318134074}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.0001}",desert-sweep-18 -10,"{'_wandb': {'runtime': 362}, '_runtime': 365.3367943763733, '_timestamp': 1680689670.8310964, 'test/f1-score': 0.8333333333333334, 'test/precision': 0.945945945945946, 'train/epoch_loss': 0.3086323318522451, '_step': 2059, 'epoch': 9, 'test/recall': 0.7446808510638298, 'test/epoch_acc': 0.8444444444444444, 'test/epoch_loss': 0.3740654948684904, 'train/epoch_acc': 0.8697788697788698, 'train/batch_loss': 0.5778521299362183}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.003}",celestial-sweep-17 -11,"{'train/epoch_acc': 1, 'train/batch_loss': 0.004256190732121468, '_step': 149, '_runtime': 340.39124369621277, '_timestamp': 1680689237.7951498, 'test/precision': 0.9069767441860463, 'test/epoch_loss': 0.18080708616309696, 'train/epoch_loss': 0.0053219743558098115, 'epoch': 9, '_wandb': {'runtime': 337}, 'test/recall': 0.9285714285714286, 'test/f1-score': 0.9176470588235294, 'test/epoch_acc': 0.9222222222222224}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.01}",cosmic-sweep-15 -12,"{'_step': 2059, '_runtime': 359.0396990776062, '_timestamp': 1680688886.363035, 'test/recall': 0.8222222222222222, 'test/f1-score': 0.8705882352941177, 'test/precision': 0.925, 'train/batch_loss': 0.21692615747451785, 'epoch': 9, '_wandb': {'runtime': 356}, 'test/epoch_acc': 0.8777777777777778, 'test/epoch_loss': 0.23811448697621623, 'train/epoch_acc': 0.968058968058968, 'train/epoch_loss': 0.09628425111664636}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.001}",stilted-sweep-14 -13,"{'epoch': 9, '_runtime': 336.5640392303467, '_timestamp': 1680688517.0028613, 'test/recall': 0.9, 'test/precision': 0.9574468085106383, 'train/epoch_acc': 1, 'train/batch_loss': 0.007201554253697395, 'train/epoch_loss': 0.007631345846546077, '_step': 149, '_wandb': {'runtime': 333}, 'test/f1-score': 0.9278350515463918, 'test/epoch_acc': 0.9222222222222224, 'test/epoch_loss': 0.16714997291564945}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.01}",frosty-sweep-13 -14,"{'test/f1-score': 0.8674698795180724, 'test/precision': 0.9230769230769232, 'train/batch_loss': 0.27152174711227417, '_step': 529, 'epoch': 9, '_wandb': {'runtime': 328}, 'test/epoch_acc': 0.8777777777777778, 'test/epoch_loss': 0.32556109494633145, 'train/epoch_acc': 0.9496314496314496, 'train/epoch_loss': 0.17368088453934877, '_runtime': 331.98337984085083, '_timestamp': 1680688162.2054858, 'test/recall': 0.8181818181818182}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.001}",young-sweep-12 -15,"{'test/recall': 0.8292682926829268, 'test/epoch_acc': 0.7222222222222222, 'test/epoch_loss': 0.5193446947468652, 'train/batch_loss': 0.3307788372039795, '_wandb': {'runtime': 332}, '_timestamp': 1680687816.5057352, '_runtime': 335.6552822589874, 'test/f1-score': 0.7311827956989247, 'test/precision': 0.6538461538461539, 'train/epoch_acc': 0.7469287469287469, 'train/epoch_loss': 0.5277571982775039, '_step': 1039, 'epoch': 9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.1}",sandy-sweep-11 -16,"{'test/precision': 0.8085106382978723, 'epoch': 9, '_wandb': {'runtime': 334}, '_runtime': 336.80703043937683, 'test/recall': 0.9047619047619048, 'test/f1-score': 0.853932584269663, 'test/epoch_acc': 0.8555555555555556, '_step': 149, '_timestamp': 1680687470.9289024, 'test/epoch_loss': 0.4616309046745301, 'train/epoch_acc': 1, 'train/batch_loss': 0.0030224076472222805, 'train/epoch_loss': 0.003708146820279612}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",laced-sweep-10 -17,"{'_step': 422, 'epoch': 7, '_runtime': 265.48077392578125, '_timestamp': 1680687113.1220188, 'test/recall': 0.08888888888888889, 'test/f1-score': 0.14035087719298245, 'test/precision': 0.3333333333333333, 'test/epoch_loss': 11610.708938450283, 'train/batch_loss': 9.74098777770996, '_wandb': {'runtime': 265}, 'test/epoch_acc': 0.45555555555555555, 'train/epoch_acc': 0.5331695331695332, 'train/epoch_loss': 9.16968992828444}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.1}",jumping-sweep-9 -18,"{'test/recall': 0.803921568627451, 'test/f1-score': 0.845360824742268, 'test/epoch_acc': 0.8333333333333334, 'test/precision': 0.8913043478260869, 'test/epoch_loss': 0.3831123087141249, '_step': 529, '_runtime': 330.36346793174744, '_timestamp': 1680686834.80723, 'train/batch_loss': 0.34334877133369446, 'train/epoch_loss': 0.3055295220024756, 'epoch': 9, '_wandb': {'runtime': 327}, 'train/epoch_acc': 0.8955773955773956}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.0003}",dutiful-sweep-8 -19,"{'train/epoch_acc': 0.484029484029484, 'train/epoch_loss': 'NaN', 'epoch': 2, '_wandb': {'runtime': 99}, '_runtime': 99.40804982185364, '_timestamp': 1680686491.634724, 'test/recall': 1, 'test/f1-score': 0.6259541984732825, '_step': 157, 'test/epoch_acc': 0.45555555555555555, 'test/precision': 0.45555555555555555, 'test/epoch_loss': 6.554853016439314e+29, 'train/batch_loss': 'NaN'}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.1}",olive-sweep-7 -20,"{'_step': 279, '_timestamp': 1680686383.3591404, 'test/f1-score': 0.8695652173913044, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.851063829787234, 'train/batch_loss': 0.3707323968410492, 'epoch': 9, '_wandb': {'runtime': 334}, '_runtime': 337.17863941192627, 'test/recall': 0.8888888888888888, 'test/epoch_loss': 0.35141510632303025, 'train/epoch_acc': 0.9103194103194104, 'train/epoch_loss': 0.3219767680771521}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.001}",good-sweep-6 -21,"{'test/f1-score': 0.6601941747572815, 'test/epoch_acc': 0.6111111111111112, 'test/precision': 0.6296296296296297, 'train/batch_loss': 0.7027227878570557, 'train/epoch_acc': 0.5196560196560196, '_step': 149, 'epoch': 9, '_wandb': {'runtime': 342}, '_runtime': 344.80718994140625, '_timestamp': 1680686028.304971, 'test/recall': 0.6938775510204082, 'test/epoch_loss': 0.6818753732575311, 'train/epoch_loss': 0.6907664721955246}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.0003}",summer-sweep-5 -22,"{'_step': 529, '_wandb': {'runtime': 331}, '_runtime': 333.9663326740265, '_timestamp': 1680685671.7387648, 'test/f1-score': 0.9066666666666668, 'test/epoch_acc': 0.9222222222222224, 'test/precision': 0.9444444444444444, 'train/epoch_acc': 0.9864864864864864, 'train/batch_loss': 0.15035715699195862, 'train/epoch_loss': 0.10497688309859292, 'epoch': 9, 'test/recall': 0.8717948717948718, 'test/epoch_loss': 0.22382020586066775}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.001}",firm-sweep-4 -23,"{'_step': 149, 'test/recall': 0.925, 'test/f1-score': 0.6379310344827587, 'train/epoch_loss': 0.6564877619028677, 'test/epoch_loss': 0.6597137530644734, 'train/epoch_acc': 0.5909090909090909, 'epoch': 9, '_wandb': {'runtime': 333}, '_runtime': 335.79468297958374, '_timestamp': 1680685319.453976, 'test/epoch_acc': 0.5333333333333333, 'test/precision': 0.4868421052631579, 'train/batch_loss': 0.652446985244751}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.0001}",genial-sweep-3 -24,"{'test/epoch_acc': 0.7444444444444445, 'test/precision': 0.6271186440677966, 'test/epoch_loss': 0.5467572536733415, '_step': 529, 'epoch': 9, '_wandb': {'runtime': 329}, '_runtime': 331.50625491142273, 'test/f1-score': 0.7628865979381443, '_timestamp': 1680684975.004809, 'test/recall': 0.9736842105263158, 'train/epoch_acc': 0.7899262899262899, 'train/batch_loss': 0.5583129525184631, 'train/epoch_loss': 0.4703364581675143}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.1}",fine-sweep-2 -25,"{'test/epoch_acc': 0.9, 'train/epoch_acc': 0.9987714987714988, '_step': 529, 'epoch': 9, '_wandb': {'runtime': 447}, '_runtime': 450.5545320510864, 'test/recall': 0.8863636363636364, 'train/epoch_loss': 0.007131033717467008, '_timestamp': 1680684633.811369, 'test/f1-score': 0.896551724137931, 'test/precision': 0.9069767441860463, 'test/epoch_loss': 0.30911533037821454, 'train/batch_loss': 0.005764181260019541}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.01}",visionary-sweep-1 -26,"{'_wandb': {'runtime': 83}, '_timestamp': 1680629962.8990817, 'train/epoch_acc': 0.8931203931203932, 'train/epoch_loss': 0.2428556958016658, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.8444444444444444, 'test/epoch_loss': 0.29840316110187104, '_step': 239, 'epoch': 1, '_runtime': 83.58446168899536, 'test/recall': 0.9047619047619048, 'test/f1-score': 0.8735632183908046, 'train/batch_loss': 0.08615076541900635}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.1}",stoic-sweep-14 -27,"{'epoch': 9, '_wandb': {'runtime': 347}, '_runtime': 348.9410927295685, '_timestamp': 1680629872.8401277, 'test/recall': 0.975, 'test/f1-score': 0.951219512195122, 'test/epoch_acc': 0.9555555555555556, '_step': 149, 'train/batch_loss': 0.10338585078716278, 'train/epoch_loss': 0.1163152276517718, 'train/epoch_acc': 0.9803439803439804, 'test/epoch_loss': 0.20102048052681817, 'test/precision': 0.9285714285714286}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.01}",rich-sweep-13 -28,"{'train/batch_loss': 82027960, '_step': 210, 'epoch': 3, '_wandb': {'runtime': 135}, '_runtime': 132.22715950012207, '_timestamp': 1680629513.1781075, 'test/f1-score': 0.6721311475409836, 'test/epoch_acc': 0.5555555555555556, 'test/recall': 0.9111111111111112, 'test/precision': 0.5324675324675324, 'test/epoch_loss': 3.395405118153546e+20, 'train/epoch_acc': 0.5282555282555282, 'train/epoch_loss': 60563307.6520902}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.003}",smooth-sweep-12 -29,"{'_wandb': {'runtime': 326}, 'test/recall': 0.8888888888888888, 'test/epoch_acc': 0.6333333333333333, 'test/precision': 0.5245901639344263, 'train/batch_loss': 0.5836847424507141, 'train/epoch_loss': 0.6072891213970044, '_step': 279, 'epoch': 9, 'test/f1-score': 0.6597938144329897, 'test/epoch_loss': 0.6240786300765143, 'train/epoch_acc': 0.7469287469287469, '_runtime': 327.2181556224823, '_timestamp': 1680629374.0562296}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.0003}",resilient-sweep-11 -30,"{'train/epoch_acc': 0.9717444717444718, 'epoch': 9, 'test/f1-score': 0.8958333333333334, 'test/precision': 0.9772727272727272, 'test/epoch_loss': 0.2657569663392173, 'test/recall': 0.8269230769230769, 'test/epoch_acc': 0.888888888888889, 'train/batch_loss': 0.13025684654712677, 'train/epoch_loss': 0.12745249926751018, '_step': 529, '_wandb': {'runtime': 330}, '_runtime': 332.23273372650146, '_timestamp': 1680629038.456323}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.001}",serene-sweep-10 -31,"{'_step': 1039, '_wandb': {'runtime': 334}, '_timestamp': 1680628699.1189623, 'test/recall': 0.8372093023255814, 'test/epoch_loss': 0.23338710864384968, 'train/batch_loss': 0.11391787976026536, 'train/epoch_loss': 0.2116023584907412, 'epoch': 9, '_runtime': 335.94198656082153, 'test/f1-score': 0.9, 'test/epoch_acc': 0.9111111111111112, 'test/precision': 0.972972972972973, 'train/epoch_acc': 0.9275184275184276}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0003}",cool-sweep-9 -32,"{'_runtime': 327.29265093803406, '_timestamp': 1680628351.790065, 'test/f1-score': 0.7959183673469388, 'train/epoch_loss': 0.6034659886828805, '_step': 529, '_wandb': {'runtime': 326}, 'test/recall': 0.8863636363636364, 'test/epoch_acc': 0.7777777777777778, 'test/precision': 0.7222222222222222, 'test/epoch_loss': 0.5824494547314114, 'train/epoch_acc': 0.7702702702702703, 'train/batch_loss': 0.5777762532234192, 'epoch': 9}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.0001}",lilac-sweep-8 -33,"{'_wandb': {'runtime': 335}, '_runtime': 337.11313247680664, 'test/recall': 0.8048780487804879, 'test/f1-score': 0.717391304347826, 'test/epoch_acc': 0.7111111111111111, 'test/epoch_loss': 0.6369305915302701, '_step': 149, 'epoch': 9, 'train/epoch_loss': 0.618001790392311, 'train/epoch_acc': 0.7199017199017199, 'train/batch_loss': 0.5935282111167908, '_timestamp': 1680628016.5942774, 'test/precision': 0.6470588235294118}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.001}",warm-sweep-7 -34,"{'train/epoch_acc': 0.6498771498771498, 'train/epoch_loss': 0.6663250732773353, '_wandb': {'runtime': 354}, '_runtime': 355.7423675060272, 'test/recall': 0.8, 'test/f1-score': 0.6857142857142857, 'test/precision': 0.6, 'test/epoch_loss': 0.6619265423880683, '_step': 2059, 'epoch': 9, '_timestamp': 1680627667.6215644, 'test/epoch_acc': 0.6333333333333333, 'train/batch_loss': 0.6662057638168335}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.0001}",giddy-sweep-6 -35,"{'test/recall': 0.8163265306122449, 'test/f1-score': 0.7766990291262137, 'test/epoch_acc': 0.7444444444444445, 'test/epoch_loss': 0.6307997491624621, 'train/epoch_acc': 0.7125307125307125, 'epoch': 9, '_runtime': 344.59358406066895, '_timestamp': 1680627305.434523, 'train/batch_loss': 0.6531811356544495, 'train/epoch_loss': 0.6398702088093582, '_step': 149, '_wandb': {'runtime': 343}, 'test/precision': 0.7407407407407407}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.0001}",stellar-sweep-5 -36,"{'_runtime': 335.76391553878784, '_timestamp': 1680626951.0603056, 'test/recall': 0.8461538461538461, 'test/f1-score': 0.9041095890410958, 'test/precision': 0.9705882352941176, 'test/epoch_loss': 0.1906787835785912, 'epoch': 9, '_wandb': {'runtime': 334}, 'train/epoch_loss': 0.02095988139033052, 'train/epoch_acc': 0.9975429975429976, 'train/batch_loss': 0.0006497434806078672, '_step': 1039, 'test/epoch_acc': 0.9222222222222224}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",olive-sweep-4 -37,"{'_wandb': {'runtime': 332}, '_timestamp': 1680626608.419389, 'test/f1-score': 0.8705882352941177, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.8222222222222222, 'train/epoch_acc': 0.984029484029484, 'train/batch_loss': 0.12675245106220245, '_step': 149, 'epoch': 9, '_runtime': 333.64992809295654, 'test/recall': 0.925, 'test/epoch_loss': 0.27919367684258356, 'train/epoch_loss': 0.11751884335528429}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.003}",dazzling-sweep-3 -38,"{'_runtime': 337.19885444641113, '_timestamp': 1680626264.5954974, 'test/f1-score': 0.5977011494252874, 'test/epoch_acc': 0.6111111111111112, 'test/precision': 0.5306122448979592, 'train/epoch_acc': 0.6547911547911548, 'epoch': 9, '_wandb': {'runtime': 336}, 'train/epoch_loss': 0.6389284106085868, 'test/epoch_loss': 0.6708752089076572, 'train/batch_loss': 0.5270536541938782, '_step': 1039, 'test/recall': 0.6842105263157895}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.01}",kind-sweep-2 -39,"{'epoch': 9, '_wandb': {'runtime': 337}, '_runtime': 337.9836483001709, 'test/recall': 0.8636363636363636, 'test/f1-score': 0.853932584269663, '_step': 529, 'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.8444444444444444, 'test/epoch_loss': 0.38614972366227046, 'train/epoch_acc': 0.8746928746928747, 'train/batch_loss': 0.3848239779472351, 'train/epoch_loss': 0.3516608065117782, '_timestamp': 1680625919.9645753}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.003}",morning-sweep-1 -40,"{'test/recall': 0.8653846153846154, 'test/f1-score': 0.9, 'train/batch_loss': 0.05631007254123688, '_step': 2059, '_timestamp': 1680624250.2654595, '_runtime': 347.9354045391083, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9375, 'test/epoch_loss': 0.25786760796585845, 'train/epoch_acc': 0.9975429975429976, 'train/epoch_loss': 0.02368298517580857, 'epoch': 9, '_wandb': {'runtime': 346}}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.1}",valiant-sweep-23 -41,"{'_runtime': 329.4802031517029, '_timestamp': 1680623895.362503, 'test/recall': 0.8936170212765957, 'test/f1-score': 0.8571428571428571, 'test/epoch_loss': 0.490613665845659, 'train/epoch_acc': 0.8243243243243243, 'epoch': 9, '_wandb': {'runtime': 327}, 'test/epoch_acc': 0.8444444444444444, 'test/precision': 0.8235294117647058, 'train/batch_loss': 0.5639374256134033, 'train/epoch_loss': 0.48581602795996887, '_step': 1039}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0003}",earnest-sweep-22 -42,"{'_step': 149, 'epoch': 9, '_timestamp': 1680623556.4586525, 'test/recall': 0.9148936170212766, 'test/epoch_loss': 0.2318242397573259, 'train/epoch_acc': 0.995085995085995, 'train/batch_loss': 0.06110217794775963, 'train/epoch_loss': 0.05107141801451289, '_wandb': {'runtime': 326}, '_runtime': 328.0050995349884, 'test/f1-score': 0.9052631578947368, 'test/epoch_acc': 0.9, 'test/precision': 0.8958333333333334}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.003}",genial-sweep-21 -43,"{'_wandb': {'runtime': 325}, '_runtime': 327.10622239112854, '_timestamp': 1680623221.0825984, 'test/recall': 0.8723404255319149, 'train/epoch_acc': 0.7911547911547911, '_step': 149, 'epoch': 9, 'test/f1-score': 0.780952380952381, 'test/epoch_acc': 0.7444444444444445, 'test/precision': 0.7068965517241379, 'test/epoch_loss': 0.5943129923608568, 'train/batch_loss': 0.6166229844093323, 'train/epoch_loss': 0.5714027147914034}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.001}",lemon-sweep-20 -44,"{'train/epoch_acc': 0.6277641277641277, 'train/epoch_loss': 0.6722187732302879, 'epoch': 9, '_wandb': {'runtime': 330}, '_runtime': 331.60892701148987, 'test/recall': 0.7021276595744681, 'test/f1-score': 0.6470588235294118, 'train/batch_loss': 0.7205827236175537, '_step': 1039, '_timestamp': 1680622885.059607, 'test/epoch_acc': 0.6, 'test/precision': 0.6, 'test/epoch_loss': 0.6746161646313138}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",ancient-sweep-19 -45,"{'test/epoch_loss': 0.24883262103216516, 'train/epoch_acc': 0.9877149877149876, 'train/batch_loss': 0.015468262135982512, '_wandb': {'runtime': 347}, '_runtime': 348.9979507923126, '_timestamp': 1680622545.2735748, 'test/recall': 0.8695652173913043, 'test/f1-score': 0.898876404494382, 'test/epoch_acc': 0.9, 'test/precision': 0.9302325581395348, 'train/epoch_loss': 0.0466749508011656, '_step': 2059, 'epoch': 9}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.01}",smart-sweep-18 -46,"{'epoch': 9, '_runtime': 329.3028633594513, '_timestamp': 1680622188.8210304, 'test/epoch_loss': 0.2015038196825319, 'train/epoch_loss': 0.07856258183731457, '_step': 1039, 'test/recall': 0.8536585365853658, 'test/f1-score': 0.8974358974358975, 'test/epoch_acc': 0.9111111111111112, 'test/precision': 0.945945945945946, 'train/epoch_acc': 0.9815724815724816, 'train/batch_loss': 0.007225348148494959, '_wandb': {'runtime': 328}}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.003}",sleek-sweep-17 -47,"{'test/epoch_acc': 0.8333333333333334, 'train/epoch_acc': 0.828009828009828, 'train/epoch_loss': 0.5808350268101516, 'test/recall': 0.8301886792452831, 'epoch': 9, '_wandb': {'runtime': 321}, '_runtime': 323.3842430114746, '_timestamp': 1680621849.979658, 'test/f1-score': 0.8543689320388349, 'test/precision': 0.88, 'test/epoch_loss': 0.5843977000978258, '_step': 279, 'train/batch_loss': 0.6047794222831726}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.0001}",winter-sweep-16 -48,"{'epoch': 9, '_wandb': {'runtime': 346}, '_runtime': 347.8050694465637, 'test/recall': 0.85, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.85, '_step': 2059, 'test/f1-score': 0.85, 'test/epoch_loss': 0.5281610590923164, 'train/epoch_acc': 0.995085995085995, 'train/batch_loss': 0.001602485659532249, 'train/epoch_loss': 0.029015880939893934, '_timestamp': 1680621511.323635}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.1}",rare-sweep-15 -49,"{'_wandb': {'runtime': 346}, '_runtime': 347.7671456336975, '_timestamp': 1680621147.5604067, 'test/f1-score': 0.9135802469135802, 'test/epoch_acc': 0.9222222222222224, 'train/epoch_acc': 0.9864864864864864, '_step': 2059, 'test/recall': 0.8809523809523809, 'test/precision': 0.9487179487179488, 'test/epoch_loss': 0.22225395898438163, 'train/batch_loss': 0.010366588830947876, 'train/epoch_loss': 0.04606454834343147, 'epoch': 9}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.001}",stoic-sweep-14 -50,"{'_timestamp': 1680620790.920825, 'test/f1-score': 0.6585365853658537, 'train/epoch_acc': 0.6523341523341524, 'train/batch_loss': 0.6023905277252197, 'train/epoch_loss': 0.6673213337211703, '_step': 2059, '_wandb': {'runtime': 351}, '_runtime': 352.6435329914093, 'test/precision': 0.6428571428571429, 'test/epoch_loss': 0.661226307021247, 'epoch': 9, 'test/recall': 0.675, 'test/epoch_acc': 0.6888888888888889}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.0001}",glorious-sweep-13 -51,"{'_step': 149, '_wandb': {'runtime': 329}, 'test/recall': 0.9574468085106383, 'test/f1-score': 0.9782608695652174, 'test/epoch_acc': 0.977777777777778, 'test/precision': 1, 'train/epoch_acc': 1, 'epoch': 9, '_runtime': 330.7649688720703, '_timestamp': 1680620431.024078, 'test/epoch_loss': 0.1352142873737547, 'train/batch_loss': 0.004083937965333462, 'train/epoch_loss': 0.0071195896911716286}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.01}",chocolate-sweep-12 -52,"{'test/precision': 0.8085106382978723, 'train/epoch_loss': 0.5577488642652731, '_step': 149, 'epoch': 9, '_wandb': {'runtime': 328}, '_timestamp': 1680620092.0697718, 'test/f1-score': 0.8636363636363636, 'test/epoch_acc': 0.8666666666666667, '_runtime': 329.12984681129456, 'test/recall': 0.926829268292683, 'test/epoch_loss': 0.5375637359089321, 'train/epoch_acc': 0.800982800982801, 'train/batch_loss': 0.5299303531646729}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.0003}",glowing-sweep-11 -53,"{'_runtime': 324.3058567047119, 'test/recall': 0.7659574468085106, 'test/epoch_acc': 0.7555555555555555, 'test/precision': 0.7659574468085106, 'train/epoch_acc': 0.8611793611793611, 'train/epoch_loss': 0.46212616409072127, '_step': 279, 'epoch': 9, '_wandb': {'runtime': 322}, '_timestamp': 1680619755.0191748, 'test/f1-score': 0.7659574468085105, 'test/epoch_loss': 0.5337554746203952, 'train/batch_loss': 0.5281365513801575}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.003}",different-sweep-10 -54,"{'_runtime': 327.0705659389496, '_timestamp': 1680619423.656795, 'test/f1-score': 0.8602150537634408, 'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.7843137254901961, '_step': 279, 'epoch': 9, '_wandb': {'runtime': 325}, 'test/epoch_loss': 0.5470490535100301, 'train/epoch_acc': 0.8058968058968059, 'train/epoch_loss': 0.5580001385557564, 'test/recall': 0.9523809523809524, 'train/batch_loss': 0.6183260083198547}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.003}",lilac-sweep-9 -55,"{'train/epoch_loss': 0.46969629490990605, '_wandb': {'runtime': 327}, 'test/recall': 0.7551020408163265, 'test/epoch_acc': 0.788888888888889, 'test/precision': 0.8409090909090909, 'test/f1-score': 0.7956989247311828, 'test/epoch_loss': 0.46168507006433274, 'train/epoch_acc': 0.773955773955774, 'train/batch_loss': 0.6300776600837708, '_step': 529, 'epoch': 9, '_runtime': 328.68579959869385, '_timestamp': 1680619089.5332966}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.1}",crimson-sweep-8 -56,"{'_step': 2059, '_runtime': 350.2308712005615, '_timestamp': 1680618753.2361271, 'test/epoch_loss': 0.44089303129391433, 'train/epoch_acc': 0.9938574938574938, 'train/batch_loss': 0.011611333116889, 'epoch': 9, '_wandb': {'runtime': 349}, 'test/recall': 0.8181818181818182, 'test/f1-score': 0.8737864077669902, 'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.9375, 'train/epoch_loss': 0.02176519967463292}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.003}",still-sweep-7 -57,"{'test/f1-score': 0.8607594936708861, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.85, 'train/epoch_acc': 0.9938574938574938, 'train/epoch_loss': 0.02099113287724536, '_wandb': {'runtime': 333}, 'test/recall': 0.8717948717948718, '_runtime': 334.69481587409973, '_timestamp': 1680618396.0194488, 'test/epoch_loss': 0.24035142682841976, 'train/batch_loss': 0.030084805563092232, '_step': 1039, 'epoch': 9}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.01}",charmed-sweep-6 -58,"{'epoch': 9, '_timestamp': 1680618051.044084, 'test/recall': 0.8780487804878049, 'test/f1-score': 0.8674698795180722, 'test/precision': 0.8571428571428571, 'test/epoch_loss': 0.5385394818252988, 'train/epoch_acc': 0.9963144963144964, 'train/batch_loss': 0.001848929445259273, '_step': 1039, '_wandb': {'runtime': 335}, '_runtime': 336.1621870994568, 'test/epoch_acc': 0.8777777777777778, 'train/epoch_loss': 0.010693324584853135}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0003}",restful-sweep-5 -59,"{'_step': 149, 'epoch': 9, 'test/recall': 0.8409090909090909, 'test/epoch_acc': 0.8444444444444444, 'test/epoch_loss': 0.6238909363746643, 'train/epoch_loss': 0.004462716538065481, '_wandb': {'runtime': 333}, '_runtime': 334.4848310947418, '_timestamp': 1680617708.075962, 'test/f1-score': 0.8409090909090909, 'test/precision': 0.8409090909090909, 'train/epoch_acc': 1, 'train/batch_loss': 0.004928763955831528}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",proud-sweep-4 -60,"{'train/epoch_acc': 0.5626535626535626, 'train/batch_loss': 0.6750851273536682, '_step': 149, '_wandb': {'runtime': 337}, '_timestamp': 1680617365.2791553, 'test/recall': 0.75, 'test/epoch_acc': 0.34444444444444444, 'test/epoch_loss': 0.7233364171451993, 'train/epoch_loss': 0.6796711432845938, 'epoch': 9, '_runtime': 338.4922821521759, 'test/f1-score': 0.4778761061946903, 'test/precision': 0.35064935064935066}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.0001}",visionary-sweep-3 -61,"{'_wandb': {'runtime': 132}, 'test/recall': 1, 'test/f1-score': 0.59375, 'test/epoch_acc': 0.4222222222222222, 'test/precision': 0.4222222222222222, 'train/batch_loss': 1.2695436477661133, '_step': 110, 'epoch': 3, '_runtime': 129.48883533477783, '_timestamp': 1680617007.4126654, 'test/epoch_loss': 109.22879723442924, 'train/epoch_acc': 0.5147420147420148, 'train/epoch_loss': 3.225923076601521}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.1}",splendid-sweep-2 -62,"{'_runtime': 373.84231185913086, 'test/recall': 0.8636363636363636, 'train/batch_loss': 0.563504695892334, 'test/epoch_loss': 0.6018742865986294, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 372}, '_timestamp': 1680616870.0621138, 'test/f1-score': 0.8172043010752688, 'test/epoch_acc': 0.8111111111111111, 'test/precision': 0.7755102040816326, 'train/epoch_acc': 0.7727272727272727, 'train/epoch_loss': 0.5949591096554693}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0001}",snowy-sweep-1 -63,"{'test/epoch_acc': 0.6333333333333333, 'test/precision': 0.625, 'train/epoch_acc': 0.5552825552825553, 'train/batch_loss': 0.7118003964424133, 'epoch': 9, '_timestamp': 1678798635.5359335, 'test/f1-score': 0.6024096385542168, 'test/recall': 0.5813953488372093, 'test/epoch_loss': 0.6787986318270366, 'train/epoch_loss': 0.684732110699506, '_step': 529, '_wandb': {'runtime': 327}, '_runtime': 333.6077947616577}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.0001}",comic-sweep-38 -64,"{'_step': 149, 'epoch': 9, '_timestamp': 1678798288.876002, 'test/recall': 1, 'test/epoch_loss': 0.5120628664890925, 'train/epoch_acc': 1, 'train/epoch_loss': 0.001254009526264133, '_wandb': {'runtime': 337}, '_runtime': 342.7867271900177, 'test/f1-score': 0.888888888888889, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.8, 'train/batch_loss': 0.0015535189304500818}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",magic-sweep-37 -65,"{'test/recall': 0.6341463414634146, 'test/epoch_acc': 0.6444444444444445, 'test/precision': 0.6046511627906976, 'train/epoch_acc': 0.6572481572481572, 'train/epoch_loss': 0.659313001562395, '_step': 279, 'epoch': 9, '_wandb': {'runtime': 332}, 'test/epoch_loss': 0.6593369828330146, 'train/batch_loss': 0.6705241203308105, '_runtime': 338.4290623664856, '_timestamp': 1678797929.8979273, 'test/f1-score': 0.6190476190476191}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 32, 'learning_rate': 0.0003}",azure-sweep-36 -66,"{'_step': 1039, 'test/precision': 0.9591836734693876, 'test/epoch_loss': 0.5167779392666287, 'train/epoch_acc': 0.7911547911547911, 'epoch': 9, '_wandb': {'runtime': 343}, '_runtime': 349.1018385887146, '_timestamp': 1678797575.4461255, 'test/recall': 0.8703703703703703, 'test/f1-score': 0.912621359223301, 'test/epoch_acc': 0.9, 'train/batch_loss': 0.5475739240646362, 'train/epoch_loss': 0.542006236622316}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.001}",easy-sweep-35 -67,"{'_wandb': {'runtime': 362}, '_timestamp': 1678797212.2311337, 'test/f1-score': 0.8611111111111112, 'test/precision': 0.8611111111111112, 'test/epoch_loss': 0.27850865055532065, 'train/epoch_acc': 0.9987714987714988, 'train/batch_loss': 4.9947026127483696e-05, '_step': 2059, 'train/epoch_loss': 0.012833298822080874, '_runtime': 367.9372293949127, 'test/recall': 0.8611111111111112, 'test/epoch_acc': 0.888888888888889, 'epoch': 9}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.003}",usual-sweep-34 -68,"{'test/epoch_loss': 0.6554473309053315, 'epoch': 9, '_wandb': {'runtime': 330}, '_runtime': 335.99687933921814, '_timestamp': 1678796827.8409674, 'test/recall': 0.9791666666666666, 'test/f1-score': 0.903846153846154, 'test/epoch_acc': 0.888888888888889, 'train/epoch_acc': 0.9742014742014742, 'train/batch_loss': 0.17918632924556732, 'train/epoch_loss': 0.07036763163974523, '_step': 529, 'test/precision': 0.8392857142857143}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.0003}",polar-sweep-33 -69,"{'test/f1-score': 0.7356321839080459, 'test/epoch_acc': 0.7444444444444445, 'train/epoch_acc': 0.8660933660933661, 'train/epoch_loss': 0.47513497564072105, 'epoch': 9, '_runtime': 336.63737440109253, '_timestamp': 1678796468.9253614, 'test/recall': 0.8648648648648649, 'test/precision': 0.64, 'test/epoch_loss': 0.5271965821584066, 'train/batch_loss': 0.4695126414299011, '_step': 149, '_wandb': {'runtime': 330}}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.001}",still-sweep-32 -70,"{'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9428571428571428, 'test/epoch_loss': 0.2378266812198692, 'train/batch_loss': 0.711412787437439, '_step': 2059, '_wandb': {'runtime': 372}, '_runtime': 378.4032835960388, '_timestamp': 1678796117.3062005, 'test/recall': 0.8048780487804879, 'test/f1-score': 0.868421052631579, 'train/epoch_acc': 0.9705159705159704, 'train/epoch_loss': 0.09577267487700432, 'epoch': 9}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.001}",misty-sweep-31 -71,"{'_wandb': {'runtime': 333}, '_runtime': 336.8808288574219, '_timestamp': 1678795725.918603, 'test/f1-score': 0.8636363636363636, 'train/epoch_acc': 0.9926289926289926, 'train/epoch_loss': 0.05967479737370254, '_step': 529, 'epoch': 9, 'test/recall': 0.8260869565217391, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.9047619047619048, 'test/epoch_loss': 0.27924135790930854, 'train/batch_loss': 0.04936826974153519}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.001}",flowing-sweep-30 -72,"{'_runtime': 339.73244285583496, '_timestamp': 1678795319.518895, 'test/recall': 0.851063829787234, 'test/f1-score': 0.898876404494382, 'test/epoch_acc': 0.9, 'test/precision': 0.9523809523809524, '_step': 279, 'epoch': 9, 'train/epoch_acc': 0.8722358722358722, 'train/epoch_loss': 0.3784469199122024, 'train/batch_loss': 0.4592914581298828, '_wandb': {'runtime': 336}, 'test/epoch_loss': 0.37525106337335373}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.001}",deep-sweep-28 -73,"{'test/recall': 0.625, 'test/f1-score': 0.6849315068493151, 'train/epoch_acc': 0.7899262899262899, 'train/batch_loss': 0.6763702630996704, 'train/epoch_loss': 0.5319552311733255, '_wandb': {'runtime': 377}, '_runtime': 381.0768678188324, '_timestamp': 1678794965.2675128, 'test/precision': 0.7575757575757576, 'test/epoch_loss': 0.5484810524516636, '_step': 2059, 'epoch': 9, 'test/epoch_acc': 0.7444444444444445}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.0001}",glorious-sweep-27 -74,"{'epoch': 9, '_wandb': {'runtime': 334}, 'test/epoch_acc': 0.7555555555555555, 'train/batch_loss': 0.4391788542270661, '_step': 529, '_timestamp': 1678794572.9156363, 'test/recall': 0.813953488372093, 'test/f1-score': 0.7608695652173914, 'test/precision': 0.7142857142857143, 'test/epoch_loss': 0.5729872869120703, 'train/epoch_acc': 0.8968058968058967, 'train/epoch_loss': 0.2699748155379471, '_runtime': 338.11463618278503}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.1}",stoic-sweep-26 -75,"{'_step': 2059, 'epoch': 9, '_wandb': {'runtime': 377}, '_timestamp': 1678794222.848524, 'test/precision': 0.8478260869565217, 'train/epoch_acc': 0.9877149877149876, 'train/batch_loss': 0.025906365364789963, '_runtime': 380.8983037471771, 'test/recall': 0.8863636363636364, 'test/f1-score': 0.8666666666666666, 'test/epoch_acc': 0.8666666666666667, 'test/epoch_loss': 0.3083995895563728, 'train/epoch_loss': 0.04955068614813831}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.01}",vibrant-sweep-25 -76,"{'train/epoch_acc': 1, 'train/batch_loss': 0.0010389955714344978, '_step': 149, 'epoch': 9, '_timestamp': 1678793829.5489533, 'test/recall': 0.9215686274509804, 'test/f1-score': 0.8867924528301887, 'test/precision': 0.8545454545454545, '_wandb': {'runtime': 340}, '_runtime': 343.4739582538605, 'test/epoch_acc': 0.8666666666666667, 'test/epoch_loss': 0.7976957665549385, 'train/epoch_loss': 0.002287556243378495}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",valiant-sweep-24 -77,"{'epoch': 9, 'test/precision': 0.8666666666666667, 'train/epoch_acc': 0.8857493857493858, 'train/epoch_loss': 0.3862068348493272, '_step': 149, '_runtime': 344.0598545074463, '_timestamp': 1678793464.5180786, 'test/recall': 0.8478260869565217, 'test/f1-score': 0.8571428571428571, 'test/epoch_acc': 0.8555555555555556, 'test/epoch_loss': 0.4112878143787384, 'train/batch_loss': 0.3762533664703369, '_wandb': {'runtime': 340}}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.001}",polished-sweep-23 -78,"{'train/epoch_acc': 0.6756756756756757, 'train/batch_loss': 0.7007869482040405, 'train/epoch_loss': 0.6115244123215171, '_step': 529, 'epoch': 9, '_runtime': 339.41979336738586, '_timestamp': 1678793108.7606344, 'test/epoch_loss': 0.6097042110231188, '_wandb': {'runtime': 336}, 'test/recall': 0.8837209302325582, 'test/f1-score': 0.7102803738317758, 'test/epoch_acc': 0.6555555555555556, 'test/precision': 0.59375}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.01}",clear-sweep-22 -79,"{'_wandb': {'runtime': 377}, '_runtime': 381.0477261543274, '_timestamp': 1678792758.596286, 'test/recall': 0.8157894736842105, 'test/precision': 0.9393939393939394, 'train/epoch_acc': 0.9815724815724816, 'epoch': 9, 'test/f1-score': 0.8732394366197183, 'test/epoch_acc': 0.9, 'test/epoch_loss': 0.23743902287549443, 'train/batch_loss': 0.5061427354812622, 'train/epoch_loss': 0.07462231436439994, '_step': 2059}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",sage-sweep-21 -80,"{'test/precision': 0.902439024390244, 'train/batch_loss': 0.24579545855522156, 'train/epoch_loss': 0.12095561367287976, '_step': 529, 'epoch': 9, '_runtime': 335.3731348514557, 'test/epoch_acc': 0.8555555555555556, 'test/epoch_loss': 0.28035063776705, 'train/epoch_acc': 0.9791154791154792, '_wandb': {'runtime': 331}, '_timestamp': 1678792364.5292609, 'test/recall': 0.8043478260869565, 'test/f1-score': 0.8505747126436782}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.001}",olive-sweep-20 -81,"{'_step': 1039, 'epoch': 9, '_runtime': 340.5063774585724, 'test/precision': 0.9534883720930232, 'train/epoch_acc': 0.995085995085995, 'train/batch_loss': 0.0077079650945961475, 'train/epoch_loss': 0.018187719287696302, '_wandb': {'runtime': 337}, '_timestamp': 1678792015.2579195, 'test/recall': 0.9111111111111112, 'test/f1-score': 0.931818181818182, 'test/epoch_acc': 0.9333333333333332, 'test/epoch_loss': 0.17397157057291932}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",autumn-sweep-19 -82,"{'train/batch_loss': 0.4317986071109772, '_step': 1039, 'epoch': 9, 'test/recall': 0.8205128205128205, 'test/f1-score': 0.7804878048780488, 'test/epoch_acc': 0.8, 'test/epoch_loss': 0.4940012666914198, 'train/epoch_acc': 0.8218673218673218, 'train/epoch_loss': 0.4784781006542412, '_wandb': {'runtime': 344}, '_runtime': 347.40152740478516, '_timestamp': 1678791661.9692383, 'test/precision': 0.7441860465116279}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0001}",crisp-sweep-18 -83,"{'test/recall': 0.9090909090909092, 'test/f1-score': 0.9090909090909092, 'test/epoch_acc': 0.9111111111111112, 'test/precision': 0.9090909090909092, 'test/epoch_loss': 0.19624250796106127, '_step': 279, '_wandb': {'runtime': 335}, '_timestamp': 1678791236.6172178, 'train/epoch_acc': 0.9828009828009828, 'train/batch_loss': 0.15555259585380554, 'epoch': 9, '_runtime': 337.956387758255, 'train/epoch_loss': 0.08830470366618558}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.003}",deep-sweep-16 -84,"{'test/epoch_acc': 0.7333333333333334, 'test/precision': 0.7049180327868853, 'test/epoch_loss': 0.6228035251299541, 'train/batch_loss': 0.6377201080322266, '_runtime': 334.2993712425232, '_timestamp': 1678790886.952144, 'test/f1-score': 0.7818181818181819, 'test/recall': 0.8775510204081632, 'train/epoch_acc': 0.7493857493857494, 'train/epoch_loss': 0.6127705679478751, '_step': 279, 'epoch': 9, '_wandb': {'runtime': 331}}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.0003}",confused-sweep-15 -85,"{'_step': 529, '_wandb': {'runtime': 342}, '_timestamp': 1678790542.286384, 'test/precision': 0.7192982456140351, 'train/epoch_acc': 0.8415233415233415, 'train/batch_loss': 0.1340156048536301, 'train/epoch_loss': 0.3545121966840594, 'epoch': 9, '_runtime': 345.0617377758026, 'test/recall': 0.8541666666666666, 'test/f1-score': 0.7809523809523811, 'test/epoch_acc': 0.7444444444444445, 'test/epoch_loss': 0.6144241677390204}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.1}",ancient-sweep-14 -86,"{'train/epoch_acc': 0.7457002457002457, '_step': 529, 'epoch': 9, '_wandb': {'runtime': 344}, '_runtime': 346.86587953567505, '_timestamp': 1678790183.7024884, 'test/epoch_acc': 0.7222222222222222, 'test/recall': 0.782608695652174, 'test/f1-score': 0.7422680412371134, 'test/precision': 0.7058823529411765, 'test/epoch_loss': 0.6392196734746297, 'train/batch_loss': 0.6280461549758911, 'train/epoch_loss': 0.6374555861334836}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.0003}",revived-sweep-13 -87,"{'train/epoch_acc': 0.9987714987714988, 'train/batch_loss': 0.04231283441185951, '_step': 149, 'test/f1-score': 0.9010989010989012, 'test/epoch_acc': 0.9, 'test/epoch_loss': 0.24115624560250176, 'test/recall': 0.9111111111111112, 'test/precision': 0.8913043478260869, 'train/epoch_loss': 0.02119528235872196, 'epoch': 9, '_wandb': {'runtime': 348}, '_runtime': 350.9660577774048, '_timestamp': 1678789826.0085878}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.0003}",swift-sweep-12 -88,"{'_step': 2059, '_runtime': 397.1281135082245, 'test/recall': 0.8333333333333334, 'test/f1-score': 0.7894736842105262, 'test/epoch_acc': 0.8222222222222223, 'test/precision': 0.75, 'test/epoch_loss': 0.5769641452365452, 'epoch': 9, '_wandb': {'runtime': 393}, '_timestamp': 1678789464.8040044, 'train/epoch_acc': 0.757985257985258, 'train/batch_loss': 0.6127220392227173, 'train/epoch_loss': 0.5840219159676929}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.0001}",rosy-sweep-11 -89,"{'train/epoch_acc': 0.9938574938574938, '_wandb': {'runtime': 352}, '_runtime': 355.46944642066956, '_timestamp': 1678789057.5684297, 'test/recall': 0.8076923076923077, 'test/f1-score': 0.8842105263157894, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.9767441860465116, 'train/epoch_loss': 0.06967324825777176, '_step': 149, 'epoch': 9, 'test/epoch_loss': 0.2696530275874668, 'train/batch_loss': 0.11590295284986496}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.003}",deft-sweep-10 -90,"{'train/epoch_loss': 0.6400203514450599, '_runtime': 342.3234579563141, '_timestamp': 1678788683.006292, 'test/f1-score': 0.7959183673469388, 'test/precision': 0.7090909090909091, 'test/epoch_loss': 0.6248881856600443, 'train/epoch_acc': 0.7014742014742015, 'train/batch_loss': 0.5820533037185669, '_step': 279, 'epoch': 9, '_wandb': {'runtime': 340}, 'test/recall': 0.9069767441860463, 'test/epoch_acc': 0.7777777777777778}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.0001}",atomic-sweep-9 -91,"{'train/epoch_acc': 0.7432432432432432, 'train/batch_loss': 0.3377891480922699, 'epoch': 9, '_wandb': {'runtime': 351}, 'test/epoch_acc': 0.6555555555555556, 'test/recall': 0.7954545454545454, 'test/f1-score': 0.693069306930693, 'test/precision': 0.6140350877192983, 'test/epoch_loss': 0.6175267219543457, 'train/epoch_loss': 0.5329857344855841, '_step': 1039, '_runtime': 353.4816448688507, '_timestamp': 1678788328.1196988}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.1}",cosmic-sweep-8 -92,"{'_timestamp': 1678787961.3400052, 'test/recall': 0.8536585365853658, 'test/f1-score': 0.6999999999999998, 'test/epoch_acc': 0.6666666666666667, 'test/precision': 0.5932203389830508, '_step': 2059, '_wandb': {'runtime': 390}, '_runtime': 392.4064960479736, 'train/batch_loss': 0.17200787365436554, 'train/epoch_loss': 0.5631518808058498, 'epoch': 9, 'test/epoch_loss': 0.6419186863634322, 'train/epoch_acc': 0.7186732186732187}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.01}",lunar-sweep-7 -93,"{'test/epoch_acc': 0.9, 'test/precision': 0.9090909090909092, 'test/epoch_loss': 0.24278527200222016, 'train/epoch_acc': 0.9975429975429976, 'train/epoch_loss': 0.03237721893286529, 'epoch': 9, '_timestamp': 1678787557.992564, 'test/f1-score': 0.8988764044943819, 'test/recall': 0.8888888888888888, 'train/batch_loss': 0.04353119805455208, '_step': 529, '_wandb': {'runtime': 343}, '_runtime': 345.9260220527649}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.01}",zany-sweep-6 -94,"{'test/precision': 0.9767441860465116, 'test/epoch_loss': 0.32114719019995797, '_step': 529, '_wandb': {'runtime': 344}, '_runtime': 346.5414688587189, '_timestamp': 1678787192.9954038, 'test/recall': 0.8571428571428571, 'test/epoch_acc': 0.9111111111111112, 'train/batch_loss': 0.21811823546886444, 'train/epoch_loss': 0.2347587838000103, 'epoch': 9, 'test/f1-score': 0.9130434782608696, 'train/epoch_acc': 0.9336609336609336}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.001}",absurd-sweep-5 -95,"{'_wandb': {'runtime': 344}, '_timestamp': 1678786835.7254088, 'test/epoch_loss': 0.22436124781767527, '_step': 279, 'epoch': 9, '_runtime': 345.9469966888428, 'test/recall': 0.8461538461538461, 'test/f1-score': 0.8799999999999999, 'test/epoch_acc': 0.9, 'test/precision': 0.9166666666666666, 'train/epoch_acc': 1, 'train/batch_loss': 0.06225413456559181, 'train/epoch_loss': 0.02646600444977348}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.003}",radiant-sweep-4 -96,"{'test/epoch_acc': 0.8111111111111111, 'test/precision': 0.7446808510638298, 'train/epoch_loss': 0.45506354690476775, 'epoch': 9, '_wandb': {'runtime': 353}, '_runtime': 355.012455701828, '_timestamp': 1678786479.0865147, 'test/recall': 0.875, 'test/f1-score': 0.8045977011494252, 'test/epoch_loss': 0.4459853092829386, 'train/epoch_acc': 0.8341523341523341, '_step': 1039, 'train/batch_loss': 0.5456343293190002}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0003}",sandy-sweep-3 -97,"{'train/batch_loss': 0.026765840128064156, '_step': 529, '_runtime': 344.01046657562256, 'test/epoch_loss': 0.31915653232071134, 'train/epoch_acc': 0.9926289926289926, 'test/f1-score': 0.8450704225352113, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.9090909090909092, 'train/epoch_loss': 0.045762457081668206, 'epoch': 9, '_wandb': {'runtime': 342}, '_timestamp': 1678786112.108075, 'test/recall': 0.7894736842105263}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.01}",pretty-sweep-2 -98,"{'test/f1-score': 0.379746835443038, 'test/precision': 0.42857142857142855, 'test/epoch_loss': 0.7006691349877252, 'train/epoch_acc': 0.4815724815724816, 'train/epoch_loss': 0.7011552195291262, 'epoch': 9, '_wandb': {'runtime': 357}, '_runtime': 359.66486382484436, '_timestamp': 1678785758.376562, 'test/recall': 0.3409090909090909, 'test/epoch_acc': 0.45555555555555555, 'train/batch_loss': 0.7150550484657288, '_step': 149}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.0003}",rose-sweep-1 -99,"{'_timestamp': 1678785370.5563953, 'test/recall': 0.9090909090909092, 'test/f1-score': 0.8791208791208791, 'test/precision': 0.851063829787234, 'test/epoch_loss': 0.5091631063156657, '_step': 74, '_wandb': {'runtime': 181}, '_runtime': 180.05384421348572, 'train/epoch_acc': 0.995085995085995, 'train/batch_loss': 0.0016211483161896467, 'train/epoch_loss': 0.023103852647056927, 'epoch': 4, 'test/epoch_acc': 0.8777777777777778}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.1}",cosmic-sweep-2 -100,"{'test/recall': 0.9166666666666666, 'test/precision': 0.9166666666666666, 'train/batch_loss': 0.0724378228187561, '_step': 279, 'epoch': 9, '_wandb': {'runtime': 344}, '_timestamp': 1678743707.9633043, 'train/epoch_acc': 0.9828009828009828, 'train/epoch_loss': 0.11044558714297244, '_runtime': 347.11417746543884, 'test/f1-score': 0.9166666666666666, 'test/epoch_acc': 0.9111111111111112, 'test/epoch_loss': 0.2461573594146305}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.003}",ethereal-sweep-14 -101,"{'_step': 149, 'epoch': 9, '_timestamp': 1678743349.8008895, 'test/epoch_acc': 0.9333333333333332, 'test/precision': 0.9545454545454546, 'test/epoch_loss': 0.16449517243438297, 'train/batch_loss': 0.05796322599053383, '_wandb': {'runtime': 346}, '_runtime': 349.69085454940796, 'test/recall': 0.9130434782608696, 'test/f1-score': 0.9333333333333332, 'train/epoch_acc': 1, 'train/epoch_loss': 0.043383844352398226}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.003}",northern-sweep-13 -102,"{'test/epoch_acc': 0.788888888888889, '_wandb': {'runtime': 559}, '_runtime': 560.5539684295654, '_timestamp': 1678743376.8770983, 'test/recall': 0.85, 'test/f1-score': 0.7816091954022989, 'test/precision': 0.723404255319149, 'test/epoch_loss': 0.5102662573258082, 'train/epoch_acc': 0.8255528255528255, '_step': 2059, 'epoch': 9, 'train/batch_loss': 0.42048144340515137, 'train/epoch_loss': 0.40511614706651}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.001}",faithful-sweep-12 -103,"{'_wandb': {'runtime': 355}, 'test/epoch_acc': 0.8666666666666667, 'train/epoch_acc': 0.8955773955773956, 'train/epoch_loss': 0.27216847456936755, 'test/epoch_loss': 0.3378064884079827, '_step': 1039, 'epoch': 9, '_runtime': 358.3485324382782, '_timestamp': 1678742986.9751594, 'test/recall': 0.7777777777777778, 'test/f1-score': 0.8536585365853658, 'test/precision': 0.945945945945946, 'train/batch_loss': 0.5923706889152527}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.0003}",zany-sweep-12 -104,"{'test/recall': 0.9166666666666666, 'test/f1-score': 0.7415730337078651, 'test/epoch_acc': 0.7444444444444445, 'test/epoch_loss': 0.615033131175571, 'train/batch_loss': 0.6421169638633728, '_step': 1039, '_wandb': {'runtime': 358}, '_runtime': 362.78373169898987, '_timestamp': 1678742619.1453717, 'test/precision': 0.6226415094339622, 'train/epoch_acc': 0.7481572481572482, 'train/epoch_loss': 0.613342459283824, 'epoch': 9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",ruby-sweep-11 -105,"{'train/epoch_loss': 0.09796744051757808, '_step': 2059, 'epoch': 9, '_runtime': 531.6082515716553, '_timestamp': 1678742643.2100165, 'test/recall': 0.8076923076923077, 'test/f1-score': 0.875, 'train/epoch_acc': 0.9656019656019657, '_wandb': {'runtime': 531}, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.9545454545454546, 'test/epoch_loss': 0.3795760815549228, 'train/batch_loss': 0.07699991017580032}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.001}",fallen-sweep-10 -106,"{'_step': 1039, '_wandb': {'runtime': 359}, 'test/epoch_loss': 0.2956610471010208, 'train/batch_loss': 0.1150113120675087, 'epoch': 9, '_runtime': 361.6978232860565, '_timestamp': 1678742242.6362762, 'test/recall': 0.8076923076923077, 'test/f1-score': 0.875, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.9545454545454546, 'train/epoch_acc': 0.9103194103194104, 'train/epoch_loss': 0.24495647845821825}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.003}",rare-sweep-10 -107,"{'train/epoch_loss': 0.310643073711407, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 471}, '_runtime': 471.6707801818848, 'train/epoch_acc': 0.8869778869778869, 'train/batch_loss': 0.14859537780284882, '_timestamp': 1678742103.7627492, 'test/recall': 0.7906976744186046, 'test/f1-score': 0.8717948717948717, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9714285714285714, 'test/epoch_loss': 0.26282389760017394}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.003}",major-sweep-9 -108,"{'test/recall': 0.6976744186046512, 'test/f1-score': 0.6451612903225806, 'test/epoch_acc': 0.6333333333333333, 'test/precision': 0.6, 'epoch': 9, '_wandb': {'runtime': 341}, '_runtime': 344.49258494377136, '_timestamp': 1678741869.828495, 'test/epoch_loss': 0.6676742302046882, 'train/epoch_acc': 0.5921375921375921, '_step': 279, 'train/batch_loss': 0.6228023767471313, 'train/epoch_loss': 0.6766868150204932}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.0001}",spring-sweep-9 -109,"{'_runtime': 452.4322986602783, '_timestamp': 1678741623.0662856, 'test/recall': 0.9318181818181818, 'test/f1-score': 0.9213483146067416, 'test/precision': 0.9111111111111112, 'test/epoch_loss': 0.16872049139605627, 'train/batch_loss': 0.0022799931466579437, '_step': 1039, 'train/epoch_loss': 0.02303326028314504, '_wandb': {'runtime': 451}, 'test/epoch_acc': 0.9222222222222224, 'train/epoch_acc': 0.9987714987714988, 'epoch': 9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",elated-sweep-8 -110,"{'_runtime': 345.3405177593231, '_timestamp': 1678741511.9070578, 'test/epoch_acc': 0.9555555555555556, 'test/precision': 0.9761904761904762, 'test/epoch_loss': 0.2148759490913815, 'train/epoch_acc': 0.9606879606879608, 'train/batch_loss': 0.11643347889184952, 'epoch': 9, 'train/epoch_loss': 0.1359616077759049, '_wandb': {'runtime': 342}, 'test/recall': 0.9318181818181818, 'test/f1-score': 0.9534883720930232, '_step': 149}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.003}",hardy-sweep-8 -111,"{'_step': 279, 'test/epoch_loss': 0.2181672462158733, 'train/epoch_acc': 1, 'train/batch_loss': 0.042314428836107254, 'test/recall': 0.8048780487804879, 'test/f1-score': 0.868421052631579, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9428571428571428, 'epoch': 9, '_wandb': {'runtime': 342}, '_runtime': 345.1732180118561, '_timestamp': 1678741156.130327, 'train/epoch_loss': 0.008645273717600824}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.1}",sweepy-sweep-7 -112,"{'train/batch_loss': 0.3791900873184204, '_step': 1039, '_wandb': {'runtime': 453}, '_runtime': 454.0593776702881, 'test/recall': 0.6341463414634146, 'test/precision': 0.8387096774193549, 'test/epoch_loss': 0.4768455002042982, 'train/epoch_acc': 0.8292383292383292, 'epoch': 9, '_timestamp': 1678741159.4683807, 'test/f1-score': 0.7222222222222222, 'test/epoch_acc': 0.7777777777777778, 'train/epoch_loss': 0.45283343838825274}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0001}",glorious-sweep-7 -113,"{'test/epoch_acc': 0.9333333333333332, 'test/precision': 0.9333333333333332, 'train/batch_loss': 0.001889266073703766, 'train/epoch_loss': 0.0030514685945077376, 'epoch': 9, '_timestamp': 1678740798.1400597, '_runtime': 348.53755164146423, 'test/recall': 0.9333333333333332, 'test/f1-score': 0.9333333333333332, 'test/epoch_loss': 0.1931780371401045, 'train/epoch_acc': 1, '_step': 149, '_wandb': {'runtime': 346}}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.01}",rural-sweep-6 -114,"{'_step': 2059, 'epoch': 9, 'test/f1-score': 0.896551724137931, 'test/precision': 0.9285714285714286, '_wandb': {'runtime': 560}, '_runtime': 560.7404127120972, '_timestamp': 1678740696.0305526, 'test/recall': 0.8666666666666667, 'test/epoch_acc': 0.9, 'test/epoch_loss': 0.22745563416845269, 'train/epoch_acc': 0.984029484029484, 'train/batch_loss': 0.1385842263698578, 'train/epoch_loss': 0.07075482415817952}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",smart-sweep-6 -115,"{'epoch': 9, '_wandb': {'runtime': 342}, '_runtime': 345.5716743469238, 'test/epoch_acc': 0.8111111111111111, 'test/precision': 0.8636363636363636, 'train/batch_loss': 0.44296249747276306, 'train/epoch_loss': 0.5191410552225183, '_step': 529, '_timestamp': 1678740438.4959724, 'test/recall': 0.7755102040816326, 'test/f1-score': 0.8172043010752688, 'test/epoch_loss': 0.507676590151257, 'train/epoch_acc': 0.7616707616707616}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.1}",giddy-sweep-5 -116,"{'_wandb': {'runtime': 342}, '_runtime': 345.28623247146606, 'test/f1-score': 0.6842105263157895, 'train/epoch_acc': 0.8538083538083537, 'train/batch_loss': 0.4066888689994812, 'test/precision': 0.7027027027027027, 'test/epoch_loss': 0.6657861550649007, 'train/epoch_loss': 0.32492415251837314, '_step': 529, 'epoch': 9, '_timestamp': 1678740073.5443084, 'test/recall': 0.6666666666666666, 'test/epoch_acc': 0.7333333333333334}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.1}",lilac-sweep-4 -117,"{'test/recall': 0.8367346938775511, 'test/f1-score': 0.8913043478260869, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9534883720930232, 'train/epoch_acc': 0.9803439803439804, 'train/batch_loss': 0.01167443674057722, '_step': 1039, 'epoch': 9, '_timestamp': 1678740126.212114, 'test/epoch_loss': 0.2600655794143677, 'train/epoch_loss': 0.08152788232426166, '_wandb': {'runtime': 454}, '_runtime': 454.98564982414246}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.001}",hearty-sweep-5 -118,"{'epoch': 9, '_wandb': {'runtime': 354}, '_runtime': 356.9382667541504, 'test/epoch_acc': 0.788888888888889, 'train/epoch_loss': 0.5079173609724209, '_step': 1039, '_timestamp': 1678739717.8250418, 'test/recall': 0.875, 'test/f1-score': 0.7865168539325842, 'test/precision': 0.7142857142857143, 'test/epoch_loss': 0.4899995631641812, 'train/epoch_acc': 0.8144963144963144, 'train/batch_loss': 0.6180618405342102}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.0001}",silvery-sweep-3 -119,"{'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9142857142857144, 'train/batch_loss': 0.2711101472377777, 'train/epoch_loss': 0.28549219298128414, '_wandb': {'runtime': 453}, '_runtime': 454.2519624233246, '_timestamp': 1678739662.5458224, 'test/f1-score': 0.8648648648648648, 'test/epoch_loss': 0.3028925802972582, 'train/epoch_acc': 0.8968058968058967, '_step': 1039, 'epoch': 9, 'test/recall': 0.8205128205128205}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.0003}",dulcet-sweep-4 -120,"{'_timestamp': 1678739351.1315958, 'test/f1-score': 0.6451612903225806, 'test/epoch_acc': 0.6333333333333333, 'test/epoch_loss': 0.6651701913939582, 'train/epoch_acc': 0.6928746928746928, 'train/batch_loss': 0.6685948967933655, '_step': 529, 'epoch': 9, 'test/recall': 0.7894736842105263, 'test/precision': 0.5454545454545454, 'train/epoch_loss': 0.6479796424544707, '_wandb': {'runtime': 341}, '_runtime': 343.88807487487793}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.001}",glamorous-sweep-2 -121,"{'train/batch_loss': 0.6510805487632751, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 469}, 'test/f1-score': 0.7608695652173914, 'test/epoch_loss': 0.6144020875295003, 'train/epoch_acc': 0.7542997542997543, '_runtime': 469.65283608436584, '_timestamp': 1678739200.083605, 'test/recall': 0.875, 'test/epoch_acc': 0.7555555555555555, 'test/precision': 0.6730769230769231, 'train/epoch_loss': 0.6267796501480684}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",hopeful-sweep-3 -122,"{'_wandb': {'runtime': 353}, '_timestamp': 1678738994.027642, 'test/recall': 0.8409090909090909, 'test/precision': 0.8409090909090909, 'test/epoch_loss': 0.3028163850307465, 'train/batch_loss': 0.0980801358819008, '_step': 279, '_runtime': 357.5890119075775, 'test/f1-score': 0.8409090909090909, 'test/epoch_acc': 0.8444444444444444, 'train/epoch_acc': 0.9975429975429976, 'train/epoch_loss': 0.03763626415181805, 'epoch': 9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.003}",lunar-sweep-1 -123,"{'test/f1-score': 0.7157894736842105, 'test/precision': 0.5964912280701754, 'train/epoch_acc': 0.6658476658476659, '_step': 2059, '_runtime': 529.6096863746643, '_timestamp': 1678738720.9443874, 'test/epoch_acc': 0.7000000000000001, 'test/epoch_loss': 0.5541173484590318, 'train/batch_loss': 0.7896618843078613, 'train/epoch_loss': 0.618659178367118, 'epoch': 9, '_wandb': {'runtime': 529}, 'test/recall': 0.8947368421052632}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.1}",stoic-sweep-2 -124,"{'test/recall': 0.6578947368421053, 'test/f1-score': 0.7575757575757577, 'test/epoch_acc': 0.8222222222222223, 'test/precision': 0.8928571428571429, 'test/epoch_loss': 0.4269479903909895, 'train/epoch_loss': 0.016353931551580648, '_step': 529, 'epoch': 9, '_wandb': {'runtime': 353}, '_runtime': 355.4184715747833, '_timestamp': 1678738469.1834886, 'train/epoch_acc': 0.995085995085995, 'train/batch_loss': 0.0014543599681928754}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.0001}",dark-sweep-2 -125,"{'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.8780487804878049, 'test/epoch_loss': 0.40116495291392007, '_step': 1039, 'epoch': 9, '_runtime': 384.5172441005707, '_timestamp': 1678738101.018471, 'test/f1-score': 0.8470588235294119, 'train/batch_loss': 0.31195682287216187, 'train/epoch_loss': 0.3623260387038716, '_wandb': {'runtime': 381}, 'test/recall': 0.8181818181818182, 'train/epoch_acc': 0.8673218673218673}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0003}",trim-sweep-1 -126,"{'train/batch_loss': 0.6653294563293457, '_wandb': {'runtime': 560}, 'test/recall': 0.9090909090909092, 'test/f1-score': 0.8602150537634408, 'test/precision': 0.8163265306122449, 'train/epoch_acc': 0.7567567567567567, 'test/epoch_loss': 0.6165981186760796, 'train/epoch_loss': 0.6107166709712448, '_step': 2059, 'epoch': 9, '_runtime': 560.7235152721405, '_timestamp': 1678738182.1088202, 'test/epoch_acc': 0.8555555555555556}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.001}",sparkling-sweep-1 -127,"{'_step': 555, '_wandb': {'runtime': 118}, '_runtime': 122.13349413871764, '_timestamp': 1678737059.0375042, 'test/recall': 0.6818181818181818, 'test/epoch_acc': 0.6555555555555556, 'test/precision': 0.6382978723404256, 'test/epoch_loss': 0.6796493821673923, 'train/epoch_acc': 0.5515970515970516, 'train/batch_loss': 0.6759337782859802, 'epoch': 1, 'test/f1-score': 0.6593406593406593, 'train/epoch_loss': 0.6851893525744539}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.0003}",serene-sweep-1 -128,"{'_runtime': 456.3002746105194, 'test/f1-score': 0.8888888888888888, 'test/epoch_loss': 0.45068282733360926, 'train/batch_loss': 0.003167948452755809, '_wandb': {'runtime': 455}, 'epoch': 9, 'test/epoch_acc': 0.8777777777777778, '_step': 1159, 'test/recall': 0.8461538461538461, 'test/batch_loss': 0.1311825066804886, 'train/epoch_loss': 0.032788554922144414, '_timestamp': 1678734250.8076646, 'train/epoch_acc': 0.9914004914004914, 'test/precision': 0.9361702127659576}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.003}",super-sweep-10 -129,"{'train/epoch_acc': 0.687960687960688, 'train/epoch_loss': 0.5984233345387902, '_runtime': 564.230875492096, '_timestamp': 1678733784.6976814, 'test/epoch_acc': 0.7111111111111111, 'test/epoch_loss': 0.5302444166607327, 'epoch': 9, '_wandb': {'runtime': 563}, 'test/recall': 0.7674418604651163, '_step': 2289, 'train/batch_loss': 0.3260266184806824, 'test/f1-score': 0.7173913043478259, 'test/precision': 0.673469387755102, 'test/batch_loss': 0.9658783674240112}","{'gamma': 0.1, 'epochs': 10, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",distinctive-sweep-9 -130,"{'train/batch_loss': 0.007875862531363964, 'train/epoch_loss': 0.1743801347293527, 'test/epoch_acc': 0.9333333333333332, 'test/precision': 1, 'test/batch_loss': 0.1419784128665924, '_step': 2289, '_runtime': 527.6160025596619, 'test/recall': 0.8636363636363636, 'test/f1-score': 0.9268292682926828, 'test/epoch_loss': 0.17092165086004468, 'train/epoch_acc': 0.9496314496314496, 'epoch': 9, '_wandb': {'runtime': 527}, '_timestamp': 1678733210.1129615}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.0003}",winter-sweep-8 -131,"{'epoch': 9, 'test/precision': 1, 'train/batch_loss': 0.04383014515042305, 'test/batch_loss': 0.27116066217422485, 'train/epoch_loss': 0.07730489082323246, 'test/epoch_acc': 0.9222222222222224, 'test/epoch_loss': 0.21558621691332924, 'train/epoch_acc': 0.9791154791154792, '_step': 1159, '_wandb': {'runtime': 452}, '_runtime': 453.52900218963623, '_timestamp': 1678732673.1225052, 'test/recall': 0.8292682926829268, 'test/f1-score': 0.9066666666666668}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.001}",stilted-sweep-7 -132,"{'_step': 2289, 'test/batch_loss': 0.4716488718986511, 'test/epoch_loss': 0.6190193812052409, 'test/precision': 0.6538461538461539, 'train/epoch_acc': 0.7272727272727273, 'train/epoch_loss': 0.5549268187263967, '_runtime': 561.7993631362915, 'test/recall': 0.7555555555555555, 'test/f1-score': 0.7010309278350516, 'test/epoch_acc': 0.6777777777777778, 'epoch': 9, '_wandb': {'runtime': 561}, 'train/batch_loss': 0.48304444551467896, '_timestamp': 1678732212.5530572}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",summer-sweep-6 -133,"{'_step': 1159, '_wandb': {'runtime': 453}, '_timestamp': 1678731639.156168, 'test/precision': 0.945945945945946, 'test/f1-score': 0.813953488372093, 'epoch': 9, '_runtime': 454.3645238876343, 'test/recall': 0.7142857142857143, 'test/epoch_acc': 0.8222222222222223, 'test/batch_loss': 0.5068956017494202, 'test/epoch_loss': 0.4936415394147237, 'train/epoch_loss': 0.5186349417126442, 'train/epoch_acc': 0.8218673218673218, 'train/batch_loss': 0.4434223175048828}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0001}",different-sweep-5 -134,"{'_step': 1159, '_wandb': {'runtime': 453}, '_runtime': 454.26038885116577, 'test/epoch_loss': 0.5482642173767089, 'test/precision': 0.825, 'test/batch_loss': 0.5159374475479126, 'train/epoch_acc': 0.812039312039312, 'train/batch_loss': 0.5655931830406189, 'test/f1-score': 0.8354430379746836, 'test/epoch_acc': 0.8555555555555556, 'train/epoch_loss': 0.5429200196149016, 'epoch': 9, '_timestamp': 1678731176.111379, 'test/recall': 0.8461538461538461}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",wise-sweep-4 -135,"{'epoch': 9, '_wandb': {'runtime': 528}, 'test/recall': 0.775, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.9393939393939394, 'test/batch_loss': 1.7588363885879517, 'train/epoch_loss': 0.02060394324720534, '_step': 2289, '_runtime': 528.9760706424713, 'test/f1-score': 0.8493150684931509, '_timestamp': 1678730714.7711067, 'train/epoch_acc': 0.9963144963144964, 'train/batch_loss': 0.00470334617421031, 'test/epoch_loss': 0.24194780117250048}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.003}",misty-sweep-3 -136,"{'test/f1-score': 0.7536231884057972, 'test/epoch_acc': 0.8111111111111111, '_step': 1159, '_wandb': {'runtime': 454}, 'test/batch_loss': 0.455120325088501, 'test/epoch_loss': 0.4792341656155056, 'train/batch_loss': 0.5347514748573303, 'epoch': 9, 'train/epoch_acc': 0.8329238329238329, 'test/recall': 0.6842105263157895, '_timestamp': 1678730177.1362092, 'test/precision': 0.8387096774193549, 'train/epoch_loss': 0.42904984072326735, '_runtime': 455.41485929489136}","{'gamma': 0.1, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0003}",unique-sweep-2 -137,"{'test/precision': 0.9047619047619048, 'train/epoch_acc': 0.9901719901719902, 'test/recall': 0.8636363636363636, 'test/epoch_acc': 0.888888888888889, 'test/batch_loss': 2.5320074558258057, 'test/epoch_loss': 0.5442472649919283, 'train/epoch_loss': 0.024021292951151657, '_wandb': {'runtime': 527}, 'test/f1-score': 0.8837209302325582, 'epoch': 9, '_runtime': 528.4356484413147, '_timestamp': 1678729705.2001765, 'train/batch_loss': 0.005740344058722258, '_step': 2289}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.003}",polar-sweep-1 +0,"{'test/epoch_acc': 0.7333333333333334, 'test/precision': 0.8285714285714286, 'test/epoch_loss': 0.5664619127909343, 'train/epoch_acc': 0.8230958230958231, '_step': 2059, 'epoch': 9, '_timestamp': 1680692970.2016854, 'test/f1-score': 0.7073170731707318, 'train/batch_loss': 0.33577921986579895, 'train/epoch_loss': 0.4241055610431793, '_wandb': {'runtime': 363}, '_runtime': 367.13677954673767, 'test/recall': 0.6170212765957447}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.0003}",fiery-sweep-26 +1,"{'epoch': 9, '_wandb': {'runtime': 338}, '_runtime': 341.8420207500458, 'test/precision': 0.6851851851851852, 'train/epoch_acc': 0.7125307125307125, 'train/epoch_loss': 0.649790015355375, '_step': 1039, 'test/recall': 0.8222222222222222, 'test/f1-score': 0.7474747474747475, 'test/epoch_acc': 0.7222222222222222, 'test/epoch_loss': 0.6454579922888014, 'train/batch_loss': 0.7014500498771667, '_timestamp': 1680692589.503975}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0003}",radiant-sweep-25 +2,"{'test/recall': 0.7837837837837838, 'test/precision': 0.935483870967742, 'test/epoch_loss': 0.34812947780333664, 'train/epoch_loss': 0.01614290558709019, '_step': 1039, 'epoch': 9, '_timestamp': 1680692234.39516, 'test/epoch_acc': 0.888888888888889, 'train/epoch_acc': 0.9987714987714988, 'train/batch_loss': 0.01956617273390293, '_wandb': {'runtime': 333}, '_runtime': 336.8275649547577, 'test/f1-score': 0.8529411764705881}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",blooming-sweep-24 +3,"{'_wandb': {'runtime': 327}, '_runtime': 331.57809829711914, '_timestamp': 1680691883.3877182, 'test/precision': 0.7608695652173914, 'test/epoch_loss': 0.5553177932898203, 'train/batch_loss': 0.5222326517105103, 'train/epoch_loss': 0.5324229019572753, 'epoch': 9, 'test/recall': 0.8333333333333334, 'test/f1-score': 0.7954545454545455, 'test/epoch_acc': 0.8, 'train/epoch_acc': 0.8353808353808354, '_step': 529}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.0003}",visionary-sweep-23 +4,"{'train/epoch_loss': 0.7508098256090057, 'epoch': 1, '_timestamp': 1680691538.7247725, 'test/recall': 0.8846153846153846, 'test/epoch_acc': 0.5777777777777778, 'train/epoch_acc': 0.5577395577395577, 'train/batch_loss': 0.5083656311035156, '_step': 410, '_wandb': {'runtime': 70}, '_runtime': 71.64615154266357, 'test/f1-score': 0.7076923076923076, 'test/precision': 0.5897435897435898, 'test/epoch_loss': 1.5602711306677923}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.01}",ancient-sweep-22 +5,"{'_step': 529, 'epoch': 9, '_wandb': {'runtime': 328}, '_timestamp': 1680691453.5148375, 'test/precision': 0.6885245901639344, 'train/epoch_loss': 0.49390909720111537, '_runtime': 331.44886469841003, 'test/recall': 0.9545454545454546, 'test/f1-score': 0.8, 'test/epoch_acc': 0.7666666666666667, 'test/epoch_loss': 0.4844042791260613, 'train/epoch_acc': 0.769041769041769, 'train/batch_loss': 0.4559023082256317}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.003}",fresh-sweep-22 +6,"{'test/epoch_acc': 0.9222222222222224, 'test/epoch_loss': 0.26263883135527266, 'train/epoch_acc': 0.9975429975429976, 'epoch': 9, '_wandb': {'runtime': 355}, '_timestamp': 1680691110.042932, 'test/recall': 0.8867924528301887, 'test/f1-score': 0.9306930693069309, '_step': 2059, '_runtime': 358.66950702667236, 'test/precision': 0.9791666666666666, 'train/batch_loss': 0.0031523401848971844, 'train/epoch_loss': 0.018423480946079804}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.01}",pleasant-sweep-21 +7,"{'train/epoch_loss': 0.0014873178028192654, 'epoch': 9, '_runtime': 332.6156196594238, 'test/recall': 0.9148936170212766, 'test/f1-score': 0.8865979381443299, 'test/epoch_acc': 0.8777777777777778, 'test/epoch_loss': 0.3669874522421095, 'train/batch_loss': 0.003317732596769929, '_step': 279, '_wandb': {'runtime': 329}, '_timestamp': 1680690741.3215847, 'test/precision': 0.86, 'train/epoch_acc': 1}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.01}",fragrant-sweep-20 +8,"{'epoch': 9, 'test/recall': 0.82, 'test/precision': 0.7592592592592593, 'test/epoch_loss': 0.5786970999505785, 'train/epoch_acc': 0.8206388206388207, 'train/batch_loss': 0.58731609582901, '_step': 149, '_runtime': 342.05230498313904, '_timestamp': 1680690397.165603, 'test/f1-score': 0.7884615384615384, 'test/epoch_acc': 0.7555555555555555, 'train/epoch_loss': 0.5623220165765842, '_wandb': {'runtime': 338}}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.001}",treasured-sweep-19 +9,"{'_timestamp': 1680690042.488695, 'test/f1-score': 0.7865168539325843, 'test/precision': 0.8536585365853658, 'train/batch_loss': 0.5736206769943237, 'epoch': 9, '_wandb': {'runtime': 357}, '_runtime': 360.5366156101227, 'test/epoch_loss': 0.6037532766660054, 'train/epoch_acc': 0.7788697788697788, 'train/epoch_loss': 0.5984062318134074, '_step': 2059, 'test/recall': 0.7291666666666666, 'test/epoch_acc': 0.788888888888889}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.0001}",desert-sweep-18 +10,"{'_timestamp': 1680689670.8310964, 'test/f1-score': 0.8333333333333334, 'test/epoch_loss': 0.3740654948684904, 'train/epoch_acc': 0.8697788697788698, '_step': 2059, 'epoch': 9, 'test/recall': 0.7446808510638298, 'test/epoch_acc': 0.8444444444444444, 'test/precision': 0.945945945945946, 'train/batch_loss': 0.5778521299362183, 'train/epoch_loss': 0.3086323318522451, '_wandb': {'runtime': 362}, '_runtime': 365.3367943763733}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.003}",celestial-sweep-17 +11,"{'test/recall': 0.9285714285714286, 'test/f1-score': 0.9176470588235294, 'test/precision': 0.9069767441860463, 'train/epoch_acc': 1, 'epoch': 9, '_wandb': {'runtime': 337}, '_runtime': 340.39124369621277, '_timestamp': 1680689237.7951498, 'train/epoch_loss': 0.0053219743558098115, '_step': 149, 'test/epoch_acc': 0.9222222222222224, 'test/epoch_loss': 0.18080708616309696, 'train/batch_loss': 0.004256190732121468}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.01}",cosmic-sweep-15 +12,"{'_timestamp': 1680688886.363035, 'test/recall': 0.8222222222222222, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.925, 'train/epoch_loss': 0.09628425111664636, 'test/epoch_loss': 0.23811448697621623, 'train/epoch_acc': 0.968058968058968, 'train/batch_loss': 0.21692615747451785, '_step': 2059, 'epoch': 9, '_wandb': {'runtime': 356}, '_runtime': 359.0396990776062, 'test/f1-score': 0.8705882352941177}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.001}",stilted-sweep-14 +13,"{'_step': 149, 'test/f1-score': 0.9278350515463918, 'test/epoch_loss': 0.16714997291564945, 'train/epoch_acc': 1, 'test/epoch_acc': 0.9222222222222224, 'test/precision': 0.9574468085106383, 'train/batch_loss': 0.007201554253697395, 'epoch': 9, '_wandb': {'runtime': 333}, '_runtime': 336.5640392303467, '_timestamp': 1680688517.0028613, 'test/recall': 0.9, 'train/epoch_loss': 0.007631345846546077}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.01}",frosty-sweep-13 +14,"{'test/epoch_acc': 0.8777777777777778, 'test/epoch_loss': 0.32556109494633145, 'train/epoch_loss': 0.17368088453934877, '_runtime': 331.98337984085083, '_timestamp': 1680688162.2054858, 'test/recall': 0.8181818181818182, 'test/f1-score': 0.8674698795180724, 'test/precision': 0.9230769230769232, 'train/epoch_acc': 0.9496314496314496, 'train/batch_loss': 0.27152174711227417, '_step': 529, 'epoch': 9, '_wandb': {'runtime': 328}}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.001}",young-sweep-12 +15,"{'_wandb': {'runtime': 332}, 'test/f1-score': 0.7311827956989247, 'train/epoch_loss': 0.5277571982775039, '_step': 1039, 'epoch': 9, 'test/recall': 0.8292682926829268, 'test/epoch_acc': 0.7222222222222222, 'test/precision': 0.6538461538461539, 'test/epoch_loss': 0.5193446947468652, 'train/epoch_acc': 0.7469287469287469, 'train/batch_loss': 0.3307788372039795, '_runtime': 335.6552822589874, '_timestamp': 1680687816.5057352}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.1}",sandy-sweep-11 +16,"{'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.8085106382978723, 'test/epoch_loss': 0.4616309046745301, '_wandb': {'runtime': 334}, '_runtime': 336.80703043937683, '_timestamp': 1680687470.9289024, 'test/recall': 0.9047619047619048, 'train/batch_loss': 0.0030224076472222805, 'train/epoch_loss': 0.003708146820279612, '_step': 149, 'epoch': 9, 'test/f1-score': 0.853932584269663, 'train/epoch_acc': 1}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",laced-sweep-10 +17,"{'_runtime': 265.48077392578125, 'test/recall': 0.08888888888888889, 'test/epoch_acc': 0.45555555555555555, 'train/epoch_loss': 9.16968992828444, '_wandb': {'runtime': 265}, 'epoch': 7, '_timestamp': 1680687113.1220188, 'test/f1-score': 0.14035087719298245, 'test/precision': 0.3333333333333333, 'test/epoch_loss': 11610.708938450283, 'train/epoch_acc': 0.5331695331695332, 'train/batch_loss': 9.74098777770996, '_step': 422}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.1}",jumping-sweep-9 +18,"{'test/precision': 0.8913043478260869, 'train/epoch_acc': 0.8955773955773956, 'train/epoch_loss': 0.3055295220024756, '_wandb': {'runtime': 327}, '_timestamp': 1680686834.80723, 'test/f1-score': 0.845360824742268, 'test/epoch_acc': 0.8333333333333334, 'test/epoch_loss': 0.3831123087141249, 'train/batch_loss': 0.34334877133369446, '_step': 529, 'epoch': 9, '_runtime': 330.36346793174744, 'test/recall': 0.803921568627451}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.0003}",dutiful-sweep-8 +19,"{'epoch': 2, '_runtime': 99.40804982185364, '_timestamp': 1680686491.634724, 'test/epoch_acc': 0.45555555555555555, 'test/precision': 0.45555555555555555, 'test/epoch_loss': 6.554853016439314e+29, 'train/batch_loss': 'NaN', '_step': 157, '_wandb': {'runtime': 99}, 'test/recall': 1, 'test/f1-score': 0.6259541984732825, 'train/epoch_acc': 0.484029484029484, 'train/epoch_loss': 'NaN'}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.1}",olive-sweep-7 +20,"{'_wandb': {'runtime': 334}, '_runtime': 337.17863941192627, 'test/recall': 0.8888888888888888, 'test/f1-score': 0.8695652173913044, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.851063829787234, 'test/epoch_loss': 0.35141510632303025, 'train/epoch_acc': 0.9103194103194104, 'train/batch_loss': 0.3707323968410492, '_step': 279, 'epoch': 9, '_timestamp': 1680686383.3591404, 'train/epoch_loss': 0.3219767680771521}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.001}",good-sweep-6 +21,"{'test/recall': 0.6938775510204082, 'test/f1-score': 0.6601941747572815, 'test/epoch_acc': 0.6111111111111112, 'train/epoch_acc': 0.5196560196560196, '_wandb': {'runtime': 342}, '_runtime': 344.80718994140625, '_timestamp': 1680686028.304971, 'test/precision': 0.6296296296296297, 'test/epoch_loss': 0.6818753732575311, 'train/batch_loss': 0.7027227878570557, 'train/epoch_loss': 0.6907664721955246, '_step': 149, 'epoch': 9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.0003}",summer-sweep-5 +22,"{'epoch': 9, '_timestamp': 1680685671.7387648, 'test/epoch_acc': 0.9222222222222224, 'test/epoch_loss': 0.22382020586066775, 'train/epoch_acc': 0.9864864864864864, '_step': 529, '_runtime': 333.9663326740265, 'test/recall': 0.8717948717948718, 'test/f1-score': 0.9066666666666668, 'test/precision': 0.9444444444444444, 'train/batch_loss': 0.15035715699195862, 'train/epoch_loss': 0.10497688309859292, '_wandb': {'runtime': 331}}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.001}",firm-sweep-4 +23,"{'_step': 149, '_runtime': 335.79468297958374, 'test/recall': 0.925, 'test/f1-score': 0.6379310344827587, 'test/precision': 0.4868421052631579, 'test/epoch_loss': 0.6597137530644734, 'train/batch_loss': 0.652446985244751, 'epoch': 9, '_wandb': {'runtime': 333}, '_timestamp': 1680685319.453976, 'test/epoch_acc': 0.5333333333333333, 'train/epoch_acc': 0.5909090909090909, 'train/epoch_loss': 0.6564877619028677}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.0001}",genial-sweep-3 +24,"{'_step': 529, 'test/recall': 0.9736842105263158, 'test/f1-score': 0.7628865979381443, 'test/precision': 0.6271186440677966, 'test/epoch_loss': 0.5467572536733415, 'train/epoch_acc': 0.7899262899262899, 'epoch': 9, '_wandb': {'runtime': 329}, '_runtime': 331.50625491142273, '_timestamp': 1680684975.004809, 'test/epoch_acc': 0.7444444444444445, 'train/batch_loss': 0.5583129525184631, 'train/epoch_loss': 0.4703364581675143}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.1}",fine-sweep-2 +25,"{'_timestamp': 1680684633.811369, 'test/f1-score': 0.896551724137931, 'test/epoch_acc': 0.9, 'test/epoch_loss': 0.30911533037821454, '_step': 529, 'epoch': 9, '_wandb': {'runtime': 447}, '_runtime': 450.5545320510864, 'train/epoch_acc': 0.9987714987714988, 'train/batch_loss': 0.005764181260019541, 'test/recall': 0.8863636363636364, 'test/precision': 0.9069767441860463, 'train/epoch_loss': 0.007131033717467008}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.01}",visionary-sweep-1 +26,"{'_step': 239, 'epoch': 1, '_timestamp': 1680629962.8990817, 'train/epoch_acc': 0.8931203931203932, 'train/batch_loss': 0.08615076541900635, '_wandb': {'runtime': 83}, '_runtime': 83.58446168899536, 'test/recall': 0.9047619047619048, 'test/f1-score': 0.8735632183908046, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.8444444444444444, 'test/epoch_loss': 0.29840316110187104, 'train/epoch_loss': 0.2428556958016658}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.1}",stoic-sweep-14 +27,"{'_timestamp': 1680629872.8401277, 'test/recall': 0.975, 'test/f1-score': 0.951219512195122, 'test/epoch_loss': 0.20102048052681817, 'train/epoch_acc': 0.9803439803439804, '_step': 149, '_wandb': {'runtime': 347}, '_runtime': 348.9410927295685, 'train/batch_loss': 0.10338585078716278, 'train/epoch_loss': 0.1163152276517718, 'epoch': 9, 'test/epoch_acc': 0.9555555555555556, 'test/precision': 0.9285714285714286}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.01}",rich-sweep-13 +28,"{'_timestamp': 1680629513.1781075, 'test/epoch_loss': 3.395405118153546e+20, 'train/batch_loss': 82027960, 'train/epoch_loss': 60563307.6520902, 'epoch': 3, '_wandb': {'runtime': 135}, '_runtime': 132.22715950012207, 'test/recall': 0.9111111111111112, 'test/f1-score': 0.6721311475409836, 'test/epoch_acc': 0.5555555555555556, 'test/precision': 0.5324675324675324, 'train/epoch_acc': 0.5282555282555282, '_step': 210}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.003}",smooth-sweep-12 +29,"{'test/recall': 0.8888888888888888, 'test/f1-score': 0.6597938144329897, 'test/precision': 0.5245901639344263, 'test/epoch_loss': 0.6240786300765143, '_step': 279, '_runtime': 327.2181556224823, '_timestamp': 1680629374.0562296, 'test/epoch_acc': 0.6333333333333333, 'train/epoch_acc': 0.7469287469287469, 'train/batch_loss': 0.5836847424507141, 'train/epoch_loss': 0.6072891213970044, 'epoch': 9, '_wandb': {'runtime': 326}}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.0003}",resilient-sweep-11 +30,"{'_wandb': {'runtime': 330}, '_timestamp': 1680629038.456323, 'test/epoch_loss': 0.2657569663392173, 'train/epoch_loss': 0.12745249926751018, '_step': 529, '_runtime': 332.23273372650146, 'test/recall': 0.8269230769230769, 'test/f1-score': 0.8958333333333334, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9772727272727272, 'train/epoch_acc': 0.9717444717444718, 'train/batch_loss': 0.13025684654712677, 'epoch': 9}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.001}",serene-sweep-10 +31,"{'test/f1-score': 0.9, 'test/epoch_acc': 0.9111111111111112, 'test/precision': 0.972972972972973, 'test/epoch_loss': 0.23338710864384968, 'train/epoch_acc': 0.9275184275184276, 'train/batch_loss': 0.11391787976026536, 'epoch': 9, '_wandb': {'runtime': 334}, 'train/epoch_loss': 0.2116023584907412, '_timestamp': 1680628699.1189623, 'test/recall': 0.8372093023255814, '_step': 1039, '_runtime': 335.94198656082153}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0003}",cool-sweep-9 +32,"{'_timestamp': 1680628351.790065, 'test/recall': 0.8863636363636364, 'test/epoch_acc': 0.7777777777777778, 'train/epoch_acc': 0.7702702702702703, 'train/epoch_loss': 0.6034659886828805, 'epoch': 9, '_wandb': {'runtime': 326}, '_runtime': 327.29265093803406, 'test/epoch_loss': 0.5824494547314114, 'train/batch_loss': 0.5777762532234192, '_step': 529, 'test/f1-score': 0.7959183673469388, 'test/precision': 0.7222222222222222}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.0001}",lilac-sweep-8 +33,"{'epoch': 9, '_runtime': 337.11313247680664, 'test/f1-score': 0.717391304347826, 'test/epoch_acc': 0.7111111111111111, 'test/epoch_loss': 0.6369305915302701, 'train/batch_loss': 0.5935282111167908, '_step': 149, '_timestamp': 1680628016.5942774, 'test/recall': 0.8048780487804879, 'test/precision': 0.6470588235294118, 'train/epoch_acc': 0.7199017199017199, 'train/epoch_loss': 0.618001790392311, '_wandb': {'runtime': 335}}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.001}",warm-sweep-7 +34,"{'_step': 2059, 'epoch': 9, '_wandb': {'runtime': 354}, '_runtime': 355.7423675060272, '_timestamp': 1680627667.6215644, 'test/epoch_acc': 0.6333333333333333, 'test/epoch_loss': 0.6619265423880683, 'train/epoch_acc': 0.6498771498771498, 'test/recall': 0.8, 'test/f1-score': 0.6857142857142857, 'test/precision': 0.6, 'train/batch_loss': 0.6662057638168335, 'train/epoch_loss': 0.6663250732773353}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.0001}",giddy-sweep-6 +35,"{'test/recall': 0.8163265306122449, 'test/f1-score': 0.7766990291262137, 'test/precision': 0.7407407407407407, 'test/epoch_loss': 0.6307997491624621, 'train/epoch_acc': 0.7125307125307125, 'train/batch_loss': 0.6531811356544495, '_wandb': {'runtime': 343}, '_runtime': 344.59358406066895, '_timestamp': 1680627305.434523, 'test/epoch_acc': 0.7444444444444445, 'train/epoch_loss': 0.6398702088093582, '_step': 149, 'epoch': 9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.0001}",stellar-sweep-5 +36,"{'test/precision': 0.9705882352941176, 'test/epoch_loss': 0.1906787835785912, 'train/epoch_acc': 0.9975429975429976, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 334}, 'test/f1-score': 0.9041095890410958, 'train/batch_loss': 0.0006497434806078672, 'train/epoch_loss': 0.02095988139033052, '_runtime': 335.76391553878784, '_timestamp': 1680626951.0603056, 'test/recall': 0.8461538461538461, 'test/epoch_acc': 0.9222222222222224}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",olive-sweep-4 +37,"{'epoch': 9, '_runtime': 333.64992809295654, '_timestamp': 1680626608.419389, 'train/epoch_loss': 0.11751884335528429, 'train/epoch_acc': 0.984029484029484, '_step': 149, '_wandb': {'runtime': 332}, 'test/recall': 0.925, 'test/f1-score': 0.8705882352941177, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.8222222222222222, 'test/epoch_loss': 0.27919367684258356, 'train/batch_loss': 0.12675245106220245}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.003}",dazzling-sweep-3 +38,"{'test/precision': 0.5306122448979592, '_wandb': {'runtime': 336}, '_timestamp': 1680626264.5954974, 'test/recall': 0.6842105263157895, 'test/epoch_acc': 0.6111111111111112, 'test/epoch_loss': 0.6708752089076572, 'train/epoch_acc': 0.6547911547911548, 'train/batch_loss': 0.5270536541938782, 'train/epoch_loss': 0.6389284106085868, '_step': 1039, 'epoch': 9, '_runtime': 337.19885444641113, 'test/f1-score': 0.5977011494252874}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.01}",kind-sweep-2 +39,"{'train/epoch_loss': 0.3516608065117782, 'epoch': 9, 'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.8444444444444444, 'train/epoch_acc': 0.8746928746928747, 'train/batch_loss': 0.3848239779472351, 'test/f1-score': 0.853932584269663, 'test/epoch_loss': 0.38614972366227046, '_step': 529, '_wandb': {'runtime': 337}, '_runtime': 337.9836483001709, '_timestamp': 1680625919.9645753, 'test/recall': 0.8636363636363636}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.003}",morning-sweep-1 +40,"{'train/epoch_loss': 0.02368298517580857, 'epoch': 9, 'test/recall': 0.8653846153846154, 'test/f1-score': 0.9, 'test/precision': 0.9375, 'test/epoch_acc': 0.888888888888889, 'test/epoch_loss': 0.25786760796585845, 'train/epoch_acc': 0.9975429975429976, 'train/batch_loss': 0.05631007254123688, '_step': 2059, '_wandb': {'runtime': 346}, '_runtime': 347.9354045391083, '_timestamp': 1680624250.2654595}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.1}",valiant-sweep-23 +41,"{'train/batch_loss': 0.5639374256134033, '_timestamp': 1680623895.362503, 'test/recall': 0.8936170212765957, 'test/f1-score': 0.8571428571428571, 'test/epoch_acc': 0.8444444444444444, 'test/precision': 0.8235294117647058, 'test/epoch_loss': 0.490613665845659, 'train/epoch_acc': 0.8243243243243243, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 327}, '_runtime': 329.4802031517029, 'train/epoch_loss': 0.48581602795996887}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0003}",earnest-sweep-22 +42,"{'_timestamp': 1680623556.4586525, 'test/recall': 0.9148936170212766, 'test/f1-score': 0.9052631578947368, 'test/epoch_acc': 0.9, 'test/precision': 0.8958333333333334, 'test/epoch_loss': 0.2318242397573259, 'train/epoch_acc': 0.995085995085995, 'epoch': 9, '_wandb': {'runtime': 326}, '_runtime': 328.0050995349884, 'train/batch_loss': 0.06110217794775963, 'train/epoch_loss': 0.05107141801451289, '_step': 149}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.003}",genial-sweep-21 +43,"{'_runtime': 327.10622239112854, '_timestamp': 1680623221.0825984, 'test/recall': 0.8723404255319149, 'test/epoch_acc': 0.7444444444444445, 'test/epoch_loss': 0.5943129923608568, 'train/epoch_acc': 0.7911547911547911, '_step': 149, '_wandb': {'runtime': 325}, 'train/epoch_loss': 0.5714027147914034, 'test/precision': 0.7068965517241379, 'train/batch_loss': 0.6166229844093323, 'epoch': 9, 'test/f1-score': 0.780952380952381}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.001}",lemon-sweep-20 +44,"{'_runtime': 331.60892701148987, 'test/recall': 0.7021276595744681, 'test/epoch_acc': 0.6, 'test/precision': 0.6, 'test/epoch_loss': 0.6746161646313138, 'train/batch_loss': 0.7205827236175537, '_step': 1039, '_wandb': {'runtime': 330}, '_timestamp': 1680622885.059607, 'test/f1-score': 0.6470588235294118, 'train/epoch_acc': 0.6277641277641277, 'train/epoch_loss': 0.6722187732302879, 'epoch': 9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",ancient-sweep-19 +45,"{'_wandb': {'runtime': 347}, '_runtime': 348.9979507923126, '_timestamp': 1680622545.2735748, 'test/f1-score': 0.898876404494382, 'test/epoch_acc': 0.9, 'test/epoch_loss': 0.24883262103216516, '_step': 2059, 'epoch': 9, 'train/epoch_acc': 0.9877149877149876, 'train/epoch_loss': 0.0466749508011656, 'train/batch_loss': 0.015468262135982512, 'test/recall': 0.8695652173913043, 'test/precision': 0.9302325581395348}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.01}",smart-sweep-18 +46,"{'test/precision': 0.945945945945946, 'epoch': 9, '_wandb': {'runtime': 328}, '_runtime': 329.3028633594513, '_timestamp': 1680622188.8210304, 'test/recall': 0.8536585365853658, 'test/f1-score': 0.8974358974358975, '_step': 1039, 'test/epoch_acc': 0.9111111111111112, 'test/epoch_loss': 0.2015038196825319, 'train/epoch_acc': 0.9815724815724816, 'train/batch_loss': 0.007225348148494959, 'train/epoch_loss': 0.07856258183731457}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.003}",sleek-sweep-17 +47,"{'_step': 279, 'epoch': 9, '_wandb': {'runtime': 321}, '_timestamp': 1680621849.979658, 'train/epoch_acc': 0.828009828009828, 'train/batch_loss': 0.6047794222831726, 'train/epoch_loss': 0.5808350268101516, '_runtime': 323.3842430114746, 'test/recall': 0.8301886792452831, 'test/f1-score': 0.8543689320388349, 'test/epoch_acc': 0.8333333333333334, 'test/precision': 0.88, 'test/epoch_loss': 0.5843977000978258}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.0001}",winter-sweep-16 +48,"{'test/recall': 0.85, 'train/batch_loss': 0.001602485659532249, 'epoch': 9, '_wandb': {'runtime': 346}, '_timestamp': 1680621511.323635, 'test/f1-score': 0.85, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.85, 'test/epoch_loss': 0.5281610590923164, 'train/epoch_acc': 0.995085995085995, '_step': 2059, '_runtime': 347.8050694465637, 'train/epoch_loss': 0.029015880939893934}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.1}",rare-sweep-15 +49,"{'_step': 2059, 'epoch': 9, '_wandb': {'runtime': 346}, '_runtime': 347.7671456336975, 'test/epoch_acc': 0.9222222222222224, 'test/precision': 0.9487179487179488, 'train/epoch_loss': 0.04606454834343147, '_timestamp': 1680621147.5604067, 'test/recall': 0.8809523809523809, 'test/f1-score': 0.9135802469135802, 'test/epoch_loss': 0.22225395898438163, 'train/epoch_acc': 0.9864864864864864, 'train/batch_loss': 0.010366588830947876}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.001}",stoic-sweep-14 +50,"{'train/epoch_acc': 0.6523341523341524, 'train/batch_loss': 0.6023905277252197, '_wandb': {'runtime': 351}, '_timestamp': 1680620790.920825, 'test/recall': 0.675, 'test/f1-score': 0.6585365853658537, 'test/precision': 0.6428571428571429, 'test/epoch_loss': 0.661226307021247, 'train/epoch_loss': 0.6673213337211703, '_step': 2059, 'epoch': 9, '_runtime': 352.6435329914093, 'test/epoch_acc': 0.6888888888888889}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.0001}",glorious-sweep-13 +51,"{'epoch': 9, '_wandb': {'runtime': 329}, 'test/recall': 0.9574468085106383, 'test/f1-score': 0.9782608695652174, 'test/precision': 1, 'train/batch_loss': 0.004083937965333462, 'train/epoch_loss': 0.0071195896911716286, '_step': 149, '_runtime': 330.7649688720703, '_timestamp': 1680620431.024078, 'test/epoch_acc': 0.977777777777778, 'test/epoch_loss': 0.1352142873737547, 'train/epoch_acc': 1}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.01}",chocolate-sweep-12 +52,"{'train/epoch_loss': 0.5577488642652731, '_step': 149, '_wandb': {'runtime': 328}, 'test/recall': 0.926829268292683, 'test/f1-score': 0.8636363636363636, 'test/precision': 0.8085106382978723, 'train/epoch_acc': 0.800982800982801, 'train/batch_loss': 0.5299303531646729, 'epoch': 9, '_runtime': 329.12984681129456, '_timestamp': 1680620092.0697718, 'test/epoch_acc': 0.8666666666666667, 'test/epoch_loss': 0.5375637359089321}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.0003}",glowing-sweep-11 +53,"{'train/epoch_acc': 0.8611793611793611, '_step': 279, 'epoch': 9, '_wandb': {'runtime': 322}, '_timestamp': 1680619755.0191748, 'test/f1-score': 0.7659574468085105, 'train/batch_loss': 0.5281365513801575, 'train/epoch_loss': 0.46212616409072127, '_runtime': 324.3058567047119, 'test/recall': 0.7659574468085106, 'test/epoch_acc': 0.7555555555555555, 'test/precision': 0.7659574468085106, 'test/epoch_loss': 0.5337554746203952}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.003}",different-sweep-10 +54,"{'test/epoch_loss': 0.5470490535100301, 'train/batch_loss': 0.6183260083198547, '_step': 279, 'epoch': 9, '_runtime': 327.0705659389496, '_timestamp': 1680619423.656795, 'test/recall': 0.9523809523809524, 'test/precision': 0.7843137254901961, '_wandb': {'runtime': 325}, 'test/f1-score': 0.8602150537634408, 'test/epoch_acc': 0.8555555555555556, 'train/epoch_acc': 0.8058968058968059, 'train/epoch_loss': 0.5580001385557564}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.003}",lilac-sweep-9 +55,"{'test/f1-score': 0.7956989247311828, 'test/precision': 0.8409090909090909, 'train/batch_loss': 0.6300776600837708, '_step': 529, 'epoch': 9, '_runtime': 328.68579959869385, '_timestamp': 1680619089.5332966, 'test/recall': 0.7551020408163265, 'train/epoch_loss': 0.46969629490990605, '_wandb': {'runtime': 327}, 'test/epoch_acc': 0.788888888888889, 'test/epoch_loss': 0.46168507006433274, 'train/epoch_acc': 0.773955773955774}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.1}",crimson-sweep-8 +56,"{'test/recall': 0.8181818181818182, 'test/epoch_loss': 0.44089303129391433, 'train/epoch_acc': 0.9938574938574938, 'train/epoch_loss': 0.02176519967463292, 'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.9375, '_step': 2059, 'epoch': 9, '_wandb': {'runtime': 349}, '_runtime': 350.2308712005615, '_timestamp': 1680618753.2361271, 'test/f1-score': 0.8737864077669902, 'train/batch_loss': 0.011611333116889}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.003}",still-sweep-7 +57,"{'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.85, 'test/epoch_loss': 0.24035142682841976, 'train/epoch_acc': 0.9938574938574938, 'epoch': 9, '_wandb': {'runtime': 333}, 'test/recall': 0.8717948717948718, 'test/f1-score': 0.8607594936708861, 'train/epoch_loss': 0.02099113287724536, '_step': 1039, '_runtime': 334.69481587409973, '_timestamp': 1680618396.0194488, 'train/batch_loss': 0.030084805563092232}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.01}",charmed-sweep-6 +58,"{'epoch': 9, '_wandb': {'runtime': 335}, '_timestamp': 1680618051.044084, 'train/epoch_acc': 0.9963144963144964, 'train/epoch_loss': 0.010693324584853135, '_step': 1039, 'test/recall': 0.8780487804878049, 'test/f1-score': 0.8674698795180722, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.8571428571428571, 'test/epoch_loss': 0.5385394818252988, 'train/batch_loss': 0.001848929445259273, '_runtime': 336.1621870994568}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0003}",restful-sweep-5 +59,"{'train/epoch_acc': 1, 'train/batch_loss': 0.004928763955831528, 'train/epoch_loss': 0.004462716538065481, '_step': 149, '_runtime': 334.4848310947418, 'test/f1-score': 0.8409090909090909, 'test/epoch_acc': 0.8444444444444444, 'test/precision': 0.8409090909090909, 'epoch': 9, '_wandb': {'runtime': 333}, '_timestamp': 1680617708.075962, 'test/recall': 0.8409090909090909, 'test/epoch_loss': 0.6238909363746643}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",proud-sweep-4 +60,"{'epoch': 9, '_runtime': 338.4922821521759, '_timestamp': 1680617365.2791553, 'test/recall': 0.75, 'test/f1-score': 0.4778761061946903, 'test/precision': 0.35064935064935066, 'test/epoch_loss': 0.7233364171451993, 'train/epoch_acc': 0.5626535626535626, 'train/batch_loss': 0.6750851273536682, 'train/epoch_loss': 0.6796711432845938, '_step': 149, '_wandb': {'runtime': 337}, 'test/epoch_acc': 0.34444444444444444}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.0001}",visionary-sweep-3 +61,"{'test/recall': 1, 'test/f1-score': 0.59375, 'test/epoch_loss': 109.22879723442924, 'train/epoch_acc': 0.5147420147420148, '_step': 110, 'epoch': 3, '_runtime': 129.48883533477783, '_timestamp': 1680617007.4126654, 'train/batch_loss': 1.2695436477661133, 'train/epoch_loss': 3.225923076601521, '_wandb': {'runtime': 132}, 'test/epoch_acc': 0.4222222222222222, 'test/precision': 0.4222222222222222}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.1}",splendid-sweep-2 +62,"{'train/epoch_loss': 0.5949591096554693, '_step': 1039, 'epoch': 9, 'test/recall': 0.8636363636363636, 'test/f1-score': 0.8172043010752688, 'test/precision': 0.7755102040816326, 'test/epoch_loss': 0.6018742865986294, '_wandb': {'runtime': 372}, '_runtime': 373.84231185913086, '_timestamp': 1680616870.0621138, 'test/epoch_acc': 0.8111111111111111, 'train/epoch_acc': 0.7727272727272727, 'train/batch_loss': 0.563504695892334}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0001}",snowy-sweep-1 +63,"{'_timestamp': 1678798635.5359335, 'test/recall': 0.5813953488372093, 'test/epoch_acc': 0.6333333333333333, 'test/precision': 0.625, 'train/epoch_loss': 0.684732110699506, '_step': 529, '_runtime': 333.6077947616577, 'test/f1-score': 0.6024096385542168, 'test/epoch_loss': 0.6787986318270366, 'train/epoch_acc': 0.5552825552825553, 'train/batch_loss': 0.7118003964424133, 'epoch': 9, '_wandb': {'runtime': 327}}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.0001}",comic-sweep-38 +64,"{'test/epoch_loss': 0.5120628664890925, 'train/epoch_acc': 1, '_wandb': {'runtime': 337}, '_runtime': 342.7867271900177, '_timestamp': 1678798288.876002, 'test/recall': 1, 'test/f1-score': 0.888888888888889, 'test/precision': 0.8, 'train/epoch_loss': 0.001254009526264133, '_step': 149, 'epoch': 9, 'test/epoch_acc': 0.888888888888889, 'train/batch_loss': 0.0015535189304500818}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",magic-sweep-37 +65,"{'test/f1-score': 0.6190476190476191, 'test/epoch_loss': 0.6593369828330146, 'train/batch_loss': 0.6705241203308105, 'train/epoch_loss': 0.659313001562395, 'epoch': 9, '_runtime': 338.4290623664856, '_timestamp': 1678797929.8979273, 'test/recall': 0.6341463414634146, 'test/epoch_acc': 0.6444444444444445, 'test/precision': 0.6046511627906976, 'train/epoch_acc': 0.6572481572481572, '_step': 279, '_wandb': {'runtime': 332}}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 32, 'learning_rate': 0.0003}",azure-sweep-36 +66,"{'test/epoch_acc': 0.9, 'test/epoch_loss': 0.5167779392666287, '_step': 1039, '_wandb': {'runtime': 343}, '_timestamp': 1678797575.4461255, 'test/recall': 0.8703703703703703, 'test/f1-score': 0.912621359223301, 'test/precision': 0.9591836734693876, 'train/epoch_acc': 0.7911547911547911, 'train/batch_loss': 0.5475739240646362, 'epoch': 9, '_runtime': 349.1018385887146, 'train/epoch_loss': 0.542006236622316}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.001}",easy-sweep-35 +67,"{'test/epoch_loss': 0.27850865055532065, 'train/batch_loss': 4.9947026127483696e-05, 'train/epoch_loss': 0.012833298822080874, '_timestamp': 1678797212.2311337, 'test/recall': 0.8611111111111112, '_wandb': {'runtime': 362}, '_runtime': 367.9372293949127, 'test/f1-score': 0.8611111111111112, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.8611111111111112, 'train/epoch_acc': 0.9987714987714988, '_step': 2059, 'epoch': 9}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.003}",usual-sweep-34 +68,"{'_step': 529, '_runtime': 335.99687933921814, 'test/f1-score': 0.903846153846154, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.8392857142857143, 'test/epoch_loss': 0.6554473309053315, 'epoch': 9, '_wandb': {'runtime': 330}, '_timestamp': 1678796827.8409674, 'test/recall': 0.9791666666666666, 'train/epoch_acc': 0.9742014742014742, 'train/batch_loss': 0.17918632924556732, 'train/epoch_loss': 0.07036763163974523}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.0003}",polar-sweep-33 +69,"{'epoch': 9, '_runtime': 336.63737440109253, 'test/f1-score': 0.7356321839080459, 'test/epoch_acc': 0.7444444444444445, 'test/precision': 0.64, 'test/epoch_loss': 0.5271965821584066, 'train/epoch_acc': 0.8660933660933661, 'train/epoch_loss': 0.47513497564072105, '_step': 149, '_wandb': {'runtime': 330}, '_timestamp': 1678796468.9253614, 'test/recall': 0.8648648648648649, 'train/batch_loss': 0.4695126414299011}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.001}",still-sweep-32 +70,"{'train/batch_loss': 0.711412787437439, 'train/epoch_loss': 0.09577267487700432, '_step': 2059, 'epoch': 9, '_wandb': {'runtime': 372}, '_timestamp': 1678796117.3062005, 'test/f1-score': 0.868421052631579, 'test/epoch_acc': 0.888888888888889, '_runtime': 378.4032835960388, 'test/recall': 0.8048780487804879, 'test/precision': 0.9428571428571428, 'test/epoch_loss': 0.2378266812198692, 'train/epoch_acc': 0.9705159705159704}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.001}",misty-sweep-31 +71,"{'_step': 529, 'epoch': 9, '_wandb': {'runtime': 333}, '_runtime': 336.8808288574219, '_timestamp': 1678795725.918603, 'test/recall': 0.8260869565217391, 'test/f1-score': 0.8636363636363636, 'test/epoch_acc': 0.8666666666666667, 'train/epoch_acc': 0.9926289926289926, 'test/precision': 0.9047619047619048, 'test/epoch_loss': 0.27924135790930854, 'train/batch_loss': 0.04936826974153519, 'train/epoch_loss': 0.05967479737370254}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.001}",flowing-sweep-30 +72,"{'_step': 279, 'epoch': 9, '_wandb': {'runtime': 336}, '_runtime': 339.73244285583496, 'test/f1-score': 0.898876404494382, 'test/epoch_acc': 0.9, 'test/precision': 0.9523809523809524, 'test/epoch_loss': 0.37525106337335373, 'train/epoch_loss': 0.3784469199122024, '_timestamp': 1678795319.518895, 'test/recall': 0.851063829787234, 'train/epoch_acc': 0.8722358722358722, 'train/batch_loss': 0.4592914581298828}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.001}",deep-sweep-28 +73,"{'_timestamp': 1678794965.2675128, 'test/f1-score': 0.6849315068493151, 'test/epoch_acc': 0.7444444444444445, 'test/precision': 0.7575757575757576, 'test/epoch_loss': 0.5484810524516636, 'epoch': 9, '_wandb': {'runtime': 377}, '_runtime': 381.0768678188324, 'train/epoch_acc': 0.7899262899262899, 'train/batch_loss': 0.6763702630996704, 'train/epoch_loss': 0.5319552311733255, '_step': 2059, 'test/recall': 0.625}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.0001}",glorious-sweep-27 +74,"{'_step': 529, 'epoch': 9, '_wandb': {'runtime': 334}, '_runtime': 338.11463618278503, '_timestamp': 1678794572.9156363, 'test/recall': 0.813953488372093, 'test/epoch_acc': 0.7555555555555555, 'test/epoch_loss': 0.5729872869120703, 'train/epoch_acc': 0.8968058968058967, 'train/batch_loss': 0.4391788542270661, 'test/f1-score': 0.7608695652173914, 'test/precision': 0.7142857142857143, 'train/epoch_loss': 0.2699748155379471}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.1}",stoic-sweep-26 +75,"{'test/epoch_loss': 0.3083995895563728, '_step': 2059, '_wandb': {'runtime': 377}, '_timestamp': 1678794222.848524, 'test/recall': 0.8863636363636364, 'test/f1-score': 0.8666666666666666, 'test/precision': 0.8478260869565217, 'epoch': 9, '_runtime': 380.8983037471771, 'test/epoch_acc': 0.8666666666666667, 'train/epoch_acc': 0.9877149877149876, 'train/batch_loss': 0.025906365364789963, 'train/epoch_loss': 0.04955068614813831}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.01}",vibrant-sweep-25 +76,"{'test/f1-score': 0.8867924528301887, 'test/precision': 0.8545454545454545, 'test/epoch_loss': 0.7976957665549385, '_step': 149, 'epoch': 9, '_wandb': {'runtime': 340}, '_timestamp': 1678793829.5489533, 'test/recall': 0.9215686274509804, 'train/epoch_acc': 1, '_runtime': 343.4739582538605, 'test/epoch_acc': 0.8666666666666667, 'train/batch_loss': 0.0010389955714344978, 'train/epoch_loss': 0.002287556243378495}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.1}",valiant-sweep-24 +77,"{'test/f1-score': 0.8571428571428571, 'test/precision': 0.8666666666666667, 'test/epoch_loss': 0.4112878143787384, 'train/batch_loss': 0.3762533664703369, 'train/epoch_loss': 0.3862068348493272, 'epoch': 9, '_runtime': 344.0598545074463, 'test/recall': 0.8478260869565217, 'test/epoch_acc': 0.8555555555555556, 'train/epoch_acc': 0.8857493857493858, '_step': 149, '_wandb': {'runtime': 340}, '_timestamp': 1678793464.5180786}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.001}",polished-sweep-23 +78,"{'_timestamp': 1678793108.7606344, 'test/recall': 0.8837209302325582, 'test/epoch_loss': 0.6097042110231188, 'train/epoch_acc': 0.6756756756756757, 'train/batch_loss': 0.7007869482040405, 'epoch': 9, '_wandb': {'runtime': 336}, '_runtime': 339.41979336738586, 'test/f1-score': 0.7102803738317758, 'test/epoch_acc': 0.6555555555555556, 'test/precision': 0.59375, 'train/epoch_loss': 0.6115244123215171, '_step': 529}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.01}",clear-sweep-22 +79,"{'test/precision': 0.9393939393939394, 'train/epoch_loss': 0.07462231436439994, 'epoch': 9, '_runtime': 381.0477261543274, 'test/epoch_acc': 0.9, 'test/recall': 0.8157894736842105, 'test/f1-score': 0.8732394366197183, 'test/epoch_loss': 0.23743902287549443, 'train/epoch_acc': 0.9815724815724816, 'train/batch_loss': 0.5061427354812622, '_step': 2059, '_wandb': {'runtime': 377}, '_timestamp': 1678792758.596286}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",sage-sweep-21 +80,"{'_wandb': {'runtime': 331}, '_timestamp': 1678792364.5292609, 'test/f1-score': 0.8505747126436782, 'test/precision': 0.902439024390244, 'train/epoch_acc': 0.9791154791154792, 'train/batch_loss': 0.24579545855522156, 'train/epoch_loss': 0.12095561367287976, '_step': 529, 'epoch': 9, '_runtime': 335.3731348514557, 'test/recall': 0.8043478260869565, 'test/epoch_acc': 0.8555555555555556, 'test/epoch_loss': 0.28035063776705}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 16, 'learning_rate': 0.001}",olive-sweep-20 +81,"{'_wandb': {'runtime': 337}, 'test/recall': 0.9111111111111112, 'test/f1-score': 0.931818181818182, 'test/epoch_acc': 0.9333333333333332, 'test/precision': 0.9534883720930232, 'test/epoch_loss': 0.17397157057291932, 'epoch': 9, '_runtime': 340.5063774585724, '_timestamp': 1678792015.2579195, 'train/epoch_acc': 0.995085995085995, 'train/batch_loss': 0.0077079650945961475, 'train/epoch_loss': 0.018187719287696302, '_step': 1039}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",autumn-sweep-19 +82,"{'epoch': 9, '_wandb': {'runtime': 344}, 'test/recall': 0.8205128205128205, 'train/epoch_loss': 0.4784781006542412, 'test/epoch_loss': 0.4940012666914198, 'train/epoch_acc': 0.8218673218673218, '_step': 1039, '_runtime': 347.40152740478516, '_timestamp': 1678791661.9692383, 'test/f1-score': 0.7804878048780488, 'test/epoch_acc': 0.8, 'test/precision': 0.7441860465116279, 'train/batch_loss': 0.4317986071109772}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0001}",crisp-sweep-18 +83,"{'_runtime': 337.956387758255, 'test/recall': 0.9090909090909092, 'test/f1-score': 0.9090909090909092, 'test/precision': 0.9090909090909092, 'test/epoch_loss': 0.19624250796106127, '_step': 279, '_wandb': {'runtime': 335}, '_timestamp': 1678791236.6172178, 'test/epoch_acc': 0.9111111111111112, 'train/epoch_acc': 0.9828009828009828, 'train/batch_loss': 0.15555259585380554, 'train/epoch_loss': 0.08830470366618558, 'epoch': 9}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.003}",deep-sweep-16 +84,"{'_step': 279, '_timestamp': 1678790886.952144, 'test/f1-score': 0.7818181818181819, 'test/precision': 0.7049180327868853, 'test/epoch_loss': 0.6228035251299541, 'train/epoch_acc': 0.7493857493857494, 'train/batch_loss': 0.6377201080322266, 'epoch': 9, '_wandb': {'runtime': 331}, '_runtime': 334.2993712425232, 'test/recall': 0.8775510204081632, 'test/epoch_acc': 0.7333333333333334, 'train/epoch_loss': 0.6127705679478751}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 32, 'learning_rate': 0.0003}",confused-sweep-15 +85,"{'train/epoch_loss': 0.3545121966840594, '_step': 529, 'epoch': 9, '_runtime': 345.0617377758026, '_timestamp': 1678790542.286384, 'test/f1-score': 0.7809523809523811, 'train/epoch_acc': 0.8415233415233415, 'train/batch_loss': 0.1340156048536301, '_wandb': {'runtime': 342}, 'test/recall': 0.8541666666666666, 'test/epoch_acc': 0.7444444444444445, 'test/precision': 0.7192982456140351, 'test/epoch_loss': 0.6144241677390204}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.1}",ancient-sweep-14 +86,"{'_step': 529, '_timestamp': 1678790183.7024884, 'test/f1-score': 0.7422680412371134, 'train/batch_loss': 0.6280461549758911, 'test/precision': 0.7058823529411765, 'test/epoch_loss': 0.6392196734746297, 'train/epoch_acc': 0.7457002457002457, 'epoch': 9, '_wandb': {'runtime': 344}, '_runtime': 346.86587953567505, 'test/recall': 0.782608695652174, 'test/epoch_acc': 0.7222222222222222, 'train/epoch_loss': 0.6374555861334836}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 16, 'learning_rate': 0.0003}",revived-sweep-13 +87,"{'_wandb': {'runtime': 348}, '_runtime': 350.9660577774048, 'test/recall': 0.9111111111111112, 'train/epoch_acc': 0.9987714987714988, 'epoch': 9, '_timestamp': 1678789826.0085878, 'test/f1-score': 0.9010989010989012, 'test/epoch_acc': 0.9, 'test/precision': 0.8913043478260869, 'test/epoch_loss': 0.24115624560250176, 'train/batch_loss': 0.04231283441185951, 'train/epoch_loss': 0.02119528235872196, '_step': 149}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 64, 'learning_rate': 0.0003}",swift-sweep-12 +88,"{'test/recall': 0.8333333333333334, 'test/epoch_loss': 0.5769641452365452, 'train/batch_loss': 0.6127220392227173, 'train/epoch_loss': 0.5840219159676929, 'epoch': 9, '_wandb': {'runtime': 393}, '_timestamp': 1678789464.8040044, 'test/f1-score': 0.7894736842105262, 'test/epoch_acc': 0.8222222222222223, 'test/precision': 0.75, 'train/epoch_acc': 0.757985257985258, '_step': 2059, '_runtime': 397.1281135082245}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.0001}",rosy-sweep-11 +89,"{'epoch': 9, 'test/recall': 0.8076923076923077, 'test/f1-score': 0.8842105263157894, 'test/epoch_loss': 0.2696530275874668, 'train/epoch_acc': 0.9938574938574938, 'train/batch_loss': 0.11590295284986496, '_step': 149, '_wandb': {'runtime': 352}, '_runtime': 355.46944642066956, '_timestamp': 1678789057.5684297, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.9767441860465116, 'train/epoch_loss': 0.06967324825777176}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.003}",deft-sweep-10 +90,"{'_step': 279, '_wandb': {'runtime': 340}, '_runtime': 342.3234579563141, '_timestamp': 1678788683.006292, 'test/recall': 0.9069767441860463, 'test/f1-score': 0.7959183673469388, 'test/epoch_acc': 0.7777777777777778, 'test/precision': 0.7090909090909091, 'test/epoch_loss': 0.6248881856600443, 'train/epoch_acc': 0.7014742014742015, 'train/batch_loss': 0.5820533037185669, 'train/epoch_loss': 0.6400203514450599, 'epoch': 9}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.0001}",atomic-sweep-9 +91,"{'_step': 1039, '_wandb': {'runtime': 351}, 'test/epoch_acc': 0.6555555555555556, 'test/precision': 0.6140350877192983, 'test/epoch_loss': 0.6175267219543457, 'train/epoch_acc': 0.7432432432432432, 'epoch': 9, '_runtime': 353.4816448688507, '_timestamp': 1678788328.1196988, 'test/recall': 0.7954545454545454, 'test/f1-score': 0.693069306930693, 'train/batch_loss': 0.3377891480922699, 'train/epoch_loss': 0.5329857344855841}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.1}",cosmic-sweep-8 +92,"{'epoch': 9, '_wandb': {'runtime': 390}, '_runtime': 392.4064960479736, '_timestamp': 1678787961.3400052, 'test/f1-score': 0.6999999999999998, 'test/precision': 0.5932203389830508, 'train/epoch_loss': 0.5631518808058498, '_step': 2059, 'test/recall': 0.8536585365853658, 'test/epoch_acc': 0.6666666666666667, 'test/epoch_loss': 0.6419186863634322, 'train/epoch_acc': 0.7186732186732187, 'train/batch_loss': 0.17200787365436554}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.01}",lunar-sweep-7 +93,"{'train/epoch_acc': 0.9975429975429976, 'train/epoch_loss': 0.03237721893286529, 'epoch': 9, '_wandb': {'runtime': 343}, '_runtime': 345.9260220527649, 'test/f1-score': 0.8988764044943819, 'test/epoch_acc': 0.9, 'train/batch_loss': 0.04353119805455208, '_step': 529, '_timestamp': 1678787557.992564, 'test/recall': 0.8888888888888888, 'test/precision': 0.9090909090909092, 'test/epoch_loss': 0.24278527200222016}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.01}",zany-sweep-6 +94,"{'_step': 529, '_runtime': 346.5414688587189, 'test/f1-score': 0.9130434782608696, 'train/epoch_acc': 0.9336609336609336, 'test/epoch_loss': 0.32114719019995797, 'train/batch_loss': 0.21811823546886444, 'epoch': 9, '_wandb': {'runtime': 344}, '_timestamp': 1678787192.9954038, 'test/recall': 0.8571428571428571, 'test/epoch_acc': 0.9111111111111112, 'test/precision': 0.9767441860465116, 'train/epoch_loss': 0.2347587838000103}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.001}",absurd-sweep-5 +95,"{'_timestamp': 1678786835.7254088, 'test/f1-score': 0.8799999999999999, 'test/epoch_loss': 0.22436124781767527, 'train/epoch_loss': 0.02646600444977348, 'epoch': 9, '_wandb': {'runtime': 344}, '_runtime': 345.9469966888428, 'test/precision': 0.9166666666666666, 'train/epoch_acc': 1, 'train/batch_loss': 0.06225413456559181, '_step': 279, 'test/recall': 0.8461538461538461, 'test/epoch_acc': 0.9}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.003}",radiant-sweep-4 +96,"{'_wandb': {'runtime': 353}, '_runtime': 355.012455701828, 'test/recall': 0.875, 'test/f1-score': 0.8045977011494252, 'test/epoch_acc': 0.8111111111111111, 'test/precision': 0.7446808510638298, '_step': 1039, 'epoch': 9, 'train/epoch_loss': 0.45506354690476775, 'train/epoch_acc': 0.8341523341523341, 'train/batch_loss': 0.5456343293190002, '_timestamp': 1678786479.0865147, 'test/epoch_loss': 0.4459853092829386}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0003}",sandy-sweep-3 +97,"{'_wandb': {'runtime': 342}, '_timestamp': 1678786112.108075, 'test/recall': 0.7894736842105263, 'test/precision': 0.9090909090909092, 'test/epoch_loss': 0.31915653232071134, 'train/batch_loss': 0.026765840128064156, 'train/epoch_loss': 0.045762457081668206, '_step': 529, 'epoch': 9, '_runtime': 344.01046657562256, 'test/f1-score': 0.8450704225352113, 'test/epoch_acc': 0.8777777777777778, 'train/epoch_acc': 0.9926289926289926}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.01}",pretty-sweep-2 +98,"{'train/batch_loss': 0.7150550484657288, 'train/epoch_loss': 0.7011552195291262, '_step': 149, '_wandb': {'runtime': 357}, '_runtime': 359.66486382484436, '_timestamp': 1678785758.376562, 'test/f1-score': 0.379746835443038, 'test/precision': 0.42857142857142855, 'epoch': 9, 'test/recall': 0.3409090909090909, 'test/epoch_acc': 0.45555555555555555, 'test/epoch_loss': 0.7006691349877252, 'train/epoch_acc': 0.4815724815724816}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.0003}",rose-sweep-1 +99,"{'train/epoch_loss': 0.023103852647056927, '_step': 74, 'test/recall': 0.9090909090909092, 'test/f1-score': 0.8791208791208791, 'train/batch_loss': 0.0016211483161896467, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.851063829787234, 'test/epoch_loss': 0.5091631063156657, 'train/epoch_acc': 0.995085995085995, 'epoch': 4, '_wandb': {'runtime': 181}, '_runtime': 180.05384421348572, '_timestamp': 1678785370.5563953}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 64, 'learning_rate': 0.1}",cosmic-sweep-2 +100,"{'test/f1-score': 0.9166666666666666, 'test/precision': 0.9166666666666666, 'train/epoch_acc': 0.9828009828009828, 'train/batch_loss': 0.0724378228187561, 'train/epoch_loss': 0.11044558714297244, '_step': 279, '_runtime': 347.11417746543884, 'test/recall': 0.9166666666666666, 'test/epoch_acc': 0.9111111111111112, 'test/epoch_loss': 0.2461573594146305, 'epoch': 9, '_wandb': {'runtime': 344}, '_timestamp': 1678743707.9633043}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.003}",ethereal-sweep-14 +101,"{'_step': 149, 'epoch': 9, '_wandb': {'runtime': 346}, 'test/recall': 0.9130434782608696, 'test/precision': 0.9545454545454546, 'train/batch_loss': 0.05796322599053383, 'train/epoch_loss': 0.043383844352398226, '_runtime': 349.69085454940796, '_timestamp': 1678743349.8008895, 'test/f1-score': 0.9333333333333332, 'test/epoch_acc': 0.9333333333333332, 'test/epoch_loss': 0.16449517243438297, 'train/epoch_acc': 1}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 64, 'learning_rate': 0.003}",northern-sweep-13 +102,"{'_runtime': 560.5539684295654, '_timestamp': 1678743376.8770983, 'test/recall': 0.85, 'test/f1-score': 0.7816091954022989, 'train/epoch_acc': 0.8255528255528255, 'train/epoch_loss': 0.40511614706651, '_wandb': {'runtime': 559}, 'epoch': 9, 'test/epoch_acc': 0.788888888888889, 'test/precision': 0.723404255319149, 'test/epoch_loss': 0.5102662573258082, 'train/batch_loss': 0.42048144340515137, '_step': 2059}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.001}",faithful-sweep-12 +103,"{'_timestamp': 1678742986.9751594, 'test/recall': 0.7777777777777778, 'test/epoch_loss': 0.3378064884079827, 'epoch': 9, '_runtime': 358.3485324382782, 'test/f1-score': 0.8536585365853658, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.945945945945946, 'train/epoch_acc': 0.8955773955773956, 'train/batch_loss': 0.5923706889152527, 'train/epoch_loss': 0.27216847456936755, '_step': 1039, '_wandb': {'runtime': 355}}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.0003}",zany-sweep-12 +104,"{'test/epoch_acc': 0.7444444444444445, 'test/precision': 0.6226415094339622, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 358}, '_timestamp': 1678742619.1453717, 'test/recall': 0.9166666666666666, 'test/f1-score': 0.7415730337078651, 'train/epoch_loss': 0.613342459283824, '_runtime': 362.78373169898987, 'test/epoch_loss': 0.615033131175571, 'train/epoch_acc': 0.7481572481572482, 'train/batch_loss': 0.6421169638633728}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",ruby-sweep-11 +105,"{'_wandb': {'runtime': 531}, 'test/epoch_acc': 0.8666666666666667, 'test/precision': 0.9545454545454546, 'train/batch_loss': 0.07699991017580032, '_step': 2059, '_runtime': 531.6082515716553, '_timestamp': 1678742643.2100165, 'test/recall': 0.8076923076923077, 'test/f1-score': 0.875, 'test/epoch_loss': 0.3795760815549228, 'train/epoch_acc': 0.9656019656019657, 'train/epoch_loss': 0.09796744051757808, 'epoch': 9}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 4, 'learning_rate': 0.001}",fallen-sweep-10 +106,"{'test/f1-score': 0.875, 'test/precision': 0.9545454545454546, 'test/epoch_loss': 0.2956610471010208, 'train/batch_loss': 0.1150113120675087, '_step': 1039, 'epoch': 9, '_timestamp': 1678742242.6362762, 'test/recall': 0.8076923076923077, 'train/epoch_loss': 0.24495647845821825, '_wandb': {'runtime': 359}, '_runtime': 361.6978232860565, 'test/epoch_acc': 0.8666666666666667, 'train/epoch_acc': 0.9103194103194104}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.003}",rare-sweep-10 +107,"{'_runtime': 471.6707801818848, 'test/precision': 0.9714285714285714, '_wandb': {'runtime': 471}, '_timestamp': 1678742103.7627492, 'test/recall': 0.7906976744186046, 'test/f1-score': 0.8717948717948717, 'test/epoch_acc': 0.888888888888889, 'test/epoch_loss': 0.26282389760017394, '_step': 1039, 'epoch': 9, 'train/epoch_loss': 0.310643073711407, 'train/epoch_acc': 0.8869778869778869, 'train/batch_loss': 0.14859537780284882}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.003}",major-sweep-9 +108,"{'test/epoch_acc': 0.6333333333333333, 'test/precision': 0.6, 'train/epoch_acc': 0.5921375921375921, 'train/batch_loss': 0.6228023767471313, '_step': 279, '_runtime': 344.49258494377136, 'test/f1-score': 0.6451612903225806, 'test/recall': 0.6976744186046512, 'test/epoch_loss': 0.6676742302046882, 'train/epoch_loss': 0.6766868150204932, 'epoch': 9, '_wandb': {'runtime': 341}, '_timestamp': 1678741869.828495}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.0001}",spring-sweep-9 +109,"{'test/epoch_loss': 0.16872049139605627, 'train/epoch_acc': 0.9987714987714988, '_step': 1039, 'epoch': 9, '_wandb': {'runtime': 451}, '_runtime': 452.4322986602783, 'test/f1-score': 0.9213483146067416, 'test/precision': 0.9111111111111112, 'train/epoch_loss': 0.02303326028314504, '_timestamp': 1678741623.0662856, 'test/recall': 0.9318181818181818, 'test/epoch_acc': 0.9222222222222224, 'train/batch_loss': 0.0022799931466579437}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.003}",elated-sweep-8 +110,"{'_step': 149, '_runtime': 345.3405177593231, 'test/f1-score': 0.9534883720930232, 'test/precision': 0.9761904761904762, 'test/epoch_loss': 0.2148759490913815, 'train/epoch_acc': 0.9606879606879608, 'epoch': 9, '_wandb': {'runtime': 342}, '_timestamp': 1678741511.9070578, 'test/recall': 0.9318181818181818, 'test/epoch_acc': 0.9555555555555556, 'train/batch_loss': 0.11643347889184952, 'train/epoch_loss': 0.1359616077759049}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.003}",hardy-sweep-8 +111,"{'epoch': 9, '_wandb': {'runtime': 342}, '_runtime': 345.1732180118561, '_timestamp': 1678741156.130327, 'test/recall': 0.8048780487804879, 'test/epoch_acc': 0.888888888888889, 'train/epoch_acc': 1, '_step': 279, 'train/epoch_loss': 0.008645273717600824, 'test/precision': 0.9428571428571428, 'test/epoch_loss': 0.2181672462158733, 'train/batch_loss': 0.042314428836107254, 'test/f1-score': 0.868421052631579}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 32, 'learning_rate': 0.1}",sweepy-sweep-7 +112,"{'_step': 1039, 'test/f1-score': 0.7222222222222222, 'test/epoch_acc': 0.7777777777777778, 'test/precision': 0.8387096774193549, 'test/epoch_loss': 0.4768455002042982, 'train/epoch_acc': 0.8292383292383292, 'train/epoch_loss': 0.45283343838825274, 'epoch': 9, '_wandb': {'runtime': 453}, '_runtime': 454.0593776702881, '_timestamp': 1678741159.4683807, 'test/recall': 0.6341463414634146, 'train/batch_loss': 0.3791900873184204}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 8, 'learning_rate': 0.0001}",glorious-sweep-7 +113,"{'test/epoch_loss': 0.1931780371401045, 'epoch': 9, '_wandb': {'runtime': 346}, 'test/f1-score': 0.9333333333333332, 'test/precision': 0.9333333333333332, 'test/epoch_acc': 0.9333333333333332, 'train/epoch_acc': 1, 'train/batch_loss': 0.001889266073703766, 'train/epoch_loss': 0.0030514685945077376, '_step': 149, '_runtime': 348.53755164146423, '_timestamp': 1678740798.1400597, 'test/recall': 0.9333333333333332}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 64, 'learning_rate': 0.01}",rural-sweep-6 +114,"{'epoch': 9, 'test/recall': 0.8666666666666667, 'test/f1-score': 0.896551724137931, 'test/epoch_acc': 0.9, 'train/batch_loss': 0.1385842263698578, '_step': 2059, '_runtime': 560.7404127120972, '_timestamp': 1678740696.0305526, 'test/precision': 0.9285714285714286, 'test/epoch_loss': 0.22745563416845269, 'train/epoch_acc': 0.984029484029484, 'train/epoch_loss': 0.07075482415817952, '_wandb': {'runtime': 560}}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",smart-sweep-6 +115,"{'_runtime': 345.5716743469238, '_timestamp': 1678740438.4959724, 'test/recall': 0.7755102040816326, 'test/f1-score': 0.8172043010752688, 'train/epoch_acc': 0.7616707616707616, 'train/epoch_loss': 0.5191410552225183, 'epoch': 9, '_wandb': {'runtime': 342}, 'test/precision': 0.8636363636363636, 'test/epoch_loss': 0.507676590151257, 'train/batch_loss': 0.44296249747276306, '_step': 529, 'test/epoch_acc': 0.8111111111111111}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 16, 'learning_rate': 0.1}",giddy-sweep-5 +116,"{'_step': 529, 'epoch': 9, '_runtime': 345.28623247146606, 'test/f1-score': 0.6842105263157895, 'train/epoch_acc': 0.8538083538083537, 'train/batch_loss': 0.4066888689994812, 'train/epoch_loss': 0.32492415251837314, '_wandb': {'runtime': 342}, '_timestamp': 1678740073.5443084, 'test/recall': 0.6666666666666666, 'test/epoch_acc': 0.7333333333333334, 'test/precision': 0.7027027027027027, 'test/epoch_loss': 0.6657861550649007}","{'eps': 1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.1}",lilac-sweep-4 +117,"{'_step': 1039, 'epoch': 9, '_wandb': {'runtime': 454}, '_runtime': 454.98564982414246, 'test/epoch_acc': 0.888888888888889, 'test/epoch_loss': 0.2600655794143677, 'train/batch_loss': 0.01167443674057722, '_timestamp': 1678740126.212114, 'test/recall': 0.8367346938775511, 'test/f1-score': 0.8913043478260869, 'test/precision': 0.9534883720930232, 'train/epoch_acc': 0.9803439803439804, 'train/epoch_loss': 0.08152788232426166}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.001}",hearty-sweep-5 +118,"{'train/epoch_acc': 0.8144963144963144, 'epoch': 9, '_wandb': {'runtime': 354}, '_timestamp': 1678739717.8250418, 'test/epoch_acc': 0.788888888888889, 'test/epoch_loss': 0.4899995631641812, 'train/batch_loss': 0.6180618405342102, 'train/epoch_loss': 0.5079173609724209, '_step': 1039, '_runtime': 356.9382667541504, 'test/recall': 0.875, 'test/f1-score': 0.7865168539325842, 'test/precision': 0.7142857142857143}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.0001}",silvery-sweep-3 +119,"{'_wandb': {'runtime': 453}, 'test/precision': 0.9142857142857144, 'train/epoch_acc': 0.8968058968058967, 'train/batch_loss': 0.2711101472377777, 'test/epoch_loss': 0.3028925802972582, '_step': 1039, 'epoch': 9, '_runtime': 454.2519624233246, '_timestamp': 1678739662.5458224, 'test/recall': 0.8205128205128205, 'test/f1-score': 0.8648648648648648, 'test/epoch_acc': 0.888888888888889, 'train/epoch_loss': 0.28549219298128414}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.99, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 8, 'learning_rate': 0.0003}",dulcet-sweep-4 +120,"{'train/epoch_loss': 0.6479796424544707, '_step': 529, '_runtime': 343.88807487487793, 'test/f1-score': 0.6451612903225806, 'test/epoch_acc': 0.6333333333333333, 'test/precision': 0.5454545454545454, 'test/epoch_loss': 0.6651701913939582, 'train/epoch_acc': 0.6928746928746928, 'train/batch_loss': 0.6685948967933655, 'epoch': 9, '_wandb': {'runtime': 341}, '_timestamp': 1678739351.1315958, 'test/recall': 0.7894736842105263}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.999, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.001}",glamorous-sweep-2 +121,"{'_runtime': 469.65283608436584, 'epoch': 9, '_wandb': {'runtime': 469}, 'test/recall': 0.875, 'test/f1-score': 0.7608695652173914, 'test/epoch_acc': 0.7555555555555555, 'test/precision': 0.6730769230769231, 'test/epoch_loss': 0.6144020875295003, 'train/epoch_acc': 0.7542997542997543, '_step': 1039, '_timestamp': 1678739200.083605, 'train/batch_loss': 0.6510805487632751, 'train/epoch_loss': 0.6267796501480684}","{'eps': 0.1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",hopeful-sweep-3 +122,"{'test/precision': 0.8409090909090909, 'train/epoch_acc': 0.9975429975429976, 'train/batch_loss': 0.0980801358819008, '_step': 279, '_wandb': {'runtime': 353}, '_runtime': 357.5890119075775, 'test/f1-score': 0.8409090909090909, 'test/epoch_acc': 0.8444444444444444, 'train/epoch_loss': 0.03763626415181805, 'epoch': 9, '_timestamp': 1678738994.027642, 'test/recall': 0.8409090909090909, 'test/epoch_loss': 0.3028163850307465}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 5, 'batch_size': 32, 'learning_rate': 0.003}",lunar-sweep-1 +123,"{'test/f1-score': 0.7157894736842105, 'test/epoch_loss': 0.5541173484590318, '_timestamp': 1678738720.9443874, 'test/recall': 0.8947368421052632, 'test/epoch_acc': 0.7000000000000001, 'test/precision': 0.5964912280701754, '_step': 2059, 'epoch': 9, '_wandb': {'runtime': 529}, '_runtime': 529.6096863746643, 'train/epoch_acc': 0.6658476658476659, 'train/batch_loss': 0.7896618843078613, 'train/epoch_loss': 0.618659178367118}","{'eps': 1e-08, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.9, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.1}",stoic-sweep-2 +124,"{'train/epoch_loss': 0.016353931551580648, 'epoch': 9, '_wandb': {'runtime': 353}, '_runtime': 355.4184715747833, '_timestamp': 1678738469.1834886, 'test/recall': 0.6578947368421053, 'train/epoch_acc': 0.995085995085995, 'train/batch_loss': 0.0014543599681928754, '_step': 529, 'test/f1-score': 0.7575757575757577, 'test/epoch_acc': 0.8222222222222223, 'test/precision': 0.8928571428571429, 'test/epoch_loss': 0.4269479903909895}","{'eps': 1e-08, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 16, 'learning_rate': 0.0001}",dark-sweep-2 +125,"{'_wandb': {'runtime': 381}, '_timestamp': 1678738101.018471, 'test/f1-score': 0.8470588235294119, 'test/epoch_acc': 0.8555555555555556, 'test/epoch_loss': 0.40116495291392007, 'epoch': 9, '_runtime': 384.5172441005707, 'test/recall': 0.8181818181818182, 'test/precision': 0.8780487804878049, 'train/epoch_acc': 0.8673218673218673, 'train/batch_loss': 0.31195682287216187, 'train/epoch_loss': 0.3623260387038716, '_step': 1039}","{'eps': 0.1, 'gamma': 0.5, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0003}",trim-sweep-1 +126,"{'epoch': 9, '_runtime': 560.7235152721405, 'test/f1-score': 0.8602150537634408, 'test/precision': 0.8163265306122449, 'train/epoch_acc': 0.7567567567567567, 'train/batch_loss': 0.6653294563293457, '_step': 2059, '_wandb': {'runtime': 560}, '_timestamp': 1678738182.1088202, 'test/recall': 0.9090909090909092, 'test/epoch_acc': 0.8555555555555556, 'test/epoch_loss': 0.6165981186760796, 'train/epoch_loss': 0.6107166709712448}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.9, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 2, 'batch_size': 4, 'learning_rate': 0.001}",sparkling-sweep-1 +127,"{'_step': 555, 'epoch': 1, '_timestamp': 1678737059.0375042, 'test/recall': 0.6818181818181818, 'test/epoch_acc': 0.6555555555555556, 'test/precision': 0.6382978723404256, '_wandb': {'runtime': 118}, '_runtime': 122.13349413871764, 'test/f1-score': 0.6593406593406593, 'test/epoch_loss': 0.6796493821673923, 'train/epoch_acc': 0.5515970515970516, 'train/batch_loss': 0.6759337782859802, 'train/epoch_loss': 0.6851893525744539}","{'eps': 1, 'gamma': 0.1, 'epochs': 10, 'beta_one': 0.99, 'beta_two': 0.5, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.0003}",serene-sweep-1 +128,"{'_wandb': {'runtime': 455}, 'train/epoch_acc': 0.9914004914004914, 'test/precision': 0.9361702127659576, 'test/batch_loss': 0.1311825066804886, 'train/epoch_loss': 0.032788554922144414, '_runtime': 456.3002746105194, '_timestamp': 1678734250.8076646, 'test/f1-score': 0.8888888888888888, 'train/batch_loss': 0.003167948452755809, '_step': 1159, 'test/recall': 0.8461538461538461, 'test/epoch_loss': 0.45068282733360926, 'epoch': 9, 'test/epoch_acc': 0.8777777777777778}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.003}",super-sweep-10 +129,"{'_wandb': {'runtime': 563}, '_runtime': 564.230875492096, 'test/f1-score': 0.7173913043478259, 'test/batch_loss': 0.9658783674240112, 'train/epoch_loss': 0.5984233345387902, '_step': 2289, 'test/precision': 0.673469387755102, 'test/recall': 0.7674418604651163, 'train/epoch_acc': 0.687960687960688, 'train/batch_loss': 0.3260266184806824, 'epoch': 9, 'test/epoch_acc': 0.7111111111111111, 'test/epoch_loss': 0.5302444166607327, '_timestamp': 1678733784.6976814}","{'gamma': 0.1, 'epochs': 10, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",distinctive-sweep-9 +130,"{'_step': 2289, 'test/f1-score': 0.9268292682926828, '_timestamp': 1678733210.1129615, 'test/epoch_acc': 0.9333333333333332, 'test/epoch_loss': 0.17092165086004468, 'epoch': 9, 'train/batch_loss': 0.007875862531363964, 'train/epoch_loss': 0.1743801347293527, 'test/precision': 1, 'test/batch_loss': 0.1419784128665924, 'train/epoch_acc': 0.9496314496314496, '_wandb': {'runtime': 527}, '_runtime': 527.6160025596619, 'test/recall': 0.8636363636363636}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.0003}",winter-sweep-8 +131,"{'test/f1-score': 0.9066666666666668, '_runtime': 453.52900218963623, 'test/recall': 0.8292682926829268, 'test/precision': 1, 'test/batch_loss': 0.27116066217422485, '_step': 1159, '_wandb': {'runtime': 452}, 'test/epoch_loss': 0.21558621691332924, 'train/epoch_loss': 0.07730489082323246, 'epoch': 9, '_timestamp': 1678732673.1225052, 'test/epoch_acc': 0.9222222222222224, 'train/epoch_acc': 0.9791154791154792, 'train/batch_loss': 0.04383014515042305}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.001}",stilted-sweep-7 +132,"{'_timestamp': 1678732212.5530572, 'test/f1-score': 0.7010309278350516, 'test/epoch_acc': 0.6777777777777778, 'epoch': 9, 'test/batch_loss': 0.4716488718986511, 'train/batch_loss': 0.48304444551467896, '_step': 2289, '_wandb': {'runtime': 561}, '_runtime': 561.7993631362915, 'test/precision': 0.6538461538461539, 'test/recall': 0.7555555555555555, 'test/epoch_loss': 0.6190193812052409, 'train/epoch_acc': 0.7272727272727273, 'train/epoch_loss': 0.5549268187263967}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'adam', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.01}",summer-sweep-6 +133,"{'test/epoch_acc': 0.8222222222222223, 'test/batch_loss': 0.5068956017494202, 'train/epoch_loss': 0.5186349417126442, '_step': 1159, '_wandb': {'runtime': 453}, 'test/f1-score': 0.813953488372093, 'test/epoch_loss': 0.4936415394147237, 'train/batch_loss': 0.4434223175048828, 'test/recall': 0.7142857142857143, 'test/precision': 0.945945945945946, 'train/epoch_acc': 0.8218673218673218, 'epoch': 9, '_runtime': 454.3645238876343, '_timestamp': 1678731639.156168}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0001}",different-sweep-5 +134,"{'_wandb': {'runtime': 453}, '_runtime': 454.26038885116577, 'test/batch_loss': 0.5159374475479126, 'test/epoch_loss': 0.5482642173767089, '_step': 1159, 'epoch': 9, 'train/batch_loss': 0.5655931830406189, '_timestamp': 1678731176.111379, 'test/f1-score': 0.8354430379746836, 'test/epoch_acc': 0.8555555555555556, 'test/precision': 0.825, 'train/epoch_acc': 0.812039312039312, 'train/epoch_loss': 0.5429200196149016, 'test/recall': 0.8461538461538461}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 2, 'batch_size': 8, 'learning_rate': 0.0001}",wise-sweep-4 +135,"{'test/batch_loss': 1.7588363885879517, 'train/batch_loss': 0.00470334617421031, 'train/epoch_loss': 0.02060394324720534, '_step': 2289, 'epoch': 9, 'test/f1-score': 0.8493150684931509, 'train/epoch_acc': 0.9963144963144964, '_runtime': 528.9760706424713, 'test/epoch_acc': 0.8777777777777778, 'test/precision': 0.9393939393939394, 'test/epoch_loss': 0.24194780117250048, '_wandb': {'runtime': 528}, '_timestamp': 1678730714.7711067, 'test/recall': 0.775}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 4, 'learning_rate': 0.003}",misty-sweep-3 +136,"{'test/batch_loss': 0.455120325088501, 'train/batch_loss': 0.5347514748573303, 'test/precision': 0.8387096774193549, 'train/epoch_acc': 0.8329238329238329, '_runtime': 455.41485929489136, 'test/recall': 0.6842105263157895, 'test/epoch_acc': 0.8111111111111111, 'test/f1-score': 0.7536231884057972, 'train/epoch_loss': 0.42904984072326735, 'epoch': 9, '_wandb': {'runtime': 454}, '_timestamp': 1678730177.1362092, '_step': 1159, 'test/epoch_loss': 0.4792341656155056}","{'gamma': 0.1, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 3, 'batch_size': 8, 'learning_rate': 0.0003}",unique-sweep-2 +137,"{'epoch': 9, '_wandb': {'runtime': 527}, 'test/recall': 0.8636363636363636, 'test/batch_loss': 2.5320074558258057, 'train/epoch_acc': 0.9901719901719902, 'train/batch_loss': 0.005740344058722258, 'train/epoch_loss': 0.024021292951151657, '_step': 2289, 'test/epoch_acc': 0.888888888888889, 'test/precision': 0.9047619047619048, 'test/epoch_loss': 0.5442472649919283, '_runtime': 528.4356484413147, '_timestamp': 1678729705.2001765, 'test/f1-score': 0.8837209302325582}","{'gamma': 0.5, 'epochs': 10, 'optimizer': 'sgd', 'step_size': 7, 'batch_size': 4, 'learning_rate': 0.003}",polar-sweep-1 diff --git a/classification/classifier/hyp-metrics.ipynb b/classification/classifier/hyp-metrics.ipynb index 45f1c0a..6579501 100644 --- a/classification/classifier/hyp-metrics.ipynb +++ b/classification/classifier/hyp-metrics.ipynb @@ -99,14 +99,14 @@ " \n", " Unnamed: 0\n", " name\n", + " test/epoch_acc\n", + " test/precision\n", " test/epoch_loss\n", " train/epoch_acc\n", - " train/batch_loss\n", + " _step\n", " epoch\n", " _timestamp\n", - " test/recall\n", - " test/precision\n", - " _step\n", + " test/f1-score\n", " ...\n", " test/batch_loss\n", " eps\n", @@ -125,14 +125,14 @@ " 0\n", " 0\n", " fiery-sweep-26\n", + " 0.733333\n", + " 0.828571\n", " 0.566462\n", " 0.823096\n", - " 0.335779\n", + " 2059\n", " 9\n", " 1.680693e+09\n", - " 0.617021\n", - " 0.828571\n", - " 2059\n", + " 0.707317\n", " ...\n", " NaN\n", " 1.000000e-01\n", @@ -149,14 +149,14 @@ " 1\n", " 1\n", " radiant-sweep-25\n", + " 0.722222\n", + " 0.685185\n", " 0.645458\n", " 0.712531\n", - " 0.70145\n", + " 1039\n", " 9\n", " 1.680693e+09\n", - " 0.822222\n", - " 0.685185\n", - " 1039\n", + " 0.747475\n", " ...\n", " NaN\n", " 1.000000e+00\n", @@ -173,14 +173,14 @@ " 2\n", " 2\n", " blooming-sweep-24\n", + " 0.888889\n", + " 0.935484\n", " 0.348129\n", " 0.998771\n", - " 0.019566\n", + " 1039\n", " 9\n", " 1.680692e+09\n", - " 0.783784\n", - " 0.935484\n", - " 1039\n", + " 0.852941\n", " ...\n", " NaN\n", " 1.000000e-08\n", @@ -197,14 +197,14 @@ " 3\n", " 3\n", " visionary-sweep-23\n", + " 0.800000\n", + " 0.760870\n", " 0.555318\n", " 0.835381\n", - " 0.522233\n", + " 529\n", " 9\n", " 1.680692e+09\n", - " 0.833333\n", - " 0.760870\n", - " 529\n", + " 0.795455\n", " ...\n", " NaN\n", " 1.000000e+00\n", @@ -221,14 +221,14 @@ " 4\n", " 4\n", " ancient-sweep-22\n", + " 0.577778\n", + " 0.589744\n", " 1.560271\n", " 0.557740\n", - " 0.508366\n", + " 410\n", " 1\n", " 1.680692e+09\n", - " 0.884615\n", - " 0.589744\n", - " 410\n", + " 0.707692\n", " ...\n", " NaN\n", " 1.000000e-08\n", @@ -269,14 +269,14 @@ " 133\n", " 133\n", " different-sweep-5\n", + " 0.822222\n", + " 0.945946\n", " 0.493642\n", " 0.821867\n", - " 0.443422\n", + " 1159\n", " 9\n", " 1.678732e+09\n", - " 0.714286\n", - " 0.945946\n", - " 1159\n", + " 0.813953\n", " ...\n", " 0.506896\n", " NaN\n", @@ -293,14 +293,14 @@ " 134\n", " 134\n", " wise-sweep-4\n", + " 0.855556\n", + " 0.825000\n", " 0.548264\n", " 0.812039\n", - " 0.565593\n", + " 1159\n", " 9\n", " 1.678731e+09\n", - " 0.846154\n", - " 0.825000\n", - " 1159\n", + " 0.835443\n", " ...\n", " 0.515937\n", " NaN\n", @@ -317,14 +317,14 @@ " 135\n", " 135\n", " misty-sweep-3\n", + " 0.877778\n", + " 0.939394\n", " 0.241948\n", " 0.996314\n", - " 0.004703\n", + " 2289\n", " 9\n", " 1.678731e+09\n", - " 0.775000\n", - " 0.939394\n", - " 2289\n", + " 0.849315\n", " ...\n", " 1.758836\n", " NaN\n", @@ -341,14 +341,14 @@ " 136\n", " 136\n", " unique-sweep-2\n", + " 0.811111\n", + " 0.838710\n", " 0.479234\n", " 0.832924\n", - " 0.534751\n", + " 1159\n", " 9\n", " 1.678730e+09\n", - " 0.684211\n", - " 0.838710\n", - " 1159\n", + " 0.753623\n", " ...\n", " 0.455120\n", " NaN\n", @@ -365,14 +365,14 @@ " 137\n", " 137\n", " polar-sweep-1\n", + " 0.888889\n", + " 0.904762\n", " 0.544247\n", " 0.990172\n", - " 0.00574\n", + " 2289\n", " 9\n", " 1.678730e+09\n", - " 0.863636\n", - " 0.904762\n", - " 2289\n", + " 0.883721\n", " ...\n", " 2.532007\n", " NaN\n", @@ -391,57 +391,57 @@ "" ], "text/plain": [ - " Unnamed: 0 name test/epoch_loss train/epoch_acc \\\n", - "0 0 fiery-sweep-26 0.566462 0.823096 \n", - "1 1 radiant-sweep-25 0.645458 0.712531 \n", - "2 2 blooming-sweep-24 0.348129 0.998771 \n", - "3 3 visionary-sweep-23 0.555318 0.835381 \n", - "4 4 ancient-sweep-22 1.560271 0.557740 \n", - ".. ... ... ... ... \n", - "133 133 different-sweep-5 0.493642 0.821867 \n", - "134 134 wise-sweep-4 0.548264 0.812039 \n", - "135 135 misty-sweep-3 0.241948 0.996314 \n", - "136 136 unique-sweep-2 0.479234 0.832924 \n", - "137 137 polar-sweep-1 0.544247 0.990172 \n", + " Unnamed: 0 name test/epoch_acc test/precision \\\n", + "0 0 fiery-sweep-26 0.733333 0.828571 \n", + "1 1 radiant-sweep-25 0.722222 0.685185 \n", + "2 2 blooming-sweep-24 0.888889 0.935484 \n", + "3 3 visionary-sweep-23 0.800000 0.760870 \n", + "4 4 ancient-sweep-22 0.577778 0.589744 \n", + ".. ... ... ... ... \n", + "133 133 different-sweep-5 0.822222 0.945946 \n", + "134 134 wise-sweep-4 0.855556 0.825000 \n", + "135 135 misty-sweep-3 0.877778 0.939394 \n", + "136 136 unique-sweep-2 0.811111 0.838710 \n", + "137 137 polar-sweep-1 0.888889 0.904762 \n", "\n", - " train/batch_loss epoch _timestamp test/recall test/precision _step \\\n", - "0 0.335779 9 1.680693e+09 0.617021 0.828571 2059 \n", - "1 0.70145 9 1.680693e+09 0.822222 0.685185 1039 \n", - "2 0.019566 9 1.680692e+09 0.783784 0.935484 1039 \n", - "3 0.522233 9 1.680692e+09 0.833333 0.760870 529 \n", - "4 0.508366 1 1.680692e+09 0.884615 0.589744 410 \n", - ".. ... ... ... ... ... ... \n", - "133 0.443422 9 1.678732e+09 0.714286 0.945946 1159 \n", - "134 0.565593 9 1.678731e+09 0.846154 0.825000 1159 \n", - "135 0.004703 9 1.678731e+09 0.775000 0.939394 2289 \n", - "136 0.534751 9 1.678730e+09 0.684211 0.838710 1159 \n", - "137 0.00574 9 1.678730e+09 0.863636 0.904762 2289 \n", + " test/epoch_loss train/epoch_acc _step epoch _timestamp \\\n", + "0 0.566462 0.823096 2059 9 1.680693e+09 \n", + "1 0.645458 0.712531 1039 9 1.680693e+09 \n", + "2 0.348129 0.998771 1039 9 1.680692e+09 \n", + "3 0.555318 0.835381 529 9 1.680692e+09 \n", + "4 1.560271 0.557740 410 1 1.680692e+09 \n", + ".. ... ... ... ... ... \n", + "133 0.493642 0.821867 1159 9 1.678732e+09 \n", + "134 0.548264 0.812039 1159 9 1.678731e+09 \n", + "135 0.241948 0.996314 2289 9 1.678731e+09 \n", + "136 0.479234 0.832924 1159 9 1.678730e+09 \n", + "137 0.544247 0.990172 2289 9 1.678730e+09 \n", "\n", - " ... test/batch_loss eps gamma epochs beta_one beta_two \\\n", - "0 ... NaN 1.000000e-01 0.1 10 0.99 0.900 \n", - "1 ... NaN 1.000000e+00 0.5 10 0.99 0.900 \n", - "2 ... NaN 1.000000e-08 0.5 10 0.90 0.999 \n", - "3 ... NaN 1.000000e+00 0.1 10 0.90 0.900 \n", - "4 ... NaN 1.000000e-08 0.5 10 0.90 0.990 \n", - ".. ... ... ... ... ... ... ... \n", - "133 ... 0.506896 NaN 0.5 10 NaN NaN \n", - "134 ... 0.515937 NaN 0.5 10 NaN NaN \n", - "135 ... 1.758836 NaN 0.5 10 NaN NaN \n", - "136 ... 0.455120 NaN 0.1 10 NaN NaN \n", - "137 ... 2.532007 NaN 0.5 10 NaN NaN \n", + " test/f1-score ... test/batch_loss eps gamma epochs \\\n", + "0 0.707317 ... NaN 1.000000e-01 0.1 10 \n", + "1 0.747475 ... NaN 1.000000e+00 0.5 10 \n", + "2 0.852941 ... NaN 1.000000e-08 0.5 10 \n", + "3 0.795455 ... NaN 1.000000e+00 0.1 10 \n", + "4 0.707692 ... NaN 1.000000e-08 0.5 10 \n", + ".. ... ... ... ... ... ... \n", + "133 0.813953 ... 0.506896 NaN 0.5 10 \n", + "134 0.835443 ... 0.515937 NaN 0.5 10 \n", + "135 0.849315 ... 1.758836 NaN 0.5 10 \n", + "136 0.753623 ... 0.455120 NaN 0.1 10 \n", + "137 0.883721 ... 2.532007 NaN 0.5 10 \n", "\n", - " optimizer step_size batch_size learning_rate \n", - "0 adam 3 4 0.0003 \n", - "1 adam 2 8 0.0003 \n", - "2 sgd 5 8 0.0030 \n", - "3 sgd 2 16 0.0003 \n", - "4 adam 7 4 0.0100 \n", - ".. ... ... ... ... \n", - "133 sgd 3 8 0.0001 \n", - "134 sgd 2 8 0.0001 \n", - "135 sgd 3 4 0.0030 \n", - "136 sgd 3 8 0.0003 \n", - "137 sgd 7 4 0.0030 \n", + " beta_one beta_two optimizer step_size batch_size learning_rate \n", + "0 0.99 0.900 adam 3 4 0.0003 \n", + "1 0.99 0.900 adam 2 8 0.0003 \n", + "2 0.90 0.999 sgd 5 8 0.0030 \n", + "3 0.90 0.900 sgd 2 16 0.0003 \n", + "4 0.90 0.990 adam 7 4 0.0100 \n", + ".. ... ... ... ... ... ... \n", + "133 NaN NaN sgd 3 8 0.0001 \n", + "134 NaN NaN sgd 2 8 0.0001 \n", + "135 NaN NaN sgd 3 4 0.0030 \n", + "136 NaN NaN sgd 3 8 0.0003 \n", + "137 NaN NaN sgd 7 4 0.0030 \n", "\n", "[138 rows x 25 columns]" ] @@ -517,7 +517,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 6, "id": "00efa25b", "metadata": {}, "outputs": [ @@ -883,10 +883,72 @@ "pd.DataFrame.from_dict(parameters_dict).explode('optimizer').explode('batch_size').explode('learning_rate').explode('step_size').explode('gamma').explode('beta_one').explode('beta_two').explode('eps')" ] }, + { + "cell_type": "markdown", + "id": "0d01bf18", + "metadata": {}, + "source": [ + "# F1-score stratified 10-fold cross validation" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "bb567230", + "metadata": {}, + "outputs": [], + "source": [ + "f_scores_test = pd.read_csv('f1-scores-folds.csv', delimiter=',')\n", + "f_scores_test['epoch'] = np.resize(np.arange(25), 10*25)\n", + "f_scores_test['fold'] = np.repeat(np.arange(10), 25)\n", + "f_scores_test = pd.melt(f_scores_test[['epoch', 'fold', 'StratifiedKFold-ROC - test/f1-score']], ['epoch', 'fold'])\n", + "\n", + "f_scores_train = pd.read_csv('f1-scores-folds-train.csv', delimiter=',')\n", + "f_scores_train['epoch'] = np.resize(np.arange(25), 10*25)\n", + "f_scores_train['fold'] = np.repeat(np.arange(10), 25)\n", + "f_scores_train = pd.melt(f_scores_train[['epoch', 'fold', 'StratifiedKFold-ROC - train/f1-score']], ['epoch', 'fold'])" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "493e415e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAALACAYAAACetAiCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD2A0lEQVR4nOzdd3iT5frA8W+SJt1py16lLFktKiAqBQeCUMAFCsUNKrjBAR4n/g56jgMccDwOUHFLRXFDQVwgRUWGtKVsSlNa6E46svP8/qj0WGZH0nTcn+viapO+7/PeeWjz3nmmRimlEEIIIYRoRrT+DkAIIYQQwtskwRFCCCFEsyMJjhBCCCGaHUlwhBBCCNHsSIIjhBBCiGZHEhwhhBBCNDuS4AghhBCi2QnwdwD+snXrVpRS6PV6f4cihBBCiFNwOp1oNBoGDhxY43NabAuOUgpfrXGolMLhcPisfHE8qfOGJ3XuH1LvDU/qvOEdW+d1uWe32Bacoy03AwYM8HrZFRUVZGRk0KtXL0JCQrxevjie1HnDkzr3D6n3hid13vCOrfPU1NRal9FiW3CEEEII0XxJgiOEEEKIZkcSHCGEEEI0O5LgCCGEEKLZkQRHCCGEEM2OJDhCCCGEaHYkwRFCCCFEsyMJjhBCCCGaHUlwhBBCCNHs+GUlY4vFQlJSEgDTp08/4THJyckAmM1moqOjiY+PP+XzQgghhBBH+aUFJyUlhZKSkpP+3GQykZKSQkJCAomJiSxZsuSUzwshhBBC/J1fWnASEhIwm81YLJYT/jwlJYXw8PCqx+Hh4aSkpGAymU74fF1bcZRSVFRU1OncU7FardW+NjeZe7M4kpNHmDGU0LDQqq9BwYFoNJqTnud2unBa7djKKshM3cOGNRvIyNiP2+2p1fWVUng8Co/Hg8vjwe1x4fZ48Hg8oNFy8giaOA1otRq0p6jjhqIAj7sF1HkjpACU1HtD8nqd/1WIVlv5jUajabD/SwVU7lmpUB5QqP/9wAsiw0J54fOX671n17H3UaXUKe8vJ9IoN9vMysoiMjKy6nFkZCQWi+Wkz9eV0+kkIyOjHpGeWmZmps/K9pe0zRm8/ty7uN3u436m1WoI1Bsw6HVoAKU8eDxunC4XNpcDm9OB3eXA4Xb9749KCCFEs/LxgneInzTCK2X9/T5qMBhqdW6jTHBOxGw21+r5mtDr9fTq1avO55+M1WolMzOTbt26ERwc7PXy/eWPlK0snv8e0ZGR9GvfnqKKcooryjHbyim1WSm1WymxFmNzOaqdp9Vo0Wl0f33VE2oI/N9jra7asYYAHQa9nuBAPYEGA0FBBoICDQQHBxIUGEhQcCDBwUEEBwcTFBxEaFjl9/pAA+XWCqIiI9Ebmsyvda3YKxxYikopKyzFUmihtMiCzVL56Uajg/CoMMJaGzG2MhLe2oixjRF9UGCNy/e4PZSVlFNaZKa0oIzSQjOlRaU4KuwAaAO0hLcOx9jaSHgrI8ERwThw0SoqqtnWeWPkdLgoLjETFRkh9d5AvFrnqrI8p8OF2+HEaXdWfm934nA4cdrduJ0OXPbKY1wOB067G6fTicvuQB3/2bKSBnSGAPSBevQGHTqDAb1Bjz5QR8Bf3wcYdAQEGggwBGAwBBAQqCdAr8cQGIBG5502pLZdOtB/6Nn1LufY++jevXtrXUaj/Ovo2rVrtZaZkpISoqOjAU76fF1oNJp6N6OdSnBwsE/Lb0hbfv2Tx+55mk5Rkew9ksXvWZUtXxogSB9IYIAeLTqMgeG0CTEQqDMQog8k1BBEqCEIY2gIfeJ6MPiSQfQc2BO700V5WQXWChthEeEYW0VibBWJPrB2GfpRFRUVZGRk0K9fv2ZT5zVhK7OSl5nLkQO55B39tyuXI/ZsAEKjwmjfvRPtunekXbeOtO/RkTZd2mEtreBIZi55+4+em0OBKQ/PX92FEe2j6NWnJ+26d6T9X/8iO7RGq/vfsL2WWuf+JvXe8BpTnbscTmxlVuwVNlxOF0GhwQSGBhEYHIhG2/wmRh+9j9a2ewoaWYJjsVgwGo3Ex8czf/78quezs7OJj4/HZDKd8HnhW9s3p3H/LY/QvVN7SgrzMdsq6B4VTaAukKAAAyHBQWg8oEWDXhdAqMFAcEAAbTq24eyLB9Jv+Jl07tO12s1ReEdQWDBd43rQNa5H1XMet4eSw4UcOfC/xCfjl+38+tnPAGi0GpSnsotQH2SgXbcOdO4Xw6BxQ/9KhDoQFNp8Wh6FaE4CDHrCWukJa2X0dyiNnl8SnJSUFDZs2EBpaSnR0dEkJCQAMHHiRFasWEF0dDTjxo0jOTkZs9nMjBkzAE76vPCdHX/uZNbUR+jZI5o2dsW6nIN0MXakW6uO6JSGQIOBsNBglMNFkD6AHgN60jc+jjPO7U/rLm39HX6LpNVpadW5La06t6Xf8DOrnreVW8nLPEz+wcOERoTRrntHojq0apaf+oQQwi8JTnx8/AlbXtauXVv1/dGk51gne1543+70vdx740N07xHNuRGt+c/3KzEGhhFtbE90u7ZgcxAaFkKvc/pyxnn96TWkLyHGUH+HLU4iKDSYrrHd6Rrb3d+hCCGEzzWqLirReOzbdYC7b5hNl5hOTBzQl/9+sRKHy02fNjF0johkyCWD6T/8TGLO6kWAXn6NhBBCNC5yZxLHObgvi7uvn027Dm25+5pLWfbeSjKOZNM1ojMdw6MYc8MYLr3tcn+HKYQQQpyUdL6LarIPHuKu6x4kslUETz58K3+s3sLKHVuICo6gY3gbLhp5LiOnjfd3mEIIIcQpSYIjquRmH+au6x4kODSY51/8Bxkr1vPZll9RQKfw9pzdtxeTHrtZZkMJIYRo9OROJQA4kpvPXdc9iE6nY+Gb/2L/Z9+zZlsq+wqP0Cm8A9Gt2nDHS7MIDAnyd6hCCCHEackYHEFBXiF3X/8gbreb1z56gZwvv+fP9IOs2fknbUNa0SYkkjmLZhPVoZW/QxVCCCFqRBKcFq64sIS7r5+NrcLGa8teomTDZg5mHGL5ll/RaQNoH9aWKbdOoOfA3v4OVQghhKgx6aJqwcwlFu65YQ7mYgv//XABrj2ZZP+5n1V/bifbXEh0REf69unB1fdO9neoQgghRK1IgtNClVnKuPfGh8g/UsB/P1pAoLmUg+u3kLrXxI970+gY1paIYCOPvvGov0MVQgghak0SnBaovKyCmTc/TE5WLq98sIBWOh17v/2Jw4ctLPtjI8EBQbQJbc0tD91Eq7ZR/g5XCCGEqDVJcFoYa4WV+295hAN7D7Lo/efp3CqCnctXYS628fnmzRRWlBIT2Zk+cWeQkDja3+EKIYQQdSIJTgtis9mZPf0JdqXtYeE7z9KzW2d2LPuWcouNLXsO8nvWbrpGdiTQEMQ98+5EK5swCiGEaKLkDtZCOOwOHr7jSbZvTuelt5+hf9wZZCz7loqSMnJzzXyyZSPhgaG0Dm3FVTddRrfeXf0dshBCCFFnkuC0EB8s+YRNKVt54c2nOXtIHLs+W01ZXhElRRV8+NtGyp12BnTrS+v2rUm84xp/hyuEEELUiyQ4LcSWX//k/AvPYciwQexftY6SA9mUma38mLabnfkmBkSfQZnZyoxHbyFIVisWQgjRxEmC0wJ4PB7S/9xJ3MD+HNqwhSPbMrDbXOzLLiQ5YwttQyOJCIti6KhzGXLRYH+HK4QQQtSbJDgtQOa+LMpLy4mODCfr599RWi2F+WUs2/QrLo+L8ePHYrc5uO0f0/wdqhBCCOEVkuC0AGlbM9BoNOj2ZaEL0lN02MIXf2zHZD7CNVdczrb127n+nkTadGjt71CFEEIIr5AEpwVI27qDzh3aEBwUSFGuhd/2HGJT9k56d+2GrcRBtz4xjL82wd9hCiGEEF4jCU4LkLY1g5jWkViKytl3qIi1GdvQaDTcdMsNZO46yF1zZ6AL0Pk7TCGEEMJrJMFp5srLKti/O5MOoaHk5ZXyXdoOjpQX8sS8OXz93koSJl9K7wG9/B2mEEII4VWS4DRzGdt34fF4aBMaxrqMTNLz9jHiwniydxwiOCSIG2dd5+8QhRBCCK+TBKeZS9uaQXBQIKacUjbn7CIkOJibbrmBjWt/55aHbiY0PMTfIQohhBBeF+DvAIRvpW3dQUz71qTmZFFYUcIbb7/ER4uSODv+LC5IiPd3eEIIIYRPSAtOM6aUIm1bBh3CwjhUWkDHyNYc3ptHcUEJdzx2KxqNxt8hCiGEED4hCU4zlpt9hKKCYgwEUGIrpWf3bnz53jdMnjGRjl07+Ds8IYQQwmckwWnG0rbuAKCswonN5cDpUHTo0p4J067wc2RCCCGEb0mC04ylbd1B21YR5JQUA2DJK+XOudPRG/R+jkwIIYTwLUlwmrG0bTvp0iqCgnIzBp2es86JY8CQWH+HJYQQQvicJDjNlMPuYFf6HkK0BkpspYQaQug/qJ+/wxJCCCEahCQ4zdTuHftwOpwopxazrYwgXSB9z+7t77CEEEKIBiEJTjOVvi0DfYCOkvIK3MpDiD6YvmdJgiOEEKJlkASnmUrduoPObaMoKLcA0LNXd4xRRj9HJYQQQjQMSXCaqbStGUQGBmO2lRJiCGbAOTK4WAghRMshCU4zVFRQTI4pF51HR4mtlCBdIP0G9vF3WEIIIUSDkQSnGUrflgGA0wGljoq/xt9IgiOEEKLlkASnGUrdmoExNBiztRyANq1a07l7Jz9HJYQQQjQcv+0mnpycDIDZbCY6Opr4+ON3tk5KSiIiIgKTyUR8fDyxsZXjSGbOnMntt98OwMqVK5kzZ07DBd4EpG3dQZvwMIpKytBptAwacqZsrCmEEKJF8UuCYzKZSElJYd68eQBMmzbtuAQnPT2dDRs2sGjRoqpjli5dCkB2djZTp04lLi6OhQsXNmzwjZzb7WbHnzuJMbbCYi8jxBBM/0H9/R2WEEII0aD8kuCkpKQQHh5e9Tg8PJyUlJRqSU5KSgrR0dHVzktPTyc2NpYZM2aQkJBQ7ziUUlRUVNS7nGNZrdZqXxvS/j2ZVJRbIVRLia2U8MBwuveL8cnrbEz8WectldS5f0i9Nzyp84Z3bJ0rpWrdE+GXBCcrK4vIyMiqx5GRkVgslmrHREdHk5qaWvXYZDJhMpmIjY2tet5sNgOQmJhYpzicTicZGRl1OrcmMjMzfVb2yfyy9jc0Gg3Ko7C5HHQMD8Wptfv0dTYm/qjzlk7q3D+k3hue1HnD+3udGwyGWp3rtzE4xzqarByVkJDAypUrsVgspKWlAWA0Vi5U9/cxN6NGjWLs2LFVP6sNvV5Pr1696hH1iVmtVjIzM+nWrRvBwcFeL/9Uvv7oO1qHh1Jqrxxg3Ld/b84868wGjcEf/FnnLZXUuX9IvTc8qfOGd2yd7927t9Zl+CXB6dq1a7UWm5KSkuO6owAWLVpEeno6cXFxGI1G4uLiSE5OJjU1tSrJMRqNVS07taXRaAgJCan7CzmN4OBgn5Z/IjtTdxOmD6KozIJBp+ec+IENHoM/+aPOWzqpc/+Qem94UucN72id12WijF+micfHx1frfsrOzq4af3M08bFYLMycOZPY2FjMZnNVkhMdHc2wYcOqzrVYLHVKbpqjstJyDuw5iNYTQImtlOCAIPqeLevfCCGEaHn80oITHR3NuHHjSE5Oxmw2M2PGjKqfTZw4kRUrVmA0Ghk2bBjJycmYTKaqGVexsbEkJydXteQcnVklYMf2XSilMOgMFFtLaRfWRnYQF0II0SL5bQzOyWZBrV27tur7kw0ePnquN2ZSNSdpW3dgCAjArZy4lYfOHTvSul0rf4clhBBCNDhZybgZSdu6g4jgEModlVPChwwd7OeIhBBCCP+QBKeZUEqRtmUHegIosZURHBAkO4gLIYRosSTBaSZyTLmUFFsI0QdRZDUTog+WHcSFEEK0WJLgNBOpWysX8gvS67HYK4gINdK1V1c/RyWEEEL4hyQ4zUTa1h2EGAJxuh0AxJ3ZH51O/nuFEEK0THIHbCa2b0olOMBAia0UnUbLeRec4++QhBBCCL+RBKcZsNsc7Nm5/6/xNxaC9cHEDurn77CEEEIIv5EEpxnYlb4Ht9tDeGAwBeVmQvXB9D7T+3tsCSGEEE2FJDjNQNrWHWg1GoL1OuxuJzFdowkJk/1ShBBCtFyS4DQD237bTog+EMtfO4ifN0zG3wghhGjZJMFpBv7clFo5/qbCgl6rZ/CwQf4OSQghhPArSXCauIK8QopLLESFhJJXXkKIIZh+soO4EEKIFk4SnCYu7a8F/lqHhFBsLaWVMZJ2ndv6OSohhBDCvyTBaeI2b9iCXqvD7nLiUYozz4pFo9H4OywhhBDCryTBaeL+WL+ZUEMQRdZSAIaPjPdzREIIIYT/SYLThLndbg5m5RAVEsaRsmKCA4I4c0icv8MSQggh/E4SnCZs/+5MXG437cLDKSg3ExYYQo9+3f0dlhBCCOF3kuA0Yb/+8BsAoXo9ZQ4r3bp2Ra8P8HNUQgghhP9JgtOEbfx+I8EBgRSVlwEw9KJz/RyREEII0ThIgtOE7dmdSavQUI6UF6PTaIkfcb6/QxJCCCEaBUlwmiiLuRRzWTntIowcKS0hWB9M/4F9/R2WEEII0ShIgtNEbViTAkCb4FAKrRbaRkZhjDL6OSohhBCicZAEp4la9+06dBotLrcHp9tF3IBYf4ckhBBCNBqS4DRRO9P3EBkaymFLMQAXJ1zo54iEEEKIxkMSnCbI7XZzpLCY9kYjOZYiDDo95114jr/DEkIIIRoNSXCaoM0/b8HlqVzgL7+8hPDAUDp16+jvsIQQQohGQxKcJuiHL78HIEwfjNleTkx0F7Ra+a8UQgghjpK7YhOUumUHoYGBFFgsKKU4b/gQf4ckhBBCNCqS4DQxbpebnCMFtI+I4JClEA0w+oqR/g5LCCGEaFQkwWli9mzdRbnDRodII0dKiysX+BvU399hCSGEEI2KJDhNzA9f/ABAVGAIRVYLbSOiCAwy+DkqIYQQonGRBKeJ2fLrn+i0WtxORYXTTr/+vf0dkhBCCNHoSILThDjtTrJz82hrDOdQSREAI8Ze7N+ghBBCiEZIEpwmZF/qPkrtVjq1iiTHUoROo2Pk5SP8HZYQQgjR6EiC04T8tjoFp9tFm+Aw8svNGINDadO+tb/DEkIIIRodSXCakE2/bAHAgJ4SWyldO8rqxUIIIcSJSILTRNjKbWSZcgkLCsRcXoHL4+accwf6OywhhBCiUQrw14WTk5MBMJvNREdHEx8ff9wxSUlJREREYDKZiI+PJzY2tsbnNjd7tu2mzGGjc7soss2FAIybPNbPUQkhhBCNk19acEwmEykpKSQkJJCYmMiSJUuOOyY9PZ0NGzaQkJDA9OnTWbBgQY3PbY7SN/xJhdNGO6ORI2XFBOoMnD1UWnCEEEKIE/FLC05KSgrh4eFVj8PDw0lJSanWEpOSkkJ0dHS189LT00lLSzvtuTWllKKioqIOr+DUrFZrta/e8Pu6zXiUIlQTSKG1lDbGSOx2m9fKb+p8Uefi1KTO/UPqveFJnTe8Y+tcKYVGo6lVGX5JcLKysoiMjKx6HBkZicViqXZMdHQ0qampVY9NJhMmk6lG59aU0+kkIyOjTufWRGZmplfKOTr+RqvRoHFpKbNXMKBPb5/G3lR5q85FzUmd+4fUe8OTOm94f69zg6F2q/b7bQzOscxmc7XHCQkJrFy5EovFQlpaGgBGo7FG59aUXq+nV69edTr3VKxWK5mZmXTr1o3g4OB6l7d93Z+V+0+1iuBwaQkKxSVjLqBfv35eiLZ58Hadi9OTOvcPqfeGJ3Xe8I6t871799a6DL8kOF27dq3W6lJSUnJcdxTAokWLSE9PJy4uDqPRSFxcHCaTqUbn1oRGoyEkJKRO59ZEcHCwV8rft3U3VreDbq06YcrNR4OGiTdN9GnsTZW36lzUnNS5f0i9Nzyp84Z3tM5r2z0FfhpkHB8fX637KTs7u2oMzdHkxWKxMHPmTGJjYzGbzVVJzqnOba7Sfk2jwmEnwhBMQbmZ8KAQWnVo4++whBBCiEbLLy040dHRjBs3juTkZMxmMzNmzKj62cSJE1mxYgVGo5Fhw4aRnJyMyWRi3rx5pz23OSrJL+GgKReAQI+eYlspPTp28XNUQgghROPmtzE4CQkJJ3x+7dq1Vd8nJibW6tzmaNfmnZQ7bYQEGbDaHdhdDgaeHevvsIQQQohGTVYybuQyfkvHoZx0aduaQ5bKBf4SrrzUz1EJIYQQjZskOI2YUoqdmzIotVlpHRbO4dISArQ6ho4d7u/QhBBCiEZNEpxGrOhwIUfyCnG4XISip7DCTOuwCPS1XAtACCGEaGkkwWnEDu07RLmjcrXiALeOUns5vWK6+jkqIYQQovGTBKcRy9mbjdVlp12UkYLyUtzKQ/ywIf4OSwghhGj0JMFpxHL2mLC67XRsFUVOaREAl00e5+eohBBCiMavXgnOm2++yX333QfAxo0bKSsr80ZM4i+H9h+i1GolwhBMfnkJoYYgovv39HdYQgghRKNX5wRnwYIFVSsLAwwdOpSUlBSvBdbSKaU4mJWDAvQuHcXWMjq2aoNWJ41uQgghxOnU+W45YMAAJk+eXOd9oMSplZWUYS6vAMDl9lDhtDKgX28/RyWEEEI0DXVOcLKzs4977u97RIn6OZyZi83lwBgSzJHSEgAuGX2Bf4MSQgghmog6b9XQv39/Jk6cSFRUFCkpKaSkpDB79mxvxtaiHdqdhc3lICo8lCNlxWg1GoYnXOjvsIQQQogmoc4tOEOHDmXhwoX069cPpRRPPfUUQ4cO9WZsLVrO3iwcbifBOj0FFRaiQsKJ7NTO32EJIYQQTUKdW3Cuvvpqbr/9dmm18ZFD+3OwOh3oCaDUXs6Z3Xug0Wr8HZYQQgjRJNS5BScxMZHRo0dXe27jxo31DkhUyso8BIDL7cbhdnLukLP8HJEQQgjRdNS5BUej0fDkk0/StWtXoqOjMZvNJCcnSzeVFzjsDvKLzACYbeUAXDLmIn+GJIQQQjQpdU5wFi9ezNChQykuLqa4uBiAkpISb8XVoh3JOoLV5SBIr6ewohSDTk/fc8/0d1hCCCFEk1HnBGfevHnHtdZIF5V35OzKxOZyEBkawoH8HDpERBHaJtLfYQkhhBBNRp0TnKFDh1JWVsaqVasAGDt2rHRPecmh3Vk43C4idEGUO60M7d4fjUYGGAshhBA1VecEx2QyMWvWrKqVjJcsWVI1bVzUT+6ByhlUbrcHj/Iw5Nyz/R2SEEKIJkgphcvlwu12+zuUGtHr9eh0Oq+UVecEZ82aNaxYsaLacy+88IIkOF5wcH8OHuXB4XYCMHDoID9HJIQQoqlxOBzk5uZSUVHh71BqTKPR0KVLF7Ta+u+7WOcEp0uXLsc9FxcXV69gBHg8HnLzCgBwuFwA9DpbkkYhhBA15/F4OHDgADqdjk6dOmEwGBr9UAelFPn5+WRnZ58wx6itenVRHetE+1OJ2ik6XEi53Y5ep8PucmLQBRDRobW/wxJCCNGEOBwOPB4P0dHRhISE+DucGmvbti2ZmZk4nc56l1XnBCc+Pp5bbrmF2NhYANmLykuydx7A5nLQyhhGXkkRIYFBjT7rFkII0Th5o6unIXnzflfnV96/f3/++c9/opSSvai8KGdXFjaXk1ZhodicDiKNRn+HJIQQogVISUlh7ty5zJ07l+Tk5FMem56ezrRp0xg1atQpj5s7dy5DhgwhJSXFm6HWSJ1bcEpLS1mzZg133HEHYWFhbNy4kbKyMsLCwrwZX4uTs/8QdreDMH0QdreDDh1kg00hhBC+N23aNDZt2kRaWtppj42NjWX69OnMnTv3lMfNmzevRuX5Qp1bcFatWlW1gjFUrovjjwytuck+kIPT7SZAaXG6nUR3q/9AKyGEEOJU0tPTiY6Oxmg0Eh8fT3x8/GnPiYiIaIDI6q7OLTiRkZFMnjzZm7EIIDs3HwCPW+FWHs6I6+3niIQQQrQExmY2JKLOCc727duJj4+v1iWVmpp63A7joubKS0opKatAo9Fg/WsEeZ8BffwclRBCiOYsPT2dpKQkTCYTS5YsITo6moSEBICqx1A5e3r69OmnLW/JkiUYjUa/t/DUOcFJTExkwoQJdO3alfDwcHbs2ME///lPb8bW4pgy9mNzOWgdEUapzQpAt+7Rfo5KCCFEcxYbG0tiYiIpKSnVEpiZM2cyZcqUqu4qk8nEtGnTWLp06UnLmj9/Pl27diUxMREAi8XCrFmzfPsCTqLOY3Cio6NZsWIFY8aMYcCAAbz99tsyi6qeDu06iM3loF1UBKWOygSnfcf2fo5KCCFES5Oens7GjRurjcWJjo7GbDafdLytxWLhzTffrEpuoLLb6+hyMg2tzgnOggULSE5OZuzYsWzYsIEFCxawZs0ab8bW4hw+kIPd7SQiOIQKh41AvYGgoEB/hyWEEKKFSUtLq+qa+rsuXbqwYcOGE56TkpLSqMbx1DnBGTBgAJMmTeKTTz4hNjaWl19+mZKSEi+G1vIcOpCL3eUkRKOnwmnHGB7u75CEEEK0QBaLpU7n+Xvczd/VOcE5mqWtXLmScePGAY3rhTVFWdmHAQjSBGBz2Wnbvo2fIxJCCNESxcfHn3RLpgEDBpzwnNjY2BOe4y91TnBMJhMbN27EZDLRr18/TCZTnTM+AQ6rnfziyvrTE4DD7aJjpw5+jkoIIURLFBsbe9z6dunp6QBVM6yOFR0dTWJiIklJSVXPWSwW0tPT/ZIf1DnBGTt2LOnp6Xz22WeUlpaSlJQkCU495O46gNXpwBgajMPlrlzkL0YW+RNCCOFb6enpvPHGG5hMJubPn1+VyCxatIgNGzaQlJREUlISK1euZMWKFSc856h58+ZhsVhITk4mJSWFtLQ0YmNjWbx4cYMvBlznaeLh4eHcdtttVY9lo836yd6Vic3loH37SMrsVtzKTY8zuvk7LCGEEM1cbGwsixYtOuHP5syZU+tzjl0r52hS1NC8ss3offfd541iWrTcfYewu520NRoptlYASIIjhBBC1FGdW3D+ri6Dio7uVGo2m4mOjj7hvhfH7mZ6tN9v5syZ3H777UDlIOeTZZhNSe7Bw9icDsL1gRyyFQLQqUtHP0clhBBCNE1eacGpLZPJREpKCgkJCSQmJrJkyZLjjrFYLJhMJhISEkhISKjWd5ednc3UqVNZsGBBVaLT1GVlHUYBIQRULfInO4kLIYQQdeOVBKe208NTUlII/9saL+Hh4ccNPjIajSQlJVUNdvr78TNmzGDTpk0sXbq0US0qVFduh5PcghIAgrT6ykX+DAZCQkP8G5gQQgjRRHmli+rtt9+u1fFZWVlERkZWPY6MjDzhDKzZs2czceJEYmNjeeedd6qeT01NBSq7t4Bqy0LXhlKKioqKOp17KlartdrX08nfm0WZzUaQQU8AWqxOOxERRp/E1lzVts5F/Umd+4fUe8NrinVut9vxeDy43W7cbre/w6kxt9uNx+PBZrMB/6tzpRQajaZWZXklwTlqzZo1dd5N/Giy8nepqamsWLGCBQsWMHXq1KqR2H8fczNq1CjGjh1bp5Ycp9NJRkZGneKticzMzBodd/iPXZV7ULWKwOX2/DXYuI1PY2uualrnwnukzv1D6r3hNbU6DwgIwG63+zuMWrHb7bhcLnJycoDqdW4wGGpVltcSnLKyMlJTU2uU4HTt2rVai01JSclxe14kJyczbNgwYmNjWbp0KXPnziUlJQWLxUJqampVkmM0GjGZTHXazEuv19OrV69an3c6VquVzMxMunXrRnBw8GmPN/2Qis3loEdUOyqcTpxuJ926d6Vfv35ej625qm2di/qTOvcPqfeG1xTr3G63k5OTQ2BgIEFBQf4Op1YCAgJo164dOTk5VXW+d+/e2pdT0wMnTpx4yhaFo81HDz744GnLio+Pr7YwUHZ2dtUsKovFgtForJpd9fdzIiIiiIiIqNZaY7FY6rxTqUajISTEd+NcgoODa1R+fnY+dreTyMBgKiqcOD1OuveM8WlszVVN61x4j9S5f0i9N7ymVOdarRatVotOp0On0/k7nBrT6XRotdqqpOxonde2ewpqkeA8/fTTAPTv3/+kxyxYsKBGZUVHRzNu3DiSk5Mxm83MmDGj6mcTJ05kxYoVVbOr0tLSgMqBzEcTmeTkZJKTk0lNTWXp0qU1fQmNlungYdweD2E6A/n2MlweNz3O6O7vsIQQQgivqskSMd5S4wSnf//+rFmz5pQJzrBhw2p84ZPtZbF27dqq749dDfHYc09WRlPidjg4lFcMQKjOwO6/FvmLjunsz7CEEEI0M0oplI8GHGt0utO2shxdImbevHkATJs2zf8JTmlpKVOnTuXdd9895XFDhw71SlAtiSU3j5KycnQ6LUE6PRZ75Yjxjp3a+zkyIYQQzYVSirxfN+IoKfZJ+YaoKNqdN/SUSc7JlojxVZJTo3Vw0tLSWLhwIWFhYVXPLV++/Ljj1qxZ473IWohDOw9gdTloExmOUoryo4v8yU7iQgghvKn2w1i8qqZLxHhLjVpw4uLiePzxxznzzDOrBvgmJycfF1hKSkqdp4m3VDl7D2FzOege2Ra3R1HhtGEwGAgLC/V3aEIIIZoJjUZDu/OG+rWL6kROtESMt9QowQkPD+fpp58mJSWlat8ppRRKqWrHFRf7pumrOTuSdRi720lUSChutwer00GrqCh/hyWEEKKZ0Wg0aAK8uvxdrdRkiRhvqvErDQ8PZ8yYMVWP4+Pjjxtw7MvBQs3Voaw8nG4XxgADDrcbp9tJpw6d/B2WEEII4VWnWiLGF+qcyp1oNtWpZliJ47ntdrIPFwAQpjNQbq1cA6dzZ9lFXAghRPNyqiVifKHGs6jmz59PREQE48aNkxV2vaSioJi8klIAQgMCyXdacbhdxPTwXZOdEEII4S8NubxLjcfgHJ23/sknn/Dxxx8TExNDYmJitZlVonYO7zmI1WEnMiyEAJ2Ococdl8dFTI+u/g5NCCGEaNJq3UU1efJkJk+eTGlpKcuWLcNkMjFs2DCZPVUHOftMlZtsto1AKUVxeTkAHWWKuBBCCFEvdR6DEx4ezm233QbAjh07WLBgARqNhvj4eFnwr4YOZx7G5nbSOiwMpRRl9srt4WWRPyGEEKJ+vDJfrH///lUDjFevXs3cuXOJiYnh1ltv9UbxzVauKQ+7y0mEPhA0UFa1yJ8kOEIIIUR9eH1C/JgxYxgzZgylpaXeLrpZcVltZOcWAhAWEAhaDVanHYPBgNEYfpqzhRBCCHEqNdqqoaays7Orvv/7fhPiePbiEg4XVS54FG4IxOXxYHM5aN0qqk6rQQohhBDif+rVgpORkUFJSUnV46SkJF5++eV6htQyFJlyKbVaCQk0EBigp8Rhw+l20qWD7CIuhBCi+bFYLCQlJQEwffp0n1+vzgnOrFmzKC0trdZSk5GR4ZWgWoJDe7KwuRy0iaisvwqnG6fHRedoWcVYCCFE85OSkkJJSUm1DTd9qc4JzrBhw5g8eXK151avXl3vgFqKwwdyKzfZDGsNQLndjtPtJKanrIEjhBDC+5RSKJePNtsMOP1mmwkJCZjNZp/uIP53dU5wTrRBVteucnOuCaUUhw8VYHc7iTAEo9frsJRZK1twusg2DUIIIbxLKUXmt2uw5uX7pPzgdm3pNn50oxpDWucEx2QykZSUxIABA4DKylu1ahWfffaZ14JrrlwVVrJzC/AohdEQSECAFnPFX4v8dZQp4kIIIUR91TnBWbZsGfHx8Silqp77+/fi5OwlJeQWmAEwBgWD7n9r4HTsLKsYCyGE8C6NRkO38aP92kXV0Oqc4MyZM+e4FYt9ue15c1KWV0BRaTn6AB3BAQY0Gih32AHZpkEIIYRvaDQaNHqvL3/XaNX5lZ5oOwaj0VivYFqK3D3Z2JwOWoWFodFo8HgUVqcNvV5PRKTUoRBCiOYnJSWFDRs2UFpaSnR0tM93Fq9xgrNmzRri4+Ordg9fvnx5tZ9bLBZSUlJ46623vBthM3Q4Mweby0FM61YAWD0Kh9tJmzatGl0TnxBCCOEN8fHxDdrTU+OVjF9//XVSU1OrHn/88ceYzeaqf0opiouLfRJkc6KU4ogpD5vbQVRQCHpDABabA6fHRQcZYCyEEEJ4RY1bcFasWFHt8dNPP121weZRMgbn9Jzl5eTkleD2eIgMCiYwWI+lxIzD7aRLV1nFWAghhPCGOu9FdWxys3Hjxmp7UYkTsxeXcCivsqXLGBiEQa/FUlaBy+MiOkYSHCGEEMIb6jWces2aNZhMJqCy6yUtLY3Ro0d7JbDmylpYQn5JKVqNhlBDEPoADaVlVpxul8ygEkIIIbykzgnOggULsFgsmM1moqOjsVgsJCYmejO2Zqng4CHKHXYiQoLRabVotRrKbFYUStbAEUIIIbykzglO165dmTx5MiaTCY1GQ5cuXdi4caM3Y2uWcg/kYnM6aBdZucmmRynKnJWL/MkgYyGEEMI76jwGJzo6mkOHDhEdHS2bbNaQ8njIy87H5nbSOiSEAEMAbo32b4v8SYIjhBBCeEOdW3DMZjOjRo1i06ZNFBcXc+uttxIeHn7CBQBFJWdZOYfzSnC6XUQGhxAcFozVDTaXg4CAAFq1jvJ3iEIIIYTPJCcnYzabSU9PJyEhwaezr+uc4CQkJFStQjh79mw2btxIXFyc1wJrjuzFJWTnlQAQERxMcKiBnJIynB4nbdq2lkX+hBBC+IxSCo/T5ZOytfqA097D0tPTAUhMTMRisTBy5Eg2bdrkk3igHgnO1Vdfze233141a0pabk7PVlzCkSILAMbAYPQ6KLFU4HQ76dKpi5+jE0II0VwppUh77wtKsw/7pPzwLh2Iu+mqUyY5ZrOZlJQUEhISMBqNREREkJ6eTmxsrE9iqnOCk5iYeNyU8I0bN0qicwrm3HwsFRWEBgYSoNWhVW5KSstxelxEyyJ/QgghmrFjt2owm80+S26gHgmORqPhySefpGvXrkRHR1NSUsLq1aslwTmFw/sPYXU5aBUSAkCgQUdpaTlu5aZTl45+jk4IIURzpdFoiLvpKr92Uf3d3Llzeeqpp3wSy1F1TnAWL17M0KFDKS4urtqDqqSkxFtxNTvK4yHvUD42p4PubaPQ6XWggfIKGw6XQ2ZQCSGE8CmNRoPOoPd3GCQnJxMfH994dhM/1rx5845rrZF1cE7OYSklv7AUu9tJVEgooZFhOF2KMqcNj1J0kARHCCFEM5eSkoLRaCQ+Pp709HSMRiPR0dE+uVadE5y/B1RaWsrGjRuP259K/I+9uATT4cqWrqjgEEKMIbi1HsrtNkDWwBFCCNG8mUwmZs2aVfXYYrGwa9cun12vzgnOxo0bmTRpEgDh4eGMHj2a5cuXVz13OsnJyQBVWz2caC780WOOOtqcVZNzGxt7iZncQjMA4UEhBAbqsLqgwlm5yF+HjrJNgxBCiOYrOjrap9PCj1WrBKe0tJRVq1ah0WjYsGHDcT9PS0urUYJjMplISUlh3rx5AEybNu24JMVisWAymZg+fTpQOSApISGhRuc2RuUFRRRZyggMCCBQqyNAqzCX2XB6nOh0Otq0beXvEIUQQohmo1ZbNRxdqTg1NZWsrCwOHjxY7d9tt91Wo3JSUlIIDw+vVm5KSkq1Y4xGI0lJSVULAx09vibnNkZHMnOxOh1EhoSg0WjQuJwUmctxup20bdsarbbOu2YIIYQQ4hi17qKKjo5m3rx59VrzJisri8jIyKrHkZGRWCyW446bPXs2EydOJDY2lnfeeadW59aEUoqKioo6nXsqVqu12lfldpOXnYfN5aBDZCs0Oi0BGkVxSSlOt4uuHTv5JI6W5Ng6F74nde4fUu8NrynWud1ux+Px4Ha7cbvd/g6nxtxuNx6PB5utcnxq1X1UqVqv9l/nMTjeXu/GbDYf91xqaiorVqxgwYIFTJ06lRUrVtT43JpwOp1kZGTU6dyayMzMBEBjtVFUXI7N5aB1aCiG8CA0Gg1FRWZcykWYMcSncbQkR+tcNBypc/+Qem94Ta3OAwICsNvt/g6jVux2Oy6Xi5ycHKB6nRsMhlqVVecEpz66du1ardWlpKTkuGliycnJDBs2jNjYWJYuXcrcuXNJSUmp0bk1pdfr6dWrV91exClYrVYyMzPp1q0bwcHBlB00sepIMR6liAoLI7JtFEo5qKiw4VJuevc5g379+nk9jpbk2DoXvid17h9S7w2vKda53W4nJyeHwMBAgoKC/B1OrQQEBNCuXTtycnKq6nzv3r21L8cHsZ1WfHw88+fPr3qcnZ1dNVDYYrFgNBqrZkj9/ZyIiAiio6NPem5taTQaQv5aVdgXgoODCQkJoazCSk5BZVIWERRCaHgwyqWwOZw4XA6iu3b2aRwtydE6Fw1H6tw/pN4bXlOqc61Wi1arRafTodPp/B1Ojel0OrRabVVSdrTO67IZtV8SnOjoaMaNG1e1bfqMGTOqfjZx4kRWrFhBYmIiS5YsIS0tDYCIiIiqPStOdm5jZSsqIb/Ygk6jIUgbgMGgw4WBCqcdt8dDx04yRVwIIUTzl5ycTHR0dNW9PTEx0WfX8kuCA5x0iea1a9dWfX90inhNz22sig4docxmJSI4BK1GQ4DGg10TQLmjchCVrGIshBCiubNYLCxevJgVK1YQHR3NkCFDmmeC01J4XC7ysvMrZ1BFhIMGcNixWMHucgCyirEQQgjfU0rhdjh9UrbOoD9tN5LRaKyaLGQymXy+hp0kOD5mLzFTXFKBzeWkrTGcsDaRuK02ioqdOD0utFotbdu18XeYQgghmjGlFCkLP6b4QI5Pyo/q3pn4WVNqNFYmKSmJDRs2sHDhQp/EcpSsLudj9hIzufkWXB43rcONGNtGAFBUbMHhdtK2XZsmNQBMCCFEU1X7gbq+kJiYyJQpU1iwYIFPryMtOD5mLzaTnV8CQHhQECERoWC2UlxkweVx0a1LjH8DFEII0expNBriZ03xaxcV/G+mdHx8PLNmzSIhIcFnXVWS4PiYvaSEw0WVCxGGavQEhQSiKgIwF5fi0cgMKiGEEA1Do9EQEFi7xfK8KSkpiaysLObMmQNUzo6OiIjw2fUkwfGx0iMFlJSWEx4UhE6rxaDX4gkLpdxqxaXcMoNKCCFEizB27FhSUlJISUlhw4YNJCYmVi3/4guS4PiQx+kiP6cQm8tBVGjl4lA65cKpN2BzurA57DKDSgghRItgNBqrlnnx9QwqkEHGPuW0WP6aQeWgXYSR4MgwXOUVuDQ6rC4HLreLDh0lwRFCCCG8TRIcH3KYLeQVleJwu2hjDCeyYxvsJaVYHR4q/lrkT1pwhBBCCO+TBMeHnGYL2Xl/7UEVHEp4uwiUx0NhkQWnxwVABxlkLIQQQnidJDg+5DBbyPlriniIJoAQYygAhQUlON1OtFot7drLIn9CCCGEt0mC40P2YjOFZgvBej0GrY6gYD3wvwSnTdvW6PV6P0cphBBCND+S4PiK201JfgkVDjuRIZUzqPQBGgzGMIoLzZVr4HSW7ikhhBDCFyTB8RGtzU5RiRWby0HbCCOGkEA8NhuBkeFYzKV4NIqOMoNKCCGE8AlJcHxEY7NTWFyO3eWgXWQEEZ3aYi8pRRMYhM3pxKVcssifEEKIFik5OZmUlBSfXkMW+vMRrc1Odr4ZBUSGhBLZuQ32kkIMxggcLhdWuyzyJ4QQouEopXDZfbMXVUBgzfaigsr9qBYvXsyMGTN8EktVTD4tvQXT2Oxk5xUDlXtQGdtGUZGfg3J5sDodOJwOmSIuhBCiQSil+OafS8nbY/JJ+e17RzN+7rQaJTmrVq1i7NixPonj76SLyke0Njv5RWYCtFoCNVpCwoMAKCkpx+6uzKA7SYIjhBCigdSwgcWn0tPTG2SbBpAWHJ9w2+3YymyUWa1EhYai0WgI/GuKeF5eMc6/EhwZgyOEEKIhaDQaxs+d5vcuKpPJVLUfla9JguMDTnPlHlRWl4OYVq3R6QPQejwEBAWSvycfx18JTvsO7fwcqRBCiJZCo9GgDzL47fpLliwhOjqa5ORkUlNTMZlMREdH+2xHcUlwfMBhtlBYXI7N5aR9VCQRHVtjt5QSGGmkMG8XbuWmTdvWGAyyyJ8QQoiWYfr06VXfp6amMmDAAJ8lNyAJjk84zRay8y14lIeosDAiO7fFVmwmKMpISbEFdLLJphBCiJYpJSWFjRs3YjKZiI2NJTo62ifXkQTHB5yWUky5RQCEavVEdmqD7VAWwe3aUF5uxaNRMoNKCCFEixQfH8+KFSt8fh2ZReUD4Wf0JK/YjFajIRgdxo6tcFjKcGu0ONwunB6nrGIshBBC+JAkOD5gaN8Oc1kFxuBgtBoNIWHBADjcYHe5qLDbZAaVEEII4UOS4PhAwaECbC4HbYzhlaPW9ZXVXFpmw+5yYbPZ6CQbbQohhBA+IwmODxzJzMXmctAuKoLw9lE4yyrQaLUcyS3A6flrDRzpohJCCCF8RhIcH9i3bQ9Oj5s2RiORnSpnUAVGhnPYdLhqkT+ZRSWEEEL4jiQ4PrA7bQ8AYTrDX5tsWgiKNFKQU4jT4wKgvbTgCCGEED4jCY4PHM7NAyDIo/1rDRwLQVERFBWWgBZatY4iKCjQv0EKIYQQDWzmzJmkp6eTnp7O/PnzfXotWQfHB0LD9ESGBqPX6Yjo2JrCjRbantkHi7kUAqBDe2m9EUII0fJkZ2czdepU4uLiWLhwoU+vJQmOD1S4XbRrFQlAaGQYHqcL9AbsDicejUfG3wghhGhwSimcPtpsU1/DzTZnzJghm202ZcZWYXSINBISFY7bagXA7lbY3S4cbicdZYq4EEKIBqSU4t3Z/yU746BPyu/Svxs3z7/rtElOamoqAGazGYDExESfxAOS4PjEg3dfw6/fbMUQGoatxAJARYUDh8tFudUqqxgLIYRoeDVoYfG1OXPmVH0/atQoxo4di9Fo9Mm1JMHxgbA+fSn/aCNtesVgK7agDw0hLzsPt/JQUVEhqxgLIYRoUBqNhpvn3+XXLqrk5GRSU1Orkhyj0Vi14aYvSILjC3oD9pIKjB1aYy+2EBRlZFdmDk535RTxjrLRphBCiAam0WgwBBn8dv3o6OhqrTUWi8VnyQ3INHGfKMsrBqWI6NgaW0llgpOXnVe1yJ+04AghhGhpYmNjsVgsJCcnM3/+fJYuXerT6/mtBSc5ORmoHGgUHR1NfHz8ccfMnDmTp59++rj+uZkzZ3L77bcDsHLlymp9eo2BJbcQAGPHVuT/bCayexcK8opw4wagQ4d2/gxPCCGE8IujM6gaYiaVXxIck8lESkoK8+bNA2DatGnHJTgmk4nVq1ezceNGoLIpa/bs2UyfPr1B59HXhTm3EF2QnoBAPc5yK4FRRszFFrR6LRGRRkJCQ/wdohBCCNGs+SXBSUlJITw8vOpxeHg4KSkp1ZIck8nEpk2bqlpvkpKSqqaTNeQ8+rqw5BYR1DocZ2k5AAFhoZSVV0AAdGwj3VNCCCGEr/klwcnKyiIyMrLqcWRkJBaLpdoxf092kpKSGDt2bNVjb82jV0pRUVFRp3NPpbzIQnCbcErzKruqysptOFxu3Hho176dT67Z0ln/Wm/o6Ffhe1Ln/iH13vCaYp3b7XY8Hg9utxu32+3vcGrM7Xbj8Xiw2WzA/+pcKVWjhQT/rtHMojqarBzLZDJhsViqjcPx1jx6p9NJRkZG7YM9jbYX9kYXqOdIZhbotGTs2IXD7aLCbiUwSO+Ta4pKmZmZ/g6hxZE69w+p94bX1Oo8ICAAu93u7zBqxW6343K5yMnJAarXucFQuxlgfklwunbtWq3FpqSkhOjo6BMeu2zZMoYNG1b12Jvz6PV6Pb169ar1eadjtVrJzMwkOMCALSoCZQjD5fFgc9jp268P/fr18/o1W7qjdd6tWzeCg4P9HU6LIHXuH1LvDa8p1rndbicnJ4fAwECCgoL8HU6tBAQE0K5dO3JycqrqfO/evbUvxwexnVZ8fHy1XUSzs7OruqSOba1ZvXo1U6ZMqXrszXn0Go2GkBDfDfh1l1kJaRVBlikPj/JQWlpGdEwXn16zpQsODpb6bWBS5/4h9d7wmlKda7VatFotOp0OnU7n73BqTKfTodVqq5Kyo3Ve2+4p8NM6ONHR0YwbN47k5GSSkpKYMWNG1c8mTpxYrXXHaDQSERFR9bih59HXh8NcRmBUBIezDv9tkT8ZZCyEEEL4mt/G4JxsFtTatWurPV6xYsVJz23MM6mUUjgtZQRFGsnPLcClKhf5kwRHCCFES7ZkyZKqYSm+vI83mkHGzY7VgfJ4CIoyUlxYgjagsrGsg2zTIIQQwg+UUjhsDp+UbQgy1Kgbadq0aSxcuBCj0cjEiRMlwWmKlLVy5HpgZDgWcxlavZZwYzhhYaF+jkwIIURLo5RiwR3z2Z+6zyfl9zyzJw++NueUSU56enrVGnjp6ekn7KHxJtmLykdUhQ00GjxaHTaHAwI00j0lhBDCb+owTter0tLSyM7OxmQyATB37lyfXk9acHxEVdjRh4dQVlRaucifwUPHjh39HZYQQogWSKPR8OBrc/zaRWWxWIiIiKia+ZyWlkZ6errPdhSXBMdHlNVOYEQ4xYcLcbhd2J12acERQgjhNxqNhsDgQL9dPzo6utqadxEREXVex64mpIvKR1SFDUNEODn7c1BAaXk5HSTBEUII0ULFx8dXdU9B5U4Fx2607U3SguMjqqKyBSdn+w6UUpSUmOnYURIcIYQQLZPRaCQxMZGkpCQsFguzZ8+u0zZLNSUJjg+4bHZwuQmMDCfvUB5OjwullEwRF0II0aI15Pp10kXlA46SUgAMEeEU5hXi0XgAWeRPCCGEaCiS4PiA3fy/BKek2II+sHIfkI6dpQVHCCGEaAiS4PiAw1wKeh0anZbycitag47Q0BDCw8P8HZoQQgjRIkiC4wN2cxma4CDKikqxu1wQoKFDp/Z12g1VCCGEELUnCY4POEpK0YQEYikwVy7yp/HI+BshhBCiAcksKh8w9uiCrcxMQXYebuXB5rDToaOMvxFCCCEairTg+EC7wbHo2kWRcyAHALPFIi04QgghWryZM2disVga5FqS4PjQkew8lFIUFRXLKsZCCCFaNJPJxOrVqxk5ciRDhgyhT58+LFmyxGfXky4qHyo4XIhLufF4PHSSRf6EEEL4kVIKu9Xuk7IDgwNPO5HGZDKxadOmqtWLk5KSSExM9Ek8IAmOT5UUmgkwVK6BIy04Qggh/EUpxcM3zWXntl0+Kb/fwD488+68UyY5f993KikpibFjx/oklqOki8pHlFKUlpYTEFSZQ3aUFhwhhBB+1FhWKjGZTFgsFp/uQwXSguMzTqsDm92BLlxHUHAQEZG+/Y8UQgghTkaj0fDMu/P82kV11LJlyxg2bJhP4vg7SXB8xGauwOF2gT6Ajh1lkT8hhBD+pdFoCAoJ8ncYrF69milTpvj8OpLg+Eh5URkOtxud0sj4GyGEEOIvRqORiIgIn19HEhwfKcopBKDcZqVbnxg/RyOEEEI0DitWrGiQ68ggYx8pOlwMQInZTIeO0oIjhBBCNCRpwfERc74ZpRSFhYV07CwzqIQQQoiGJC04PmIpKUUboMHlcssUcSGEEKKBSYLjI2WlFeiD9QDSRSWEEEI0MElwfMDtcmO12tBXLfInCY4QQgjRkCTB8YGyIgt2lxtNoA6DQU+r1lH+DkkIIYRoUSTB8QFLfgkOtwulq9yDShb5E0IIIRqWzKLygTxTHh6lcCkXHTrKAGMhhBACIDk5udrjhIQEn11LEhwfyNmfA0BZRQW9+/X0czRCCCFE5SbQNqvNJ2UHBQedtrfCYrFgMpmYPn06AHPnzpUEp6nJO5QHQElJibTgCCGE8DulFNOvmcn2zek+Kf+sc+JYvHzhKZMco9FIUlIS8fHxxMbGEh4e7pNYjpIExwcKjxShAfLzC2UGlRBCiEahMYwHnT17NhMnTiQ2NpZ33nnHp9eSBMcHysut6IP0OB1O2WhTCCGE32k0GhYvX+jXLiqA1NRUVqxYwYIFC5g6dapP96WSBMcHImPaEWI3Q6asgSOEEKJx0Gg0BIcE++36ycnJDBs2jNjYWJYuXcrcuXNJSUkhPj7eJ9eTaeI+UFJYgsZQWbUyBkcIIYQAs9lMRERE1eP4+Phqj73Nby04R6eKmc1moqOjT5jBzZw5k6effhqj0Vjrc/3pipvG8/W3qwjYpKNN21b+DkcIIYTwu8TERJYsWUJaWhoAERERxMbG+ux6fklwTCYTKSkpzJs3D4Bp06Ydl6SYTCZWr17Nxo0bgcrpZbNnzyYhIeG05/rb4AsGsuKrr2jXoR1arTSSCSGEEEDVFPGG4Je7b0pKSrXpYeHh4aSkpFQ7xmQysWnTpqp/8+bNY/r06TU6tzEoLCimQ8d2/g5DCCGEaJH80oKTlZVFZGRk1ePIyEgsFku1Y/7eKpOUlMTYsWNrfG5NKaWoqKio07mnYrVaKSwookuXTj4pXxzParVW+yp8T+rcP6TeG15TrHO73Y7H48HtduN2u/0dTo253W48Hg82W+Vsr6N1rpSq9TT3RjOLymw2n/B5k8mExWI5bhxOTc49HafTSUZGRp3OPZ3CgmJ6ntHdZ+WLE8vMzPR3CC2O1Ll/SL03vKZW5wEBAdjtdn+HUSt2ux2Xy0VOTuWOAH+vc4PBUKuy/JLgdO3atVqrS0lJCdHR0Sc8dtmyZQwbNqxO556OXq+nV69edTr3VCoqKigqKOKMPr3o16+f18sXx7NarWRmZtKtWzeCg/03DbIlkTr3D6n3htcU69xut5OTk0NgYCBBQUH+DqdWAgICaNeuHTk5OVV1vnfv3tqX44PYTis+Pp758+dXPc7Ozq7qkjq2tWb16tVMmTKlRufWlkajISQkpE7nnkpxUQkOh5Po6M4+KV+cXHBwsNR5A5M69w+p94bXlOpcq9Wi1WrR6XTodDp/h1NjOp0OrVZblZQdrfO6rMLslwQnOjqacePGkZycjNlsZsaMGVU/mzhxIitWrKhKcoxGY7V58qc6t7E4nFu5F1V7GWQshBBC+IXfxuCcbAfRtWvXVnt8omWcfbn7qDccOXwEQGZRCSGEEH+TlJREREQEJpOpatNNX5FFWnzgcG4eWq2WNm1b+zsUIYQQolFIT09nw4YNJCQkMH36dBYsWODT6zWaWVTNyZHcPFq1jmxS/Z5CCCGaN6UU1grfTHUPDgk+7TiZlJSU4yYFpaen+6wVRxIcHzhyOI/WbWSLBiGEEI2DUoprxt/I5k3bfFL+OecOZPk3750yyYmOjiY1NbXqsclkwmQy+SzBkS4qHzicm0erNlH+DkMIIYSoUpeZSN50dPysxWKp2oHgVGvc1Ze04PhAh07tad020t9hCCGEEEBlcrP8m/f82kUFsGjRItLT04mLi8NoNBIXF+eTeEASHJ/494K5soKxEEKIRkWj0RAS6r91fCwWC48//jiLFi3CZDJVJTm+IgmOEEIIIXzOaDQybNgwkpOTMZlMzJs3z6fXkwRHCCGEEA0iMTGxwa4lg4yFEEII0exIgiOEEEKIZkcSHCGEEEI0O5LgCCGEEM2Ux+Pxdwi1opTyWlkyyFgIIYRoZgwGA1qtlpycHNq2bYvBYPD7Qn+no5QiPz8fjUaDXq+vd3mS4AghhBDNjFarpXv37uTm5pKTk+PvcGpMo9HQpUsXtNr6dzBJgiOEEEI0QwaDga5du+JyuXC73f4Op0b0ej06nY6Kiop6lyUJjhBCCNFMHe3u8UaXT1Mjg4yFEEII0exIgiOEEEKIZkejvDknqwnZsmULSikMBoPXy1ZK4XQ60ev1jX7UenMhdd7wpM79Q+q94UmdN7xj69zhcKDRaBg0aFCNy2ixY3B8+Uuq0Wh8kjiJk5M6b3hS5/4h9d7wpM4b3rF1rtFoan3fbrEtOEIIIYRovmQMjhBCCCGaHUlwhBBCCNHsSIIjhBBCiGZHEhwhhBBCNDuS4AghhBCi2ZEERwghhBDNjiQ4QgghhGh2JMERQgghRLMjCY4QQgghmh1JcIQQQgjR7EiCI4QQQohmRxIcIYQQQjQ7LXY38a1bt6KUQq/X+zsUIYQQQpyC0+lEo9EwcODAGp/TYltwlFL4aiN1pRQOh8Nn5YvjSZ03PKlz/5B6b3hS5w3v2Dqvyz27xbbgHG25GTBggNfLrqioICMjg169ehESEuL18sXxpM4bntS5f0i9Nzyp84Z3bJ2npqbWuowW24IjhBBCiOZLEhwhhBBCNDuS4AghhBCi2ZEERwghhBDNjiQ4QgghhGh2JMERQgghRLMjCY4QQgghmh1JcIQQQgjR7EiCI4QQQohmRxIcIYQQQjQ7kuAIIYQQotmRBEfUyv59mdw7Yw5rV//k71CEEEKIk2qxm22K2qkor+CVlxaz5NV3cDpdFBcVM2rMxfUq0+1yk7Epg/7n9kerk1xbCCGE90iCI05JKcXqb9cy7/HnKCgo4q77phMcHMwLzyyivKyC0LC676z7yUtJrPv8Z2545EaGXT7ci1ELIYRo6eRjszipA/sOcnPiHdwx7X769DuD79Z/wf0P3U3C+FE4nS42rP+1zmX/8tUvrPv8Z9p2bsu3b32D0+70YuRCCCFaOklwxHGsFVYW/HsRYy68iv37Mlny/n94+6NXieneFYBuPbrSo2c3fly7vk7l70/bT9ILH3PBhAu558V7MRea+XnFT158BUIIIVo6SXBEFaUUq1d+z6hhV7D41Xe4Y+atrP3lSy5NGIFGo6l27MWjLuCntetQStXqGuYCM4sffZ2YfjFMvi+RdtHtib9sGMnvrcJabvXmyxFCCNGCSYIjAMjcn8W0a+/i9ptncUafXqxZ9wUP/OMegoKDTnj8iFEXkJtzhF0Ze2p8DafDyeJHXwc0TP/X7QToK4eAjb9lPA6rg7Uff+eNlyKEEEJIgtPSWSusvPjsK4y+4Er27N7HG+8uZOnHr9KtR9dTnnfu0HMIDgmuVTfVJy8uI2tXFrc/cwcRrSOqno9sG8XFk0bw/bK1WIosdX4tQgghxFGS4LRQSinWrPqBUcOv5PX/vMXt99zC2l++ZMy4kcd1R51IYKCBYReeX+MEZ/0X6/jlq1+4ds51dI/tftzPx9yYgFarJfm9VbV+LUIIIcSxJMFpIZRSWCtsABw8kMUt193FjJtm0rNXd1av+4IHH7mX4JDgWpU5YtQFbP59K2bzqVtd9m3fS9KLy7j4mouJv2zYCY8JNYZy6XWjWf/5OgpzC2sVhxBCCHEsSXBaiLeef5c7LpvJ808v5NILrmL3zr28/s7LvJv0Ot17xtSpzItHXoDb7eaXnzae9JiS/GIWP/oGPeJ6cM3Myacsb8TkSwgJD+Hbt76uUzxCCCHEUZLgtABF+cV8+t4XbNyxiTdeeZvpd97Md798ScL4UTXqjjqZzl060qffGSftpnLanbzxyOvoAnTc9vQMdAG6U5YXFBLE2Knj+DX5V3IP5NQ5LiGEEEISnBbgo9c+YV9hJqGGQM7s3I+775tBSGjdVyD+u4tHXcBP36/H4/FUe14pxbIXPiZ7bza3P3MHxlbGGpU3/MoLaNW+FV8t/tIr8QkhhGiZZKuGZs5cbGHJm++i1Wh4cPIkPvvud1YsXsEN91/vlfIvGXUhb/znbdJTMxhwVmzV8z+v+ImUbzZw8xNTienX7bjzMvdmsfy9z/l+5TqcjuqrGLucLhxbfmfZ19+i1dYsB1co3G4POp0WDXVvlfK24JAgrrnxKhKnTaj1GKeWInXLDha/tJSg4CCeXvQEgUEGf4cEwMoVa3j7lQ+YdNNVTLj2MgyBjSMubziSk8ebi94jfdtOJt10FZdPSqhatsFfbDY7n33wFUlLP6O8tMIrZUa1ieTmO65l7MTRBJymBbklUkqx7rsU3n31I1q1bcXtD0zljH49/R2W10iC08w9cs+TmK0W7r1qAonz7mb3vhy++mAlV069nPComrWqnMqgIWcRbgznx7XrqxKcPVt3s/zlT7gkcSTnjx1adazb7Sblp9/55J0V/LZ+M1GtIxl/9WiiWkdWK1N5FN8nfU9gcCAXXHVBjeJwOpwcycujfbt26A36er8ub8nOzGHxy++wbOln3DrzRq6aMr5RxedPe3fu5/UFb7NubQrdz4ghx3SYR+7+P5577Z9+r6Pvvv6RebOf54x+PXhp3qt8tGQ50++fytgJo9Dpmu6NsriwhHde/YjP3v+SkLAQ4gb245lHX+SDxUnMuH8ql14+osYfKrzF5XTxzafJvLnwPQrzixg3cTTdep16mYqaStuawVMPzef9N5K4Y/YtjEi4oF7d8s3JppQtvPb8W6Rty2DQeWexb9d+bhg3g9FXXMLtD0ylS0xnf4dYf6qF2r59u9q+fbtPyi4vL1d//PGHKi8v90n5NfV7yh+qW5s4NSY2QR3ZsV8ppdT+zRlqwpmT1cJ7n/fade665QF15ZhrlVJKFR4uVLPHPqhevPsF5XK6lFJKWUpK1QdLPlFXXXCdGhIzQt18xR3q289WK7vNftIyt63bpu4YOkPt+H1HjWJoLHV+ItlZOerJ+59R53a7RF0x7Fr1zaerlcvl8ndY9VbXOs8+eEg9Metf6txul6irLrhOrfr8O+VyudTGn39X8WeMVv+480nldPqvfn5a/Ys6v+coNff+fyu326327T6gHrp9rhoSM0JNHjlV/bDqZ+XxePwWX13qvdRSpt54cam6qP84dXHseLXk5XdVqaVMKaXUrvS96r5pj6ghMSPUtWNuVevWpjTI63O73Wr1l9+riRffqIbEjFCP3TNPZe7L8vp10v/cqe65YY4aEjNC3XjZ7Wrjz7/X+vU15veX2krbukPddd2DVe/Fv63/QymllNPhVJ++/6UaO+QadX7PUerfj7yojuTm+S3OY+u8LvdsSXB8oDH8MVgspWpQnwtUv46D1VdPvl7tD/qFe55VV5+VqPb/nuaVa33y0eeqW9s4lXvosPr3tKfVoxMeUZYii9q7a7965tEX1QV9x6qhvS5Vj898WqVuqVnC4vF41PPTn1XPTPtXjd6MGkOdn87eXfvVnBlPVN4oR01VP6xa59cbZX3Vts7zDuerZx97SZ3fc5QaO+Qatfy9L5TD7qh2zLrvNlQmF/f9S7ndbl+EfUopP1UmWQ/f9X/HJVnp2zLUPTfMVkNiRqibLr9D/bpuk1/+/2pT71arTX2wOEmNOvtKNeyM0erlp19VxYUlJzx226ZUNWPSLDUkZoS67ep71eZft3k7dKVU5d/2Lz9sVNePna6GxIxQ9019WO1K2+OTa/3dHylb1bSr7lZDYkaoOxLvV3/+UfP3v6bw/nI6NX3/sVZY1Xuvf6xGnnWlGt57jFr479dVcdGJf2d8SRKcemjOCY7H41F33zZb9Wg3QN154TR1JH1ftZ8X5RWrq8++Vv3fhAeV1VxW7+sdOZyvYtrEqvuum63uuegutfztFerOax9QQ2JGqIRzrlaLX3pH5R8prHW5u7bsUncMnaE2/7D5tMf6u85rI23rDnX39bOP+wTV1NS0zkuKzWrRv99Qw/skqJFnXqHefe1jZa2wnvT4NV//qM7rPlL96+EFDZpA/JGyVQ3vPUY9cOujxyVef7dpwxY17cq7Km+UU+5X2zenN1iMStWs3p0Op1rx4ddq/HmT1Pk9Rqp/P/yCOpxz+k/jHo9Hpfz0u7px/Aw1JGaEuvfGh1RG6i6vxb7ltz/VbdfMVENiRqjpk2aqrb/75j34ZDwej1r33QZ17Zhb1ZCYEeqBWx9VezL2nfa8pvT+cqy6tiCXmkvV6y+8rS7sN1ZdHHeZenPhe6qstOFevyQ49dCcE5xPPvpcxbSJVRf2Gq2+mvvaCW8Sbz+3VF191hT1/fz3lcdd/5vI8LNGq7O7DFVjBk1QQ2JGqFsm3K2Sv1h7yhtFTSy6f6F6MvGJqu6uk/F3ndfF7xs2q6lX3KmGxIxQd177QI1btxqL09V5eVmFenPRe+riuMvUhf3GqtcWvKUsJaU1KvubT1erITEj1IIn/9MgSc6ff6SpC/uNVffcMFvZrCfvOj3K4/Gon9f8oqaMvkUNiRmhHrz1MbV3536fx6nUqeu9qtvnohsqu33ufUplHciu9TXcbrda++1P6poRN6khMSPUP+58Uh3Yc7DOMe9M3a1m3vQPNSRmhLph3HSV8uNvfm29dLvdatUXa9WEC69X53a7RD0+82llyjx5PTXF95f8I4Xq+SdeVkN7XarGDJ6oPnn38zq9HxfmF6kX/vmKij9jtBo9aIL66M3lNfobqS9JcOqhuSY4e3bvU32jB6vzel2sHhh5hzqcuveEx5mLLWrykBvUY+PuVXvW/Frn6+3esVfNufVx1b/juapbmzj1xKx/qfQ/d9a5vGNl7Tyo7hg6Q234+pdTHtcU34CUqrxR/rT6F5V46TQ1JGaEmj398Qa7UdbXyercbrOrZW9/psYMnqjizxitXvi//6iCvNq34H32wVdqSMwI9cqzi316M8xI3aVGxF2mZkyadcqWpRNxuVxq1effqasuuE6d2+0SNfe+f6nsg4d8FGmlE9W7x+NR67/fqK5LuE0NiRmh7r/lEbUr/cR/+7XhdLrUl0kr1WVDE9V53UeqeXOeV7nZh2t8fua+LPXIXf9UQ2JGqKtH3KjWfP2jX7oeT+bYcSfPPPqiyjucf9xxTen9xVxiUf99bom6oO9YdcmAy9U7//1QVZRX1Lvc3OzD6qmH5qvzuo9Ulw1NVF8s+9anY+UkwamH5pjgWK02NeaiCeq82BFqfP+r1YpH/3vKG8MH/1mmJp49RX1y579V0f6avyk7nS619tufqvrrh/Ucra4Zdr2KaROr/vhtizdeSjVLHl+sHrnyH8phO/mnj6b0BnQiLpdLffvZanXl8L9ulPf/2+c3yvo6ts6dTpf6Kmmlujz+fzfDHFNuva7x0ZvL1ZCYEerNRe95I+Tj7N25X406+0o17cq76tX87rA7qt0on33spRPeKL3h2Hrf/Os2ddvV96ohMSPUjEmz1LZNqV6/pt1mVx+/9akaPWhCVdJamF900uMPHzqinnpovjq/x0g1/vzJPr8Z1tfpxp00hfeXivIKtfSVD9UlAy5XF/Qdq/773BJlLrF4/TqZew+qh+/6PzUkZoS6ZsRN6rtvfJO0SoJTD80xwXnioafVGZ0HqsRhN6qZI2ao3O2nHrhXai5TU86/Wf1z8j/U2v97QznKT//pdcMPv6oJF16vhsSMULdOvEfdmXCPemTCw6qksESd3XuYmv+vhd56OVWOZB1Wdw2/Q639+LuTHtMU3oBqwmF3qOXvfaESzrlaDe11qXru8ZdV/pECf4d1QkfrvKysTK399ic16ZKbvdKdcay3X/lADYkZoT5YnOS1MpWqbF0YM3iiun7sdK/dCKwVVvXuax+rkWdeoYb3SVCL/v2GKik2e6Xso47W+9ZNf1Z1+9w4foZK+an2s4Nqq6y0/Lhux1Lz/7odiwqKq7ozLh14VYN1Z3jLycadNOb3F4fdoZLeWaHGDJ6ohva6VD0/d2GdxjzW1o7tu3za7eiNBEejlFL+nqruD6mpqQAMGDDA62VXVFSQkZFBv379CAnxzorBp5P87VrumHofN900hT/XbOeGccO55tl7T7vmQ9Lrn/LJ4hVcd8EgYs46g8HTrjjhOUdy83lp3n/5YdU6hgwbxL2PzCDl0/X8uW4bcxb/gy69unDfnf9gz679fPvDcq+/vg+f+4CtP23hqU//RXDo8Qvm+aPOfclaYeWTd7/g/deXYbc7SJw6gSsSxxEQ0HiWrrLarPzyUwrfffEzu9P3cv6FQ7hzzq30G9Db69d6bcFbLH3lQx56ahbX3Hhlvcs7ZMrl9kmzCA0P5fVlLx23FlN9lVnK+GDJJ3z81qdodTpumDGZMVdcglZb/zV0jhzO440X32bLxu3E9IiuWt+lIdevKSk2897ry1j+zucEBgdx851TsJbb+Oit5Wi0Wm6YPpkpt1xNaFjT/FssKiiuXC/og68ICw/luumT6NC1Db3O6EVwUONZsHPLb3+y5OV3OZKTx9gJl3LbfTfRObpjg8fw6vNvsn1zOmefO4C7H5rOWefE1bvcY9/T63LPlgSnGSQ4h7JzGXvx1Zw/bAi6fA/achuPL5pDx7NOf6OpKKtgRsI9DDynP30UDJh8KTHDzqr6ucvlJumdFSx56R2CQ4K57/E7GX3FJXz/8Vo+e+VTbntqOoNHngPAl599y6w7/sFvqT/QvkM7r77Gkvxi5k56gtE3jOGy2y4//nU0swTnqFJzGR8sSeLjtz7DZrX5O5wTij27L/c+fDuDzj/r9AfXkVKKl59+jY/f+pQnnp/D5ZPH1rmsI7n5zJg0i4AAHW988jJt2rX2YqTVFeYX8e6rH/HZh18ft2J3fUS1iWT6rJu46trL/bpCb/6RAt5a9D5fJq0kQKdj0s1XcdOd1xIZFeG3mLzp8KEjvLnofb5ZnnzcdjSNxYiEC7j9wWn0OKOb32JQSrHhx994bf5b7Nt1gFWbPq33hwZJcOqhuSQ4LpeLKVdOIzfnMPP++RiLHnuVxEvP59oF96PR1mzFzs/e+oKPXkli1p2TKNudxfAHrsfYqS3bN6fz7GMvsW/XAa656UrufPAWwoxhZGzK4D/3L+TS60Yz4a6JVeUUF5UwqO8FPPfSP5l8/cRTXLFuPnvlU9Z/sY6nlv+L8Kjwaj8rNVtI/30L3bv3ICgoqF7X0WggrH1rtI1oaff83DzSfk31dxjVOBwOSsrNXJZ4OaGhoT6/nlKK5x5/mc8/+oZ5Lz/KmCtH1rqMgrwi7phyX+VGsJ+8TIfO7X0Q6fFyDh5i15adXinL5XYRFKKjd+/e9f5d95aCgiJ0Oh1RXkhstDotYR1aN6oVh/ft3s/GX36ja9cYgoIC61WWzVyG2+HySlwdYzrSd1B/r5TlDR6Ph/3pe+nlhVZcbyQ4jae9W9TJwvmvsXXzdpZ9sZQPn/+IDpHhXHzT+BonNwDjrk3gy/e+YVvWYc5qE8kvr3/KFlsZX32yir4DerP0y1fpf2YfoPIm88G/36Pv4L5ceftV1cqJahXJwHPO5Me1632S4Iy5MYFfvlxP8nurmDRrctXz+Tsz+XPZamzFpRTwh1euFda+FWdeO4ZW3f2/XPmRtH2kfvIdNnOZv0M5TiiwU/8jA64ehSHEtzdbjUbDQ0/Nwma1838PPIMh0MCIhJpt5QFQUmTm3hvnYC23Nlhyo5Ti0B8ZpH/+I85yq9fKtQObVm/zWnmNTete0Zw5ZTShbaP8HQoAHbt0oN9Zvev1odVRVkH6ih/J25zhtbj26f5Ee6SEXpee5/cPZDZLOemffU/un7uJfvouAhtB96QkOE1YyvrfeOWlxTz48D3oPQEc2JPFxBHn0PHM2mXPwSFBXH3LVSx98X1Cb0zg/WVfojQwZ95MJl5/ebW9d7L3ZFN0pIgbH7sJre74Pv8RIy/kjVfexul0otd7dz+hsIgwLr1uNKveWcklk0cSbgxhxxc/kf17OlE9OxN6bi+6n9Gz3p9qXVYHO79ZT8rCj+k2fCB9L7uAAD9sAGkvLSf9sx/I2bqLqN5d6TflUkLDfd9SUlM2m43dm7aTt20/P+9eStzVI+l4tvfH3/ydVqvl8efn4LA7eOzep3hhydMMvfjc055Xai5j5k0PUVxYwuvLXmqQfXYqisykfrKW/IwDdBrUl+4XDUajq3+rhM1mI/NAJt26d2s0LTjeZCsuZccXP/Hzc+/Se2w8PS4+54TvNU2FUoqczTtJX/EDSinOnDIaYxfvdOEf3r6XPWt+JXfbLs68dgxR3Tp5pdzaUEqR/VsaO778GY1Ww6CbLmsUyQ1IgtNkFeQXMuuOfzB0+LncOes2HrnhCdqEhzLq5str1XpzVJ9BvSmxl/LGK+8zfNhgzg2LJD6u73EbC6Zu2E5QSBC9zjrjhOWMGHUBLzz7H/74fStDh53+xlNblySO5KdPf2T5/A/pERyAcrs589oxtB7Qg507d2Ls3M4r3YLD7ruWA+u2suvb9RxO3cuAyZfSPraHF17B6SmlOLRpB+mf/wgaDe4BXXn4tbcofH4+t915M9Pvnkp4eFiDxHIqFRUVhFo6M2DE+ez9NoXNS7+iw5lnEHfNSIIifBdfQICOeS8/ysN3/ZOHbp/LS0uf4Zz4gSc9vrysgllTHyYn+wivffyC1zZyPBnl8ZD5yzZ2fr0efXAgQ6ZPoH2c93ZorqioQG8p9NrveqMT3YE2fWLYvXIDO79eT+6Wypt3hJeSgoZkLbKQuvw78nYcoOPAPsRNvIRAo/c+pERGd6DT2X348+NkNrz8Ed0vHESf8cMJCGyYD2TlBSWkJn1Hwe6DdBnSn/4TRmA4wSQQf2m6aXEL4HF7WPf5z8cNTvR4PMy+93E8Hg8vvfoMu7fvYVfaXoae3ZtOA/vU6hrWCiv/eWYx0ybcTXBYMK1DI7j/qVn0jj+L1GVrKC8oqXZ8akoq/c/rT4D+xLlx/wF9aduuDT+tXV+rOGpKOZzE9u7Cn7+mo2ll5KJHptH1/AFe76/XaLX0uHgwFz08jfAOrdm0eAVb3vsWe1mFV69zrIpCM7+//hnbPlxFePdO/FhxhFmPzCMyMpJhw87n9Vfe5qIhY3nr9fex2x0+jaWmAiPCOOfWKxk09XKK9h/ip2eWkrVxOzUd3ud2e9i49jd++mY9TmfNxiYE6AP49ytPcPa5Z/LgbY/x5x9pJzzOZrXx4K2PcWDvQRa99xxn9PNeonEipYcLSFm4jPTPfqDLkP5c9Og0ryY3JYVmkj/5jtzMw14rszEKCDTQf8IIht9/HR6Ph19eeJ+Mr9fh9uJAbV9SHkXm+q389OxSzIfyOee2qxg89XKvJjdHGTu3Zdj919P/yos5mLKdn599h7yMA16/zt8pj4f9P/7Bz8++Q3lBMefecTVn3zCuUSU3IAlOo7YvdR8fz/+ILT9srvb8W6+/x0/fr2fBf/5F+w7t+Gjhx0SFBjNm6hVoajFV9Oc1G0i8dBqfvLOC22bdxPIf36Vjxw588vpnDEi8FENYMFve/QaPyw2ApcjCwR2ZxA0786RlarVaLh45nB+9nOAoj+LgL9v4+ZmltA/RE9nayP7CMp+2FACEtI746493LPkZB/j530vJ/mNHjW/eNaU8Hvb/tJmfn32H0sOFuAd2Z85rr/HV56u4bfpNGIp15KUeYXD3M+nTqxf/enI+lwy9jM+SvsTtdns1lrrQaDR0GtiHix+dRocBvdi+bA2//vcTyvOLT3qOy+nih69+5t6rHuDZ+1/gpUf+w53jZ7Jy2WocNUjeDIEG5i+eR78Bfbhv2iPs2L6r2s8ddgdzZswlI3UXC995pmocmS94XG52J6ew/vn3cVRYGTpzCgMmX4q+ngNSjyo8UsSbz73D9IS7efeFD1nyf+/y3P0vsnPbbq+U31hFxnTkgtk30HvsMA78uJl1z79H4V6Tv8M6pdLDhaQs+pi0T7+nyzn9ufiRyr8JX9LqtPQYcQ4XPTyV0DaR/P76Z2z9YCUOL477OspyKJ9fXvqIHV/+REz8mVz08FTa9evu9et4gyQ4jVj2nso/5D/X/Vn13J9bU3nuqZeZcfdURoy6gH079rN9cwbnDTiDLuf0q1G5udmHefC2x5gz4wl6nNGNZd+9za333khYeBiTZ0xkfXIKOaYjDLr5MizZeez89hcA0n9NByD2/NhTlj9i1IXs3rmXbFNOXV72ccryitj4ShKpy9fScWAfRj52K1feNZFtP20lc4dvP6lA5c27y5BYLn50Gm36xLDt/ZX8/sYKrEUWr5RfmlvAhpc/ZscXP9LqzJ6sLjIxa86TdO8ZwzPPPMnWVVsZfMFAFn46n/MvHIIt28qg7gOICo/gwXseY/wl1/DDmp+9nnTVhSE0mLOvH8t5d15DRaGZn597l73f/47H/b8ptk6Hk9XL13LX5fex8LH/0rlbJ+Z/9G8WrVhAv7P7sOSZt5kx9l6+fPcbbBWnnhofFBzEC2/9i+69Yph540PsydgHVCZPj949j22/b2fBm09z5uD6r8txMsWZuayf/x57Vv9Kj0vO4cKHbqZ1zy5eKfvIoTxee2oJM8beww9f/szEaVfw+qpFTJhxGfk5Bfzjxsd54rZ5bP89rVH8//uCVqfjjNHnc+E/biIwPISN/0lie9J3OK12f4dWjcflZvfqjax//j0c5VaG3ptYmeQGeyfJrYnQNpGcd9ckzrp2DHlp+/jp329zaMtOr/xuuJ0udn77C+sXvI/H4WTYfdcRO/GSBusOqwu/TRNPTk4GwGw2Ex0dTXx8/HHHJCUlERERgclkIj4+ntjY2BqfezpNYZr4+8+8R8rXGzAEGZi/6gVsdjuXjZxEVFQky795H4NBz9N3/JtdWzJ4etFDxJx/6tfidDj56K1PeXPhe0REhvPAk/cwIuGCat07TqeLuy6fRc/+PXj4xQfZ98MmMr78mXPvuJovP1hDUV4x/1jy8CmvY7GUMrD3cP757KPcMDWxzq/f43az/4c/2J2cQlBkOGdOGU2bM7r+9TMPT9/0FMbWRu5bdH+DTs0/OqvJabPT97IL6DZ8YJ3GPbldLvau+Y29a38jtE0klq5R/Pv5VygrLeOxeXPoENmORU+8yrDR53Pfv+6p6hY8kp3HZ29/wfef/4hD46JMW8GBgwc59/zB/GPu/QwecraXX/GJna7OXXYHu1duYP/PW4jo3I4+E0bw22/b+fztryjKLyZ+9PlMmj6B7n26VTvvUGYOn731BT99s57Q8BCuuHE846YkEBp+8v/XUnMZd133APlHCvnvRwt4a+H7/LTmFxYsfor4Eed5+6VXvb5d327gwLrNRHRpz1nXjsHY2TvjRA5l5vDpm1/w0zfrCDOGcuVNlzNuymhCwkKq6r1Pnz5s35jGJ4tXcGBnJn3P7sPkGRMZNPzsRjXF2puUR3FwwzYyvl5HQFAgAyaN8nnrCJz+d734YC7bP15N2ZFCel5yLmckDEV3km78hlI1q2nbbtrF9mDA5EsJjgw//YknULQvm+1JlUMWzrj0/AaZtdVk18ExmUwsWbKEefPmATBt2jSWLl1a7Zj09HTeeOMNFi1aVO2YmpxbE00hwfnX1Kc5kJPNkZx8zr7obDb9uZX9BzK56cZriYyMwFJSyncrfqBbhzYMGht/yjc1peCXHzaStd/E5KkTmXH/1JOuMrr28x/4z9zXeWn583TvHcPvi1dQfDCH5N/3MPqGMYybNv60sSdeWTkQ9s0PXqnTay8xHWb7x6spzS2gx4hz6J0Qj85QfVbWn+u28frDrzFz4X3ExMY06EJ/TpudnV+t4+CGP4nq3okzp4whvEPNF4wrPpDDn8tWU55XTPv4WD788Uc+X/4NF10ynGdefJK0jem8Om8JI6+6mLuevB3dCWaRFBwu5It3vyb5kzWUOioo8Vg4kpfHpWMv4aHHZnFGH9+ON6np73lOxgE++vfb/LFjH3aXmwvHDmfSjIl06XHqmUxHDuXx+dKv+G7FDwQGGRh/3Vguv2EcxpO8SZcUmbljyv1kHchGeTz8+79P1moaeW3k78xke9Ia7KUV9Bk3jO4XDfbKTJ/M3Vl8+uYKfkneSGSbSCZOu4LRV48k6G9T8I+td6UUm9dvJemNz9i9fQ89+3Vn0u1Xc96Icxp0deOGZC22kPrJWvJ27Kfj2b2Ju3qkT8a3HHWy33WX3cGulRs48FcS3xgHQx/evofU5Wtx2530veJCYuLPqvEHMqfNzs6v13Pwl21EduvIWVPGEN6xjY8jrtRkE5ykpCSysrKYM2cOADNnzmTKlCnVWmKWLFlCSUlJ1THTpk1j9uzZpKWlnfbcmkhNTUUpRa9e3s/+rVYrmZmZdOvWjeDgug26crvdTL3gNg5ZCggyBFLhtJJnyadb565EGSvXhigpNOOw2mnVJrJG05g7dG7PnXNuoVffU88GcrvczE58lM7dOzF7wSwcZRV8839vsWHbfu5/7QG6nBF92mu99fp7vPrym6Rs+47AWoxDcDucHPh+E1nr/ySsQ2v6XT2C8M5tT3isUor/zFyIx+1hxoI7OHjwYL3qvC5KDuSwc8VPWIstdBtxDjEXDTzlJxuX3cn+1b+S/Wsqxs7tONImiOfm/xe73c7Dcx/gqmvGk5z0He+99BGjJ43k5geuP+1NqqTQzKplq1m9/HvyLYUUOUsoLSvjyqvHc88DM+jYyTfrvZzu97zMUs7qT9ayKmkNtgobgwb1padeT7tObel79QiiutdsSmtRfjHffpjM2hU/otFquPTqSxh/3RgiT7BSamF+Mc8++iLjJo5mxFjvJzfOcht7vt3A4a27iOrZmT4TLiakdf0Xt9uXcYAvln7NHz9voU3H1lxx03guGj8cwwma/09W70op0v/I4PO3v2LHlp106dGZq6ZeztBR5zbpadYno5Qib/tedn/9C8rj4Yzxw+gwqI9PWq9OVOdFe0zs/PxnHKXldL/0XKKHndVo69lptbMveSM5v+8goltH+k68+LRrDBXszGTXFz/jstrpMeZ8upwfV6sxnvV1bJ3v3bsXjUbT+BOc+fPnExkZyfTp0wGYO3cu8fHxJCQkVB2TnJzMypUrq1pwRo0axezZs0lNTT3tuTWRmpqKw9E4ZqGcyMGMLJ5/4hWGxA+kfasoliYlcdGlw7j7gdsAKM4r4ZV/LCY+tgeXPDDR679421PS+WLxN9w69yY69+jIL+/9SOa2A1w5dQThZ55+QFlWZjb33/EYT/xrNmcPrtkvpD23GPOvu3CX2wk/qxuhsdGnfV05e3JYuegbRt46iu5nN8w07mMpt5uy7QcpS8siICKEiKF9MLQ9/qZnO1SI5dddeOxO6NWej7//kV9+/pXB553N7ffeTOs2rfjlm4388Ok64sedx8hJF9XqzdpaZuW37zbz65rfyS3Ko8BWhMvjZtwVo5iYeDnhxoaZWl5uqeDXNZvYtHYLHreHQRefRfzYczG2MuIsKce8cRfOfDMhvTsRPqgnWkPNmvKPK/eisxg69lwiWht9/Ioqb6a2zDwsm/agPArj4F4E9+pQ75tp1p5s1n+Vwr7UA7RqH8Xwy4YyYGh/dPVs/s/ak80vX29k7/b9f5V7PgOGxta73MbIY3Ng+WMv1v1HMHSMIuL8PgSE++5DjsfurLzevsMYOkRWXs/YNKbr2w8XY9549D02htDYrse9x7ptDiy/78GWmUdgp1YYz+9DQFjjWG/JYDA0zZWMzWZztccJCQmsXLkSi8VCWlrlFFCj8cRvZMeeW1N6vb7RtuC8/fyHaDVa7nlkOrffcj9B+kDuvG0a/fpVDiR+7eM3CAzQcdmtV9It9tSDfuuiT+8+/L5mM398t5VRL1/CFzkr6Nk/hvLtB+l93kAiu516Q7e+ffvSodMiMvdlc+0Nk094TOGRIjav28LAoQMo+G0HRX9kENm9E32nX0xI28gaxdmvXz/2pexl++o/iRnQjR49ezRoC06VuDhKcwvY+dmPFCZvITr+THqMPg+dQY+j3MqebzZQvG03Ub26kB2m5fnnX8HpdPHsS//k8gmVyfnyN1bww6fruGb6BCbeeuJNT09n0JBB3DzzBr777Hu+fH8lmYcPsuqr7/l+9Xqm33UzN94yheBg77xZHft7/veWFq1Oy5hJoxh37Rgij2nhUOcN5tBvaexL/hXXYTN9rryQtv1rNgvjnPMGUzbrfy1Dm3/axkXjh3PFzeNp76XxL8eymcvY/eU6SjIyaRvXg96XX1Cv7pBjW1qie3bh3qfu4PyRNWtpqcn7S79+/RhzxaXsz8jk86Vf8dVbq0hZ+TtX3Dieiy47cctQkzbwLAp3ZbHzi58o/OYPeow+j+j4AV774Ge1Wjlw4ADhFZC5ejPK5abvxIvpeE6/pjXeqR+4h5/Lge83YVq/DXXYQt+JIzB2aYdSisNbd7P328pZu/0nj6T92b399vpO1IJTW35JcLp27YrF8r8ZKCUlJURHH9/tsWjRItLT04mLi8NoNBIXF4fJZKrRuTWh0Wh8Ol4jODi4TuWnbc1g02/b6Bvdjfff+4ScnMOM7HcemdszGTLiXAqPFLFh7W+c168HfUcMQavzzaey6+5OZMGcl9m27k8KDhVwzb2TKNuSQcYnaxl865Wnve4F8eeybu0vzJl1e7XnHQ4nqz79nq/+mg78QYCOwT2jmXRPIj0vHFTrAbsT776aZ6b9iz2/7yY2LtZvi5+F9OxK2wdv5MDPm9m1cgMFGZnExJ/F/p/+QHkUXccP5bVln7Lq6+8YM34kTz33BO3at0Epxdvz3+Or979l6oM3MGHqFfWLIySEa++czISbr2DNZ9+zbMmn7D64j0ULXuf9t5bxwCP3eGUgstVq5eBeE20i2rD8tc+rxspMmHYFl10/9qRjZQB6jzyP6IH9SF3+Hanvr6rVImghISHcOPNarr71KpKT1vDFu9/w0zfruXDccK657SoCggIwl9R/hpvH7SF/+z6sf+5DF6hn8C1X0vEkC1zWxNGxMp+88Rm7tu+hZ/8ePPLybM6t5VgZi7kUj8dTo/eXuMH9iRvcv2pszzsL3ufzpV8zYerljLlmVLWxPfVhNlvIPeTntXkCtXSacAEH1m3l5w+/Ifz7jfQYcQ4BXpjFZCks5sjmXYSWOuh0Vm+fL2Z5OkopCvILKSwoqtP5hr7RtI8MYVdyCrv+tYQu5/THiBbz3kN0GtyP2IkjGs1qxEd/z+uSaPltkPH8+fOrup8mTpzIihUrALBYLBiNRiwWC48//jiLFi2qNrD4VOfWRmMdZOzxeLht4r0cOpDD+YPP5t2vl/PUc4+jL1akbkjl6c/+xev/9wY/fPUzTy14gL4jh3g9/r/Hct81D+F2utCVuliQ/CLuChvr5r+H8zTTdwG2Z2exeN0PzL1sIu2MRpRSHCwo4dc9WZTZHcR1aU9sl/bsq7CyOW0vHbq059aHbuacCwfVOtY3Hn2dtJRUrrj9SkYmjvL74MryghK2L1tD4Z4sOpzdmyyDm6fmvYBGo+GfzzzKZVcloNFo8Hg8vPGvt0j+5Dtuf+xWxk0Z4/VYHHYH33/5Ex+8uoz0fbsosdWtxfNkjIHh9OzYjetvn8zYxDGnnO10rGOXsY+9+hI6D67dp2K71c6aFd/z4WtJ7Dq4l2Ivv75eHbpy7Y2TCatHF59Sil9/2FQ12ynx9qsZOOys2nVBVlhZ8Mx/ePuN9+narQsPPX4f4y4fXasyjp2hdsmVFxNSj8XZrDYb6zdsZH3Kxkbd5e8tOp2O6K6d6dK1E12iO9MluhNduv7va7v2bb3y3nM0gck25ZCddajyq+kQ2Vl/fTXlYLd5d5p8sCGQi4cOZfjFwwkIqHvbR5gxjNGTRqGv5yyyJjvIGKpP9Y6IiKgaQzNq1ChWrFiB0WisNk386JibU51bG401wVm5Yg3/98CzDOzRG32HYH5M2cDW3RvY9+deFs16mZkL7+OJGU8xsFcXHvn4GZ9P1dv4/e88e98CzjlnAE8sfQIAe1kFFQWnv4lUVFi5eNTV3DdzOhfFD+WjJStI37aLuEF9ue62iXSKbo/OEEB4xzZk7TXx5nPvsP23NAYPH8gtD91MlxoOQgUoKiji/effY+cvGZwxsDc3PnITbbuceHByQ1FKcXDnfv797ELWrPyB8VeOYd6zj9G6TSugcjD3f558jZ+/Wc/d/3cHoyaM8Gk8LqeLn7/9hY8XL6eosG6f/KByuQGHzQEaDS6Nm0NFudhcdkZcPJwnn3uUbj1qvxWCvayict+tLTtpH9eTuEmjajyl9XDuERa98DqffPg5oaEhdG3TGb2q25urAhxWO06HE41GQ4XbRnZxLgadnt6detA6olWdygWIOaMr10yfQNw5/Wv9afS3lD/4x31zyc09wi0zbmDdTxtI376TgeecxZzHZhE/vHbbohydofbbj5tQntrfAtweN4cKD5NVcAiPx0Pn1h1oY2yNNzoz7DYHDruDM8+N5ZIrL6ZTHfdXUm435fnF1PUOV5xfwhfvrSQnNw+38uD2uHErN5HtIunQswOHDx8h25RDUeH/FrPU6wPo3KXTaROg2iYwxghjZRnRnTAEGMjdl0thThHh4WH1TiQA3B4Ph4uPcMRcQJA+kG7tomkf2bZOrSahxlCeeXfeKVtwa6JJJzj+1hgTnIpyK9eMuInYs/pSlp7HAW0eMb268sY7C3G73MwZP5uQtuFkpO3mqedm0X/MUK/HfqxySzk3X3gb7bq0579fv1TrX/hrJ9zCkew8IpxhtOvUllsfupkhFw0+YTlKKX79/nfeXvAeRUeKuOyGcSTefjUhNWgqffuN9/j2q9UkXjOR7d9uwVJo5so7rmLENZf4ZWaD3e7gg6VJLHrhNfT6AJ567gnGXn5p1c+dThcvPbyIjd//zv3P3MuFY4c1eIy1lX8onw+eeZ/dW3Yx/MoLSJg2lkxTJq3CWvHUfc+wYesfOJWLSVOu4v6H76ZDx9rP3qqa0up0EXvVxXQ5L+6kv3NFhcW8tuhN3n3rY0JCgrlr1m3cdMu1BNVxjNH+Lbt458k3yS+0MGBgL27+1x2ERoazaf0fzJz+ELmFeQwdNJhXPniJ1m3rnujURnlZBc8//TLvvvURQ84bxHML59GhYzt27NhBSWEpixa8zvZt6Qy/6HxmPzqLswd5//3s7xwOJ0kffMaiF16nuKiEKTdezb0P3E77Dt4b/+SwO/jxq3WsePtLDmcfYdCws7lm+gRiB9dsIdP6KjWX8fr/LSblh9/xeDycdW4c181KJO3PNH5a/gumA4cw6AMYPyWB6++/DqfDwaHs3JMmKn/vRtLrA2jbrg2FhcXVEpiISGNlQnSCxKhzdCfCwkL59fvf+XTJ5+zLOMAZcT255rYJte7ePJ1dGXt48blXWP3t95zRpycPPnwPY8aP8ss4HG8kOKgWavv27Wr79u0+Kbu8vFz98ccfqry8vFbn/ff5N9Xw3mPUz1+vV7ecO011bzdAffze8qqfv/HY6+qqAZPVkxMeVC6n09thn9AfazepqUOmqiviJqmtKX/W+DyXy61WL/9OjYgdq7q1jVMfvpqkHHZHjc61We1q2WvL1TXnXK9uuug2tfbzH5Xb7T7p8Zs3bVM92p+p4nqcp2LaxKrbrr9H/efRV9Sd8ber52c8p3Izc2scd325XC716bIvVPzAS1X3dgPUP+6bq4oKi6sdY7fZ1VN3P6MmDrxW/fr97w0WW1253W71fdL3auaIe9RjEx9RGZt2KKWq/557PB61Nuk7NX7AleqMDmerXh3PVk898bwqyC+s9fXsZRVq6/vfqq9nzle/vrpcVRSaq/3cYilVLz73iuofM0T1jxmiXnzuFWWxlNb59TlsDvXhk0vUXfG3q9kj71V/fLvhuGOcTqd65M65qkfbAap/53PUh28sq/P1auqXnzeqYYNGq75dz1Fvv/F+1d/AsfW+6pvv1KXDr1QxbWLV9JvuVTt37PZ6LEd/r4cNGq26tY1T99/1sDp4IMvr16l2TadL/fztenXvhAfVFXGT1D9ufFxt+nmz8ng8PrlecUGJev2pJWrCWVPUFXGT1H1XzVb7Mw4oparX+aafNqtbL7lDXRE3SSUOuVEtX7xCWcutJy23vKxc7d65V/2w5mf13lsfq+efflm9/cb7as2qH9SOtJ3KbLac9FyHw6m+W/GDuvOyWeqKuEnq8Vv/qbZt3O6zOjhq6+bt6oZrblMxbWLV5aMmq59/+MXn1zzWsffRutyzpQWnkbTgHMrKIXHUNG6641q6te/I4hff4o+sHfy6/fuqT8Iv3v8iP6/9lQcfupkLbzz9Ynve8M68pZj2mDC7bWg1Gp774GlKC0pw2J1oTtIgvSd9Hx+9vpyDe030G9KHZV9/zksL/82FF9auxakov5hP3vqc33/eTPc+MVx/52R6HLPqbWlpGddNmU5Uq0geeHAGB/Yf4q03P+DIkXxGXDQMY0UQrlIHIyePJP6y+ON2R/cWpRTr123klVfeZN/eA1xyyQXcdc9tdO9evbvGbrPzn3mL2ZO+j3vnziBucH+fxOMtBTkFrHhtBVm7sjhvzHmMvn501bpGNpuVffv20bNnT4KCKsdxlBSU8Mkry/l+/XqySg+jCwjghhsncf0Nk2q9A3rB3ix2r9yA2+6k58hzierfjeWffMk7b3+E1WplcuIEpk67jqiouq9Dc+DP3Xz2ymeUmMuJPbMHV903heBTtBimbd3BIw/NI6fgCAP7xfHsy/9Hm3Y1X+CxJkpLy1i08A1WfPYN5wwZyBNzZ9Oly/+6aU5U7263m9XJP/D6a0vJyTnM2HGjmHH7zURHn3oxxdNRSvHjD+t57dW32b//ICMuuYA77pxGr14Nt/eQUoo/f0/j26TV7Ms4QHSPzoybNJohFwzySutswZFCkj9dy8+rNuDxeGhlNHLdPZMZOPzsqmOOrXOlFN9/9gNffbiKMpuV4JAgxlw9ipGXX1SrMWgnY7c5WL86heTP1lKUX8zAoWcybvJoevZt2D2fNm3ayquvvMX27ekMHnwWd91zK2effep7piEkkPBW9V+6Qbqo6qGxJTgP3T6XHdt3sfz7d/j4+Y9Y9tUX6IwGVv30GVA5kHLqRbehccPU+69n9A21H3dUWx63h39cPofzx5xPcFggb7z8AUPO6IHG5uZEvzQOlwuTuZiiigpC9AZioloRajCwPHUdnY1tGNatbtPZS202DpYUYXU6aRMSSpfIKPQ6HUopfti3jWxLARNjhxEeWFnXbo+bjLwstuXuw+l206t1Z7oYOxJqCCQqJBi9l5Ocw6VFbMrezZGyYjqGt2JIlz60C4s87ji3x8Pu/DwqnA7OaNMOY1DjWFviRJRSlNkdWGx2dFoNUSHBBNZw4KFSigqHk/yyUvYXH+JgSS4BWh1ndexB/3YxBNSy/t0eD7sLstmasxery0GfNl0Y2KknoYa6D45VSlFqd1BqsxOg1RIVEoShhq/P4/Gw/XAmW3P2oNcFMLRrf3q2PvWyCTVlMufzy4E0HG4n50b3pW/b6Fp1D5y4rnoRaqjd75pSikOWAv7I3kNBhZnOxtYM7tz7hL/XDaXy/8xObqkZi81GYEAAHcONtA4NQ1uHLhSr00muxUxhRTlajYZQfSBtQ8OICg2pcXluj4f80nKKrOVUOO1oNBrahYXTPjwcg672Y2NcHg95ZaUcKbXg8nhoHRJKR6ORYL3/pvUrpTCZ8/kjezdF1lKiI9pyTpfetA45cRKj0WqZ9d5jhNUzyfFGgtNo1sFpyX7fsIWfVv/CUwsfIzgkmKzdJg4VHObmiddXHfP1O19jtdkZcmY/tm9I9WmCYy+3kptxkO0/bKaspIzsddvQ67QYg4JIz8xm/KXDqDiUj7FDK4ZMGYXSaPhx5S+s+fJHAgMNXDvjas67cHBV33DxfwJISfmdG569o859uR6Ph5QffufbT9aQUZxPwoSRlKlyDvyRzJNzH2LY0HM4ePAgMTExBAZWvpmXl1eQtPwLPvnkC0zlBfRuH4PD04oLL7+Q8xPOq3drzr79mSx583027txEr17dmT19FkPOGXjC11heVsFrz76NO0DDrMfupPsZtR+I21AKcgr49t2VWA7mMmTkOVx41YXoj9kmA8Butx1X539XWlLK6g/XkLYlnUJdGZsP7GGfNZ+bbpjM+HGXotcfX+bfud1uvv9hHUvf+Zjcw0cY1K0no/rGMXD0cDqeeQbU8Xcpc/seVr67ilKbnX5x3Rk7/UoMddj1e8+u/fxz7nP8uH8beZoK/vn0w7RtX7dl7EtLy3jl1bdYvekPhpwzkDkP3kP79iceJH+6egew2ex88eVKPvz4U/ZnbGDiVeO59tqriYw4/U0nLS2DJW+9z7bdacT278tjt85h0MAz6/S6fCVrfzZrv/qZPzelUYyLEeMuYNjIc2u0anrW/my++/JH0v/YQVBwIJEhoXRo14bLpo6na+8T/12eqs6VUuzYlMGqD5MptVZQZLdSYKvgvAsHM/KyC2nT/vQtfBZzKT+t/IX1a3/F7XJz/iXnMvKyC2ndrmHGetWEx+Phx59+4e13PuLz9A1cMuICbpl63XGthEFhQfVObrxFWnD83ILjcrm5cfwMwsJDWbx8IS6Hi5uHTSXl4J8s//o9hpw/CKfDyS0XT6dTpJHLb5/ER89/yLNfP4/RS79Ejgo7h3ceJHfHAXIzMik8eBgU5NkcHC4yM3T4WezbsgdtZDC/bs/g0YVz6BbdgeRnP6BUB9uzDlFwpJDLrhtL4h3XHNdE+9P3vzB1yh1898uX9d4fqdRcxsevfsKKD75id8F+RlxyAW99/N9T1nl+XgH/fWkxH777CcFBwXQNac95Awcx9YlpRPeu/RpK2aYcXnz2FT5f/jVdY7rw4KP3ctmVCScd7FdSaObJGU9TlF/EP994nB79GraZuabcLjdrPlzNyre/pXXH1tz42M30HHDy/6+a/J4rpdi05nc+eSmJcoeN8ggn6zf8Speunbn/obu48urxxyWaSilWr/yeF599hd079zJ63CU8+PC99OweQ8bX6zj4yzZa9ezCmVPGENbu1MvN/53DauejJ5fw+4ZUjGHB3PDwjcSNGFzj80/E4/Hw7MMLWPreR+i0Oh544C5mzL61VmV8l/wjj82eh9Vq44l5c5h03YRTfhCozfuLxVLKW6+/x5uvvotGo+G2u27m1jtuOmF3YXrqTl54ZhE/fLeOvrG9mfPoTC65tHaraTe07AM5rHi7ctp7SGgwl10/lvHXjSX8mDVqlFKk/bGDT5d8zraN22nbsQ3GoBCsBaWMTBzJFbdfheEU293UpM4tRRaWLfiYzT9uxtilFbmH8ykvLeeChHiuvvUqYk7woebobLbvv/gRXUAAYxNHc8WN44lqE1mvevEll8vFpx9/wcIFr5F3pIBrplzJzNl30rmLd1oxj5IuqnpoLAnOp+9/yfy5i3jnq9foN6A3B3ce5NYr7+Cwo4htezYQEBDA1+98zZsvvM8jj99G3Jh4HrpsNtc9dAPDrxhep/icNgdHdmWRs+MAuTsyKTyQi1KK0FZGOvbv9te/7jx/x/M4Sq20Cg3mohvHcO6Vw5k742nKzGU88OxMXvvnYnZs20Xndq15cOFsesad+GZos9o4u89wHvjH3cy4e1qdYj62vHEjrqHwSBFdQztx7kXncN29kykpLz5lnWdlmnjxuVf48rOVhAeH0jOyC1PvuoHxt1xWtVP3qRQWFPHKS4v58J0kjBFGZs2+k8QbrsZwgtaNqnOOFDF3+lOUl5Yzb8kTdO1Vt0UpfS17j4n3/v0e2Xv+v707D2/yOhO//5Xk3Za8YGwDlm128MKeENuQlQRDmqQhbdzpkoZpk3SbtDMl83ZNp6TT6W+gnSHTWZqkJV2Dm4ZmBZOQkgCWSVi94ZjVWMb7JsnWLj3vH8YKBq+yZYG5P9eVK0h+lqODsG6dc59zG7n7s/fwiS/dR2j40CMso3mfm9pN7Pj5S5x47zgzFqVx1nSRfXv3967U+O4/sHb9XQAcfL+UrT99lrLjlay67Ra+/d0nWbq8/+hB2+k6yl/ag93cw/z1+cy6ffmwO9ZW7jvKH372e8zdNm5etYjP/suXCRuHDeD61FSe4qtf+Bbn6uvImjuf//vDNvSzUoc8p6O9kx9//2e89spb3Hn3rfz05z8a0cozf6bA29s6+L//+jW//fVLREdH8bVvfpkvbPwMEZERnDtbyy9+9kvefLWYmbPS+cfvfH3IgP1a1NrYxqu/fYO3X3kXtUpFwcN3c/8jnyA+MY7D7x/jlRf+Sk35aTLmpTNnXgY1JVUkTk8cNojvM5o+P/q3o+zY+hIet5vZK+dz/IMKWhvbuPn2FXzqy59k/uJ51J2t55Vfv8r+XQeJ0UVz3+fvZf1n1hITwIKh481ud/DHF//M/2x7HovZwuceLeTr33qMxKnjk5MmAc4YXAsBjqnLzEO3P8Lta1fxg/+3CQDDmyV89SvfJv+ePP7nN7/A4/bwpTseZ0pUBP/+xn+iCQvlF1//OeERYXz95/8w4jZ11DVz7lAljSdraT3XgOLxEhkXw7SFvQHN9MyZaJPjUalUmFq7eO0XRZS+f4yFOXN4ZPOXiUvu/aZ88thHfPeLT6NSqUhOTeLhR++nYe8xYhLjWPfdLxAxSILd33/2a9hsdl76629G0ZMD++E//4SiP+3ktT0v0dnQyfatv6e9pYN5S+YwJTFh2E2qWtvbKTn8ARfqjUSHRjJnWgYrVi4nJnbgXy5Op5NjleUcqyhHhYrlixazJDuHsGGmWKC3v7xeL8+88DTT08f3G854cLvcFP92N7t/u4vktBQe+f4XycjMGNG5/nzQ9v3yV7xelt63gt379nHw/VIWL80mMiqSQyWHe/d2+d6T5K1eOXi7HU5q3jrI+f3HiEufxuK/Kxiwmru928Yfnn6Oo4dOEh8bzRe+/0UWrlo8oraOltfr5Rc/2savnv9tb5mVbzzGP3z/qwMeu+v1t3n6Oz/B5XLzLz/9Lp/81CdGPFIyln22Ghua+K9f/Io///GvTElM4KZblrH7jXdISk7km5u+yqf+7pNj2uQt2EwdZt74wy527SjGYXcydVoijXVNZC5bwO3rV3Nk9wdcPFPP3X93N/d++b4Rl6wYbZ93d3VT9B87OPLOYbJys8hYOofdf36H+vMXSZ01g/pzF5mSPIUHN97H3Q/eOW47SgdDT7eV7c/9nl/994t43G6+/LUv8o///PUxj/xJgDMG10KAs+VHz7Lrlbf5y77f+fbV+PUzv+aZZ/+DX/z3T9nw8P28vWMP//2vv2bTP3+R1ZdWTv2t6F3++j872bLr50RED/4PQ1EUGirPUfFWKRcrzhKhjWJa5kzfKE3stCn93oRej5cjb5Tw3u/30ONy0dZh5t93bSX6im8Vv9/2J6Jiorj/C/cSGhZKh7GF3T/9HZG6aNZ97wtEDrCF+e9/s4Mff/9nHD91cNSraS5X/NZevvLot3jm33/AFzZ+BuhdcfDyCzv58L3DREVHoVGPLLemub2VY1XldJg70YXHsDBjHrNmz0R9qVSEx+vlzIVzVJyuxuV2MS9jNllzFhARNvJv/tHaKL78nY0kTQ/upoMDufDRBX7/09/ReL6BgkfWUfDFdQPm2gzG3w9aS6eFP/9nEUfeOUxOfg5zb1vI87/6HXa7nSc3fZW77hn5tEjHuYuUvVSMrd3MvHV5zLrzJt/KmrK3P+CPW/9ET4+D3DuWUvjDjYROQA2msx+d46uf/xanLpxj/szZ/N8ftjFzXgbQO136o+/8lF1vvN2vXMdojCXA6VN7ro7/+Pf/5sTRch750mf53KMPE+FHHtK1ytptZXfR21w4XceaB++kruK8X0G873p+9nnZ/hP8acsfcTlcPPSNT6GKDOFgsYFlq5Zy2ydWj8smfdeKrk4Tv/rlb3jr9T28WvwSCVNGPn08EAlwxiDYAc7ZmvN8fv1jfP3/e4zPP17oe/6x9V/hncMHOXLyfRKmxPP4XV8hSq3mF7ueJeTSL+f2xjZ+8ND3+fIzj7H8rhVXXdvj9nCutJLKXaV01DUzJSOFzHtuJmXONHQzUgZsT+Ppenb91ys0nr3IintzOX26DrfLzT/+8tsjes1dDW3s/tffEhoVwbrvPUJ0fP9dLI0X6lm9ooD/2/4fFHzi7kGuMrSL9Y2sv+Mhbsm/if/b/p/9PgT9/QWkKArFb+7lx9/5N5paWshImsG//Pv36LJZ+PnPfslFYwMPFd7Pt/756+M+xxwsLoeLt7a/yTt/fJvps2bwyPe/6Fcu0lg/aC//5f+pJz9N7r15fn3r8zhd1Ow2cG7fEWJTk5h3/628+stXOHGkhoT4GB59+u+Zu3L8C9IOxev18st//V9++T8vgAJPPPEos3Nm8+Pv/+yqch2jNR4Bzo3i8iB+7RcKWPfo+lEF8X3G0uc95h7+8uzLHNpVysKbM/n8d75AQsq1kzx8rZIAZwyCGeAoisI3Pv8UTQ0t7Njza98/OEVRWDVvDaHaMN47tpvj+4/xL1//GV//h0Luefyhftf46aM/ITk9hS/9+Mu+55xWOx/97ShVxR9g7bSQumQuOetzmZaZwZnX/0Zr5Slm5C5Ff9vHBTqdNgfv/X4Ph18/yNT0FO79h08xNSOFTQX/xP2PP8Caz448GDE1tbP7X3+HJjSEdd9/hJgrqkivyb+fZSsW8+/bnhnxNfu43W7+7pN/z8X6Bnbte4W4K/Y+GesvfY/Hw69/+Tue/fn/0m2zApCakMyi9AXERY9ty/FrjcPqwGFzsH7jvaz9QgEaP8t9jMcHbY+5h5e3/ZkPdh9CN0Xnd1sAvG4Prh47Tpcbr1dh1T0r+NR3vjhsLlEgXThbx1c/9y1Onj0FQFridFbMziIi1P/REsWr4HK7CA0JHXVh2huNqc3E9FnTeeR7X0Q/3/+Vi+PxXq80VPDH//cHekw9xMQHr1BnoEVpo/nHX/7TVSP/oyXLxK9T+98xcLjkGL/4zU/7fZtoqW+m2dzGwwWfBODQnlIiQ0PIf+iuq66x+NYl7H3pHdwuN7aubqr2fMCpfcfwuD3Myc8he30u8am926e7emy0VZ9Blz6di4dOYDY2Mu/Bu7lw8gLF//sqVnMPdz66nps/uRpNiIaKknJcThfZ+aML/mJTpnDvDx9l17/+ll3PvMi6738R7dQ438/vWLOaV//yFoqijPqb67M//z+OHj5B0WsvXhXcjAeNRsPj39zI579UyLaf/DfRoZHMTLt2l3KPhUqlYukdy5gxe2ybwI2HaF00j/5wIyvXruRM2ZkxX8/r9dLd0EruA7cya9n8cWjh2KTPTmPXoZ1sf/Z3NF1oInvBgjFf0+Vy0dbWRmJi4rBL7W90sYmx5N+3akyB83jJzsvh6T/+Cwde24/DOr6FMq8lUdoowscxgX8sJMCZYA67k//8yf+Qe9vN5N/RP4ny3bfew+31sP6TvRWlT3xYSVpyAlEJV3+gL7ltKW++8AYv/+jX2IzNhEaGk7n2ZjLvvpmoK6aHmss+AlTM37AWW0cX5X96i9/+wy9oabUwe8UC1n39QeKSPx4yrSipYGpqEslpo68lpE2K594fbmTXT3/LW89sZ/33voju0nDsHWtu5fn/+S1VFR+RvWjkdWUOlRzml794jm/989e46ZbRVxofjaiYKL77s6fGfB1LaxflbxykvuwMs3KzyV53y4C5SRPJZXf6RvjeOVg+Ltf0er1UqIvH5Vqx0xNZdF8+M1dmBn0FT9fFVspeP0hzTR1zb1tC5j0rCR8i3204G598ZMxtcvTYOfn2B9S8d5zEqTHk3nMT0+YENwj3er2c/+AklbtK0YRoWHTfKvRL5wZ9aXnb+UbKXjtA80cXOBkexoI7lxM6xDLwiRIZE8k9n1s75uu0nK7nxGsHaKg6x4C7rvoheZ6exQ+sZlpmRtD//saLBDgTbMdv/kJTQwu/+M1Pr3oTvffuQcJDQsm9fSWtjW00NbVz85039ztO8SrUl5+h/M0SwkM0nKk6z0Nf38DcW5cM+A9Y8XppPlZFYtYcNOFhfHT0DIZD51CpIHt+EktuzyT2slEWRVGoKCln2Z0DF8QciZjEWO79waPs/unveOsnL7Lue48QNz2RFSuXER0dxXt79484wOns6OJbX/0ON+cu5+vfemz4E4Ksq6GN8tcPcqaknPCYSPSL51L9zmGqij9g/p3LWHRvPtFTJnYTLEePnep3PqRy9yGcNgdz8hcxJWPgXKzRcDldNDU3kZKc4ldeQz8KGMtO894vX+H4K++x6L585uQvQj3B37zbahspe+0gtYdPEh3fu21C2WsHqXjTQOY9N5O17hYiJ3gpr83cQ9XuQ5x8+0O8Hi/65fO4WHmOXf+ynYwVC1n8ydUkZkxsfpjX7eFMSTnlb5RgamxnRs5s3E4X7/z8JRLSkln8wGoybl444YFqc00dJ149QH35GXTJCSTOms7hHXspe+0A2etuYeHdN48pUA0mRVFoPFlL2WsHaKg6T+z0RJZtuB1N2Ng/xr1uD2cNFez+6e9ImpvK4gdWo18S/EB1rCTAmUCtzW385pd/4NOPfJKZc9Kv+vmJ8gpmpaaj0Wg4euA4KpWKnBW9gYDH5eZsSQUVu0rputjK1NkzWLRqMTUVZ1iwZvCKsp1njThMFsJnTGf7P/0XjWcusnz9Ldz+SAEdlTVc2PcB3fXNzP3kGsJ1MdSfrqertYucUU5PXSk6Qcf6S0HOrktBTnxqEqtuz2Xf3gN845+eGPYaiqLw1JM/wOFw8J//+7OA1ZEaD+21TZS9foDzH54kKk7LzZ+7hwV3LCckPJSVX1jLyT0fUll8iI/2HmHO6sUsvn8VuuTAJhraLVYq+z4Y3W7m3baUnE/k95s2HAur1Yqnupp545TsmlWwktZzDZS9doADz73O8Z3vk/OJfObdtpSQcfglPpTmU0ZOvHaA+hOn0SbHs+pL9zFn9WI0IRpu/uzdVOwq5eTbvX+HC+5cTs76vIAHqj0dZireMvDR346iVqtZsGYFOetzUULVVFVWEdHpoXrPh7z2/edIXTKXJQ+sJtmPZPHRcDvdnHr/OBVvltDdZiJ9xQJu+9oGps7qrZXVWH2BE6/uZ99//YXYaVNYfP8qZuflBDRQ7VsteuK1AzRVXyA+NYnbv76BmSuzUGvUrGi9i4q3DJx4dT/llwLV7HW3DLqlxbVGURTqy85w4tUDtJw2kpCewp1PfpqMmxaOaw5W9vpc333e2foSUzJSWHz/6nG/z0SSJOMJTDL+8bf/HyX7DvHKvt9ftdNmY0MTuYvX8PkHH+Inz/2Yn3z9Z9SXn2bTj56gu8fByT0fYDP3kLZsPjn35pE8T8/Z8rP8/KtbeOpX/8ysQTarOrnjLRwWK0fLL+Kw2nlg02dIXZjh+7nZ2Mipv76D1+Nh7v13cehAJW//YQ9bdv98RJvfDcdm7qH4336PtdNCwXe/wDv7D/K9TZs5Wr2f+IS4Ic/d/twf+PH3f8YLf/gla9bePuSxwVpZ0jdUbDx+Cu3UOBbdv4q5qxejGaDvnDYHH717hMpdpdjNVmblZbP4/lW+XKnx0tNpoeItAzV/OwrAgrt6PxivnLocq0D2eYexhbLXDnD+UBURsdHkrM9lwV0rxnWaQVEUGqvOc+K1AzSerCVuxlQWP7CKWbdkD1jE0dFto2rPB1QVf4Db4WTubUtYdN8qdKPYTXkkzC2dlL9xkNP7ywgJCyWrYCVZa1cSHtNbe+vyfo8Ij+DcoUrKXjtI18VWpmVmsOSB1UzLmjmu375ddicfvXuEil2l2E09zMrNZtH9q0jQD/zebT17kROvHqDuWA0xU+NY9Il85t66ZFwDVUVRqDt2irLXDtB69iKJs6az+IHVpC+bP+AHsrXTQuXuUqr3HgFg/p3Lybk376oVnwMJxu8XxatQe7iastcP0F7bNGEjK4qi0HQpUO0bKfIFquNQ3HSkZBXVGEx0gFN1opqNn/w63/3pP/HgZz9x1Tm/ff6P/Oh7/8YL//uf3HrfrXwu/+9ZPCOJtKlJeN0e5q5eTNa6W4ib/vGeGV6Pl+/c/8/krs/lwa8/dNU17Z1mjv3PH7HFTaV014ds/MU3mDHASgKX1cbp196l65yRd8svkjw7lcd/+pVx6w+7xdpb1qG1k+VfWsf6T3yWbb/6dx7YsH7QcyrLq9mw7rN89osP8y8//e6w95jIX0BXDhXHTU9k8QOrmZU78AfjldxOF6feO075myX0tJtJX7GAJZ9cTeLM6cOeO5S+vJ9T758gJCyEzLW9H4yB+qY6EX1uamqn/I0STh8oIywynKyClWPOh1EUBePx05x4dT+tZy8yJWMaSz65mvTlC0b0TdVpdVD97mEqdx3C0W1lVm7OpUB1bHsd9eX9nDVUEB4TRfb6W1h4102ERfVP2Byo3xWvwoWjH3Hi1QO01zYydfYMlnzy1jHnw/Tl/VQVf4DL5ugdfbxvlS+vbjgddc2UvX6Qc4cqiYqNIfvevDHnw/Tl/ZS9doBOYwvJ89NY8slbmZEza0Sv1W6xUrXnA07u+QC30828S4HqUCObE/n7xevxctZQQfnrB+lqaGNa1szeoDUIuTFXfYG7rzdQHegL3HiTAGcMJjLA8Xq9fHnDP+BwOPndm/834FTLZx/4e6qPfcQbfyuitbWDf3niX7l/WSa4Vdy/+ctMHWTFyx/+7fecPnGKf9mx+ao3f+3fSrlQWsYHR43k3LWcdV/fMGibFUXh1NsG/vPHv+POOxbxwHceJUw7frkGjh47e/7fHzA1tvG7KgPZSzL5j//52YDH9nRbuW/Nw0RERvDX4j8RPoLN2SbiF5CiKBhPnKbstQO0nK4nIT2FJZ9cTcYK/4ZwPW4PZw6WUf56CebmDlIXzWHxJ1eTMsrlrF0Nbb0fjCXlhEdHXso1uImwAO+OOpG/9LvbTFS8VULNvuOoNWq/8mG8Xi+1H1ZT9toBOuqaSZ6n7/1gXDTbrw8Ot8NFzb5jVLxloKfT7Hc+TFttI2WvHqD2SDXR8Tpy7s1j/h3LCBlkeftQ/a4oChfLz3Li1f00nzL6nQ9zZd7P/DuWknNvPjGJ/q1gNDW2U/bGQc4cLCcsMtyvfJir8n4WzWbJA6tJWXD1dP9IOK12qt85TOXuQzh6bMzJX8Si+1f1+xLZZyLe6x6Xm9MHyih/owRLSyf6pfNY8sBqkuYOXfJjIrRfaKLstYOc/7CKqDit7z0ayMRtWSZ+nSh+dS+VJ6r5vx3/MWBw43A4OXr0BDN100nJmMbuV/YSGxtDYmIcbU0mYoYovLbktiWUvHGQptpGpl02AuB1u2k58RG1zVbCIsO549F1Q7ZRpVLR4VGjUkGKLpyyX7/M3PvvIm7W+Mzph0dHUPCdL/D21j8xrSqSfe/sx+PxDNgfP/ruT2lqbOaNd/88ouAm0AYaKr7nqc+SunjOmL5RaUI0zL99GXNXL+H8B1WceO0Ab23eTsrCdJY8sJrp2UN/I70q7+ez9wT8l06wxCTGkvvF9Sx+4FYqR5kP05dAWfb6QUyN7UzPnsX6H3yRlAXpY/r7CwnvnT5acNdyzhwsp+z1g6PKh+mX95N0Ke9n1aIxfTtWqVSkLp7DjEWzafroAidePTCqfJiedjMVuy7L+7lrBdnrc4mKG9sKwNhpU7j18QdY+uBtVLxZclk+zE1kFQwdqA6Y9/PVBwf90jdSYVERLH5gNZlrV/oC1dMHy5h5cyaLH1jNlPSxJ+KPhNvh4qN9R6l404C1y8LMmzO565sPj8tCgPEyJT2FO5/8FF0Nt1P++kE+/NPblL12gKx1t5A5AV+m/CUBToBZe2z88mfPc9e9t7HsloFr4Bw+dBSHw0nm/HmEhIZw9MBxZqUmE66NgWYT4drIQa8/f/kCwqPCOfH+iX4BTlv1WZoutmM808yG73yeiOjBr9GnsqSc9MyZrPzGZznz+t84+dKbpK5ajn71in7FDN12Bx6Hf/s43P7EfZxtqGf/K1W8/ac3uPP+O/v9/I3X3+YvO17l3/7f90mdOgWHyTyi67psNvB4/GrTYK4cKp6eNZN133tkVEPFbruDkGG2wFdr1MzOy2HWLdlcOFZD2WsHKP7ZH0icNZ0ln7yVtKXz+o0QXTlsnP/3nxg072ewNvn793c5l80GLteYrzMaUXEx3PzZu1l0Xz4n93xA1Z4PqX7ncL98GLfNjsfp7E3ML62i6p0j9LSbSV00i9wv3EPipQ8Op9kybu3KWDaHtMWzuHC0hso9H/Lmj39D8txUstetJGW+3vd+URSFphojlcUf0nzKSOy0BPIfLSB9+XzUGjVuqxX3MPdy2WyoHA5cZgsO1+BHJ0xP4M6vPUBbbROVxR+w/1evcfQv+8i6ewWzc7P6vV8sbV1UvX2Ec6VVhISFkrlmOQtuX3op78c74n+HwwkLU7N8w2oW3rWU6r3HqCr+gMrdh5i7ahGZa5b3C6RcdienD5Rz8t2jOCw20pfP47Yn7id+Ru8Iy3i1CWBuXiazbprHuQ9OUrXnMK9+71fMyJ5J9rqVTJ05bcR9PhpOm4NT75dR/bdjOK12Zt60gKy1NxN7afpvPF/feImMDmPl391J1t3LqXrnCMd3vk/5GyXMv30JC+5YSkRMJOrQEEKvkR22ZYoqwFNUL/73S7z0wssU7X2R6fqBI/JnfvjvvPTiyzz12Fe555ECvnbft/hE7iJmzk6n6Vwjn//VPw95vxd++BxtF9v4zm++53vu2Asvs29PGdMXZPCZzV8a9gPZ7XLz1Lpvc/fn7mH9xnt7h7pLjlG3/zC6tGnMXn8bjvYOTOfO09PQBGN42zidbv7umWe5ST+Hrzy0hrgpvf8YGts7+ca27axcOIenPnPfqL9dK2o1iSuWkpS1YEzfzD0uN6f3n+gdKm7t8muo2G2301R6GPP5C8QvnEfyiqWoR7gpm6IoXKw4y4lXD9BcU0e8PonFD6wmUhfdb4noaBP/FK+X9qpqWo+VoXi8I34tQ14TiJ0/h+krV6AOQpHGK/NhZixIJT5Gwdxpo+FCFy6nhylJMczIiCNaOzGbjymKQkdrDxdrO+mxOInRhTMjIx6VCurPd9JtdhCtDWNGRjwJU6MnLK+ix+LgYm0X7S3dhIZpmJ4ehy4ukkZjF23N3YSGaJiWFktyaiwhIROTTOpyeWisM9FUb8Lr8ZI0XUfyDB2dbT001pnweLwkpmiZkRFHZNTEjEwqXoW25m4u1nZis7qIjY9kRkY8uviIcfm7Gug1T0+PIyLy+tu00elw01DXRXO9GVSQPEPH9PR4sh95mJCo4b9UD0WmqK5xDcYm/vT8n/nCVz4zaHADsG/vfhIj49DP1XP0wHFCw0JJDAuFkJARJYguXr2E3/zLr+lo7iAhOYHuxlYqD9XgdLop+NqDI/pHeabsNHarnZy83jePSqViRu4SNOEa6vYd5sSvdhAVF0Fs+nSm5d5MWNzYdhO+7eARTh6vpvpEI2qNGo/Xw28OvUuEJoxbEhfw4fu1o7qeAuBVYO9pUKnG9ItI8SooKMy8OYu7/rFw1EPV5to6Gg0fguIlIWsBnTWn6a5vYPrqXKJTht88UaVSkbpoDqmL5tBYfYGy1w7w3i9fAfB7iajDZKJhfym21jYSsheiTRv71KPDbsdYXY359Dnsjc1MvzWPqKSJLSoaFhXO4vtWMfvm+Rz73ZtcqG6g3uFGpVaTsXweC+9aim6clsWPRgawVFFo/KiOk3uPUVPeBEBiRgrLHl7GtAVpfr9HHXY7Fy5cID09nfCI0U0NZALm1i6q3z1O7dFTKN52ImOjWfZAPrNWLiRkrPsZ+WEOvaMZZwxV1LxfRvPFetQhGmavzGTBHUtGtMppvGUAy70K9RXnqNp7jJPHG3p/r6hVjDXE8Xq9aEJDmJOXzfzbFxMV5A1Ax2ouvSsMaw6Uc/pgJa1NVhZ8TrkmgotroQ2T1v9u+TVxU+J45CufGfSYC+frOHemlqXTFpA6V89Lz/2F+VmzCL2UmxIxgiTK7LwcNCEayg+Ucfun7qB6jwFjo4nbvlBA/LQpI2prZUkFsYlxzJibSk9TM6az5zGfr8PrdBI/Mwlrh5Weti4SsuKJmze735SVP+65/x6K97xHzmfuQBsZyQt/LKK528zPf/w95s+eNerrOZ1OmpqaSIiIoueCEcWrEDsrnYjEKYz+c0TFtMyMAZMNh+JxOGg6dBjT2Vq0aalMy1tJSFQkCQvnc/GAgQu73iEhcwFJK5aMeLRj2sJ0pi1Mp+18A06rY9QrKRSvl46TNbQcPUFodBQZ995DVPL4LEtXWa242xNJX7KYjsPHqX3rbaZkZzJ16cRt0Kd4vbRXnKT1eDkzZiey7Av30l7fQUJ6yrjt9zMWc6clM+f2FbScrgcgaW7qmEcBVFYr3vZWIpIS/Up4jU5JYlrOPCytXXRcaCJ18ZwJWRUzZJuAm2bqWfLQnVysOEvSXP2Y837Gw4Lpycy/5xbOHa3mTHk1KSkphIWNbSRJrdGQtnz+hG8YGUjRQO6cdJY9fDfNNRd8WxoEmwQ4AfJR+WkO7C3lmW3fJ3KIobr33j2IRqMhMSqWxBmJVB45yf2fvB1VVzdut2dEIziRMZHMXz6fE+8fJ6/gFkp3HyF2Siy5D9024vaWHyhjzrxpnHn5Vdw9VkJjoolfMJfY2TOJiI9D8XqpLzmG8cARzMZGUpZnj/jaA8nR9/6iP3mmhikJcbzyZjHf/NpGVt92k1/XczgdOLAyIzWV0EWz6Kw5g7W5EY3GRfyCuWhG+UvJYzbTbh75HLitrZ3Oj06heL3EzZtDZEoyprpG38+1s+agCo2k+UQV7dVniM9cQHjsyDeKUwHhGuioOT/ic9w2Gx0na3CYTGhTU4mdk4GtsxtbZ/eIrzEUh9OBp7kDa2gUurnzUIUZaTpSTlvVaRKy5hOmDew3b5fVSkfVRzgt3WjT9MTOSsfR1U1MTBjO9g7a2zsCev/R6PtFO5q/v8H09XtX6AVsYWObdouJCaPrbN2Y2zSetNpwbE0t2Jpagt0Un8gwFfEpOqamJhA+xj4HsDY0Y20Yh4Zdg2ITgh+Y9pEAJwDcbg8vb3+d7GWZ3HNFEu2V9u09wOz0dBKTEzlbfR63y016UgKqsDC6LFZiRrjkdMltS9nx85fY+9xOzBY7n33qc8N+K3N2d2M+W8v5I5W0NrSRu2Q6Wv0MYmfNJDJ5ar9vmiq1Gv3qFej00zj12l5qXtkzonYNZVbSVP78u79Q39HBovQ0bgqNHPN1a4/3L9ho7ayn/dK354nS3XpimCOsmBpKJ6IpH9+x8wzNFWMvZjmQK/scrJguGgJyr8FYO0/RXHZqQu8ZbFf3uwg06fPhqUM0LPv65wmLCX6isQQ4AfDmy8U0Gpv50c+/M+RwtM1qo7TkQ3Kzl5F6Kf9mesY0Qu0uIqdPpenoaSJ0I3uTLFq1mJe2/AlD8REWZqUza8XAVYvddgfm2guYzp7H1tyKSqOhrsFMSGgId/7j3xM+zGqr2IwZLP/G5/E4x7565l6Vi2f/4zkSp07hVzufJ3HqyKbTBmKz2ThVc4p58+cRGfnxa/DYHDQfPorFeBGtfgbJNy1HM06Vbnsammg6dASvy0XyiqVoZ41s2bHi9dJZfYq28kpCY2JIueVmIqeOT9kGV3cPTYcOY21uJW7ubJKW5qAKUMXpwfpc8XrpqKqmraKa8FgtKbk3E5EwPrv9Os0WmkoPY2trJ37BPKYuzkIVhOTmYBqs30XgSJ+PnFqjQROEXK6B3Fi/GSZI2eFKbivIY37WnCGPO1RyGIfdQZQ7lBmzZ/D6K2+Td/dKLI2tJGfNwm4pI2KEm+3FJsai1UVhszm5+/H7r/q509JN06HDdNf3jotGT5/G9Fvz0KXrKf7H/2LBigXDBjd91BoN6six51jc++A6fv/bP/Mf//NvTEsb254WLsWLKiyEkIhwQiM/TrwMjYwgfe2dmM5doKn0Qy4Uv820vJXoMvyvwuxxOmn+8Bhdp84QPWMa0/NvITRmdPPpySuWEDc7g4sHDNS/u48pOZdyV/yst6UoCl01p2n+8Bia8HAy1q8hZnpgCzAO1ucAKTcvJ272TC7uN2B8+29MXZJD4uJsv3O3FEXpzSU6cpyQqEhmfWItUSnjW+LiejFUv4vAkD6/PkmAEwA/2LKJmpqaYY/bt/cAM1Kn4+12ExYTTntzOzlL59P6VglRU+NwO1wj3mb/7NEacLixu93EZlwdLHRUVWNraSVl5Qp0M9MJufSP1NZt40zZaR7+VuHoXuQ4mL9wLkdOvj8hRTRjZ6UTPS2JxpIPqf/bfnSzMki55aZh96i5UvfFRhoOluJ1OJmWv5K4ef5v9hceH8fMTxTQdilJtruunum35hGZOLqRLFd3Dw0HD9HT0Ejc/Dkk37Rs1DlHgRAxJYFZ96+jtayS1hMVWOqMTF+dN+rRHKfZQsPBUqxNLSRkzidp+VLUQU6KFUJc+ya2lv0NQqPRDPuhpygKf9u7n2VLclCpVLQ0txMRGc6MS1MVfWUSRjJF5XK42PVfr5CcEIPXq1D9YfVVxzjNFiKTppKQOd8X3ACc/PAkXo+X7Lzx3w9oJCayQnhIZCSpd93KjNvy6a5v4Nxf38BSZxzRuV6Xi0bDh9TteZcwnY5ZD36C+PljL3qnUquZujibWfevQ6VWc/6NYlqOlaGMYNNCRVHoPHWGs399E0eXibR77mR6/i3XRHDTR6XRkLRsMTPvK0DxeDn3+m5ayypRvMPvw6MoCh3VNZx99S1c3T2kr1tDyi03SXAjhBgR+U0RJGfPnKe+7iIbCtZx4cJZPio/xeJbcrC3dRESGY5y6YNzJFNUB3fsxdJuYuWKdLrDwig7cIIlty3pd4zTbCFGf/XITkVJOTNmz2DKCJeTX+9UKhWxs2cSNS2ZxpIPMO59n9g5s0hZuRxN+MCjOT2NTTQcKMVtt5OSexPxC+aN++ZsEQnxzLx/HW2+0Y56ZqzOI2LKwKMdrh4rjSWH6K5vIG7ubJJvXo7mGihrMZjIxCnMfGA9rcfLaT1WhuWCkRmrcwmPjxvweKelm4aDh7A2NhG/YB7JN418o0QhhAAJcIJm3zv7CY8IJ0YVSXJ6MoePVfDVHz6GuaEV3bREHBYbwLBTVK0Xmih95X1mZiQyc2U23SkdHPjrfjxuD5pLe5EoXi/O7h7CdP2X7Xo9XqpKK8m/f1VgXuQ1LDQqCv2a2zGdOUfTB0foaWhkWv4taC8LAr0uNy1Hj9NxsoaolCTSC9Zc1YfjSaVWM3XpImL0M2g4UMq513cxdWkOiYs+zl1RFAXTmfM0fXAYtSYE/Zrb0aYFvxjfSKg1mt5k7DQ9DQcMva9v2WKmZC3s9/q6Tp2h+YOjaMLDSVt7FzEzAptLJISYnCTACZJ9ew+Qm38zLReaCYkJx+tVWLZqKVUvvkHCrBnYLVZg6Ckqxetl1y93oo2PQZ8UTfKyLDQZ3RT/djdnys4wf/l8oPfbPl7vVfuS1J48T3dXNzn5iwL3Qq9hKpWKuLmziZ6eQsPBQxjf2UfcvN7REEdHFw0HS3H1WEleuYKEzPkTtqV+ZOKU3tGcExW0Hq/AcqE3NyckPJwGwwd019UTO3smKbesGHTU6VoWlZTIrAfW03KsjJbDx7Fc6M3NUWs0NJQcoudiI3Hz5pB887WRSySEuD5JgBMEFks3hw8d5bs/+jZH/2BAm55Ixrx0EhLj6G7uIH3VErotPYSEhw65dfqJd45grDpP/p3ZxCXHEp00haipCcQnx3Pi/eO+AKevqOCVow8VJRVEx0YzM3Nm4F7sdSA0Opq0e+7sHTn48BiWuno8dgeRSVPR333HqDbkGy9qjYak5UvQpqVy8UAp51/bhSokBJVaTepdt6FLH58q78GiDgkh5ebl6NL1vaNVr76FSq1GHRqK/u47+o2kCSGEPyTACYKS/YdwudxkzZ3Hh+4D1J2rZ13h3XQ3d6B4veimJdJ2sWbI6akeUzd/+81bZOZnE+6wkrI8H+gdlVi8egllB07w8D8WolKpcFosoFJdtZS5wlBB1i3ZIy7WOJmpVCri588lesY0Wg4fJzJxCglZC8ZckmKsIqcmMuv+9bSdqMBts5F001JCRll/6FoWlZzErE/eS+uxMrwuN0krll7TuURCiOuHBDhB8N7eA8yaMxOvzYPb66XH2sPy1cswN7YCoJ2WiN1yfMg6VHtfeBOABQtn0FNXT8L8j0dhFt+6hPf+so+6mjrSF6TjNFsI08b0+7DuaO7g4pl6Ch4pCNCrvD6FxcSQesfqYDejH3WIhqQVS4LdjIBRh4SQfPPyYDdDCDHJyFf3CaYoCvv2HuCONasxnjaijgolRhfN/EVzsTS0ERmvJTQqArvFOugIzvkTZ6h49yh3PLIWy9lakpdk9tsgbu6SuURpoyjbfwIAl7mbkOgoHJ0f1+apNFSg1qjJXJkV0NcrhBBCBIMEOBOsuqqG5qYW7lizmotn6rG7nCzNX4wmRIOlsRXttKkA2M09AwY4bpeb3f+9E33WTKYl6/C43CQvy+x3jCZEQ86qRZx4/wQATosFr8NOyweHcHT0BjkVJRXMWTyHqBFuJCiEEEJcTyTAmWD79h4gKiqSFSuXUfvRBUwmC8tXLwPA3NCGdnoiwKAjOIY//42u5g7WfWMDzcerSJibQbju6uqtS25dSuP5BprrmnCazShuJ5qwcNpPHMNmslBz5CNy8m7M1VNCCCEmPwlwJth7ew+w6vZcrF09dJnMqFSwLH8JLqsde5cFXd8IjsV6VQ5Oe30rJUV/I/eh24hQK1hbOkhZPvAUU+bKTELDQzn+7hEUj5fQmBiS8vJRFIUjO4txOV1k5wdn92IhhBAi0CTAmUCmLhNHD5/gjjW3Un/GiN3tYub8mcQm6DA3tgGgnZ6I1+PF0W3rN4KjKAq7/3sn2sRYVn1mDU1HK4lIiCV25sCbvIVFhJG5Movj+44CEDtnDiEREUxZvJTqo6eZkhRHclpy4F+0EEIIEQRBC3CKi4spLi6mqKgIg8Ew5DF9//V58sknqaqqoqqqii1btkxUk8ds/z4DXq+X2+9axYWP6nB63Ky8cwUAloZWVGo1MUkJOLqv3sW44m/HqC07w7pvbEBxuWivPkfKsqwhN59bvHoxdWca6LE6iUlPByB8yhTO1XYwKyMBR3t7AF+tEEIIETxBCXCMRiMGg4GCggIKCwt5/vnnrzrGbDZjNBopKCigoKCgXxBUX1/Po48+ytatW3niiScmsuljsm/vARZkzWPa9BQqP6zCqyisuLV3eaylsY2Y5ATUIRrslh4A3xSVzWJl7wtvkHnbEmYvm09LWTUqtZqkRQuGvN/c+dNRqVRcaDSjuVSg8OKZekwdFhYun0t72XE8dnsAX7EQQggRHEHZB8dgMKC9rGyAVqvFYDCQl5fne06n01FUVEReXh5ZWVn9jn/88ccpKBj7/i2KomC1Wsd8nSvZbLZ+/wfwer289+4BNhTej9Vq5WzNeSIiwklJT8JqtdJV30xUUnzvn1t7VzopISqsVitvP/caHpeH1Z9fQ093N41Hq4ibn4FT8eAcpP2KouBsvEBqajznLnT4Xuex944RHhnOwoJb6Sk/QcuxI+gWL0Glur5nKwfqcxFY0ufBIf0+8aTPJ96Vfa4oyqjL5QQlwKmrqyMuLs73OC4uDrPZfNVxmzZtYsOGDWRlZfHiiy/6nq+oqADAZDIBUFhY6Fc7XC4X1dXVfp07ErW1tb4/n6k5R0d7J+mzZlB2vIzOLhP6uanU1NSgKArmhja8CVFUV1fTdaoBgAuNRszHK6h89xhZ962grqkeT3knbksPFl34kG0Pc9iJ6+4mIyORkpLTlB0rIywyjKP7jjBt/nTO1l0gNCqauK4OjEeO0BMTuCKSE+nyPhcTQ/o8OKTfJ570+cS7vM/DRlmb7prZybgvWLlcRUUFO3fuZOvWrTz66KPs3LkTgKeeesp3zJo1a1i3bh063ejrBYWGhjJnzhz/Gz0Im81GbW0tGRkZREZGAvBu8QG0uhgeePATlJdU4PZ6WbU2j4ULF2LvstDkcjNz0QISF2RwutnOBbWKhdlZ/PG3/8e0eanc84V7UanVnK1+B09KIvNuWTHo/RVFwXT0MMTGMid9CgcOnMJr8pA6M5XWC608/Om7WLhwYW9bjXWozp0lZdZswqZMGfe+mCgD9bkILOnz4JB+n3jS5xPvyj4/c+bMqK8RlAAnLS2t34hNV1cXen3/4oHFxcXk5+eTlZXF9u3befrppzEYDJjNZioqKnxBjk6nw2g0kpU1+h15VSoVUVGB2+guMjLSd/2S9w9x6x356HQ6jl3agG/NhruIiorCcr4RgKkZqURGReG1u4nQRlF75BTt9a18+b++RXRMDLYOE5YLDcy5744h221taMDT08OUpcvo+qiWGTNTqD5UjVqlQVEUlt22zHd+5Lz5eLst9NRUE5O/mpDr/B/v5X0uJob0eXBIv0886fOJ19fno52egiAlGefl5fmmmaA3abgv/6Yv8DGZTMTGxvY7JzY2Fr1eT35+vu95s9nsV3AzkVpb2ig7Xskda24F4OSJj9BGRxE3pff1WRraCIkMJyK+d5rIbrESHhPFoZ37mXPTAlJm91ZWbj5WRUhkOFMWDj7qpHi9mM6cImLqVFD3xq+L8nOoKq3k+HvHyMjMQJfw8WiXSqUiIWcxqpAQ2k8cQ/F6A9IHQgghxEQKSoCj1+tZv369b5n4448/7vvZhg0bMJvNFBYWYjAYKCoqoqioCICsrCyysrIwm80UFxezZcsWtm/fHoyXMCr795UAcNud+TjsTpobW0ib9fGIlbmhFW1Koi9CtVusuBSFlvONrHzwNgA8LjctZR+RtHiBb0XUQKwNDbh7eoidOx+n2QLAsjU3Y7faqThYTk7+1bsXa8LCmLJkGU6Tia6aj8btdQshhBDBErQcnMFWQe3du9f358cee2zIc8djJdVE2Lf3AIuWZDE1KZEj+4/h9SosXpnt+7mlsY2EWTN8j+3mHtqaO0meNZ2MxbMBaD95BrfdQcqywUer+kZvIpOTCYuNpetsLSGREcyYq2dqahKt9S3k5A28e3F4XBxxCxbSVX2S8Ph4olKmjdOrF0IIISbe9b02+DrgdrvZv8/A7WtWA3Cw2IBGpSYntzfQ8Lo9dDd3oJ0+1XdOV0snXW0mbnnoNt+oTtPRKuJm6YmIj736Jpf01NfjsdnQzZ0HgMtiIVSnRaVScdPdN5E4PZHUefpBz49JzyAyJYWOinLcPT1jfu1CCCFEsEiAE2DHj5RjNpm5Y82tKIrCCUM54SGh6Of2BhrdLR0oXi+6aYm+c1oa2omIjiBz9WIALA0tdDe2kLI8e8B7ACgeD+azp4maNp0wbW+OjdPcTZiuN69n/cZ7+d5vfzBkopZKpSIhexGasDDaThxD8XjG/PqFEEKIYLhmlolPVvv27idhSjyLlmRxsbaRzvYuUpOT0V5KKLY0XKpBdSnAMbebsHTbyF61CE2IBoDmo1WE6WKIn5M26H26jXV47HZ0c+b6nnOaLcToe6e+NCEaIkOGXyGlDg1lytJlNJca6Kw+SUK2FOT0h6IoWC9exHzu7KRN3FYUL1OcLjo/6KLrOt8o8noynv2uCQ8jbmEW4ZftSxZM9vY2uj6qxutyB7sp/ch7feTUoaFMvelmNKPcsyYQJMAJsH17D3DbnfloNBqO7j+GWq1iXvZs38/Nja1ExGkJjYoA4MO/HkAFLMjtzbVx2ey0nTxN6qoVqNQD/8PyejyYz54lakYqoTExAHgcTjwOh28EZzTCdLHEZ2bRWVlBeEIC0dNnDH+S8PE4HHRWVmBraSYyOYWQ6OjhT7oOuVwuLO3tRE+ZQmhoaLCbc8MYz363t7XRcsiAbtZsdHPmDvo7JtC8Hg+mmo/ovlBLeHwCEYlThz9pAsl7feTUoaGoNZpgNwOQACegmptaqK6q4avf/BIARw4cJzI8gvT56b5jLA2t6Kb3jt447U6O7/mAqPBQdEnxALSW16B4FZKWDF53qvtCLV6Xk9jLR28svSuo/AlwAKJT9Tg6OuisrCBMF+sLnMTQrE2NdFZWAjBl6bJJnaxttVqpczhJmzVb9gaZQOPZ78pcL+azZzCfPYOttYWERUsI007sruaOrk46ysvw2GzELcwkJj3Drz1PAkne69cnGWsLoAP7DKjVam69PR9rj42qoyfReCF1bqrvGHNDG9ppvd9Wyt85jNPmICo8lAhtFIqi0HS0iikLZxMWPfA/Kq/bjeXcWaJT9YRc9g+vb4l4mNa/wESlUhGflY0mIpK240fxSj7OkLwuF+1lJ2g/fozw+HhSVt86qYMbMTmo1Gpi584jOTcfxeulueRg77SqogT83orXi+lUDS2lBtQhISTnr0abMfOaC27E9UsCnADav8/AshWLiYuPpexQBR63h4iQUFLn9CYYu6x27F0WtNMT8Xq8fPDqAdKzZhKiUROhjcJ84SL2ThMpywdfGm6pPY/X7UE3u//mf06zBU14GJrwcL/brw4JIXHpMjw2G51VlX5fZ7Kzt7XSdHA/tpZmEnIWM2XZ8jH1uxATLSw2lpS8VWgz0jHVfETLB6UBXUnptJhpNpRgPncW3dx5JN2SJ6PEYtxJgBMgLpcbw8EPuePS8vCjB44RlxBLZGQESfokoHf/GwDd9KmcOlRFZ2M7c5b2TjNFaKNoKa8hIiEWbWrKgPfwulxYzp8jJi3tqhILLks3oeMw1Byq1RKflY31Yj3d9cYxX28y8brddFZV0nr4Q0Kio0lZdSvRqanyDVRcl1QaDXELMpm68hY8djtNJQforrswrqM5iqJgPnuW5pISFMVLcm4+sUHM/RGTm+TgBMhHVaew9li5/dLy8KMHjjMlMZ7k+HjUmt5/zObGNlRqNTFJCRz6eRFp2bOIio4kLCocxeOh/aNzpOYtG/QD03L+HHi96GbPvupnTrPF7/ybK0XPSMXR0UFXVSVhuljC/ChsOtk4Ojt68wbsduIys4hJS5fARkwKEQlTSFl1K10fVdNZVYmtuZn4nEWERESM6bqunh46KspwdnainTmL2LnzUF0jyahicpKwOUCOfljG1KREMrPnc77mAh0tnYR4VaTO+Tj/xtLQSkxyAg2njdRXX+CWDbdit1iJ0EbT/tE5vC43U3PmDXh9j9OJpfY8MekZaMKv/sUzngEOQFxmFiHR0bSfOIbXfW0t4ZxIisdDV81HtBwqRR0WRvKq1WivwaRIIcZCHRJCQnYOictvwmkx03TgfXoaLvo1mqMoCt0XLtBccgCP3UHSylziFiyU4EYEnAQ4AXLscBm33pGHSqXi6IFjRERF0NNmZsZlCcaWxja00xI5tHM/CTOmMvfmhb0Bji6KlooaYjNmEB47cJBiOXcWAO2sq0dvvC43bpttXFdDqDUapixdhsfeuwR6IpIQrzVOs5nm0hIs588RO28+SStzCY2WvAExeUUmJZGy6lYipybRUXaC9hPH8TidIz7fbbPRduRDOk9WEjV9BimrVhOekBDAFgvxMQlwAsBYd5GLxkZuvaO36vnRA8eZnzMXr8fr28FYURTMjW2ooyKpKa1k5YOrUanV2M09hEaEYb7QwNSc+QNe3+Ow032hFm3GzAE3UxrrEvHBhEbHkJCTg7WxgbYjH2I6fQpbSzMeu31c73OtUby9S2mbDQcBSM5bhW72HMkbEDeE3mK8S5myZCmO9jaaDvQm1A9FURR6Ll6k6eB+XBYLiStuIiE7B3WIZEWIiSPvtgA4sM+ARqMhd9VNmLss1JSdYu2Dd9F6sp4Zs3tHcOydFtw2B+dP1RMZE8Wiu1b0Pm+xEhaqQh0ewpQFswa8vvnsWVCr0c4c+Oe+JeLjHOAARE2bjtflxtrUeGn/HRcA6vDw3vyc2Fjf/zVjnLO/Frh6eugoP4GzqwvtrNm9CZEytC5uQFHTphMen0BHZTltR48QnaonbsFC1FdsfOdxOC7l7jQRNW06cZlZ18SutuLGIwFOAJTsP8TC7HnEaGM48l5v9fCosHASpycSEd37oW9ubMXt8XLqSA23PHQboeG9vyTsFiuqUIUpS3LQhF29Y6bbZqO7ro7YOXOu+sXSx2mxoA4NRRMRmKXKMWlpxKSloSgKHpsNp9mE02TCZTYNGfSExsaiCQ+/LvJVFEWhu+4Cpo+q0UREkHRLLuHxMrQubmyaiAgSl99ET72RruqT2NvbSMhZTMSUKQDYmpvpqCwHRWHKkmVETZO9oETwSIATAGsK7sDj7f2QP7L/GDMXZNDR2N6vkreloY3OHider8KKT+T7nreZuomMDSdpkOkp89kzqEM0xGTMHPT+TrOFMG1MwAMJlUpFSFQUIVFRvk3tFEXBY7f7Ah6nyUR33QW8l+bt1WHhhMXqfAFPmFY3LlM9XocDtceD1+HAM8bred0uOk+exNHeRkxaOrHzF8jQuhCXqFQqYvRpRExJpKO8jNYPDxGTMRPF5aLnYj0RU5NIyMkZcPGDEBNJfmsHwIOf/gTV1dV4PV6OlZSx9lNrKNt9mDsevtN3TFd9C61dVhbdtZzouEv1o1xu3A4XEdo4dOnTr7qu22qlp95I7Lz5Q37guszdhAZgemokVCoVIZGRvfvypPTu3+MLeswmXCYTTrOJbmMd3rMjT1YciUSgs72VznG4liY8gqkrbiZi6rVVE0eIa0VIVBRTV95Cd+15uk7V9O5+nr1I9oIS1wwJcALo7MlzWLoszM+Zg6HoPVLnfjyCc67sLE6Hi5UP3up7rqfTDEDCnLQBf0GYzpxGHRZGTHrGkPd1Wizopg59zETqF/Qk9w96XN3doIy92rbD4cBoNKLX6wkf8y7CKsLj4wedAhRC9FKpVGhnziIyOQWVWj0p8u7E5CEBTgAdLylDGxtDeGhvgl3fHjgel5u62mZmzJ5O4qVdjQFaKs8AkJQ956prubq7sV6sJ25h5pCVWr0eD67unoAkGI+nfkHPOFCsVpwtrYRNSSRSiuEJMaFC5N+cuAbJOtcAOmEoZ2neYhrOXiRSG0VCSm+S6sn3jmF3ull+b26/4/sCnLjU5KuuZT5zGk1EBDH6tCHv6bJ0A/4X2RRCCCEmAwlwAsTS1c35mgssX72U+jP1pM75eF768OsGIsNDmL96se94p6UH08XevSUidNH9ruW0mLE2NqCbPfwS5UDtgSOEEEJcT8YU4Lzwwgt861vfAqC0tJTu7u7xaNOkcKb8HCqVimWrllB/2uibnmo+30DD2YvMmDGF8OiPp2daK0/h9YI6RENIeP/cD/PpU2gio4hOTWU4TnM3Ko1GhoyFEELc0PwOcLZu3YpOpyMvLw+A3NxcDAbDuDXsenem/CxzsmYRHhFOa30rqZdKNHzw1/2ER4SRkZXuO1ZRFFrKawiN1RGpi+6XYOw0mbA1NxM7d2QVdydqibgQQghxLfM7wMnJyeHhhx9Gr9cPf/ANxu1yc7ayliX5i7l4trdAXepcPZZ2E5XvnSBlqpbYGR/n2fQ0tmJr6yQkJpoIXf+RF9PpGkKio4maPmNE93aaLUFbIi6EEEJcK/wOcOrr6696rqKiYkyNmSxqyk7jtDtZmreI+tNG1Bo10zKmcfgNAyGhIehC1WinJ/qObymvITQmCgU14TEfBzjWpkbsra3Ezpk34hEZl8UyrkU2hRBCiOuR38vEMzMz2bBhA/Hx8RgMBgwGA5s2bRrPtl23ThjKiImNJn1eGmXvHic5LQXF6+XYrlIW3pKJqr4B3bTeDeS8bg9tJ0+TtHghLaU1RMfrgN5ApaO8jMiUFCJHuN254vXitHRLgrEQQogbnt8jOLm5uWzbto2FCxeiKArPPPMMubm5w594A6g7U8/8ZXNRq9VcPF2Pfm4qZe8cxmF1MCszHZVaTUxy75LxzjMXcNscJC2aj91sJUIXhdflou3YUUIio0jIWTzy0ZvuHlAUCXCEEELc8Ma00Z9er5dRmwF845mvcL72HF6vl4tnL7Jo9WI+ePUAmasX4e2xEpMUjzqkd7l3S3kN0SlTiZqagN1iJTwmkvayE3icDpLzVo2qBpJvibjsgSOEEOIG5/cIzkMPPcTbb789nm2ZNLSxMYSGhdLe0I7D5kBxuelq6uCWDbdhaWxDO713esrVY6PrbB1Ji+ajeBUc3Vaw92BvbWHKkqWERkcPc6f+nGYLqFSExozuPCGEEGKy8XsEp7CwkHvuuaffc6WlpTJNdZmGcxcBqDt2mrScWaTMmUFZYxtJmbMAaK06DUBi1hwcPTYUr4LH3EHszbcQOTVp0OsOxmnu7l0iPg7VuYUQQlz/FEXB7Xbj8XiC3ZQRCQ0NRTPMhrYj5XeAo1Kp+NGPfkRaWhp6vR6TyURxcbEEOJdpONNAdGw0LecaKPzRRuxdFtw2B9ppvSuoWstriJ+bTmhUJKYzdQDETEtCO2u2X/dzWiySfyOEEAIAp9NJY2MjVqs12E0ZMZVKRWpqKupx+KLud4Dz3HPPkZubS2dnJ52dnQB0dXWNuUGTScO5i4SHhjIlZQpzblpAS3UtANrpifS0tNPT3IZ+9Qq8LhfNR48DkLRkkd+b9LnMFqKmpYxX84UQQlynvF4v58+fR6PRMH36dMLCwq75DWAVRaG1tZX6+npSR7Bz/3D8DnA2b9581WhNaWnpmBs0mdSfrsfb7WDlV29FpVZjaWglJCKMyHgdF94tJSQqgtjZetrLTmC39EbYkXH+jcAoioLTYiFu/tzxfAlCCCGuQ06nE6/Xi16vJ+o6Kt0zdepUamtrcblcY76W3wFObm4u3d3d7N69G4B169bJ9NRl7D12zO1mUhLjyLlzOQDmxrbe6SlFobXyFFOz5tJ9/jz2lmbCpqaA6hThMZHDXHlgbqsVxeMlTCcrqIQQQvQaj6meiTSeo0x+v3Kj0cgjjzzCwYMHOXjwIBs2bKC6unrcGna9aznXBMCyu28i9FLxTEtDK9ppU+k8a8TVY0OXmoj5zCl0c+fhIYSImCi/34xOs1QRF0IIIfr4PYLz9ttvs3Pnzn7P/fznP2fhwoVjbtRkcO6D06iA2z53NwBej4fulg7S8xfTWlFD5JQ4rPW1RCYlo5s9B3vpWcK1/g8j9gU4oTEygiOEEGL0DAYDxcXFAOTl5VFQUDDosVVVVWzduhWj0cjevXsHPe7pp59m9+7dbNu2zVece6L4PYIzUAJQdnb2mBozWbhdbppON6KN16JLiAWgu7kDxeMlakosHafOE6kLIyQigoRFvTsV2y02IsYU4HQTGhONepyW1wkhhLixbNy4kU2bNlFQUIBOpxvy2KysLB577LFhr7l58+agFeX2ewTHaDRe9dxABThvRB8dqMDhcJK5Yr7vOUtjGwCOLhOKx0ukLoLEZStQh/ZOX9ktPUTq/N+gzylFNoUQQvipqqoKvV6PTqcb8UhLbGxsgFs1Nn4HOHl5efz93/89WVlZAFJs8zI1hgrcXoVZiz7ez8bS0EZEnJa28moidBEk3bSi33SS3WwlZpb/bxaX2ULk1MThDxRCCCEGMNyozfVmTNXEf/zjH1NUVATAM888Q2Zm5rg17HqWs/ZmDO8dZ/rs6b7nzA2tROqisLWbSL0lm8jk5H7n2C1WIrT+jeAoioLTbEE3O2MszRZCCHEDqqqqoqioCKPRyPPPP49er/fl3/Q9ht6Zm5FMSz3//PPodLqgj/D4HeBYLBbefvttvvKVrxATE0NpaSnd3d3EjDDJtS+RyWQyodfrBxwS6zumT1+Hj+TcYDJ39Sb8Tpt5eYDTQlgohIVqmHHrLVedY7f0EKHzLwfHY7fjdbtlikoIIcSoZWVlUVhYiMFg6BfAPPnkk3zmM5/xfcYajUY2btzI9u3bB73Wli1bSEtLo7CwEACz2cw3v/nNwL6AQfidZLx7927fDsbQuy+OwWAY0blGoxGDwUBBQQGFhYU8//zzVx1jNpsxGo0UFBRQUFDgu/ZIzg22hnMNaKdoiby0p43D0oO9qxvF7SExay6aS3k3fVx2Jx6n2+8kY6e5G5Al4kIIIcZHVVUVpaWl/QYQ+soyDfZZbzabeeGFF3zBDfROe/Wlskw0v0dw4uLiePjhh/0612AwoL1stEGr1WIwGPp1pE6no6ioiLy8PLKysnzHj+TckVIUJSA1OupP15MwYwo2mw1FUWjc3/tmUKEQu2DmVffsaTf1/jxM41d7utt6E5jdIf6dPxnYbLZ+/xeBJ30eHNLvE+967HOHw4HX68Xj8Yyo0KbX6wXwHVteXk5qaupV586YMYODBw+ycuXKq845ePAgOp3uqnMURRlxOzweD16vF7vdDnzc54qijHoTQL8DnPLycvLy8vpNSVVUVFxVYXwgdXV1xMXF+R7HxcVhNpuvOm7Tpk1s2LCBrKwsXnzxxVGdOxIulysgmxOmzE9Bm6ijtraWqJ5u7PXNAIToIrnQ1YbK1N7veGtTFwANbc10VdtHfb+QplZCQkKoOX16zG2/3tXW1ga7CTcc6fPgkH6feNdbn4eEhOBwOEZ0rMPhQFEUX2DR0dHRL9Do4/V6cbvd2O32q85xuVzodLoBz3G5XFc9P1g73G43DQ0NQP8+DwsLG9Fr6eN3gFNYWMiDDz5IWloaWq2WkydP8uMf/9jfy2Eyma56rqKigp07d7J161YeffTRqzYWHOrckQgNDWXOnDl+nTuUjIwMamtr0cfF4WhpwuINQROiJmVpFikDJGI3uM9xCliQk0l0wuiz2Fs7LbjjY5l5A2+yaLPZqK2tJSMjg8hI/8pdiNGRPg8O6feJdz32ucPhoKGhgfDwcCIiIoY9Pjw8HJVK5Tv21ltv5cUXX7zq3IaGBu69914iIiKuOmfx4sXU19dfdY5arSY0NHRE7YDewCwpKYmGhgZfn585c2ZE5/a7zqjPuESv17Nz5052796NxWJh06ZNI67+mZaW1m/Upaur66qNgIqLi8nPzycrK4vt27fz9NNPYzAYRnTuSKlUqoAVIdO43TjPnSFi6lSsx5vRaFTMWJZF+AD3U5y9w3bxSYmEhI3+r8RjtREZH3ddFVQLlMjISOmHCSZ9HhzS7xPveupztVqNWq1Go9GgGcEGsH1lgvqOzcnJITc3lw8++MCXAlJVVYVKpWL9+vUDnpORkUFhYSF/+ctf+iUZnzx5kp6enhG1Q6PRoFarfcFQX5/7U6PK7yTjrVu3UlxczLp16ygpKWHr1q28/fbbIzo3Ly+PiooK3+P6+npfB/YFLyaTqd8Ss7y8PGJjY4c891qheNzEmrpQhYaSsGgJPW1dRE+NIzx24CRgu8VKaESYX8ENgMtiIVQSjIUQQvihqqqKX/3qVxiNRrZs2UJVVRUAzz77LCUlJRQVFVFUVMSuXbt8MylXntNn8+bNmM1miouLMRgMVFZWkpWVxXPPPTfihUjjxe8RnJycHNauXcuvf/1rsrKy+Pa3v82f//znEZ2r1+tZv349xcXFmEwmHn/8cd/PNmzYwM6dO30rpCorK4HeHRP7MrEHO/da0XPuHGqvB23WMiyNbSgeL4kLZw16vN3c43cdKo/DgcfhJEwrNaiEEEKMXlZWFs8+++yAP3vqqadGfc6Ve+UMll4SaH4HOH07Hu7atYuf/OQnwOi2bR6siNflRbsG21BoqAJg14JQnY4mq5Wp0dGc33cAgOkrBq/T1bvJn79LxKWKuBBCCHGlMdeiMhqNLFy4EKPR6PdqpskmPDkFV0cniqLQVlOLWqMmJjlh0OPtFisRftahclou7YEjm/wJIYQQPn7n4Kxbt46qqipeeeUVLBYLRUVFEuBcoaehBYfFSkxywpAJUnbz2EZwNBHhaMJHt3xOCCGEmMz8HsHRarV8+ctf9j2WQptX6zh5Fq+iIi5j+pDHObqtRGhHtgLtSk6zVBEXQgghruT3CM7lvvWtb43HZSYVxeOhs+Y8HpcH3fSpQx5rM/tfh8ppthCmkwRjIYQQ4nLjEuD05eOIj3mbO3HZnCiKgnZa4uDHuT04e+x+T1G5LBZCZQRHCCGE6GdcAhxxNc/FNkIuLd3WDjGC4+jprbMRoR19krHX5cJts8sKKiGEEOIK4xLgjGZ5+I3A2d2D0m4mJDqaiNgYwqIG357aZu4tjunPFJVUERdCCCEG5neS8eV+85vfjMdlJo3O6nOgVuF2e9BOH3x6Cno3+QP8mqJyWi7tgSNTVEIIIa4DxcXFQG+1Ar1eH9BKBOM6RTXSUg2TXbexCXVyAtaWrmETjB3dl0Zw/JiicpotqEND0USE+9VOIYQQNw5FUfC63QH5T1GUYe9vNBoxGAwUFBT4qhUE0riM4AB0d3dTUVHBPffcM16XvG6l3ZNPTc0p7GV1aKcNt4LKikqjJixq9EFK7woqrV9FyIQQQtw4FEWh5VApzq7OgFw/LD6epJW5Q34eGQwGtJfNOGi1WgwGQ8BGcUYc4GzYsIHq6upBf64oCiqVim9/+9vj0rDrWWhMFJ7u3uRh3QimqCK0/lVKdVoskn8jhBBiZIL8Xbiuro64uDjf47i4uIBuEDziAKev3lRmZuagx2zdunXsLZokXJ09qNQqooco0QB9m/z5vwdO5NShAyghhBBCpVKRtDIXxeMJzPU1Gr++qJtMpgC0pteIc3AyMzOpr68f8pj8/PwxN2iycHf1EJUYhyZk6BjSZvavDpXX7cHdY5URHCGEECOiUqlQh4QE5L+RBDdpaWn9Hnd1daHX6wP1ckcW4FgsFh566KFh58lyc3PHpVGTgbuzm+iUKcMeZ7dYiYgZ/QiOq1uWiAshhLh+5OXlUVFR4XtcX18f/FVUlZWVbNu2jZiYj0sCvPzyy1cdJ6uoeimKgqurh5iUoaenABwWq5974FxaIi4BjhBCiOuAXq9n/fr1FBcXU1RUxOOPPx7Q+40oByc7O5sf/OAHLFq0CJ1OB/SuZb8yOchgMMgqKsBh7kFxuolJGT4/pi/JeLScZgsqjYaQyEh/miiEEEJMuIKCggm714hGcLRaLT/5yU9ITU3FZDJhMplQFOWq/zo7A7P87HrT09QOQPQwIziKovROUfkZ4MgScSGEEGJgI15FpdVqWbt2re9xXl7eVSuqAjmXdj3pbmpHFaohIm7o6SOXzYHX4/UrydhpscgOxkIIIcQg/N7JeKDl4kMtIb+RdDe1ExIXPezoir2vDpXfIzgxwx8ohBBC3IBGNIJjsVjYsmULsbGxrF+/noULFwa6Xdc1p8VG6JThR1dsFv/qUCleL67uHkIlwVgIIYQY0IgCHK1Wy+bNmwH485//zEsvvUR6ejqFhYX9VlaJXpmFazhz/uywxzksfZXERzdF5eruAUWRKSohhBBiEKOuRfXwww/z8MMPY7FY2LFjB0ajkfz8fFk9dZlwbRTq0OG71jdFFTO6lVCyRFwIIYQYmt/FNrVaLV/+8pcBOHnyJFu3bkWlUpGXlycb/o2QzdJDWFQE6hDNqM5zmi2gVhMa7V+JByGEEGKimc1mioqKAHjssccCfr9xqSaemZnpSzDes2cPTz/9NOnp6XzpS18aj8tPWn5v8mexEBYTjUrtd464EEKIG4yiKCjuANWiChm+FpXBYKCrq6tfwc1AGpcA53Jr165l7dq1WCyW8b70pGM3W4nQ+rFE3CxVxIUQQoycoijUvvU2tpbWgFw/MmkqGffeM2SQU1BQgMlkCmgF8cv5PQRweeFNi8XCnj17+j2nlQTYYdn83eTP0i0BjhBCCDEEv0dwSktL+fSnPw18vAngyy+/7HtODM9hsRKvTxrVOYrXi8tsIWzB3AC1SgghxGSjUqnIuPeeoE5RTbRRBTgWi4Xdu3ejUqkoKSm56ueVlZUS4IyCP3Wo3FYbitdLqIyQCSGEGAWVSoVqBCt8J4tRvVKtVktubi7PP/88dXV1pKam9vt536oqMTL+1KGSJeJCCCHE8EYdyun1ejZv3kxpaaksBx8Dt9ONy+4c9SZ/TosFVCrCYkafnCyEEEIEi8FgoKSkBIvFgl6vD3hlcb/HqkpKSqivr2fdunV885vfRKvVsn79etnwb4R8uxj7MYITGh2NSjO6vXOEEEKIYMrLy5vQotx+r6LKycnh05/+NDt27GDhwoX853/+J11dXePYtMnN3zpUUmRTCCGEGJ7fAY5OpwNg9+7d3HvvvQDExsaOT6tuAP7WoZI9cIQQQojh+T1FZTQaff9fuHAhRqNxwjbvmQx8dahGMYKjKApOSzdxc2YFqllCCCHEpOD3CM66des4efIkO3fuxGKxUFRUJAHOKNgsPWhCQwgJDx3xOR6bHcXtlhEcIYQQYhh+BzharRZFUdi6dStarZb8/HwKCwvHs22TWl8dqtFsjNS3RDxUAhwhhBBiSH4HOFu3bkWn0/kyonNzczEYDOPWsMnOnzpUzkv1vcK0kmQshBBCDMXvHJycnBzWrl1LaWnpeLbnhuHvJn8hUVGoQ26cnSiFEEJMHsXFxZhMJqqqqigoKAjosnG/PykvL6zZp6KiQvbBGSG7xUr0FN2ozpEl4kIIIa5XVVVVABQWFmI2m7nrrrs4fPhwwO7n9xRVZmYmGzZs4IUXXuDnP/85Dz300KgiseLiYoqLiykqKhp0auvJJ58cMHH5ySefpKqqiqqqKrZs2eLvSwgqf+pQOS0WwqQGlRBCCD8oioLH6QrIf4qiDHt/k8nk+7zX6XTExsb6gp5A8HsEJzc3l23btlFUVISiKDzzzDNkZmaO6Fyj0YjBYGDz5s0AbNy48argyGg0smfPHt8UmNlsZtOmTTz22GPU19fz6KOPkp2dzbZt2/x9CUHl3xRVN7r0tAC1SAghxGSlKAqVv3sVS31TQK6vTU0h+5FPDrlw5sqdjE0mE1lZWQFpD4xxikqv17Np0yYsFgsGgwGdTndVAc6BGAwGtJeNRGi1WgwGQ78XbjQaOXz4sG9DwaKiIt8qrccff3xcalgoioLVah3zda5ks9n6/f9KXq8XR7cNdUToiO/vcTjxOp0o4WEBafP1brg+F+NP+jw4pN8n3vXY5w6HA6/Xi8fjwePxoCgKCsOPsvhLQcHj8Yx4ZfCPfvQjfvzjH+PxePo97/F48Hq92O124OM+VxRlVKuOYQwBTmlpKZ/+9KeB3gBl7dq1vPzyy77nhlJXV0dcXJzvcVxc3FVTUZcHO0VFRaxbt873uKKiAuiN/gC/l6e7XC6qq6v9OnckamtrB3zebXOiKAqtXe24Rnh/ldVGBGBsbUXpsYxfIyeZwfpcBI70eXBIv0+8663PQ0JCcDgcvsezHroHr9sdkHupr7jXUPbu3ctNN93Ebbfd5gtk+jgcDtxuNw0NDUD/Pg8LCxtVm0YV4FgsFnbv3o1KpaKkpOSqn1dWVo4owBlIX7Bypb4dkvtGcgCeeuop35/XrFnDunXr+v18pEJDQ5kzZ87oGzsMm81GbW0tGRkZREZGXvVzU2M7lcDsBfNImjf8iBdAd62RttO1zFuUjTp05JsD3iiG63Mx/qTPg0P6feJdj33ucDhoaGggPDyciIiIYDfHx2AwkJCQQF5eHidPnkSr1aLX6/sdExISQlJSEg0NDb4+P3PmzKjvNaoAR6vVkpuby/PPP09dXd1V01Ff/vKXR3SdtLS0fiM2XV1dV73APjt27CA/P9/3uLi4mIqKCl+Qo9PpMBqNfs3jqVQqoqJGlwczGpGRkQNe3+xqBSAuKWHE9+9xONBEhBMj9b6GNFifi8CRPg8O6feJdz31uVqtRq1Wo9Fo0Gg0wW4O0Dtg8U//9E++x2azmZqamn7HaDQa1Gq1Lyjr6/PRTk+BH1NUer2ezZs3U1paSm5u7qhvCL3TT5evfqqvr/dNSV05WrNnzx4+85nP9Lv/5T83m80BTVIKBLtl9HWopMimEEKI65lerw/osvArjWkVlb/0ej3r16/3bfjz+OOP+362YcMGdu7c6Qti+paS9cnKyvItMa+oqGD79u1+tyNY7OYeVCoV4dEjH+p0WrplibgQQggxQkHbEnewVVB79+7t93jnzp2DnjseK6mCwW6xEq6NRKUeXR2qmBnTAtgqIYQQYvLwe6M/4b/ePXBGXofK43TisdtlikoIIYQYIQlwgqC30OYo8m8s3QCEyhSVEEIIMSIS4ATBaHcxdpkvVRGXERwhhBBiRCTACQK7pYcI3ehWUKnDQtGEj26TIyGEEOJGJQFOEIx+iqq3yKY/+wAIIYQQN6KgraK6USmKMuokY9kDRwghxGRQXFyMXq+nsrIS8L/U0khIgDPB3A4XHpd7dFNUlm6ikpMC2CohhBCTnaIoeJyugFxbExY67CyD2WzmueeeY+fOnej1em666SYJcCYTu7kHGPkuxl63G3ePVTb5E0II4TdFUTBse4nO8w0BuX78zBnkffMzQwY5Op3Ot7ed0WjsV1Q7ECTAmWAfl2kY2RSVb4m4TFEJIYQYk2sjj7OoqIiSkhK2bdsW0PtIgDPBfAHOCKeoPl4iHhOwNgkhhJjcVCoVed/8TFCnqPoUFhai1+vZunUrmzdvDkh7QFZRTbjRTlE5LRZUIRpCIkdet0oIIYS4kkqlIiQ8LCD/jTS4MZvNQG/R7d27d2MwGAL2eiXAmWB2i5XQiDA0oSMbPHOau2WJuBBCiOteUVERv/rVr3yPY2Nj+xXTHm8yRTXB7BYrETpZIi6EEOLGsm7dOgwGAwaDgZKSEgoLC8nKygrY/STAmWB2c8/oNvkzW9DNTAtgi4QQQojA0+l0FBQUAAR8BRXIFNWEs1tsIw5wFI8HV0+PLBEXQgghRkkCnAnWW4dqZFNU1pZWUBSZohJCCCFGSQKcCdZbpmH4FVFuq42L75cQmTSVqBTZxVgIIYQYDQlwJlhvoc2hR3AUr5f6fQdAUUi9czUqtfw1CSGEEKMhn5wTyOv24LTah93kr/nDo1hbWkm981ZCo0aekCyEEEKIXhLgTCB7tw0YepO/rjPn6DhZQ8otK6TAphBCCOEnCXAm0Me7GA88RWVr76Cx5ANi584ifsG8iWyaEEIIMWGKi4sDuosxSIAzoYaqQ+W2O6h/933C42KZlnuz7FwshBBiUjKbzTz33HO+sg2BIhv9TaCPK4n3D3AUr5eL7x3E63aTvv5u1CHy1yKEEGJ8KYqC2xGYYpsh4SMvtrl7927WrVsXkHZcTj5JJ5Dd3INaoyY0Mrzf8y1Hy+hpbCJ97V2ExUjVcCGEEONLURTe/PF2Wk4bA3L95Hl67n1647BBTlVVFXl5eRQXFwekHZeTKaoJ1FeH6vI3gPn8BdorqkhasZTo6SlBbJ0QQojJ7FrIfDAajej1+gm5l4zgTKDeTf4+np5ydHZx8UApupnpTMleGMSWCSGEmMxUKhX3Pr0xqFNUzz//PHq9nuLiYioqKnzBTqAKbkqAM4F6N/nrDXA8TifGd98nTBvD9FW5klQshBAioFQqFaERYUG7/2OPPeb7c0VFBTk5OQGtJi5TVBOorw6VoihcfL8Et92O/q7bUIdKnCmEEOLGYDAYKC0tZdeuXRiNgckJAhnBmVB2i5X41Km0naig23gR/d23SyFNIYQQN5S8vDx27twZ8PvICM4EslusqLweWo+XM3XpIrT61GA3SQghhJiUJMCZIIqiYDdbsTVcJCYtlcQlOcFukhBCCDFpSYAzQeymbhSvl4iYSGbcmidJxUIIIUQASYAzARRFoe693pob029ZjiYseFnsQgghxI1AApwJ0F5ZTde53kxx3QypEC6EEEIEmgQ4Adbd0EjLkeNEzJgBXF2HSgghhBDjT5aJB5C7x0rjvoNET0vBHhYHQHiMBDhCCCFEoMkITqB4vbQcPIQ6NIQZt6/C3m0jPCYStUa6XAghxI3pySefpKqqiqqqKrZs2RLQe8kITgAoikJofRMus4WMTxQQEhF+VR0qIYQQYiIpioIrQLWoQkdQiwqgvr6eRx99lOzsbLZt2xaQtvSRACcAus+eJ6TTxJRbVhA5JQG4utCmEEIIMVEUReG3m/6b+uoLAbl+amYGX9zytWGDnMcff5yCgoKAtOFKQQtwiouLATCZTOj1evLy8q465sknn+QnP/kJOp1u1OcGk9NkxpU0hZiMNN9zdnNvHSohhBAiKK6B/dcqKiqA3s9vgMLCwoDdKygBjtFoxGAwsHnzZgA2btx4VZBiNBrZs2cPpaWlAJjNZjZt2kRBQcGw5wbblOVLaKmu7vec3WIlIS05SC0SQghxI1OpVHxxy9eCPkX11FNP+f68Zs0a1q1bd9UgxngJSoBjMBjQaj8uMqnVajEYDP0CFaPRyOHDh30vvKioiMLCQoqKioY9d6QURcFqtY7hlQzMZrP1+z+AzdRDSGRYQO4nBu5zEVjS58Eh/T7xrsc+dzgceL1ePB4PHo/H97wmVBOQ+3m93mGP2bNnD5WVlXz7298Gej+/L1y4QGZmpu8Yj8eD1+vFbrcDH/e5oiijrgAQlACnrq6OuLg43+O4uDjMZnO/Yy4PWIqKili3bt2Izx0pl8tF9RUjLeOptrbW92ebuZsuqyWg9xP9+1xMDOnz4JB+n3jXW5+HhITgcDiC3QyfpKQkVqxY4QtezGYzs2bN8j2G3sDM7XbT0NAA9O/zsFFWAbhmkoz75uOuZDQaMZvNQw5hDXbucEJDQ5kzZ45f5w7FZrNRW1tLRkYGkZGRuJ0uTrg8pM3OYObCheN+P3F1n4vAkz4PDun3iXc99rnD4aChoYHw8HAiIiKC3RwAli5dyp49e3j//feprKzk17/+9YBtCwkJISkpiYaGBl+fnzlzZtT3C0qAk5aW1m/UpaurC71eP+CxO3bsID8/369zh6NSqYiKCtzKpsjISKKioui29QZgsYnxAb2f+LjPxcSRPg8O6feJdz31uVqtRq1Wo9Fo0GgCMy3lj/Xr1/f7/5U0Gg1qtdoX+PT1uT8FqoOy61xeXp4vkxp618X3TUldOd20Z8+efgHMUOdeq+zm3rybCN318Q9DCCGEuN4FZQRHr9ezfv16iouLMZlMPP74476fbdiwgZ07d/qmpHQ6HbGxsSM691plt/QGOFKmQQghhJgYQcvBGWyjn7179/Z7vHPnzhGfe62yW3oAiJR9cIQQQogJIYWRJoDdbCUkPJSQ8NBgN0UIIYS4IUiAMwHsFqtMTwkhhBATSAKcCWC39BApCcZCCCHEhLlm9sGZzOxmKxFayb8RQgghnn/+ed/q6EDm1MoIzgSwW6yESyVxIYQQN7iNGzdSWFhIQUEBzz33XEDvJSM4E8BusZI4a3qwmyGEEOIGpigKTrszINcOiwgbdjO+qqoqXy3JqqqqAVdJjycJcCaA3dxDpIzgCCGECBJFUdj6lS2cqzgbkOvPXjSbb//vU0MGOZWVldTX12M0GgF4+umn2bx5c0DaAzJFFXBerxdHj02mqIQQQgSVH9UOxpXZbCY2NpasrCyysrKorKykqqoqYPeTEZwAc3TbQIEI2eRPCCFEkKhUKr79v08FdYpKr9f3K70UGxuL0WgkKysrIG2SACfA+upQyRSVEEKIYFKpVIRHhgft/nl5eRQVFfkeG43GgNaSlAAnwHx1qCTAEUIIcQPT6XQUFhZSVFSE2Wxm06ZNvrqTgSABToBJHSohhBCi10TWkpQk4wCzm62o1CrCoiKC3RQhhBDihiEBToD11aFSqYOcvi6EEELcQCTACTC7pYcIqUMlhBBCTCgJcALMbrYSKXWohBBCiAklAU6ASR0qIYQQYuJJgBNgdotVpqiEEEKICSYBToBJHSohhBBi4kmAE0CKouDolikqIYQQAuDJJ5/EbDZPyL1ko78AcjtceFweqUMlhBAi6BRFwWFzBOTa4ZHhw9aiMhqN7Nmzh9LSUgDfbsaPPfZYQNokAU4AOSxSh0oIIUTwKYrCdx55mo9O1ATk+guXzufffrt5yCDHaDRy+PBhX3mGoqIiCgsLA9IekAAnoBzdNkDqUAkhhAi+YQZYAu7ywppFRUWsW7cuoPeTACeA+gptyhSVEEKIYFKpVPzbbzcHdYqqj9FoxGw2B7TQJkiAE1AOS+8IToSM4AghhAgylUpFxDVQF3HHjh3k5+cH/D6yiiqAHN1WQiPD0YRogt0UIYQQ4pqwZ88e9Hp9wO8jAU4AOSw22eRPCCGEuIxOpyM2Njbg95EpqgCyd1uJkDpUQgghhM/OnTsn5D4yghNAzm6b5N8IIYQQQSABTgBJHSohhBAiOCTACSCHRUZwhBBCiGCQACeAHDJFJYQQQgSFBDgB4vV4cdkckmQshBBCBIEEOAHisTkBJAdHCCGECAJZJh4g7r4AR6aohBBCCACKi4v7PS4oKAjYvWQEJ0B8AY7UoRJCCCEwm80YjUYKCgooKCjAYDAE9H4yghMgbmtvQTMZwRFCCHEtUBQFu80ekGtHREYMW2xTp9NRVFREXl4eWVlZaLXagLSljwQ4AeK2OVGHaAiNCAt2U4QQQtzgFEXhsU89SfnRqoBcf/GKbJ57eduwQc6mTZvYsGEDWVlZvPjiiwFpSx+ZogoQt81JeEzkiMvHCyGEEIF0LXweVVRUsHPnTmJjY3n00UcDeq+gjeD0JRqZTCb0ej15eXkDHvf888/7qo72JSM9+eSTPPHEEwDs2rWLp556agJaPDpum5NwmZ4SQghxDVCpVDz38ragTlEVFxeTn59PVlYW27dv5+mnn8ZgMAz6+T9WQQlwjEYjBoOBzZs3A7Bx48YBX+DGjRvZtm0bOp2ODRs2+AKc+vp6Hn30UbKzs9m2bduEtn2kPJdGcIQQQohrgUqlIjIqeJ9LfQMaffLy8gJaVTwoAY7BYOiXXKTVaq+K4qqqqnzHVFVV9as++vjjj4/L0jJFUbBarWO+zpVsNhtuq5OY5JiAXF9czWaz9fu/CDzp8+CQfp9412OfOxwOvF4vHo8Hj8cT7OYA8KlPfYpf//rXlJeXAxAbG8uCBQv6tc/j8eD1erHbe0ea+vpcUZRRT7EFJcCpq6sjLi7O9zguLg6z2dzvmMrKSurr6zEajQA8/fTTvhGfiooKoDcaBCgsLPSrHS6Xi+rqar/OHY7b5sTuDdz1xcBqa2uD3YQbjvR5cEi/T7zrrc9DQkJwOBzBbkY/n/vc5/o97gtk+jgcDtxuNw0NDUD/Pg8LG92inWtmFVVfsNLHbDYTGxtLVlYW0BvwVFVVkZWV1S/nZs2aNaxbtw6dTjfqe4aGhjJnzpyxNXwANpuNSts7JE5LZuHCheN+fXE1m81GbW0tGRkZREbK1OBEkD4PDun3iXc99rnD4aChoYHw8HAiIiKC3ZxRCQkJISkpiYaGBl+fnzlzZvTXCUDbhpWWltZvxKarq6vfvByAXq/v91xsbCxGoxGj0UhFRYUvyNHpdBiNRl8gNBoqlYqoqPFPBFa8Cm6bk5h4XUCuLwYXGRkpfT7BpM+DQ/p94l1Pfa5Wq1Gr1Wg0GjQaTbCbM2IajQa1Wu0Lyvr63J8VYEFZJp6Xl+ebZoLepOG+/Ju+wCcvL883PQW9icl5eXno9Xry8/N9z5vNZr+Cm0By2uygKERor49IXwghhJhsgjKCo9frWb9+PcXFxZhMJh5//HHfzzZs2MDOnTvR6XQUFhZSVFSE2Wxm06ZN6HQ6srKyKC4upri4mIqKCrZv3x6MlzAkh6U3KSo85vqI9IUQQojJJmg5OIOtgtq7d++wx/Q9H8giXWPh6O5dORUuIzhCCCFEUMhOxgHgG8GRjf6EEEKIoJAAJwAc3b0BTlj09ZW5LoQQQkwW18wy8cnEbrGiiQhFrZb4UQghhOhTVFTkWxXdV1U8UCTACQCHxUpIVHiwmyGEEEL4KIqCzRqY3Zgjo4YvLl1VVUVJSQnPPvss0FuOKZALhSTACQBHt42QyNHtuCiEEEIEiqIofOreL3D08ImAXH/FzUt5+c3fDRnkGAyGq/a869vANxBkDiUAJMARQghxrfFns7zxpNfrr9rf7vLH401GcALAabUTEi0BjhBCiGuDSqXi5Td/F9QpqoKCAnbt2oXZbKayshLArzJLIyUBTgAs2XAbDe1NwW6GEEII4aNSqYiKDu72Jc8++yxVVVVkZ2ej0+nIzs4O2L1kiioAkubrCY+PCXYzhBBCiGuG2WzmySefJCsrC5PJ5AtyAkVGcIQQQggRcDqdjvz8fIqLizEajWzevDmg95MARwghhBATorCwcMLuJVNUQgghhJh0JMARQgghxKQjAY4QQggxSSmKEuwmjMp4tlcCHCGEEGKSCQ0NBcBqtQa5JaPjdDoB0Gg0Y76WJBkLIYQQk4xGoyEuLo6WlhYAoqKigr6T8XC8Xi+tra1ERUVJgCOEEEKIgaWkpAD4gpzrgVqtJi0tDbfbPeZrSYAjhBBCTEIqlYpp06aRlJSEy+UKdnNGJCwsDLVaLQGOEEIIIYam0WjGZcrneiNJxkIIIYSYdFTK9baGbJwcO3YMRVEICxv/qt+KouByuQgNDb3mk7omC+nziSd9HhzS7xNP+nziXdnnTqcTlUrFsmXLRnyNG3aKKpBvUpVKFZDASQxO+nziSZ8Hh/T7xJM+n3hX9rlKpRr15/YNO4IjhBBCiMlLcnCEEEIIMelIgCOEEEKISUcCHCGEEEJMOhLgCCGEEGLSkQBHCCGEEJOOBDhCCCGEmHQkwBFCCCHEpCMBjhBCCCEmHQlwhBBCCDHpSIAjhBBCiElHAhwhhBBCTDoS4AghhBBi0rlhq4kHSnFxMQAmkwm9Xk9eXl6QWzT5PfnkkzzxxBMA7Nq1i6eeeirILZqczGYzRUVFADz22GO+5+U9HziD9bm85wOruLgYk8lEVVUVBQUFvve0vNcDZ7A+H8t7XQKccWQ0GjEYDGzevBmAjRs3yj+ACVBfX8+jjz5KdnY227ZtC3ZzJi2DwUBXVxdxcXG+5+Q9H1gD9TnIez6QqqqqACgsLMRsNnPXXXdx+PBhea8H0GB9DmN7r8sU1TgyGAxotVrfY61Wi8FgCGKLbgyPP/44hw8fZvv27eh0umA3Z9IqKCggLS2t33Pyng+sgfoc5D0fSCaTyfce1ul0xMbGUlVVJe/1ABqsz2Fs73UZwRlHdXV1/b5pxcXFYTabg9egG0RFRQXQ+48Eer8FiIkh7/ngkPd84OTl5fUbmTGZTGRlZbFr1y55rwfIYH0OY3uvS4ATYH1/KSJwLp+TXbNmDevWrZNvtUEk7/nAk/f8xHj66ad55plnBv25vNfH35V9Ppb3ukxRjaMrh5K7urrQ6/VBas2Nobi4mC1btvge63Q6jEZjEFt0Y5H3/MST9/zEKC4uJi8vj4KCAkDe6xPhyj4f63tdApxxlJeX5xtOg97kKElCCyy9Xk9+fr7vsdls9g1tisCT9/zEk/d84BkMBnQ6HQUFBVRVVWE0GuW9HmAD9flY3+sqRVGUQDT2RnX5MsLY2FhfJCoCp6/PKyoq+MxnPiPfqgLEYDCwY8cOLBYLhYWF/b5lgbznA2G4Ppf3/PgzGo1s2LDB99hsNlNTUwPIez1QRtLn/rzXJcARQgghxKQjU1RCCCGEmHQkwBFCCCHEpCMBjhBCCCEmHQlwhBBCCDHpSIAjhBBCiElHAhwhhBBCTDoS4AghbkgGg4ENGzZQVFQU7KYIIQJAAhwhxA0pLy+P3NzcYDdDCBEgEuAIIW5Yl1eHFkJMLhLgCCGEEGLSCQl2A4QQ4nIGg4Gqqir0ej0VFRU89dRTGAwGnn76afLy8sjLy8NkMlFVVcWmTZvQ6XQAVFVVYTAY0Ov1GI1GCgoKfHVrjEYjO3bsICcnB5PJxLp163znmc1mDAYDRqORkpISnn322aC9diHE+JEARwhxzTAajWzdupWdO3cCvUUNn3/+eR577DHWrl1LXFxcv4KT3/zmN9m+fbvvvO3bt/uutWHDBl588UUANm7cyM6dO9HpdGzZsoWioiIee+wxoLeIX9+fi4uLqaqqkurcQkwCEuAIIa4ZO3bsIDY2FoPB4HuuoqLC9+e+UReAgoICvvnNb2I2m9mxYweZmZn9rpWamsru3bsB0Ov1vnOfeOKJfsfl5OT4/qzVajGZTOP3goQQQSMBjhDimpKZmUleXp7vcWFh4ZiuZzab0Wq1vseXB0lCiMlLkoyFENeM9evXU1pa2u+5y0dzzGaz78/FxcXk5eWh0+kGPO/kyZOsW7eOgoICTp48Oeg1hRCTk0pRFCXYjRBCiD4Gg4GSkhLf1FFfELNlyxYsFgsFBQWYzWYqKip44oknfCMyVyYnr1+/3pdLM9A1jUYjP/zhDwF45plnfHk8mZmZPPXUU74EZSHE9UkCHCHEdWHLli2kpaWNecpKCHFjkCkqIYQQQkw6EuAIIa55BoOB0tJS3zJuIYQYjkxRCSGEEGLSkREcIYQQQkw6EuAIIYQQYtKRAEcIIYQQk44EOEIIIYSYdCTAEUIIIcSkIwGOEEIIISYdCXCEEEIIMelIgCOEEEKISef/B5iNG1dEGsRTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(2, 1, figsize=set_size(width, subplots=(2,1)), sharex=True)\n", + "sns.lineplot(x=\"epoch\", y=\"value\",\n", + " hue='fold',\n", + " palette=sns.cubehelix_palette(10, light=0.8, gamma=1.2),\n", + " linewidth=1,\n", + " data=f_scores_train, ax=ax[0])\n", + "\n", + "sns.lineplot(x=\"epoch\", y=\"value\",\n", + " hue='fold',\n", + " palette=sns.cubehelix_palette(10, light=0.8, gamma=1.2),\n", + " linewidth=1,\n", + " data=f_scores_test, ax=ax[1])\n", + "ax[0].set_ylabel('train/f1-score')\n", + "ax[1].set_ylabel('test/f1-score')\n", + "fig.tight_layout()\n", + "fig.savefig(fig_save_dir + 'classifier-hyp-folds-f1.pdf', format='pdf', bbox_inches='tight')" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "9f163a6c", + "id": "2c642d40", "metadata": {}, "outputs": [], "source": [] diff --git a/classification/classifier/train.ipynb b/classification/classifier/train.ipynb index eeb309c..0609af6 100644 --- a/classification/classifier/train.ipynb +++ b/classification/classifier/train.ipynb @@ -29,7 +29,16 @@ "execution_count": 1, "id": "b88ce481", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zenon/.local/share/miniconda3/lib/python3.7/site-packages/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.13) or chardet (5.1.0)/charset_normalizer (2.0.4) doesn't match a supported version!\n", + " RequestsDependencyWarning)\n" + ] + } + ], "source": [ "import torch\n", "import torch.nn as nn\n", @@ -132,7 +141,7 @@ "class_names = dataset.classes\n", "\n", "num_epochs = 50\n", - "batch_size = 4" + "batch_size = 64" ] }, { diff --git a/classification/evaluation/detection.py b/classification/evaluation/detection.py index e042ac9..251228d 100644 --- a/classification/evaluation/detection.py +++ b/classification/evaluation/detection.py @@ -95,9 +95,10 @@ def classify(resnet_path, img): batch = img.unsqueeze(0) # Do inference - providers = [('CUDAExecutionProvider', { - "cudnn_conv_algo_search": "DEFAULT" - }), 'CPUExecutionProvider'] + #providers = [('CUDAExecutionProvider',{ + # "cudnn_conv_algo_search": "DEFAULT" + #}), 'CPUExecutionProvider'] + providers = ['CPUExecutionProvider'] session = onnxruntime.InferenceSession(resnet_path, providers=providers) outname = [i.name for i in session.get_outputs()] @@ -184,9 +185,10 @@ def get_boxes(yolo_path, image): img['image'] = img['image'].unsqueeze(0) # Do inference - providers = [('CUDAExecutionProvider', { - "cudnn_conv_algo_search": "DEFAULT" - }), 'CPUExecutionProvider'] + #providers = [('CUDAExecutionProvider',{ + # "cudnn_conv_algo_search": "DEFAULT" + #}), 'CPUExecutionProvider'] + providers = ['CPUExecutionProvider'] session = onnxruntime.InferenceSession(yolo_path, providers=providers) outname = [i.name for i in session.get_outputs()] @@ -204,6 +206,7 @@ def get_boxes(yolo_path, image): # Apply NMS to results preds_nms = apply_nms([outs])[0] + #preds_nms = outs # Convert boxes from resized img to original img xyxy_boxes = preds_nms[:, [1, 2, 3, 4]] # xmin, ymin, xmax, ymax diff --git a/classification/evaluation/eval-test-model.ipynb b/classification/evaluation/eval-test-model.ipynb index dc55425..f3682f2 100644 --- a/classification/evaluation/eval-test-model.ipynb +++ b/classification/evaluation/eval-test-model.ipynb @@ -30,7 +30,16 @@ "execution_count": 1, "id": "ff25695e", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zenon/.local/share/miniconda3/lib/python3.7/site-packages/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.13) or chardet (5.1.0)/charset_normalizer (2.0.4) doesn't match a supported version!\n", + " RequestsDependencyWarning)\n" + ] + } + ], "source": [ "import fiftyone as fo\n", "from PIL import Image\n", @@ -57,7 +66,7 @@ "metadata": {}, "outputs": [], "source": [ - "name = \"dataset\"\n", + "name = \"dataset-new\"\n", "dataset_dir = \"dataset\"\n", "\n", "# The splits to load\n", @@ -110,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 9, "id": "63f675ab", "metadata": {}, "outputs": [ @@ -118,7 +127,7 @@ "name": "stdout", "output_type": "stream", "text": [ - " 100% |█████████████████| 640/640 [5.8m elapsed, 0s remaining, 2.2 samples/s] \n" + " 100% |█████████████████| 640/640 [8.7m elapsed, 0s remaining, 1.4 samples/s] \n" ] } ], @@ -128,7 +137,7 @@ " for sample in pb(dataset.view()):\n", " image = Image.open(sample.filepath)\n", " w, h = image.size\n", - " pred = detect(sample.filepath, '../weights/yolo.onnx', '../weights/resnet.onnx')\n", + " pred = detect(sample.filepath, '../weights/yolo-final.onnx', '../weights/resnet-fold-7.onnx')\n", "\n", " detections = []\n", " for _, row in pred.iterrows():\n", @@ -142,7 +151,7 @@ " bounding_box=rel_box,\n", " confidence=int(row['cls_conf'])))\n", "\n", - " sample[\"predictions\"] = fo.Detections(detections=detections)\n", + " sample[\"predictions_yolo_resnet_final\"] = fo.Detections(detections=detections)\n", " sample.save()" ] }, @@ -158,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 3, "id": "68cfdad2", "metadata": {}, "outputs": [ @@ -167,17 +176,17 @@ "output_type": "stream", "text": [ "Evaluating detections...\n", - " 100% |█████████████████| 640/640 [2.0s elapsed, 0s remaining, 314.2 samples/s] \n", + " 100% |█████████████████| 640/640 [2.2s elapsed, 0s remaining, 278.4 samples/s] \n", "Performing IoU sweep...\n", - " 100% |█████████████████| 640/640 [2.2s elapsed, 0s remaining, 285.3 samples/s] \n" + " 100% |█████████████████| 640/640 [2.4s elapsed, 0s remaining, 270.2 samples/s] \n" ] } ], "source": [ "results = dataset.view().evaluate_detections(\n", - " \"predictions\",\n", + " \"predictions_yolo_resnet_final\",\n", " gt_field=\"ground_truth\",\n", - " eval_key=\"eval\",\n", + " eval_key=\"eval_yolo_resnet_final\",\n", " compute_mAP=True,\n", ")" ] @@ -194,7 +203,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 4, "id": "86b90e80", "metadata": {}, "outputs": [], @@ -207,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 5, "id": "e34a18f4", "metadata": {}, "outputs": [], @@ -230,7 +239,40 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 10, + "id": "b14d2b25", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\\begin{tabular}{lrrrr}\n", + "\\toprule\n", + "{} & precision & recall & f1-score & support \\\\\n", + "\\midrule\n", + "Healthy & 0.841 & 0.759 & 0.798 & 663.0 \\\\\n", + "Stressed & 0.726 & 0.810 & 0.766 & 484.0 \\\\\n", + "micro avg & 0.786 & 0.780 & 0.783 & 1147.0 \\\\\n", + "macro avg & 0.784 & 0.784 & 0.782 & 1147.0 \\\\\n", + "weighted avg & 0.793 & 0.780 & 0.784 & 1147.0 \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\n" + ] + } + ], + "source": [ + "results_df = pd.DataFrame(results.report()).transpose().round(3)\n", + "\n", + "# Export DataFrame to LaTeX tabular environment\n", + "print(results_df.to_latex())\n", + "# YOLO original with Resnet original and new dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 8, "id": "900e9014", "metadata": {}, "outputs": [ @@ -242,14 +284,15 @@ "\\toprule\n", "{} & precision & recall & f1-score & support \\\\\n", "\\midrule\n", - "Healthy & 0.824 & 0.745 & 0.783 & 662.0 \\\\\n", - "Stressed & 0.707 & 0.783 & 0.743 & 488.0 \\\\\n", - "micro avg & 0.769 & 0.761 & 0.765 & 1150.0 \\\\\n", - "macro avg & 0.766 & 0.764 & 0.763 & 1150.0 \\\\\n", - "weighted avg & 0.775 & 0.761 & 0.766 & 1150.0 \\\\\n", + "Healthy & 0.674 & 0.721 & 0.696 & 662.0 \\\\\n", + "Stressed & 0.616 & 0.543 & 0.577 & 488.0 \\\\\n", + "micro avg & 0.652 & 0.645 & 0.649 & 1150.0 \\\\\n", + "macro avg & 0.645 & 0.632 & 0.637 & 1150.0 \\\\\n", + "weighted avg & 0.649 & 0.645 & 0.646 & 1150.0 \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", - "\n" + "\n", + "0.49320073714096757\n" ] } ], @@ -257,12 +300,14 @@ "results_df = pd.DataFrame(results.report()).transpose().round(3)\n", "\n", "# Export DataFrame to LaTeX tabular environment\n", - "print(results_df.to_latex())" + "print(results_df.to_latex())\n", + "print(results.mAP())\n", + "# YOLO original and Resnet final with old dataset" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 51, "id": "24df35b4", "metadata": {}, "outputs": [ @@ -287,12 +332,58 @@ "# Print a classification report for all classes\n", "results.print_report()\n", "\n", - "print(results.mAP())" + "print(results.mAP())\n", + "# YOLO original and Resnet original with old dataset" ] }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 8, + "id": "a6bb272a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " Healthy 0.66 0.64 0.65 662\n", + " Stressed 0.68 0.54 0.60 488\n", + "\n", + " micro avg 0.67 0.60 0.63 1150\n", + " macro avg 0.67 0.59 0.63 1150\n", + "weighted avg 0.67 0.60 0.63 1150\n", + "\n", + "0.44258882390400406\n", + "\\begin{tabular}{lrrrr}\n", + "\\toprule\n", + "{} & precision & recall & f1-score & support \\\\\n", + "\\midrule\n", + "Healthy & 0.664 & 0.640 & 0.652 & 662.0 \\\\\n", + "Stressed & 0.680 & 0.539 & 0.601 & 488.0 \\\\\n", + "micro avg & 0.670 & 0.597 & 0.631 & 1150.0 \\\\\n", + "macro avg & 0.672 & 0.590 & 0.626 & 1150.0 \\\\\n", + "weighted avg & 0.670 & 0.597 & 0.630 & 1150.0 \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\n" + ] + } + ], + "source": [ + "# Print a classification report for all classes\n", + "results.print_report()\n", + "results_df = pd.DataFrame(results.report()).transpose().round(3)\n", + "\n", + "print(results.mAP())\n", + "print(results_df.to_latex())\n", + "# YOLO final and Resnet final with old dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 9, "id": "da05e2ba", "metadata": {}, "outputs": [ @@ -306,7 +397,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAACoCAYAAADtjJScAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtfUlEQVR4nO3dfXAT95kH8K8Bg43RC8FACF4VHN78opaXMo3F3DSZ41LZnQvBLYiZ0okdYjzT5uCOM71eUjsEMr27mjYll3aSKMTthEyspPEd6QxWCJm20yB3IDYktmwCGaCSCDEljSSDbeyUvT98u9Fakr3W+8v3M8ME7Yv0WHifPPvb30uOKIoiiIiIiDLItGQHQERERBRrLHCIiIgo47DAISIioozDAoeIiIgyDgscIiIiyjgscIiIiCjjsMAhIiKijDMj2QHE05kzZyCKInJzc5MdClFWGB0dRU5ODtasWZPsUBKGeYYocaaSYzK6BUcURaiZx1AURYyMjKg6NhkYX3RSPT4g9WNUG5/aay6TMM8kBuOLTqbEN5Uck9EtONIdldFonPC4wcFB9PX1YdmyZZg9e3YiQpsSxhedVI8PSP0Y1cbX3d2dwKhSA/NMYjC+6GRKfFPJMQkvcPx+P2w2GwCgrq4u5DF2ux0A4PP5IAgCTCZTwuIjovTHPENECX9E5XA44PV6w+53u91wOBwwm82wWCywWq2JC46IMgLzDBElvAXHbDbD5/PB7/eH3O9wOKDRaOTXGo0GDocj4rsrURQxODg44TFDQ0Po7u7G6dOnMXPmTHm7VqvFokWLMDIygkuXLgWdt3LlSgCAy+XC0NCQYt+iRYug1Wrh9XrR39+P+fPn4+///u8j+hmk9x7/GamC8UUv1WNUG58oisjJyUlESBPKtjwT+HMsW7Ysop8hU34Hk4XxRSceOSbl+uC4XC7o9Xr5tV6vD5uk1BgdHUVfX9+Ex3i9Xjz88MNx73z17LPP4p577on4/MuXL8cumDhgfNFL9RjVxBf4P+9Ulcl5pq2tDQaDIeLzM+F3MJkYX3RimWNSrsAJxefzRXxubm7upHc0Q0NDeOmllzA8PByXFpyjR4/CarUiPz8fJSUlU/4ZhoaGcPnyZSxZsgT5+flTPj/eGF/0Uj1GtfF99NFHCYwqttI1z1y9ehU7duxAU1MT9u/fjwULFjDPJAHji048ckzKFTgGg0FxJ+X1eiEIQsTvl5OTo6rHuNFoRElJSdhj77vvvrDnbtiwYcL39nq9sFqtmDVrVlS91/Pz81Oy97uE8UUv1WOcLL5UeDylRiblma6uLgDAihUrAET/O5Tuv4PJxviiE8sckzLz4EjJxmQyKYaBeTyetB/dUFBQoPgvESVHJucZIlJKeAuOw+HAyZMnMTAwAEEQYDabAQDV1dVoa2uDIAioqqqC3W6Hz+fDzp07Ex1izEnPw6N5Lk5E6mVjniEipYQXOCaTKeSd0okTJ+S/S8koU/ztb39T/JeI4iub8oxGo8H999/PFmKicVKuD04mOn/+PADgrbfewvTp06d0rkajweLFi+MRFhFlgOXLl+Ott96S++IQ0RgWOAkg3Vk1NjaisbFxyue///77sQ6JiDLE3/72N9y8eZMtxETjsMBJAKnvzYEDB3D//fdjxowZcLvduHHjhuK4BQsWYN68efD7/bhy5QouXbqExsZGvPfee9BqtfLQzzNnzmDOnDlYvnx5wn8WIkot77//PtatW4cjR44kOxSilMICJwGkGVMbGxtRX1+P+fPnY9++ffjtb3+rOO6nP/0p9uzZg9dffx3bt2+Xt+/YsQMrV65EVVUVAOCee+7ByMgIzp8/zyKHiIgoBBY4CbB8+XKcP38eAwMD8uypTz/9NPbt26c4Tuprs3HjRnR2dqKvrw/bt29HU1MTCgoKcObMGeTn5+OJJ57A448/DpvNhk2bNsFoNOLPf/4zPv30U8X7LVy4kP13iLLMZDMqB9JoNLxJoozFAidBxieRu+++O+yxc+fOxdy5c+WWn/3794c8TurTc/78efzXf/0XDh8+rNj/wx/+EI899hguXLig2J6bmwuj0QgA8syRRJTepL5+ga2/arAlmDIVC5wUJrX8XLt2LWgKa5fLhZ6eHjQ2NuLUqVPYvHlz0Cyo8+bNw6uvvor6+nrF9sWLF8Pj8eAvf/kLVq9ejdOnTzPBEaU5g8EgtxSrIbUQqz2eKN2wwElxy5cvx+LFi5GXl6eY4n3t2rUoKytDY2PjlO/YnnvuOQCA2+2Gz+fDqVOnMDAwgOXLl0Oj0eDKlSvo7+9XnDNv3jx86UtfwtDQUFAT+PDwMGbNmgVgLGmOXy9n6dKlmDt3Lvr7+3HlyhXFPp1Oh7vvvhujo6OKmWUlX/nKVzB9+nRcuHAhKBELgoD58+fjr3/9Kz799FMWaZSVjEYjrl27Br1ej9zc3GSHQ5QyWOCkscC+PWpId2w+nw9dXV1wuVwAvmjS/t3vfod7770Xzz77LP7zP/9Tce6OHTvw4osv4uLFi1i3bp1i38yZM+FwOAAA3/nOd3DmzBnF/tdeew1btmzBK6+8gn/9139V7PvHf/xHvPnmm/B6vUHvC4wtgKjVavHoo4/i+PHjin3PPvssvv/97+PXv/419uzZg6NHj6KoqAgFBQXyAoVEmU4qasbfICxevBgLFy7EZ599FrSIZ+BihufOnQPwxWKHw8PDWLt2bUouyEg0FSxw0txUWi2kPj3hWnx0Oh0A4NFHH8WWLVsU++bNmwcAKC4uRmdnp2Lf8PCw/PdXXnklZAsOMFb83HvvvSE/U6/XB70v8EW/gmeffTZkCw4AecbaTZs2ARgbZdbR0SFPfBaYuNetW4e8vDxcunQJn332meL9Fi1ahEWLFsHv9wetWDtr1iyUlZUFxUeUbNeuXcO2bdvwu9/9TrFdGpV54sQJbN26VbFvzZo1ePHFFwEADz30ED7//HPF/p6eHsyZMwcjIyNsGaW0xQIni4Rr8ZFadnp7eyGKIoDwoyvy8/Oxdu1axbbBwUH5sZU0V08oCxcuxMKFC0Puy83NDXrf8bGH87WvfU3xc0lFUagWoQsXLmDZsmVobGzEK6+8otj3xBNPYN++fejo6Aiaxv/uu+/GRx99hL/85S9wu92KfStWrMCcOXPg8Xhw7do1xb7CwkKuQUZxtWDBAjz//PNB1/X4UZmB8vPz5RuRffv2YcmSJbh16xY+/vhj3HXXXbh9+zYOHDiAw4cPsxMypS0WOFkmVKIK17IjPfKRjknlJBcqNimpSy04S5YskX+eAwcOYM+ePYrjFy1aBACoqKgI+h/CrFmzcOnSJZSWliparICxhR0rKirws5/9DE8//bRi3/e+9z384he/iO6HI5rERNemNCpzPGl05Y9+9KOQ5x0+fBiHDx/GqVOnMHv2bCxevBgDAwMTjsrs7u7G6OhoyucLyg4scCioZcfj8WDTpk3yIx9JYMEjSeW1sqQWocHBQbmTdl5eHoCxx2bSo7PxtFpt2NakDz74IOhOecWKFQCAPXv2BBWJBQUF6OrqwqpVq+QO4kSpYPx1L90I3Lp1Czt27MAdd9wBYOzG54c//CH+4z/+A52dnUGjNaVRmQBQWVkpDyQ4evQo7rvvvogGLuTk5GDNmjUAvhi4EPioubS0dEoDF1hwZScWOARAeQe4du1aVQWP5LXXXsPIyAiGh4fljomZmlAm+pmKioqCCsCuri6sW7cOnZ2dEz6CI0qGwN9n6UZAaqG8efMm/ud//gc3b97EvHnz0NXVhenTpwctCTFjxgxcuHABy5cvR3t7Oy5duiTni2gGLty6dQtA7AYuHD16FN/85jcxffp09Pf3h31cTpmDBQ6FNFHBI5EKn/EdGCWhWnwkmVoAEaW7yQYjhHP+/HkYjUYYjUY5X0jX+FQHLuTk5Mh/lwYuBD5qLi0tBaBu4ELgDZrP58OtW7dQXV2Nf/u3f0NJSQnzUAZjgUOqhEoCUuEzfiLCyVp8JBMVQBIWQkSJtWzZsoimnzh16hSAsVwx/ppdvHhx2EfZoQYuBJIGLgQ+apYe96oZuBB4g1ZQUID+/n44HA45P508eVIeiUmZhQUORSXURIThWnwkagsgydGjR3mnRZRA0Uw/kYrXa2AsUt+jvr4+bNq0CcePH8eqVatw+fJlxTmB82lJU04EKi0tVUw5EdhHqLi4WB60QMkT0wLH4/FMekdO2WGi5DZZASQZXwipafEJJTDxTDZ5WaxbjKZNmwaNRoNp06bF7D2zGXNM6hlfMIS6XlOtJVZqZTp//jz0ej2OHTuG7373u4pjpPm0gMimnNizZw/efPNNFBUVQavVAki97yHTRVXg9PX1wev1yq9tNht+/vOfRxkSZQM1F7lUCI1PnPEWy75Dq1evht/vj1VoWYc5Jj0EFgzhrtdUbtmpqqoK6gckzacFIOQkpOOnnAjsI1RcXIz+/v6gomnhwoU4deoUvF5v0OSK0nxaFDsRFzi7d+/GwMCA3DwJIGioH1G0AhNnpIsCBiaeiVpwIu07xLuy+GCOST+hrtfx11UqThx4xx13yMPiQ5moj5A05USoPkLj85a0ft66detw/fp1xftI82lR7ERc4GzYsCFo9Mxbb70VdUBEoUSTEEMlnlCi6TsUrtXn4sWL+MEPfoCf/OQnKC4uBsCCSC3mmPQVahTmqVOn5M7I46+xTL0mwv1M77zzTlALTkFBAfbs2YM9e/bwMWyMRFzgSOsABeKU9JTuptp3SG2rz/ghsuP7J6TqZInJxByTOQKvq3DDzyfrYxfYl27BggVpXRB9+ctfDtrW1dWFp59+Gtu3b2eBEyMRFzhutxs2m02eolsURbS3t+ONN96IWXBEqWZ8Up2s1UcaQnvkyBGUlJSELYjef//9uMWcrphjMku4R81THVUp4TxbNJmIC5zW1laYTCZ5cUYAir8TZQs1ibSkpCRoTg7giwJoYGBAXkaCxjDHZJ6J5tOarI+d1IIzc+ZMbN26VVVfuVTr1EyJFXGBs3fv3qAOUZwsiWhyTLjqMMdkDzXXRGBfuqn0leOEotkr4gKnoqICN27cQHt7O4CxRdak6bOJaExxcTGOHj0qdzAm9ZhjKBw1feWmOr1EpPNsAbHpR1dYWIjvfe97KCwsjOp96AtR9cHZvXu33BHQarXi0KFD8rTaRDS2Hs4DDzyQ7DDSEnMMRWoq00tE2gdovGgXHTYYDPjFL34RVQykFHGBc/z4cbS1tSm2/fSnP2XyIQrwySefoKWlBbW1tbjzzjuTHU5aYY6haE1lQtFI59lSs+iwmr5Ag4ODOHfuHFatWjXhdBakXsQFTqimvPLy8qiCIco0H3/8MR577DF84xvfYIEzRcwxlCjR9L9Ru+hwqEdggS08586dw7p169DZ2TnhxIKkXlSPqMbzeDxRBUNEJGGOoXQx0aLDk/UFkgofztIdexEXOCaTCQ8//DDKysoAjE0z3dDQELPAiCi7McdQupuoL1C4vj9/+MMfOKorRiJe4ri0tBRPPvkkRFGEKIo4cOAA19EgophhjqFMsXz5cnkeLOnPAw88gPPnz6OzsxOdnZ342c9+BgDYs2cPVqxYgQsXLiQ56vQX1WrigiAo7qg8Hg+nmCYKoNfr8e1vfxt6vT7ZoaQl5hjKZIGtNNOmTUNBQQEee+wxPP744xF3eqYvqC5wjh8/DpPJJC/n/vrrryv2+/1+OBwOHD58OLYREqWx4uLioGuFQmOOoWy2evVq3LhxA11dXXj88ceTHU5GUP2I6rnnnkN3d7f8+tVXX4XP55P/iKKIzz77LC5BEqWrkZEReDwejIyMJDuUlMccQ0SxpLoFZ/x8FE899VTQrKKcRp1Iqaenh0M/VWKOoWzW29uLLVu24Mknn0x2KBkj4k7Gx44dw+uvv44bN25gx44d+Od//mcO4SSimGGOoWwyPDyM3t5e3Lp1K9mhZIyICxyj0YgtW7agtbUVJSUl+PnPfw6v1xvD0IgomzHHEFE0Ii5wtFotAKC9vR3f/OY3AQA6nS42URFR1mOOIaJoRD2TsdvtRklJCdxuN/x+f8wCI6LsxhxDRNGIuMCprKyEzWbDG2+8gYGBAdhsNsydO1fVuXa7HQDg8/kgCELIjoO7du1CfX09gLFn8Xv37o00VKKkWb16NYaHh5Gbm5vsUNJONDkGYJ6h9FJcXIyjR4+ylTKGIi5wNBoNHnnkEfl1Q0ODqg6AbrcbDocD+/fvBwDU1taGTDwejwc1NTUoLy/HoUOHIg2TKKmmTZuGWbNmJTuMtBRpjgGYZyj96PV6PPDAA+jq6kp2KBkj4RP9ORwOaDQa+bVGo4HD4QhKPjt37oTZbFYbXliiKGJwcHDCY4aGhhT/TTWMLzrJjO/ChQv4p3/6J/z3f/93yLVlpJhu3bqFvLy8tP8ORVFETk5ORJ8Ry4n+mGemjvFFJ9r4PvnkE7z88stYs2aN/D6T/U4lMr54i0eOUV3gPPfcc9BoNPJaMK+++iqqqqoUx6iZhMvlcimmrdfr9SGfq0sTfvl8PgCAxWJRG6rC6Oio6lVaL1++HNFnJArji04y4jt37hz++Mc/oqenB59//nnYmK5evQqdTpcR3+HMmTMjeu9Y5RiAeSYajC86kcZ37tw57Nu3DwcOHJDfJy8vL4aRQX7fVBbLHJMSE/1JySVQ4LPwjRs3orKyUh5VMRW5ublYtmzZhMcMDQ3h8uXLWLJkCfLz86f8GfHG+KKTzPiGh4cBAEuWLEFJSUnY/YsWLZKPS+fv8KOPPor4M+I90R/zzMQYX3SijU/KBXfddReA8DkjWfHFWzxyTMR9cARBwOHDh2GxWDBnzhx0dHTAaDROep7BYFDcSXm9XgiCoDjGbreju7tbTj5arRZutxtlZWVTjjMnJwezZ89WdWx+fr7qY5OB8UUnGfFJF2q4z5b2S/100v07jPTxVCiR5hiAeSYajC86kcaXqFyQ7t/fVHJMxPPgtLe3K5qLKyoq4HA4Jj3PZDIp1pvxeDzyXZmUkARBwIYNG+Rj/H5/REmHiNJXpDkGYJ4hoihacPR6PbZu3Trl8wRBQFVVFex2O3w+H3bu3Cnvq66uRltbG8rKymC32+U7rJaWlkjDJEoqg8EAq9UKg8GQ7FDSTqQ5BmCeofSj1+vx7W9/W9E5nqITcYHzwQcfKEY8AGMd9u6///5Jzw03auHEiRNBx8RihANRshQWFiqGOpN60eQYgHmG0ktxcTFef/11DhOPoYgLHIvFgs2bN8NgMECj0aC3t5eroBKNc/36dfzv//4vHnzwQRQWFiY7nLTCHEPZZGRkBNeuXcPo6GiyQ8kYEffBEQQBbW1t+MY3voHy8nIcPnxYHt5JRGNcLhfq6urgcrmSHUraYY6hbNLT0wNBEKIaiUhKERc4AGCz2eBwOPDII4/A4/Hgxo0bsYqLiIg5hogiFnGBc/DgQWi1WnlkwlRGOBARTYY5hoiiEXGBYzQasXXr1qC5JYiIYoE5hoiiEXGBE2rRu8B5J4gImDNnDr7+9a8rRgKROswxRBSNiEdRlZaWorq6GnPnzoXD4YDD4UBDQ0MsYyNKeytWrMDvf//7ZIeRlphjKJusXr0aw8PDLOJjKOIWnIqKChw6dAglJSUQRREHDhzgCAeicW7fvo1bt27h9u3byQ4l7TDHUDaZNm0aZs2ahWnTohr7QwEi/ia/9a1voa+vDw0NDWhoaAhaFI+IgLNnzyIvLw9nz55NdihphzmGssn58+dx77334s9//nOyQ8kYERc4FoslaEbRjo6OqAMiIgKYYyi73LhxA3/4wx8wODiY7FAyRsR9cHJycvDEE0/AYDBAEAT4fD7Y7XY2IRNRTDDHEFE0Ii5wXnjhBVRUVOCzzz6TV/z1er2xiouIshxzDBFFI+ICZ//+/UF3Umw+jo1du3bhmWeeUWy7dOkSXnrpJVy9ehUWiwXA2DIAGzZskCdCm4jdbgcA+Hw+CIIQ9hyr1SrPOxK4AGG47aE4nU48//zz8Hg8aGhogMlkgt1uR2NjI7Zu3Yr6+npotdpJYw58v927d6OtrS3keU6nEzU1NXjnnXem9L6U2phj4itZeWbXrl2or68HABw7dgx79+6V9zHPUCxNqcDp6+vDsWPHYDAYsGXLlqD9bDqOnt1uR0dHB9xut2KCs6VLlyI3NxednZ1y4gGAlStX4sSJExNOhuZ2u+FwOLB//34AQG1tbcjEU1tbi0OHDkGr1aK6ulpOMOG2h1NWVoYNGzbA6XTKn2M2m3Hw4EFs27ZtysmhrKxM8fPZbDbFd1BWVoby8vIpvWeilJeXw+12Y8GCBckOJS0wxyRGMvOMx+NBTU0NysvLcejQIXl7tucZg8EAq9WKO++8M26fkW1UdzLu6OjA5s2bYbfb0dzcjH/5l3+JZ1xZy+fzYevWrWhtbVV1vFarhd/vn/AYh8MBjUYjv9ZoNEFT3judTvkYp9OJtra2Cbcnk81mS3YIqs2cORNFRUWYOXNmskNJecwxiZOsPAMAO3fuxOnTp9HS0iIXIcwzQGFhIR555BHMnTs3oZ+byVQXODabDadPn8bbb7+NU6dOYfHixSFnGqXI+f1+CIKAbdu24bXXXpv0eJvNhoqKCpSVlQEANm7cGDIJuVwu6PV6+bVerw86rqenBx6PB263GwDQ1NQ04XY13G437Ha7/Mfn8yn2Nzc3w263w2q1wul0ytscDgeam5vlzwzkcDjg9/vlRRjH77Pb7di1axeAsbvU9evX409/+hMAYO/evWhublYdfyxcvHgRW7ZswcWLFxP6uemIOSYxkplngLHZqO12O2w2m1xEMM8A169fx4svvij3N6PoqX5EVVRUpKjO6+vr0dHRgaKiorgElmjXr1/HmTNnkJ+fL2+bO3culi5diuHhYfT29gads3btWgDAhx9+iJs3byr2LVmyBHfccceUYnA4HHKzrCAIcDgcQU28PT098nNuk8mkaEIN9+w4lPFJwO/3Q6fTyUmsp6cHTqcz7Hbp9UQEQVA0Mx88eFD+u81mg16vVzwGa2lpgV6vl39mq9UqN3dLTCYTtFqt4ueWSAszSgnPbDYrktM999yD7373u5PGHUterxe/+c1v8O///u8J/dx0lOk5BmCeAaDoc7Nx40ZUVlYyz2CsQKyrq8ORI0emfC6FprrAMRgMitcajQaiKCq29fX1oaSkJDaRJdgbb7wBq9Wq2Pad73wHR44cgcfjwbp164LOkX7+mpoauXqXvPzyy9i+ffuUYgicoru8vBytra1BiaeoqCjss+lwScdgMCjupLxeb9CzdEEQFNt0Op38fD7UdjWJZyJSk7SUGAKn4LfZbPD7/VMeMROqf4DFYsEvf/lLPPzww+wYmOIyPccAzDN2ux3d3d1ykaPVaplnKG5UFzhutxs3btxQbPN4PPI2r9eL1tZWPPnkk7GNMEG+9a1v4aGHHgq6swLGLvbOzs6w5/7qV78KeWc1FU6nE9u2bVOMIFi/fv2U3sPv94e8uEwmk6LJ1OPxyAlNOsdkMimeObvdbvmYcNvDfZ4aZWVlcLlc8ns5nU7YbDZ4vV7U1dXB6XSiu7s77F2c3+9X3IkCY0kx1OdcuXIF77zzDh566KGIYqXEyPQcAzDPCIKgONfv98ude5lnKNZUFzhWqxUvvviiYpsoinJzoCiKyMnJSdvkU1hYiJKSEsyePTtoX15entxMHMrKlSuj+myHw4GDBw/CYrHITaLSs+KmpiZs374d/f39OH78OK5evRqySRkAqqurQzYfC4KAqqoq+fn0zp07Q55jsVjku5qGhgb5fcJtr66uxv79+7F69WrF57ndbpw8eRIej0eOVfrs1tZW1NfXw2KxwGq1wmazQafTQRAElJeXw+l0Kpp7pefjbrcbNpsNdXV1cjxSQnI6nfJ+i8Uid3aUmpnvv/9+dHd3Kx5/UOrJ9BwDMM+UlZXJfWW6u7vR0tICABPmH+YZipioUmNjo+j3+8P+8fl8YnNzs9q3S4gPPvhA/OCDDyY97ubNm+J7770n3rx5MwFRTV0qx3fy5MmUjk8URfG9994TW1pakhLf1atXxR//+Mfi1atXQ+7v7OwUAYjvvvtuSn+Hav+N1V5zoaRjjhFF5plEyIY88+GHH4pf//rXxba2NhGA2NnZGdP4Uv37i0eOUd2Cs23btkkr06qqqijLLUonTqdzwnkxkk3qANjb2wuj0ZiUGO688052MFaJOYZCyZY8s2LFCvz+979HV1dXDKPLbqqHiatZyZer/WaX8ZOEpRpplEMyfy+9Xi/efPNNLjGgAnMMhZIteeb27du4desWbt++HaPIKOLVxIkmm2k02erq6mA2m5M66ubixYvYtGkT58EhilC25JmzZ88iLy8PH374YYwiIxY4RERElHFY4BAREVHGYYFDREREGYcFDlEc5eXlobS0FHl5eckOhYgoq6geJk6Js2vXLjzzzDOKbZcuXcJLL72Eq1evypN0uVwubNiwIeRkXONJ68r4fD4IghD2HKvVqpjlVIqnvr4eAHDs2DHFWjLhBM5KqtPp4PP5Qq7rkmhutxu7d+9GQ0ODqu8tWqWlpfJkakSpJFl5Jlw+sdvtEAQBPT09AKAqX2RSnikvL4fb7caVK1fiHF32YIGTYux2Ozo6OoKGRi5duhS5ubno7OxUXMArV67EiRMnJhxG6Xa74XA45AXlamtrQ150tbW1OHToELRaLaqrq+UCx+PxoKamBuXl5Th06NCkP4O0SGddXZ38+a2trfJ+aSbQZBAEARUVFUn5bKJUkcw8Eyqf+P1+vPDCC2hra4MgCFi/fv2kOSLT8szMmTNRVFSEa9euxSmq7MNHVCnG5/Nh69atigt1IlqtVrHAXSjSlOKSwMXnJNKidNLf29ra5H07d+7E6dOn0dLSompNGJ/Pp1jQTxAEbNiwQX4deNeV6c6ePQutVouzZ88mOxQiWbLyDBA6n2i1WjnnBK5DNdnPkEl55uLFi9iyZQs8Hk+yQ8kYbMH5fx6PB8PDw4pF8GJBr9ejuLhY1bF+v19u1q2urp70UZDNZkNFRYW8VsrGjRtDrhHjcrmg1+sVMY1PVj09PfB4PPKaLE1NTfKdmJREfD4fgMmbjk0mE6xWK9avX4/KykpYLBY5YTkcDvj9fthsNvlndTgc8udZrVa5Fam5uRlGo1GR8NxuN7RaLex2OywWi+K1FO/485YuXYrf/va36O3txfz589Hb26tIhPF0+/ZtDAwMcPIuAsA8A0ycT2w2G06ePKmqpTjT8ozX68VvfvMbPPjgg6rPoYmxwAFw/fp1VFdXx+V/QtOnT8cnn3yCwsLCSY8NXLVWEISQi9319PTIz7lNJpMiOYRKOuFIyUXi9/uh0+nkJNbT0yOvsBuYADdu3IjKyspJP6elpUVe0E56Fm02m+WF6QLjlrbpdDo56dhsNuj1evn7qK2tRWlpKQwGA0wmE3Q6HY4dO6Z4DSDkeQ8++CD6+/vxgx/8ALNnzw55V0kUb8wzYybKJxaLBYIg4ODBg3IhMRHmGZoICxyMrfDb1taGwsLCuNxZqUk6ABTNreXl5WhtbQ1KPEVFRWFn9gyXdAwGg+JOyuv1Bj1LFwRBsU2n08HtdsPtdqO7u1tOSlqtFm63Wy6EQpEKI+lPXV0damtrJ52RNPA9pUdmUpJoaGiQE5/VakVpaSmeeuopxetnnnkm5HmvvPIKli5dKr83V/ulZGCegbyKeKh84vf7odVqYTKZsHv3brlQCYd5hibDAuf/FRUVoaSkBLNnz07K5zudTmzbtk0xgmn9+vVTeg8pQYxnMpnQ3Nwsv/Z4PHLiCEwqgc+spWZXqWk28DOkBBHu89xuN3w+nyI5jb/Y/X6/4k5yvLKyMrhcLvk9nE4n2tvb5bu6pqYmHDlyRPFaSpTjz/va176GP/7xj/J7DwwMhPxMonjL9jwjCELIfGKz2eByueTCR6fTya0lzDMUKXYyTgEOhwONjY2KJk1paHFTUxM8Hg/6+/tx/PhxeDyesE2f1dXVIZ95C4KAqqoq2O122Gw27Ny5M+gcqTnXZrPBarWioaEBWq1WvrOy2+1obm5GS0uL4txwsUgL0NlsNjQ3N+Opp56S90mfIyUtp9MJt9utKLAsFgv0ej1sNpvcVO5yuWC32+XhpDdv3lS8FgQh5Hn/8A//gDlz5uDtt9+G3W4PGm0RT6tWrUJnZydWrVqVkM8jCicV8ky4fFJZWQmj0QiHw4Hm5mZYLBb5Ripb8sxdd92FH//4x5g/f77qc2hiOaIoiskOIl6kptjJlrAfHBxEX19fUu+sJpLK8TkcDqxevTpl4wNS+/vr6urCunXr8O677yIvLy8lYwTUf4dqr7lMwjwTf9mUZ6Sc0NnZibVr16ZcfPESjxzDFhyKmNPpnHBeDBq7G/z+978Pl8uV7FCI0lK25Bmv14s333yTj7ZiiAUORWz8JGEU7Pr16/jlL3+J69evJzsUorSULXnm4sWL2LRpE+fBiSEWOBSxyUYrEBFFi3mGIpWUUVRq1itRu3YSEVEozDNE2S3hLTjSeiVmsxkWiwVWqzWiY4iIwmGeIaKEt+CEW68k8M5JzTFqiaKIwcHBCY8ZGhpS/DfVML7oJDM+jUaDRx99FNOmTcPJkycV+2bMmIHPP/8cAHD8+HHk5ubi9OnTmDlzJoCxOVMKCgpw/fp1fPrpp4pztVotFi1ahJGREVy6dCnoc1euXAlgrJPz+J970aJF0Gq18Hq96O/vV+wrKChAUVERbt++jQsXLsjbR0ZGkJeXhyVLlkz484qiiJycnAmPSQTmmaljfNGJNj5RFFFSUiK/Pnr0qGINuy996UvIy8tDf38/vF6v4tw77rgD8+fPx9DQUNCAhunTp2PZsmW4desWTp06pcgxQOrkmXjkmIQXOGrWK1G7pokao6Oj6OvrU3Xs5cuXI/qMRGF80UlWfDU1NThz5gwefvhhxXa9Xo+XXnoJAFRNS59sOTk5ePvttxXXZiiByTNZmGcix/iiE018L7/8slygpENOiLVY55iUmMk41HolkRwTSm5uLpYtWzbhMUNDQ7h8+TKWLFkS8ynUY4HxRScV4hMEAe+++65i24wZM2A0GvH+++/jvffew8cff4zCwsKUbsFZvXr1hN/hRx99pOLbSA7mmYkxvujEKr6SkhLYbDbcuHFDsT1WLTh6vT6lW3BimWMSXuCoWa9EzTFq5eTkqJ7UKD8/PyUnQJIwvugkM77Zs2djwYIFIfd9+ctfxrJlyyKehOu+++4Luy+aVdP/7u/+Tv67NAnXZN9hKjyeAphnosH4ohOL+LZu3RqjaL4wODgInU4X8UR/8c4z8cgxCe9kbDKZFIu9jV+vZLJjiIgmwzxDRElZqiFwaKZOp5PnOdi4cSPa2tqg1WrDHjMVXV1dEEVx0ud1oihidHQUubm5KXMHGojxRSfV4wNSP0a18Y2MjCAnJyemU8xHinlmahhfdBhfdOKRYzJ6LaozZ85AFEXk5uYmOxSirDA6OoqcnBysWbMm2aEkDPMMUeJMJcdkdIFDRERE2YlLNRAREVHGYYFDREREGYcFDhEREWUcFjhERESUcVjgEBERUcZhgUNEREQZhwUOERERZRwWOERERJRxWOAQERFRxmGBQ0RERBmHBQ4RERFlHBY4RERElHFmJDuARLPb7QAAn88HQRBgMpkiOibZ8fl8PjidTpjN5pSLL/BYrVabkvFZrVYIggAAMJvNKRWfdIwkUfH5/X7YbDYAQF1dXchjknltpAvmmMTEGHgs88zU48uKPCNmEZfLJTY2Nsqva2pqIjomXtR8dk9Pj9je3i6Koij6fD7xq1/9akrFJ/H5fOLmzZvlWBNBbXw1NTWiz+cTRVEUN2/enJDYRFFdfD6fT3zhhRfk14HHx1t7e7v4k5/8RPH5gZJ5baQL5pjoMc9Eh3nmC1n1iMrhcECj0civNRoNHA7HlI9JZnw+n0/eptVqodPp4HQ6UyY+SXt7OyorKxMSl0RNfE6nUz7G6XSira0tpeLTarWw2Wzyv2ng8fFmNpthMBjC7k/mtZEumGMSE6OEeSay+LIlz2RVgeNyuaDX6+XXer0efr9/ysckMz6TyYT9+/fLr30+H8rKylImPmDsgk7Gows18fX09MDj8cDtdgMAmpqaUio+AGhoaEB1dTWqq6tRX1+fsPgmk8xrI10wx0SPeSb+8QHZkWeyqsAJxefzxeSYeJnos5uamnDgwIEERhMsVHxut1t+7pxs4+Pz+/3Q6XQoKytDWVkZenp6Enp3Ol6o76+7uxttbW3Q6XSoqalJfFBTkMxrI10wx0SPeSY62ZpnsqrAGd8s5vV6gy4QNcfEy1Q+2263w2QyJbTjmpr4rFarHF93dzccDkfCLmw18QmCoNim0+nku6xUiM9ut2PDhg0oKytDS0sLysvLU+YxUDKvjXTBHBM95pn4x5cteSarChyTyYTu7m75tcfjkZs4pSawiY5JhfiAsWeUWq0WZrMZTqczYReOmvjq6upgNpthNpvl3u+Jat5W++8b+H253e6U+vf1+XzQ6XSKcwJfJ0MqXBvpgjkmMTEyz0QXX7bkmRxRFMWYRJcmAoef6XQ6+e5k48aNaGtrg1arDXtMKsTn8/lQXV0tH+/3+/Hhhx+mTHxarRbAWII8ePAgioqKsHfv3oTdoar99/X5fPD7/RAEIaX+fbVaLaxWq/w9JvL3z+FwoLW1FQMDA7BYLCl3baQL5pj4x8g8E3182ZBnsq7AISIiosyXVY+oiIiIKDuwwCEiIqKMwwKHiIiIMg4LHCIiIso4LHCIiIgo47DAoZhyOp1oamrCypUr0dzcDKvVCqvViqamprjNpeFwOFBdXS2vUDv+NRFlFuYZUoPDxCnm/H4/1q9fj9OnTyvmq9i9ezfeeecdeVssSXM6WCyWkK+JKLMwz9Bk2IJDCWEymeD3+1NmOnAiyjzMMxSIBQ4lhLROTCJXJSai7MI8Q4FmJDsAylzSejZOpxNerxcnTpxQTKUuLZAnCAK6u7uxd+9eAGPrtrS2tsJoNMLn86GyslKevlur1cLtdsPlcsnHE1H2Yp6hcNiCQ3FjMpnkPx0dHYrF3NxuNw4ePCgvmmcwGGC1WuH3+1FbW4v6+nqYzWa4XC65E9/u3bshCAIsFgsGBgbk9UqIKHsxz1A4bMGhuCsrK0N5eTkOHjyI/fv3AwBaW1uh0+kUz8q7u7uh1WohCILcQbC+vl7eL3UmdLvd8Hq9CV3hmIhSG/MMjccChxJCo9HgrbfeUmwrLS2FyWSSX1ssFlitVmg0Gnlb4EiI559/Hnq9HmazOWGrBhNR+mCeoUB8REUJYTAY5Dshp9OJqqoqdHR0KI5xOBwwm83o7e0N2u5wONDb24u6ujoIgoCBgQF5n8Tv9yvOG/+aiDIb8wwF4jw4FFNOpxPHjh2D2+2G0WiEyWSSRzTs2rULRqNRnjfC4XDg5MmTMBqNAMaepWu12pDbAeBHP/oRtm3bJn9Wa2srqqqqIAgCGhsbAQAHDhwAAMVrjqggyizMM6QGCxwiIiLKOHxERURERBmHBQ4RERFlHBY4RERElHFY4BAREVHGYYFDREREGYcFDhEREWUcFjhERESUcVjgEBERUcZhgUNEREQZhwUOERERZRwWOERERJRxWOAQERFRxvk/0sGuUPNxtPcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAACoCAYAAADtjJScAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxZUlEQVR4nO3de3BT55kG8McQA75JghiIi48DDobYshMwoV3LuylsaFd4trA4jcVs6A6kMe7SGbwl0G3Z4iQmk83ETilM2lmiJEy3zay12TiQTLHCpSEztczN3GzZ4bZ2JHEztEgy2OayaP9wz6mOLrasu+XnN8OApE/Sa8nn5T3f+S5JLpfLBSIiIqIEMi7WARARERGFGwscIiIiSjgscIiIiCjhsMAhIiKihMMCh4iIiBIOCxwiIiJKOCxwiIiIKOE8FOsAIunkyZNwuVxITk6OdShEY8K9e/eQlJSE+fPnxzqUqGGeIYqekeSYhO7BcblcCGQdQ5fLhbt37wbUNhYYX2jiPT4g/mMMNL5Aj7lEwjwTHYwvNIkS30hyTEL34IhnVEVFRUO26+vrQ2dnJ2bPno3U1NRohDYijC808R4fEP8xBhpfW1tbFKOKD8wz0cH4QpMo8Y0kx0S9wHE6nTAYDACAyspKn22MRiMAwOFwQBAEaDSaqMVHRKMf8wwRRf0Slclkgt1u9/u41WqFyWSCVquFTqeDXq+PXnBElBCYZ4go6j04Wq0WDocDTqfT5+MmkwkZGRnS7YyMDJhMpqDPrlwuF/r6+oZs09/fj7a2Nhw7dgwTJkyQ7lcoFMjKysLdu3fR1dXl9by5c+cCACwWC/r7+2WPZWVlQaFQwG6349q1a9L9qampKCgowOzZswP+GcTX9nyPeMH4QhfvMQYan8vlQlJSUjRCGtJYyTN5eXlYsGBBUDH7is/973jD+EKTKPGNJMfE3Rgci8UClUol3VapVH6TVCDu3buHzs7OIdvY7Xa88MILURt89eSTT+K9994b8fO6u7vDH0wYMb7QxXuMgcTn/p93vEqkPLNr1y50dnbiW9/6FiZPnhzy6yXC72AsMb7QhDPHxF2B44vD4Qj6ucnJycP2lvT39+P999/HwMBARHtwvvrqK9TW1uJf//VfMWPGDKSlpWH8+PHD/gz9/f3o7u7GzJkzkZKSMmz7aGN8oYv3GAON78KFC1GMKrxGW54R88mDBw/w5ptvYtmyZcjPzw/6Z0iU38FYYXyhiUSOibsCJycnR3YmZbfbIQhC0K+XlJQU0IjxoqIi5Ofn+227ePFiv88tLS0NKJYTJ05ICSkrKwutra0oLi4O6LkAkJKSEpej30WML3TxHuNw8cXD5alAJEKeEfPJxIkTAYTvd2e0/w7GGuMLTThzTNysgyMmG41GI5sGZrPZOLuBiMKCeYZo7Ih6D47JZEJzczN6e3shCAK0Wi0AoLy8HI2NjRAEAWVlZTAajXA4HFi7dm20QySiUY55hoiiXuBoNBqfZ0oHDhyQ/i0mIyKiYIylPJOWloZvf/vbsllhRBSHY3DGAnEg4XCzLoDB6aszZsyIdEhENErl5OTgs88+i3UYRHGHBU4UiWdYW7ZsAQCsWrUqoOf993//N+7evYuBgQFMmzYNeXl5EYuRiEaX//u//4PT6Qx4VibRWMECJ4ry8vJw7tw59Pb2BtTeZrNh+fLlqKiokN2/Z88eZGdny+7LyMhg4UM0Bp07dw5f//rXRzwrkyjRscCJsry8PFy8eBE/+tGPUFVVhaysLADAjBkzMH36dNy8eRNdXV3IyMjAsmXLcO7cOfT09KC7uxsTJkxARUUFli9f7vO13QsfFjxERDSWscCJgQcPHuDTTz/Fp59+Kt331ltvYcOGDThw4IDUY3Pu3Dnk5eVhxowZmDRpEvLz8332AIk9PZ6Fz549e5Cfn89Ch4iIxhwWODHg61KVOJB4yZIl+O1vf4tVq1b5vJTlq1gpLi6WvZ5nwSMWSkRERGMFC5wY8VdwTJ482Wu59VOnTqGrqwsDAwPSEtb5+fmy5azdX08seI4ePeq3UCIiIkpkLHDikDh+Rlw6fvHixbh7966sTXt7O9Rqtd/XyMvLkwob9+noHJtDlFjy8vLQ09Mj2zyUiFjgxKW8vDz8/ve/x9SpUwEAn3/+Obq6umSbkCkUCpw4cUJ6jq/CRZyW7jkdnZesiBLHQw89JOUKIvoLFjhxyn0a+Lx58zBx4kRpk74//elPWLduHQwGg9Rm3Lhx+PLLL/HII4/g/PnzUsHjPjans7MTq1atwtGjR/1etmIPD9HoYrVa8corr2Dbtm147LHHYh0OUdxggTMKTZkyBVu3bsWPf/xjAIODivfv3w+VSoXW1lZpR2LPnhp/PTqeON2caPS4desWPv30U7zyyiuxDoUorrDAGaU8BxUvWrQICoUCCxYs8DsLa7iFBjndnIiIEgULnAShUCgADPa4eM7Camtrw6RJk5CXlzdkkTLcdHP27BAR0WjBAicBZWRkQKlUSrOwli5dikuXLgU0uNjXdPPOzs4he3a4GSgREcWbcbEOgMIvLy8Pp06dkmZWbNu2DQBkg4udTmfAryVuGdHa2orW1lbs2bMHALB8+XLMmTMHv/vd72CxWCLwkxDRcKZNm4a33nqLJxpEHljgJKiZM2dK/543bx6AwcHFra2tuH79Ov7t3/4N58+fD/j18vLyUFxcjOLiYqngEQudiooKlJeX48KFC+H8EYgoAA8//DA2bNiA6dOnxzoUorjCAmcMEAcXt7a2YsGCBbBarfjVr36Fo0eP4sSJE/jqq68AAP39/QEXPe49O++99x4A4Pjx4yMqmogodE6nEx9++CFu3rwZ61CI4kpYx+DYbDbZ+i0UPzyniz948ECaLv79738f7777Lo4cOYLFixePaNZUXl4e+vv7pdcBOBiZIoc5xtulS5ek3tnJkyfHOhyiuBFSgdPZ2Qm73S7dNhgM+MUvfhFiSBRpntPFH374YQCD6+sA8Nqks7OzUypifBUss2fPRmNjI+7fv4+Kigqfg5FZ8FAwmGOIKFhBFzjV1dXo7e2VFo8D5HseUXzzVWQ88cQTsllT4t42zz//PE6ePCm1O3LkCL7+9a/LnpuTk4P8/Pwhp5mLWPBQIJhjiCgUQRc4paWlqKiokN332WefhRwQxZa4Vs758+elWVgffPAB+vv7pYLl+PHjePTRR3Hp0iUAg2N3uru7MXHiRBQWFkqvNdy6OiIuJEi+MMcE5+TJk3C5XAB4AkFjW9AFjrjGirucnJyQgqH4MXv2bOnf4sKBYsGSmZmJXbt24aWXXpI9p6ysDLt370ZbW5uUWH2tqxPIQoIiJuixizkmMFevXoUgCLh58yZOnDiBb3zjG7h//770+Mcff+z3c+PxRYks6ALHarXCYDCgqKgIAOByudDU1ISPPvoobMFR/BGT4fPPP49FixYB+EsPzpNPPgm73Y4FCxYA8N0zM5KFBEXc/XxsYo4ZmnjpbuPGjQCAJUuW+Gy3YsWKIV+HC3ZSogq6wGloaIBGo5G6QgHI/k2Jbfr06dK6G319fZg0aRJyc3ORnJyMPXv2yAqWc+fOAYDXHliCICAvLw8PP/wwPv74Y9y+fVt6LCUlBf39/Vi1ahUMBgNmzZoFAEhLS0NOTg4KCgowadIkdHV1eU2PzcrKQlZWVsR+dooO5pihDbe33MDAAC5duoQZM2bgzTfflNatEj377LP46KOPpOP09OnTEY+ZKJqCLnA2bdqEkpIS2X0ajSbkgGh0S05OltbHsdvtmDJlCmbOnImysjLs27dP1vbtt9/GD3/4Q+zduxff+973ZI/91V/9Ff7zP/8TALBlyxav99m/fz+WLFmCLVu24IMPPpA99vLLL2PDhg3SwoP9/f3o6enx2qOL4htzzPAC7dncvn07ampqZPelpaXhH/7hHzAwMIDKykocP34ckydP5nFCCSPoAqekpAS3bt1CU1MTgMH9jgoKCsIWGI1unon37bff9tmDAwyO3WltbZU9lpaWJp2hHj16FADQ09ODDRs2AAC+9a1v4dy5c9i6dat0nygrKwstLS3QarWy+0+fPo0nnngCZ86ckcYocAxC/GKOCZ9HH30Ujz76qOy+EydO4Hvf+x7q6+sB/GUdK/E4IRrtQhqDU11dLf0npdfrsX37dlb/5NNQRcSUKVOkNXh8Pc/9uX//93+Po0ePYtWqVejt7UVxcbF0+cpdWlqaVDRdvHgR//zP/wylUgkAeOaZZ3Djxg2p7YkTJzB//nzYbDb09/ez4IkTzDGR5TmG5/XXX8fmzZtx/PhxpKSk8DigUS/oAmffvn1obGyU3ffWW28x+VBE5eXl+R1z4E6hUKC4uBgA8Pjjj+PXv/61NO394MGDuH//vjSLy2q1Yv78+fj5z3+Obdu2cVBznGCOiSyxh7SzsxP/9E//JF0OdF+RnMs30GgWdIHja7l09zVQiOLJI488Iv1b7H4XZ3GJA5LLysqwbdu2gAooijzmmMgTe0hPnTqFnp4eTJkyBT/96U+xadOmIZdvEPESL8WzkC5RebLZbCEFQxRt7snZ32Uyig3mmOiZOXMmLl26hD/96U+YMmUKPv74Y9y5cwcrV670u3yDiD2eFK+CLnA0Gg1eeOEFqNVqAIDJZJKu5RIRhYo5JrrEMTniJarPP/98yGnonZ2dWLVqFY4ePSq1YY8OxZOgC5yCggK8+uqrMBgMAICtW7dyhgONapmZmVi3bh0yMzNjHQqBOSbaxE1zp02bhpSUFKSlpeH999/HkiVLkJOT41W4iAXRqlWrZPdz7A7Fi5B2ExcEQXZGZbPZ/F6rJYp3OTk5+OUvfxnrMMgNc0x0iZvmpqam4vz583jjjTfwxhtvAPC+FOW50KCvrVdY6FAsBVzg7Nu3DxqNBunp6QCADz/8UPa40+mEyWTCe++9F94IiaKkr68PX375JR5//HGkpqbGOpwxhzkmvrivQyUuy+Crjcjf1issdChWAi5w/uM//gMZGRnSVML/+q//QllZmayN55L5RKPJl19+iQULFqC1tVWaYk7RwxwTf8SiRKfTYerUqTh06BCSk5ORkpICAEhKSsL8+fNl7d2nn7PQoVgKuMDxXI/itdde87oezmXUiShYzDHxKS8vD7/61a/wxz/+EYsXL5Y9NmHCBNy5cwfXr1+H1WqVBhmz0KF4EPQYnL1798JsNmPp0qWorq5GRkYGysrKOAiQiMKCOSZ+iKuNe86qSkpKgs1mw9/+7d/i/PnzAORjdYYqdDi9nCJtXLBPLCoqwnPPPYeGhgbk5+fjF7/4Bex2exhDI6KxjDkm/uTl5aG4uFj6M3/+fGRnZ+N3v/sdfvvb3wIALBaLz+eJm/CK7Y4ePSoVRUSREHQPjkKhAAA0NTXhtddeAwBprx+i0WjcuHHIyMjAuHFB1/0URswxo4d7T8zZs2dRWFiIS5cuydoolUpZO3F6OS9ZUaSEvJKx1WpFfn4+rFYrnE5n2AIjirZ58+bxdziOMMeMLuKlqMzMTOzatQsvvfSS7PHvfOc7+OSTT4Ycm+O5BAAXDqRQBF3gLF26FAaDAR999BF6e3thMBgwefLkgJ5rNBoBAA6HA4Ig+Bw4uH79elRVVQEYvBa/adOmYEMlolEolBwDMM/EgliMPP/881i0aJHssbS0NHR0dKC3txfJycnIzs7Gxx9/DABYsWKF3y0hOFaHghV0gZORkYEXX3xRur1x48aA9omxWq0wmUyora0FAKxZs8Zn4rHZbFi9ejUKCwuxffv2YMMkClhHRweee+45fPjhhxzIGgeCzTEA80ysTZ8+HdOnT5fdd/78eTz++ONebR0OBw4fPowLFy7I7nc6nVi3bp20FUR/fz+6u7sxMDCAadOmseihYUV9oT+TySQt8Q0MJjGTyeSVfNauXQutVhtoeH65XC709fUN2aa/v1/2d7xhfP7fb7jv1rP9UG7evImOjg7cvHkzoNcNp0T5jl0uF5KSkoJ6j3Au9Mc8M3KRjm/GjBk4ffq014KB169fx7/8y7/g8OHDsvt/+tOfAvDeCkJ0+vRpAINbTMSDsf79hioSOSbqC/1ZLBaoVCrptkql8nldva2tDcBgdQ8MLjQVjHv37qGzszOgtt3d3UG9R7QwPvn7dHd3Y9KkSSN+XrhfN5wS4TueMGFCUK8dzoX+mGeCF+n4PI8tu92OH//4x14F4vTp09HX1+fVs5adnQ2bzYbm5masW7cOb731FmbNmoWcnJyIxh2osf79hiqcOSYuFvoTk4s792vhS5YswdKlS6VZFSORnJw8bIUvdn3OnDlTWqEznjA+uYGBAQDAzJkzkZ+fP2z7QOMb6euGU6J8x56XGUYi0gv9Mc8MLZbx+TveHn/8cTz33HMAgDt37uDKlSu4f/8+Vq9ejSlTpgCANJj56NGjUKvV6O7ulgrhjIyMqPXw8PsNTSRyTNBjcARBwHvvvQedTof09HS0tLSgqKho2Ofl5OTIzqTsdjsEQZC1MRqNaGtrk5KPQqGA1WqFWq0ecZxJSUkB7yuUkpIS13sQMb6/vE8w7zdc+2BfN5xG+3cc7OUpX4LNMQDzTCjiKb7U1FRpZlVfXx86OzulExHP2Vj3799HamoqXn/9dXzwwQfSa0R7kHI8fX6+jPb4RpJjgl7wo6mpSdZdXFJSApPJNOzzNBqN1C0MDA7yE8/KxIQkCAJKS0ulNk6nM6ikQzQSubm52LNnD3Jzc2MdCiH4HAMwz4wV7gsIintibd26Fa2trdKCgr42CaWxIegeHJVKhYqKihE/TxAElJWVwWg0wuFwYO3atdJj5eXlaGxshFqthtFolM6wdu3aFWyYRAFTqVRYtmxZrMOgPws2xwDMM2ONew/NrFmzMGvWLGRlZeHll19GVlZWDCOjWAq6wDlz5oxsxgMwOGDv29/+9rDP9Tdr4cCBA15twjHDgSgQV69exa5du7BmzRo88sgjsQ5nzAslxwDMM2NdVlYWXnnllViHQTEUdIGj0+mwYsUK5OTkICMjAx0dHXj11VfDGRtRVF2+fBmbN2/G3/3d37HAiQPMMRQKp9OJlpYWlJSUBDVwnEa/kAYZNzY2oqmpCU6nEy+99JLXID4iomAxx1AoLly4AK1Wi9bWVhQXF8c6HIqBkHYVNBgMMJlMePHFF2Gz2XDr1q1wxUVExBxDREELusCpr6+HQqGQZiaMZIYDEdFwmGOIKBRBFzhFRUWoqKhglzElDJVKhe9+97uyFXApdphjiCgUQRc4vja9c193gmi0yc3NxYcffsh1cOIEcwyFYuLEiXjssccwceLEWIdCMRL0IOOCggKUl5dj8uTJMJlMMJlM2LhxYzhjI4qqu3fvoqenB9OmTQt6PyUKH+YYCoVarQ5p6xAa/YLuwSkpKcH27duRn58Pl8uFrVu3SpvkEY1G7e3tEAQB7e3tsQ6FwBxDRKEJugfn2WefRVVVFc+oiCgimGMoFGfOnMEzzzyDgwcP4oknnoh1OBQDQffg6HQ6rxVFW1paQg6IiAhgjqHQ3L9/Hzdu3MD9+/djHQrFSNA9OElJSXj55ZeRk5MDQRDgcDhgNBrZhUxEYcEcQ0ShCLrAeeedd1BSUoKbN29KO/7a7fZwxUVEYxxzDBGFIugCp7a21utMit3H4bF+/Xrs2LFDdl9XVxfef/99XLlyBTqdDgBgsVhQWloqLYQWDkajEQDgcDggCILP116/fj2qqqoAAHv37sUPf/hDAMD+/fsxMDAAs9kMrVYbVFxmsxnV1dVobGyM+v4x8+bNw8DAAJKTk6VYdu7cCZvNho0bN0Kj0cBoNGLLli2oqKhAVVXViGIc7mfr6upCVVUVfv/733PvHDDHRFq85xmj0Sgb9P+d73wHANDX14fJkyfjk08+CXoLhljmGV+xRDPPdHZ24gc/+AEOHjwY85890kZU4HR2dmLv3r3IycnBc8895/U4u45DZzQa0dLSAqvVKlvgbNasWUhOTkZra6uUeABg7ty5OHDgQFgWQ7NarTCZTKitrQUArFmzxmfisdlsWL16NQoLC7F9+3YAg4kxOTkZOp0OTqcTzzzzDI4dOzbiGNRqdcwWdhs3bpxszQy1Wo3S0lKYzWbpc9Bqtaivr8fKlStHnBw8fzaDwSD7LmfNmoWCgoIQf4rRjTkmOuI9zzidTrzzzjtobGyEIAhYuHChVOB0dHRg/Pjxw77PnDlzYDKZMGfOHK/HYplnPEU7z+Tn56OwsDA8wce5gAcZt7S0YMWKFTAajairq8OPfvSjSMY1ZjkcDlRUVKChoSGg9gqFAk6nMyzvbTKZkJGRId3OyMjwuTT+2rVrcezYMezatUs6+G7duoUjR45IMSmVSpjN5rDEFS3nzp3DokWLcO7cuai8n8FgiMr7jBbMMdET73lGoVCgsbERwGBB5F4APfXUU7h3796w75Oeno6SkhKkp6eHJe7RaiznmYB7cAwGA44dOyb9YtbX18NmsyE7OztiwY01TqdT6q4tLy/Hpk2bhmxvMBhQUlICtVodlve3WCyybQpUKpXPpCauJutwOAAMdh2Ly+qLHA5HQHEZjUbpdZRKJbRarezxuro6lJaWorm5GStXroQgCOjq6kJ6ejra2tqwe/du1NbWwmw2w2q1QqFQwGg0SmeHI3Hr1i188cUXXhs6Wq1WqUvd/ed2j7GoqEhKxGq12mfc7kwmE5xOJwwGAwRBwLx582SPAYOX/3bs2CF1V2/fvh0ajQbr16+HIAjD/n6MNswx0TFa8oz43s3NzVJP8UjYbDb8/Oc/x4YNG9De3j7iPOMrp4Qjz/gT6TwzdepUKJVK2WNAYueZgAuc7OxsWdVdVVWFlpaWhEk+NpsNAwMDSElJCevrqlSqgJf+N5lM0oEnCAJMJpNX1217e7t0EGg0GlnXo8jpdGLnzp1+38fXgeCP50EGQPYLv2TJEixatEj2eE1NDbZu3Trsa5vNZungslqtqKur80o8KpVK+gz0ej1qa2vR0tKC8ePHIzc3F0899RQASJc1NBqN7CAW3b59G9u3b8dDD/n+lV+5cqXfOAVBkMVVX18v/dtgMEClUkmPr1mzBrt27fIZtzuNRgOFQiF9f319fdJj4gaTYsLTarWyM9zS0lKf3/tol+g5BmCe8cdXngEGlwoQBAH19fX4yU9+EtBriXp6erBt2zaUlpbiiy++GHGe8ZVTwpFn/H0mkc4zfX196OzslB4bC3km4AInJydHdjsjIwMul0t2X2dnJ/Lz88MTWRTduHED5eXlePDgQdhfe/z48bh69SoyMzOHbeu+z05hYSEaGhq8Ek92drbXwelJoVAEVXXn5OTIzqTsdrvXwWg0GtHW1ia9vkKhkO0ZZDQaodFoho0RGEwWpaWlAAYPbs8BjyKDwQCn0ynNoFm+fDl+85vfYPPmzZg/fz527NiBqqoq1NfXQ6/Xo6CgwOu10tLSUF1djdTUVL/xXL9+fdiYPZnNZlkXu/uidJ5xB8pXAtTpdNi5c6ffxJoIEjnHAMwzokDyDDBYQIn/CVdXV2PRokVB/e63tLQElWd85ZRw5JlgMM8EJ+ACx2q1enXd22w26T673Y6Ghga8+uqr4Y0wCjIzM9HY2IjMzMyInFkFknTMZrOsutdqtVi4cGFQ7xnsmZVGo0FdXZ1022azSYlPTDaCIMgGvTmdTuTn56OzsxOHDx+WEpLZbJbai8/1pFKpYLFYZK/l3s5gMMBut6OyshJmsxltbW0wm804fPgwenp60NTUhN27d3sNWqypqfEaPBlKD85Q1Go1LBaL9DmZzWa/cfvq4nc6nTCZTHj66ael+3wlFrVaDZvNBoPBgKVLlwYVa7xL5BwDMM+IAskzBoMBFotFKqCUSuWw/+H6yzPp6elB5Zn29navnBKOPBPM4OZw5JnPP/9c1hs6FvJMwAWOXq/Hu+++K7vP5XJJ3WgulwtJSUmjNvlkZ2cjPz8/7JV3IEwmE+rr66HT6aQuQXGAbk1NDVatWoVr165h3759uHLlis8uZXfBnlkJgoCysjJpXMzatWulx8rLy9HY2Ai1Wg2j0Sj15OzatQsAcO3aNdTU1CApKQnA4AF19uxZ6bm1tbVeMVdWVqKurg56vR6CIEgHvtVqhcFgkAol925Tq9WKa9euIT09HUeOHJGeZ7FYpC5199cSBXJmlZKSAr1eL/UkWK1WNDc3w2azSZ+5+Nk0NDSgqqoKOp0Oer0eBoMBSqUSgiCgsLDQZ9zuP1tlZSV0Oh0MBoOUkLq6unDp0iVp1oM4GFPsZl66dCnMZvOo7zb2J9FzDMA8AwSWZ5YuXSptsNrc3AydTiedSJnNZqSmpqKtrU26tCI+11eeWbZsGQ4ePDjiPOMrp4Qjz3iKVp557LHHAAz2goqPJ3yecQVoy5YtLqfT6fePw+Fw1dXVBfpyUXHmzBnXmTNnhm13+/Zt1/Hjx123b9+OQlQjlwjxNTc3h+39WltbXQBcra2tAbWP98/P5Qosxvb29rB+jiMR6GcY6DHny2jMMS4X80y0iPH94Q9/8Hv8ux8fX331lWvdunWur776KqrxxfvnN1x8scozkcgxAU8TX7lyJTIyMvz+USgUKCsri1wlRqOW2WyOmzUnhnLjxg28++67uHHjRqxDkRHPGNvb28O62Fq8YY6hUHjmmZycHPzyl7/0GttFviVingm4wAlkAbKxvkgZ+eZ5nTpeWSwWVFZWyq7XxwNxlkOiL87FHEOh8MwzfX19OHHihGyGIvmXiHkm6K0aiAIVyIwq8q+ysjLWIRDFPc888+WXX2LBggVobW0NekuHsSQR80zAPThEREREowULHCIiIko4LHCI/iw9PR3f/OY3x/zeNUREiYBjcIj+bM6cOTh06FCswyCiMBg3bhwyMjIwbhzP48cqFjhxaP369V5LgHd1deH999/HlStXpAWYLBYLSktLwzqlT5wq6HA4pA35hmqrUChkG0WKi2kBwQ0uNpvNqK6uRmNjo89VSSPpwYMHuHfvHpKTk6Wk6L4Tr1KphMPhiIsFsKxWK6qrq7Fx48aEmdJJ0RXveUZc7M5sNkOr1Up55tChQ0hPT8cnn3yCiRMn+t0EdN68eX438YxlnvGFeSYyWODEGaPRiJaWFq8pj7NmzUJycjJaW1tlv/hz587FgQMHwjIN23Mp8jVr1vj9pXY6nXjnnXdkq5D+4Ac/wNtvvw2FQoHy8vKgChy1Wh2zKeWnTp2Szbowm81wOp3S7AKr1YqGhgapvbgSaCwIgoCSkpKYvDeNfvGeZ8QVlnU6HZxOJ5555hl88cUX6OrqQkdHB27duoVly5ahvr5eWk19JGKZZzwxz0QO++7ijMPhQEVFhewXfCgKhcLvWcpIiUt2i9w3d/PU1NQk26ukq6tLeq7ZbEZjY2NYYoolh8Mh25hQEARp0z5AftZFNJrEe55xOBzSfQqFAkqlEp2dnWhvb8fUqVNlbcViyFNHRwfUajU6OjrCEnekMM9EDntw/sxms2FgYCAim+Dl5uYG1NbpdErdteXl5cPu82IwGFBSUuK3i3akLBYLVCqVdFulUvlMamazWdovRfS///u/uHTpkrQXSk1NjXSGNhSxGxoY7Jr17PWpq6tDaWkpmpubpY3qurq6kJ6ejra2NuzevRu1tbUwm82wWq1QKBQwGo0BvfdwNBoN9Ho9Fi5ciKVLl0Kn00lnmiaTCU6nEwaDQfrOTCaT9HPr9Xps374dCoUCdXV1KCoqgtVqlZ7vGWtnZyeOHDkCh8OBQ4cOoba21ut5arUaer1eSvgdHR2yREjxj3kmsDyj0WhkvToOhwP5+fk4cuQIzp8/L91vtVphtVp9xjYwMICOjg4MDAwElWd85ZTRnGd+8pOfoKurCzabDVOnTpXiT+Q8wwIHg0v0l5eX48GDB2F/7fHjx+Pq1asB7fRrMpmkA08QBJ+b3bW3t0uFhUaj8dl1Gewuv76IScGd1Wr1ShB9fX1QKBRSomlvb/e7s63IbDZj79692LFjB6xWK+rq6rxeV6VSSZ+BXq9HbW0tWlpaMH78eOTm5uKpp54CAOzduxc5OTnQaDQ+d8kNdjfxXbt2SRvaideitVqttDGd++cv3qdUKqWkYzAYoFKppJ9rzZo1KCgo8Ip13759GD9+PNRqNaZPn+7zeTqdDlarVUqq/nrXKD4xz/jnK8+IampqsHXrVgDAN77xDTQ3N2PcuHFSr8dwY2i6urrwxRdfjDjP+Mop4cgzvj6TaOWZw4cP48knn8TixYuhVCoTPs+wwAGQmZmJxsZGZGZmRuTMKpCkA0DWTVlYWIiGhgavxJOdnT3s2JZgd/nNycmRnUnZ7Xavg1EcRCzuJm61WjF16lRMmzYNd+/eldoplUq/Z1aivXv3SmcGgiB4DXgUGQwGOJ1O2O12AMDy5cvxm9/8Bps3b8b8+fOxY8cOVFVVob6+Hnq9HgUFBV6vFcguv9evX5fdFgs08U9lZSXWrFkz7Ofv/jObzWZZF/zGjRshCIJXrC+88AJeeeUV/OM//iPUajVUKpXX89x3Hgcg6+an+Mc8MyiQPCMyGo3QaDTQarXSlgvr1q3DRx99hNzcXCgUimG3FmhpaQkqz/jKKeHIM56ilWfeeOMNLFu2DEajEb/+9a9RUFCQ8HmGBc6fZWdnIz8/f0S/mOFkNptl1b1Wq8XChQuDeq1gz6w0Gg3q6uqk2zabTUp8TqcTCoVCtpx3W1sbioqKkJ+fj9u3b+Pw4cPSY+7dpOJzPalUKtm+T57tDAYD7HY7KisrYTab0dbWBrPZjMOHD6OnpwdNTU3YvXu316DFmpoar8GTgZxZFRYWwmq1Ytq0adLP4HA4ZMnf82B3Op2yM2JParUaFotFeg2z2YympiavWA8dOoQXX3wR+fn5eOONN/DII4/g9u3bsudpNBrZf069vb0+35PiF/NMYHkGGOw5UCgU0Gg0MJvNSE5Oxu3bt7Fz507cuXMHt27dQmFhodTeX55JT08PKs+0t7d7HafhyDOen0m08ozNZsPhw4fxs5/9DKmpqaipqUn4PMMCJw6YTCbU19dDp9NJXZHiwLmamhqsWrUK165dw759+3DlyhWfXcrugj2zEgQBZWVl0vVq9xlS5eXlsimVJpNJmoWRm5uLtLQ0PPvss9JZ0MaNG6W25eXlqK2t9Yq5srISdXV1Uq+QeOBbrVYYDAYpsbl3kVqtVly7dg3p6ek4cuSI9DyLxSJ1qbu/lijQM6vs7GzZbXEDOofDAYvFgtdee016TKfTyc52xOvz7rMedDod9Ho9DAYDlEql31htNht6e3ths9kgCAIqKyu9nqfVaqV4xNh8nX0T+TKa8ozD4UB1dbV0v9PpxMmTJ9Hb24uCggLp+HcfA+OZZ3Jzc7Fnzx48/fTT0Ov1I84zvo7TcOUZT9HIM9nZ2ejp6cH+/fsxceLEsZFnXAnszJkzrjNnzgzb7vbt267jx4+7bt++HYWoRi4R4mtubg7b+7W2troAuFpbWwNqH+jnd/HiRdd3v/td18WLF8MR5ogkwnfscgV+zCUS5pnoEOP7wx/+4Pf4D2eeGanR8vmN9vhGkmM4TZwizmw2x82aE0Ox2+34n//5H+kaPBGNHp555urVq/j3f/93XL16NYZRUSyxwKGI87xOTUQUbp555vLly9i8eTMuX74cw6golljgUMQFs6IxEdFIMM+Qp5gMMg50H5Lh2hAR+cM8QzS2Rb0HR5xqp9VqpZHfwbQhCrevfe1reP311/G1r30t1qFQiJhniCjqPTj+9iFxP3MKpE2gXC6XtECUP/39/bK/4w3j8/1+p06dCug979y5gytXrsDhcGDixIlDti0uLsbevXtl902cOBEzZ84EAJw/f95rJdpHH30UkyZNwrVr17wGKE+ZMgVTp05Ff3+/bC0OYHD12dmzZwMAzp49i8uXL+PYsWOYMGECgMEp62lpabhx4wb++Mc/yp6rUCiQlZWFu3fvoqury+vnmDt3LoDBZfE9P6OsrCwoFArY7XZcu3ZN9lhaWhqys7Px4MED2ZL4d+/exaRJk6TPwR+Xy4WkpKQh20QD88zIjZb47ty5A2D44//y5ctYvHgxzp49i1OnTnk9PmfOHCQlJcFqtXp9d9OnT4dKpfJ5jKSmpkIQBLhcLpw7d066/+7du7hx4wZu3LiB9PR0XL582WsNmczMTDz88MO4desWLl26JHss0nnmzp07OHr0qCzHAPGTZyKRY6Je4ASyD0mgeyIF4t69e+js7AyobXd3d1DvES2Mb1BPTw8A4Pvf/35U3o8GJSUlYf/+/bJj0xf35BkrzDPBi/f4xG0dAj3+P//880iGQ2EU7hwTFwv9DbUPyUja+JKcnCydJfvT39+P7u5uzJw5M+xLqIcD45PLz8/H6dOnA15hU+zBycrKGrYHJxZnVsBfenAyMzPjugdn3rx5Q37HFy5c8PtYrDHPDG20xPf000+P6Pi/f/8+Ll686HV/pHpwFi5cGNc9OCqVKq57cMKZY6Je4ASyD8lI9ioZTlJSUsCrSqakpMRsCfVAML6/eOKJJwJu29fXh87OzrAskR+pXXXnz58fdIyLFy/2+1go8f7N3/yN9G/xMxzuO46Hy1MA80woRkN8Izn+AeCb3/xmRGL567/+a+nf8Z5n+vr6oFQqg44v0nkmEjkm6oOMPfe58NyHZLg2RETDYZ4hoiSXy+WK9pu6T81UKpXS+gVLliyR9jvy12YkTpw4AZfLNez1OpfLhXv37iE5OTluzkDdMb7QxHt8QPzHGGh8d+/eRVJSEoqLi6MYnW/MMyPD+ELD+EITiRwTkwInWk6ePAmXy4Xk5ORYh0I0Jty7dw9JSUmYP39+rEOJGuYZougZSY5J6AKHiIiIxiZu1UBEREQJhwUOERERJRwWOERERJRwWOAQERFRwmGBQ0RERAmHBQ4RERElHBY4RERElHBY4BAREVHCYYFDRERECYcFDhERESUcFjhERESUcFjgEBERUcJ5KNYBRJvRaAQAOBwOCIIAjUYTVJtYx+dwOGA2m6HVauMuPve2CoUiLuPT6/UQBAEAoNVq4yo+sY0oWvE5nU4YDAYAQGVlpc82sTw2RgvmmOjE6N6WeWbk8Y2JPOMaQywWi2vLli3S7dWrVwfVJlICee/29nZXU1OTy+VyuRwOh+upp56Kq/hEDofDtWLFCinWaAg0vtWrV7scDofL5XK5VqxYEZXYXK7A4nM4HK533nlHuu3ePtKamppcb775puz93cXy2BgtmGNCxzwTGuaZvxhTl6hMJhMyMjKk2xkZGTCZTCNuE8v4HA6HdJ9CoYBSqYTZbI6b+ERNTU1YunRpVOISBRKf2WyW2pjNZjQ2NsZVfAqFAgaDQfpO3dtHmlarRU5Ojt/HY3lsjBbMMdGJUcQ8E1x8YyXPjKkCx2KxQKVSSbdVKhWcTueI28QyPo1Gg9raWum2w+GAWq2Om/iAwQM6FpcuAomvvb0dNpsNVqsVAFBTUxNX8QHAxo0bUV5ejvLyclRVVUUtvuHE8tgYLZhjQsc8E/n4gLGRZ8ZUgeOLw+EIS5tIGeq9a2pqsHXr1ihG481XfFarVbruHGue8TmdTiiVSqjVaqjVarS3t0f17NSTr8+vra0NjY2NUCqVWL16dfSDGoFYHhujBXNM6JhnQjNW88yYKnA8u8XsdrvXARJIm0gZyXsbjUZoNJqoDlwLJD69Xi/F19bWBpPJFLUDO5D4BEGQ3adUKqWzrHiIz2g0orS0FGq1Grt27UJhYWHcXAaK5bExWjDHhI55JvLxjZU8M6YKHI1Gg7a2Num2zWaTujjFLrCh2sRDfMDgNUqFQgGtVguz2Ry1AyeQ+CorK6HVaqHVaqXR79Hq3g70+3X/vKxWa1x9vw6HA0qlUvYc99uxEA/HxmjBHBOdGJlnQotvrOSZJJfL5QpLdKOE+/QzpVIpnZ0sWbIEjY2NUCgUftvEQ3wOhwPl5eVSe6fTibNnz8ZNfAqFAsBggqyvr0d2djY2bdoUtTPUQL9fh8MBp9MJQRDi6vtVKBTQ6/XS5xjN3z+TyYSGhgb09vZCp9PF3bExWjDHRD5G5pnQ4xsLeWbMFThERESU+MbUJSoiIiIaG1jgEBERUcJhgUNEREQJhwUOERERJRwWOERERJRwWOBQWJnNZtTU1GDu3Lmoq6uDXq+HXq9HTU1NxNbSMJlMKC8vl3ao9bxNRImFeYYCwWniFHZOpxMLFy7EsWPHZOtVVFdX4+DBg9J94SSu6aDT6XzeJqLEwjxDw2EPDkWFRqOB0+mMm+XAiSjxMM+QOxY4FBXiPjHR3JWYiMYW5hly91CsA6DEJe5nYzabYbfbceDAAdlS6uIGeYIgoK2tDZs2bQIwuG9LQ0MDioqK4HA4sHTpUmn5boVCAavVCovFIrUnorGLeYb8YQ8ORYxGo5H+tLS0yDZzs1qtqK+vlzbNy8nJgV6vh9PpxJo1a1BVVQWtVguLxSIN4quuroYgCNDpdOjt7ZX2KyGisYt5hvxhDw5FnFqtRmFhIerr61FbWwsAaGhogFKplF0rb2trg0KhgCAI0gDBqqoq6XFxMKHVaoXdbo/qDsdEFN+YZ8gTCxyKioyMDHz22Wey+woKCqDRaKTbOp0Oer0eGRkZ0n3uMyF27twJlUoFrVYbtV2DiWj0YJ4hd7xERVGRk5MjnQmZzWaUlZWhpaVF1sZkMkGr1aKjo8PrfpPJhI6ODlRWVkIQBPT29kqPiZxOp+x5nreJKLExz5A7roNDYWU2m7F3715YrVYUFRVBo9FIMxrWr1+PoqIiad0Ik8mE5uZmFBUVARi8lq5QKHzeDwA/+9nPsHLlSum9GhoaUFZWBkEQsGXLFgDA1q1bAUB2mzMqiBIL8wwFggUOERERJRxeoiIiIqKEwwKHiIiIEg4LHCIiIko4LHCIiIgo4bDAISIiooTDAoeIiIgSDgscIiIiSjgscIiIiCjhsMAhIiKihMMCh4iIiBIOCxwiIiJKOCxwiIiIKOH8P/sn2nxl1xapAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -324,10 +415,10 @@ "# Set the labels for the legends manually\n", "ax[0].get_lines()[0].set_linestyle('dashed')\n", "ax[1].get_lines()[0].set_linestyle('dashed')\n", - "ax[0].legend(['AP: 0.66, Healthy', 'AP: 0.65, Stressed'], frameon=False)\n", - "ax[1].legend(['AP: 0.56, Healthy', 'AP: 0.53, Stressed'], frameon=False)\n", + "ax[0].legend(['AP: 0.52, Healthy', 'AP: 0.46, Stressed'], frameon=False)\n", + "ax[1].legend(['AP: 0.31, Healthy', 'AP: 0.29, Stressed'], frameon=False)\n", "fig.tight_layout()\n", - "fig.savefig(fig_save_dir + 'APmodel.pdf', format='pdf', bbox_inches='tight')" + "fig.savefig(fig_save_dir + 'APmodel-final.pdf', format='pdf', bbox_inches='tight')" ] }, { @@ -363,7 +454,7 @@ "labels = ['Healthy', 'Stressed', '(none)']\n", "sns.heatmap(matrix, annot=True, xticklabels=labels, yticklabels=labels, fmt=\".0f\", cmap=sns.cubehelix_palette(as_cmap=True, start=.3, hue=1, light=.9))\n", "fig.tight_layout()\n", - "fig.savefig(fig_save_dir + 'CMmodel.pdf', format='pdf', bbox_inches='tight')" + "fig.savefig(fig_save_dir + 'CMmodel-final.pdf', format='pdf', bbox_inches='tight')" ] }, { @@ -378,7 +469,7 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 5, "id": "bfb39b5d", "metadata": {}, "outputs": [ diff --git a/classification/evaluation/eval-test-yolo.ipynb b/classification/evaluation/eval-test-yolo.ipynb index 5b6bd87..47cc0ef 100644 --- a/classification/evaluation/eval-test-yolo.ipynb +++ b/classification/evaluation/eval-test-yolo.ipynb @@ -32,7 +32,16 @@ "execution_count": 1, "id": "3fe8177c", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zenon/.local/share/miniconda3/lib/python3.7/site-packages/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.13) or chardet (5.1.0)/charset_normalizer (2.0.4) doesn't match a supported version!\n", + " RequestsDependencyWarning)\n" + ] + } + ], "source": [ "import fiftyone as fo\n", "from PIL import Image\n", @@ -62,10 +71,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "19c5b271", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading split 'test' to '/home/zenon/fiftyone/open-images-v6/test' if necessary\n", + "Necessary images already downloaded\n", + "Existing download of split 'test' is sufficient\n", + "Loading 'open-images-v6' split 'test'\n", + " 100% |█████████████| 12106/12106 [1.0m elapsed, 0s remaining, 209.3 samples/s] \n", + "Dataset 'open-images-v6-test' created\n" + ] + } + ], "source": [ "import fiftyone as fo\n", "import fiftyone.zoo as foz\n", @@ -75,7 +97,7 @@ " classes=[\"Plant\", \"Houseplant\"],\n", " label_types=[\"detections\"],\n", " shuffle=True,\n", - ")\n" + ")" ] }, { @@ -90,7 +112,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "id": "ebdde519", "metadata": {}, "outputs": [], @@ -153,7 +175,7 @@ "metadata": {}, "outputs": [], "source": [ - "yolo_dataset_dir = '/mnt/yolo-second-run/data'\n", + "yolo_dataset_dir = '/home/zenon/testdir'\n", "\n", "# The type of the dataset being imported\n", "dataset_type = fo.types.YOLOv5Dataset\n", @@ -162,9 +184,9 @@ "yolo_test = fo.Dataset.from_dir(\n", " dataset_dir=yolo_dataset_dir,\n", " dataset_type=dataset_type,\n", - " split='test'\n", + " split='val'\n", ")\n", - "yolo_test.name = 'yolo_test'\n", + "yolo_test.name = 'yolo_test4'\n", "yolo_test.persistent = True" ] }, @@ -178,17 +200,25 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 3, "id": "0b86639e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['dataset', 'dataset-small', 'yolo', 'yolo_test']" + "['dataset',\n", + " 'dataset-new',\n", + " 'open-images-v6-test',\n", + " 'plantsdata',\n", + " 'yolo',\n", + " 'yolo_test',\n", + " 'yolo_test2',\n", + " 'yolo_test3',\n", + " 'yolo_test4']" ] }, - "execution_count": 17, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -210,7 +240,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 28, "id": "030e9c7c", "metadata": {}, "outputs": [ @@ -218,7 +248,7 @@ "name": "stdout", "output_type": "stream", "text": [ - " 100% |███████████████| 9184/9184 [56.3m elapsed, 0s remaining, 2.7 samples/s] \n" + " 100% |███████████████| 9184/9184 [1.5h elapsed, 0s remaining, 1.6 samples/s] \n" ] } ], @@ -229,7 +259,7 @@ " for sample in pb(yolo_view):\n", " image = Image.open(sample.filepath)\n", " w, h = image.size\n", - " pred = detect_yolo_only(sample.filepath, '../weights/yolo.onnx')\n", + " pred = detect_yolo_only(sample.filepath, '../weights/yolo-final.onnx')\n", "\n", " detections = []\n", " for _, row in pred.iterrows():\n", @@ -259,7 +289,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "4aaa4577", "metadata": {}, "outputs": [ @@ -268,9 +298,9 @@ "output_type": "stream", "text": [ "Evaluating detections...\n", - " 100% |███████████████| 9184/9184 [24.5s elapsed, 0s remaining, 341.6 samples/s] \n", + " 100% |███████████████| 9184/9184 [23.3s elapsed, 0s remaining, 363.8 samples/s] \n", "Performing IoU sweep...\n", - " 100% |███████████████| 9184/9184 [26.9s elapsed, 0s remaining, 301.2 samples/s] \n" + " 100% |███████████████| 9184/9184 [25.3s elapsed, 0s remaining, 333.0 samples/s] \n" ] } ], @@ -290,7 +320,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "id": "59355da5", "metadata": {}, "outputs": [], @@ -303,7 +333,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "id": "0c8a3151", "metadata": {}, "outputs": [], @@ -324,6 +354,50 @@ "The code for the LaTeX table of the classification report can be printed by first converting the results to a pandas DataFrame and then calling the `to_latex()` method of the DataFrame. This code can then be inserted into the LaTeX document." ] }, + { + "cell_type": "code", + "execution_count": 10, + "id": "f4ede94a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\\begin{tabular}{lrrrr}\n", + "\\toprule\n", + "{} & precision & recall & f1-score & support \\\\\n", + "\\midrule\n", + "Plant & 0.633358 & 0.702811 & 0.666279 & 12238.0 \\\\\n", + "micro avg & 0.633358 & 0.702811 & 0.666279 & 12238.0 \\\\\n", + "macro avg & 0.633358 & 0.702811 & 0.666279 & 12238.0 \\\\\n", + "weighted avg & 0.633358 & 0.702811 & 0.666279 & 12238.0 \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\n", + " precision recall f1-score support\n", + "\n", + " Plant 0.63 0.70 0.67 12238\n", + "\n", + " micro avg 0.63 0.70 0.67 12238\n", + " macro avg 0.63 0.70 0.67 12238\n", + "weighted avg 0.63 0.70 0.67 12238\n", + "\n" + ] + } + ], + "source": [ + "results_df = pd.DataFrame(results.report()).transpose()\n", + "\n", + "# Results for hyper-optimized final YOLO model\n", + "\n", + "# Export DataFrame to LaTeX tabular environment\n", + "print(results_df.to_latex())\n", + "\n", + "# Print classification report\n", + "results.print_report()" + ] + }, { "cell_type": "code", "execution_count": 13, @@ -348,6 +422,8 @@ "source": [ "results_df = pd.DataFrame(results.report()).transpose()\n", "\n", + "# Results for original YOLO model\n", + "\n", "# Export DataFrame to LaTeX tabular environment\n", "# print(results_df.to_latex())\n", "\n", @@ -357,7 +433,38 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 9, + "id": "ea4985d4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " Plant 0.52 0.54 0.53 22535\n", + "\n", + " micro avg 0.52 0.54 0.53 22535\n", + " macro avg 0.52 0.54 0.53 22535\n", + "weighted avg 0.52 0.54 0.53 22535\n", + "\n" + ] + } + ], + "source": [ + "results_df = pd.DataFrame(results.report()).transpose()\n", + "\n", + "# Export DataFrame to LaTeX tabular environment\n", + "# print(results_df.to_latex())\n", + "\n", + "# Print classification report\n", + "results.print_report()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, "id": "a6e0e146", "metadata": {}, "outputs": [ @@ -365,17 +472,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.5726538843333254\n" + "0.5545944356667605\n" ] } ], "source": [ + "# Result of final optimized YOLO model\n", "print(results.mAP())" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 10, "id": "98122829", "metadata": {}, "outputs": [ @@ -389,7 +497,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAACoCAYAAADtjJScAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAActklEQVR4nO3db2gb9/0H8LeWOq2z6qyBMZT4RFqsFlt2aEuzzRfYg5EN2YWFqNQKaxjx0iQbjOTBYtiDxSPOHi0ea8oeNNGyPinUzqigexArmcuetOeR9M8yWRH5Q2ssjXShEN8pyEk8er8Hme4n2ZJ9ujudTqf3C0Ks09e6Tx1/P/3c93v3/fo0TdNARERE5CHfaHQARERERHZjgUNERESewwKHiIiIPIcFDhEREXkOCxwiIiLyHBY4RERE5DkscIiIiMhzHmt0APX02WefQdM0tLW1NToUopawsrICn8+HF154odGhOIZ5hsg5teQYT4/gaJoGI+sYapqGhw8fGmrbCIzPGrfHB7g/RqPxGe1zXsI84wzGZ41X4qslx3h6BKd4RTUwMLBuu0KhgEwmg56eHmzZssWJ0GrC+Kxxe3yA+2M0Gl8qlXIwKndgnnEG47PGK/HVkmMcL3BUVcX09DQA4ODBgxXbJJNJAICiKBBFEZIkORYfETU/5hkicnyKSpZlLC0tVX0/m81ClmVEIhHEYjHE43HngiMiT2CeISLHR3AikQgURYGqqhXfl2UZfr9ff+33+yHLsumrK03TUCgU1m2zvLyMXC4HRVHQ2dmJnp4eU+eql+Xl5bK/3YbxWef2GI3Gp2kafD6fEyGti3mmdl75HWwUxmdNPXKM6+7BWVxcRCAQ0F8HAoGqScqIlZUVZDKZddssLS0hGo3i66+/BgAkEgkEg0HT56yXhYWFRoewLsZnndtjNBLf5s2b6x+IRcwz1Xnhd7CRGJ81duYY1xU4lSiKYvp729raNrxSWl5eRiKRwO3bt/Hzn/8cd+/eRVdXl+lz2u3Bgwe4ffs2nnrqKTz++ONl7/n9/oZfCS4vL2NhYQHbtm1De3t7Q2OpxO3xAe6P0Wh8t27dcjAqezmdZ7q6utDb22v6nHbzyu9gozA+a+qRY1xX4ASDwbIrqaWlJYiiaPrzfD6foTvGu7u78fTTTwMADhw4YPp8jfD++++ju7vbls/y+/0IhUKmvre9vd2Vd+cXuT0+wP0xbhSfG6anjGhknuns7ATw6ErV7P9orPTTjTT772CjMT5r7MwxrilwVFWFIAiQJAmnTp3Sj+dyOceebujp6cGNGzeQz+cdOZ9R1SrbXC6H3bt3Y/fu3baeb72CqZ6Jlaje3JBnivf+7Nu3z9Ln2H1hs3XrVls+i8gtHC9wZFnGRx99hHw+D1EUEYlEAADRaBSJRAKiKGJ4eBjJZBKKouDQoUOOxufG/3kXCgU88cQT6O3tLatsX3zxRVsLMqMF0+rEWizA7t+/j66uLlf+DKm1uDnPWL2QqteFzfnz5/Hw4UPcv3+/6sgSL3ComThe4EiSVPFKaXZ2Vv+6mIxoY3Ymm40KJrMFEMDESM5ye56x0hfqdWEzMjJiqD1HeKlZuGaKitxhveRULbEWR3A2b96MkZGRqgVQaWJkIiQyrx4XNnfu3Fn3Js9aLnB6e3vZvx105MgRvPnmm2XH0uk0zpw5g1wuh1gshocPH+Lq1asYHh7G97//fdvOXcuCmclkUp8iBsoX5Hzttddsi6mIBQ7VpFLSKp1Cq1QAVUuMLHiI3CEUCmHr1q0Vp8KLah3hZf92RjKZxNzcHLLZbNmN8uFwGMPDw5BlGbFYDIVCAX19ffjxj3+M2dlZSzfVFxUXzJyYmAAAjI6OVi1wVFXF2bNny6aDiwtyli7ZYCcWOGSrSklsdWJkwUPUnIyM8GYymar920sjO59//nnZatml9yJaeQw7EAjgmWeeMdxeURSMjIxgamoKY2NjG7b3+/2W1nwqVcuCmTMzMxgaGio7ttGCnFaxwCFHlCa1WgoeLyVEIq8LhUIIhULr9m8vXMh89dVXCIVC+qKNdtq0aRO+/PJLfTmB9aiqqk8LRaPRDQucDz74AN/5zncQDodtidXogpnpdBqSJOnTWU5hgUMNUUvBw0KHqLlU6t/VRnZu3LjRdH27s7MTN2/erDiCY3UhvUAgYKi4AaDvpwYAoihWHD2Zn59HMpnEgwcP0N/fj1/84hdrPkdVVZw5c6bqefbu3Wt4SqvSgpnZbLYhN/WzwCFXMJIQWegQNadKIzuZTAb79u3D5cuX9TbNZPU0UrXlPOoplUrpX/f392NqampNgdPd3Y1IJIJCoVB1OxFBEAxNb61mZMHMeDwOURSRTCaRSqX0e4XsGkVaDwsccqXShMhCh8gbSvvs6gUP2a9rk06ny0ZWIpEIduzYYeqzzI7grLdgZnFRzYMHD+rvp1IpDAwMOFLcACxwyOVY6BB5E/u1ebIsY3JyErFYDLFYDMCjggcAxsfH9aLiwoULyOVykGUZzz//fNXPMzuCs96CmcVFNQVB0GMuPu0VDof1KbXigpxdXV22rcxdxAKHmsJGhU6z37RI1IrW69fNeG+OUyRJQiKRKDsWDodx5cqVsmOla+MUCoW6xFLt3prSRTWByjGXLsi53hSaWSxwqKmslxCLmBiJmktpv758+XJT35tD7sECh5qSF29aJGp1pX22eG8OL1jILBY41NSM3LTIXZKJmke1kRz2Y6oVCxzyjGpTV+fPn8djjz2G3t7eBkdIREZUGsm5evVqo8KhJvWNRgdAZKdQKIQf/ehHuHHjBt5//30AwMjICKLRKG7dutXg6IjIqOIFyzvvvAMAtu2eTq2DBQ55Ummhc+7cOQDAxx9/jJs3bzY4MiIyKhQK6SOv169fx+LiYoMjombCKSrytFAohOXlZQDAgQMHAHCdDaJmUry3rth/r169iu3btzcyJGoSHMEhz+vp6UEikcD58+cBALt378azzz6Lv/71rxzRIXK54lQVR2KpVrYWOLlczs6PI7JNMBjEyy+/XHZvTrHQYbJsHswxrSkUCuGll14C8Ggkh/2WjLA0RZXJZMp2U52ensYbb7xhMSSi+uGCYs2FOYaKiiOxd+/exYEDB3jTMW3IdIFz9OhR5PN5fX4UgO3LLBPVS6XHUHlvjrswx9BqwWAQXV1dAB79LnBrFlqP6QJn586dGBkZKTt28eJFywEROYV74LgbcwxVsnpBT/ZXqsb0PTiVtk4PBoOWgiFyWunj5MX1Ni5fvsz5fRdgjqFKenp6uD4OGWJ6BCebzWJ6ehoDAwMAAE3TMDMzg/fee8+24Iicwikr92GOoWpCoRALG9qQ6RGcqakpdHd3Q9M0aJoGAPrfRM2oOGXFp6zcgTmGjMhkMuyjVJHpEZyxsTEMDg6WHZMkyXJARI3Ep6zcgzmG1sN7cWgjpgucwcFB3Lt3DzMzMwCAoaEh9PX12RYYUSNxyqrxmGNoPasvRDhlRauZnqLKZrP4yU9+gg8//BAffvghotEoH+EkT+GUVWMxx9BGSveqIlrN9AjOpUuXkEgkyo79/ve/5y8beQqnrBqHOYaIrDBd4HR3d6851t/fbykYIreqNGXFOf/6Yo4hIissTVGtxn1iyMuKIzml6+V8+umnnLKqE+YYqgWfpqLVTI/gSJKEn/70pwiHwwAAWZZx7Ngx2wIjcqNKIzkAR3PqgTmGjODTVFSN6RGcvr4+nDhxQl+j4uTJk2se6STyouJIzieffMLVj+uIOYaMWD2yyqepqMjSbuKiKJZdUeVyuYrz5kReU7xC5NVjfTHHkBFc2ZgqMVzgXLp0CZIk4cknnwQA/OUvfyl7X1VVyLKMc+fO2RshkYvxCSv7MMcQkZ0MT1G99dZbSKVS+ut3330XiqLofzRNw927d+sSJJGbhUIhfPvb3wbwaCSHa+WYwxxDRHYyPIKzej2K3/72t2tWFeUy6tSqOJJjHXMM2SGTycDv97Pvkfl7cC5cuIB0Oo2hoSEcPXoUfr8fw8PDXEqdWhbXyrEXcwzVgvfD0Wqmn6IaGBjAq6++iqmpKfT29uKNN97A0tKSjaERNR8+0WEf5hiqBfserWa6wBEEAQAwMzODl19+GQDQ0dFhT1RETYz749iDOYZqxb5HpUxPURVXGc1ms+jt7UU2m4WqqrYFRkStjTmGiKwwPYIzNDSEdDqN9957D/l8HtPT04aTTzKZRDKZxPT0NGRZrtjmyJEjSKfTSKfTOHXqlNkwiahJWckxAPMMUaszPYLj9/vx+uuv66+PHTtmaJ+YbDYLWZYxMTEBABgdHa34ZEQul8P+/fvR39+P06dPmw2TiJqU2RwDMM8QUQMW+pNlWb/bHXiUxGRZXpN8Dh06hEgkYjS8qjRNQ6FQWLfN8vJy2d9uw/isaUR8pefc6PdvdXs3Mhqfpmnw+XymzmHnQn/MM7XzSny19j27eOXn1yj1yDGGC5y33noLfr9f3wvm3XffxfDwcFkbI4twLS4uIhAI6K8DgUDFYefigl+KogAAYrGY0VDLrKysIJPJGGq7sLBg6hxOYXzWOBlf8VwLCwt44oknav4+tzIS3+bNm019tl05BmCesaLZ4yu+//e//x137txBMBisf1AVzu9WXojPaI5xxUJ/xeRSamxsTP96165dGBoa0p+qqEVbWxt6enrWbbO8vIyFhQVs27YN7e3tNZ+j3hifNY2I7/79+wCAbdu2GXqqwys/w1u3bpk+R70X+mOeWZ9X4mtrawMAHD9+HABw9erVDf9tnIyvUbwSXy05xvQ9OKIo4ty5c4jFYnjyyScxNzeHgYGBDb8vGAyWXUktLS1BFMWyNslkEqlUSk8+giAgm80iHA7XHKfP58OWLVsMtW1vbzfcthEYnzVOxlfsoLWes9l/hmanpyoxm2MA5hkrmj2+7du3l60q/t///tfR/55m//k1mp05xvRTVDMzM2XDxYODg1WfVCglSVLZfjO5XE6/KismJFEUsXPnTr2Nqqqmkg4RNS+zOQZgnml1XA+HAAsjOIFAACMjIzV/nyiKGB4eRjKZhKIoOHTokP5eNBpFIpFAOBzWH/FMpVJ4++23zYZJRE3KbI4BmGeIyEKB869//avsiQfg0Q17P/zhDzf83mpPLczOzq5pY8cTDkTUfKzkGIB5hqjVmS5wYrEY9uzZg2AwCL/fj2vXruHEiRN2xkZELYw5hoissHSTcSKRwMzMDFRVxS9/+cs1N/EREZnFHENEVpi+yRiAvgT666+/jlwuh3v37tkVFxERcwwRmWa6wJmcnIQgCPqTCbU84UBEtBHmGLJDJpPBzZs3Gx0GNYDpAmdgYAAjIyMcMiaiumCOISuKW3Xs27cPzz77LIucFmS6wKm06V3puhNERFYwx5AVoVAIN27cwDvvvAMAyOfzDY6InGb6JuO+vj5Eo1F861vfgizLkGUZx44dszM2ImphzDFkVSgUYmHTwkyP4AwODuL06dPo7e2Fpmk4efKkvkkeEZFVzDFEZIXpEZxXXnkFhw8f5hUVEdUFcwwRWWF6BCcWi61ZUXRubs5yQEREAHMMEVljegTH5/PhN7/5DYLBIERRhKIoSCaTHEImIlswxxCRFaYLnLNnz2JwcBB3797Vd/xdWlqyKy4ianHMMURkhekCZ2JiYs2VFIePicguzDFEZEVNBU4mk8GFCxcQDAbx6quvrnmfQ8dEZAVzDBHZxXCBMzc3h9HRUX0uXJZl/OEPf6hnbETUQphjiMhOhp+imp6expUrV/C3v/0Nly9fxtatWyuuNEpEZAZzDBHZyXCB093dre/tAQCHDx/GtWvX6hIUEbUe5hgispPhAicYDJa99vv90DSt7Fgmk7EnKiJqOcwxRGQnwwVONpvFvXv3yv7kcrmyr6empuoZKxF5GHMMEdnJ8E3G8Xgcf/rTn8qOaZqGyclJ/Wufz4cTJ07YGyERtQTmGCKyk+ECZ2RkBGNjY1Xf1zQNZ8+etSUoImo9zDFEZCfDBc7evXvLbgCsZHh42HJARNSamGOIyE6G78Hp6+uzpQ0RUSXMMURkJ9O7iRMRERG5FQscIiIi8hwWOEREROQ5LHCIiIjIc1jgEBERkeewwCEiIiLPMbwODjnnyJEjePPNN8uOffHFF/jzn/+M27dvIxaLAQAWFxexc+dOSJJk27mTySQAQFEUiKJY9bPj8ThEUQQAfO9736t4PBKJ2BYXERFRLVjguEwymcTc3Byy2axeKADA008/jba2NnzyySd6gQMAzz33HGZnZ8vampXNZiHLMiYmJgAAo6OjFQuc0dFRnD59GoIgIBqN6gXOz372M/zxj3/Uj7PAISKiRmGB8z+5XA73799He3u7rZ8bCATwzDPPGG6vKApGRkYwNTW17rL1RYIgQFVVKyHqZFkuW0nW7/dDluWyIiedTutt0uk0EokECoUCvvjiizXHiYiIGoUFDoCvvvoK0WgUX3/9te2fvWnTJnz55Zfo7OzcsK2qqvq0UDQa3bDAmZ6exuDgIMLhsC2xLi4uIhAI6K8DgcCa4ml+fh65XA7ZbBYAMD4+jl/96lf4/PPP8e9//7vseHEkiIiIyGkscAB0dnYikUigs7OzLiM4Roob4NEISnFaRxTFNaMnwKMCo3ifjCRJZdNVRaqq4syZM1XPs3fvXsNTWoqirPnsjo4Ovaian59HJpNBoVCAIAhlx9PptG3FFxERUS1Y4PxPd3c3ent7sWXLlobFkEql9K/7+/sxNTW1psDp7u7e8N4WQRAMTW+tFgwGy0ZslpaW1hRCoiiWHevo6EAul0NXVxcePnxYdjybzbLAISKihmCB4xLpdLpsZCUSiWDHjh2mPsvsCI4kSTh16pT+OpfL6QWWqqoQBAGSJGF6elpvk81m8d3vfhfXr1/HP/7xj7Ljdj7dRUREVAsWOC4gyzImJycRi8X0Kad0Og3g0b0s+/btw3/+8x9cunQJt2/frjh1VcrsCI4oihgeHkYymYSiKDh06JD+XjQaRSKRgCAIiMVimJ6ehqqqOHbsGPx+P775zW/ilVdeKTsuCELNMRAREdmBBY4LSJK05qmjcDiMK1euAAAKhQLy+TxOnTpV9ym0atNfs7OzVdsUCgUAwA9+8IOGTvEREREVcSVjIiIi8hwWOEREROQ5DZmiMrIdgNEtA4iIKmGeIWptjo/gFLcDiEQiiMViiMfjptoQEVXDPENEjo/gGNkOwEgbozRN02+CrWZ5ebnsb7dhfNY0Ir7iuf75z38aOu+DBw9w+/ZtKIqCxx9/vN7h1ezBgwfI5/PYtm3buu00TYPP53MmqHUwz9TOq/HV2hfNaoY+7Pb47M4xjhc4RrYDMNLGqJWVFWQyGUNtFxYWTJ3DKYzPGifju3PnDgDgwIEDjp2z3jZt2oSLFy+W9c1KNm/e7ExA62CeMc9r8XmxL3qV3TnGFY+Jr94OwGybStra2tDT07Num+XlZSwsLGDbtm22b9VgB8ZnTSPi6+3txdWrV5HP5w21L15dPfXUU66+unr++efX/RneunXLwahqwzyzPq/GV2tfNKsZ+rDb47M7xzhe4BjZDsBIG6N8Pp/htVna29tdvY4L47PG6fi2b99uuG2hUEAmk2n4diHVFOPb6GfohukpgHnGCi/GV0tfNKtZ+rDb47Mzxzh+k7EkSWV7Lq3eDmCjNkREG2GeISKfpmma0yctfTSzo6NDXxl3165d+nYA1drU4tNPP4WmaRvO12mahpWVFbS1tbnmCrQU47PG7fEB7o/RaHwPHz6Ez+fDiy++6GB0lTHP1IbxWcP4rKlHjmlIgeOUzz77DJqmoa2trdGhELWElZUV+Hw+vPDCC40OxTHMM0TOqSXHeLrAISIiotbErRqIiIjIc1jgEBERkeewwCEiIiLPYYFDREREnsMCh4iIiDyHBQ4RERF5DgscIiIi8hwWOEREROQ5LHCIiIjIc1jgEBERkeewwCEiIiLPYYFDREREnvNYowNwWjKZBAAoigJRFCFJkqk2jY5PURSk02lEIhHXxVfaVhAEV8YXj8chiiIAIBKJuCq+Ypsip+JTVRXT09MAgIMHD1Zs08i+0SyYY5yJsbQt80zt8bVEntFayOLionb8+HH99f79+021qRcj556fn9dmZmY0TdM0RVG0l156yVXxFSmKou3Zs0eP1QlG49u/f7+mKIqmaZq2Z88eR2LTNGPxKYqinT17Vn9d2r7eZmZmtN/97ndl5y/VyL7RLJhjrGOesYZ55v+11BSVLMvw+/36a7/fD1mWa27TyPgURdGPCYKAjo4OpNNp18RXNDMzg6GhIUfiKjISXzqd1tuk02kkEglXxScIAqanp/V/09L29RaJRBAMBqu+38i+0SyYY5yJsYh5xlx8rZJnWqrAWVxcRCAQ0F8HAgGoqlpzm0bGJ0kSJiYm9NeKoiAcDrsmPuBRh27E1IWR+Obn55HL5ZDNZgEA4+PjrooPAI4dO4ZoNIpoNIrDhw87Ft9GGtk3mgVzjHXMM/WPD2iNPNNSBU4liqLY0qZe1jv3+Pg4Tp486WA0a1WKL5vN6vPOjbY6PlVV0dHRgXA4jHA4jPn5eUevTler9PNLpVJIJBLo6OjA/v37nQ+qBo3sG82COcY65hlrWjXPtFSBs3pYbGlpaU0HMdKmXmo5dzKZhCRJjt64ZiS+eDyux5dKpSDLsmMd20h8oiiWHevo6NCvstwQXzKZxM6dOxEOh/H222+jv7/fNdNAjewbzYI5xjrmmfrH1yp5pqUKHEmSkEql9Ne5XE4f4iwOga3Xxg3xAY/mKAVBQCQSQTqddqzjGInv4MGDiEQiiEQi+t3vTg1vG/33Lf15ZbNZV/37KoqCjo6Osu8pfd0IbugbzYI5xpkYmWesxdcqecanaZpmS3RNovTxs46ODv3qZNeuXUgkEhAEoWobN8SnKAqi0ajeXlVVXL9+3TXxCYIA4FGCnJycRHd3N8bGxhy7QjX676soClRVhSiKrvr3FQQB8Xhc/zk6+fsnyzKmpqaQz+cRi8Vc1zeaBXNM/WNknrEeXyvkmZYrcIiIiMj7WmqKioiIiFoDCxwiIiLyHBY4RERE5DkscIiIiMhzWOAQERGR57DAIVul02mMj4/jueeew6lTpxCPxxGPxzE+Pl63tTRkWUY0GtV3qF39moi8hXmGjOBj4mQ7VVWxY8cOXLlypWy9iqNHj+KDDz7Qj9mpuKZDLBar+JqIvIV5hjbCERxyhCRJUFXVNcuBE5H3MM9QKRY45IjiPjFO7kpMRK2FeYZKPdboAMi7ivvZpNNpLC0tYXZ2tmwp9eIGeaIoIpVKYWxsDMCjfVumpqYwMDAARVEwNDSkL98tCAKy2SwWFxf19kTUuphnqBqO4FDdSJKk/5mbmyvbzC2bzWJyclLfNC8YDCIej0NVVYyOjuLw4cOIRCJYXFzUb+I7evQoRFFELBZDPp/X9yshotbFPEPVcASH6i4cDqO/vx+Tk5OYmJgAAExNTaGjo6NsrjyVSkEQBIiiqN8gePjwYf394s2E2WwWS0tLju5wTETuxjxDq7HAIUf4/X5cvHix7FhfXx8kSdJfx2IxxONx+P1+/VjpkxBnzpxBIBBAJBJxbNdgImoezDNUilNU5IhgMKhfCaXTaQwPD2Nubq6sjSzLiEQiuHbt2prjsizj2rVrOHjwIERRRD6f198rUlW17PtWvyYib2OeoVJcB4dslU6nceHCBWSzWQwMDECSJP2JhiNHjmBgYEBfN0KWZXz00UcYGBgA8GguXRCEiscB4Ne//jX27t2rn2tqagrDw8MQRRHHjx8HAJw8eRIAyl7ziQoib2GeISNY4BAREZHncIqKiIiIPIcFDhEREXkOCxwiIiLyHBY4RERE5DkscIiIiMhzWOAQERGR57DAISIiIs9hgUNERESewwKHiIiIPIcFDhEREXkOCxwiIiLyHBY4RERE5Dn/B7bGNnWF/RAwAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAACoCAYAAADtjJScAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAcBElEQVR4nO3dYWwT5/0H8K//NB1B9dlIWaUJn8WqGJQ4qaAb23JIezGhyUmlITw1RhOaSCnkzQSTRqS9WDMR9mrJtNJXBY/1zaTGRbXUvSCGpS97kaAbY46JStEWxZ7oJqbmzigBgnr/F8y3OLHj8935fD5/PxJq7vL47lfD/fS75557Hp+maRqIiIiIPOT/mh0AERERkd1Y4BAREZHnsMAhIiIiz2GBQ0RERJ7DAoeIiIg8hwUOEREReQ4LHCIiIvIcFjhERETkOSxwiIiIyHOec/qEqqoilUoBAE6ePFmxTSaTAQAoigJRFCFJkmPxEVHrY54hIsd7cGRZxvLyctXf5/N5yLKMWCyGRCKBZDLpXHBE5AnMM0TkeA9OLBaDoihQVbXi72VZht/v17f9fj9kWTZ1d3Xr1i1omoaOjg7T8RKRcWtra/D5fNi/f39T42CeIfKmenKM4wVOLUtLSwgGg/p2MBismqRq0TRN/1Or3dOnT/Hcc8/B5/OZOlcjMT5r3B4f4P4YjcbXKmv3NiLPPHnyxKboiMgOritwKlEUxdTnOjo68OTJE6ytrRlq//TpU1PncQrjs8bt8QHuj9FIfK3ak2Elz2iahu7u7i3bra6uYnFxEbt370ZnZ6epczUS47OG8VljNL579+4Zvgl0XYETDofL7qSWl5chiqLp43V0dDDxNBjjs87tMdaTfFqB3XnG5/Nhx44dhtp2dnYabtsMjM8axmdNrfjq6eF2TYGjqioEQYAkSZicnNT3FwoFS283MPE4h/FZ5/YY7Uw+zdCoPENE7uN4gSPLMj7++GMUi0WIoohYLAYAiMfjSKfTEEURQ0NDyGQyUBQFp06dciSuQqGAR48eufru2Q3x+f1+RCKRpsZAVIvb88yLL77I64iowRwvcCRJqninNDs7q/9cSkZOefDgAeLxOL788ktHz9uqPvzwQ4RCIX27UgHGQoiaqRXyzN27d3mNEDWQax5RNVNXVxfS6TS6urqa3kNSiVvGZxQKBRw+fBiHDx821H5jIQSw8KH2Vcoz//nPf3DixAkUi8Vmh0TkaSxw/isUCqGnp8eV4x9WVlawffv2psf3yiuv4O7du5sS88YCrFYhtL7wYcFD7SQUCqGrq6vZYRC1BRY4VJdKxcjGAqxaIVSt8GHBQ+1oYWHB9Gd5nRDVxgKHGqJS8t1Y+GxV8PT09DCBkyeVZlA+duyYpeNUegRshZWXGVhwkRuxwCFHrU+CtQoe9uyQF3V3d1fs4TSq3rFwTuGYO3IbFjjUVJUKnoWFBfbskKdZ+Tdc7RGwVWZfZuCYu+Y7ffo03n777bJ9uVwOFy9eRKFQQCKRwJMnT3D79m0MDQ3he9/7nm3nzmQyAJ7NBC6K4pbzSWUyGX0eqo2f/epXv4pAIGBbXAALHHKZSCSCSCTCnh2iLTTi37zZlxk45q65MpkM5ubmkM/ny2bjjkajGBoagizLSCQSWFlZQW9vL370ox9hdnbW0szdJfl8HrIsY2JiAgAwMjJStcBRVRWXLl3S55za+Nkf//jHOHPmjOWY1mOBQ67Enh2i1tGOY+7+/ve/Y3l5Wd+2a0LWYDCIl156yXB7RVEwPDyM6elpjI2N1Wzv9/tNLyy7kSzL+piy0rFlWa5Y5MzMzGBwcHDLz2azWfT09NgSG8ACh1qE0Z6dVkyURF5V75i7Vrl+Hzx4gEgk0pDJYbdt24bPP//c0HQCqqrqj4Xi8XjNAuejjz7Ct7/9bUSjUVtiXVpaQjAY1LeDwWDF4imXy0GSJP2RVKXPBgIBrKys2BJXCQscailGenZaKVEStROvXL9dXV347LPPKvbgWJ2QNRgMGp4rSZZlfUZuURQr9p7Mz88jk8ng8ePH6Ovrw09+8pNNx1FVFRcvXqx6nqNHjxp+pKUoyqZ9+Xze0MzhDx8+NHQOo1jgUEtb37NTLVHu2rWryVESUSVGrl+3FjobHyM1Y0LWbDar/9zX14fp6elNBU4oFEIsFsPKykrVuZcEQTD0eGujcDhc1mOzvLy8qRBKJpMQRRGZTAbZbFYfK7Txs4qiYM+ePXXHsBUWOOQJWyXK27dvNzk6ItoKb1Tql8vlynpWYrEYDhw4YOpYZntwJEnC5OSkvl0oFPQCS1VVCIKAkydP6r/PZrPo7+9HNBqFIAhln/3nP/+J119/3VT81bDAIU9Znyhv3LiBY8eO4ZNPPsHOnTttHbxGRPbjjYoxsixjamoKiUQCiUQCwLOCBwDGx8f1ouLq1asoFAqQZRn79u2rejyzPTiiKGJoaAiZTAaKouhvSAFAPB5HOp2GIAh6zKW3vaLR6KbPjoyM1H3+WljgkCet79Y+ceIEAOD999/Hvn37XNvlTUTPVLpRKRaL2L59e7NDcwVJkpBOp8v2RaNR3Lx5s2zf+rlx7B7AW1JtbM3s7GzZdqWY1392q0doZv2frUcjcpFSgnz//fcBAMPDw9izZw/++Mc/4rPPPmtydERUSyQS0XteP/30UywtLTU5Imol7MEhT4tEIti1axfS6TSePn2K4eFhvcv77t277M0hcrnSXCmlntjbt2/j5ZdfbmZI1CLYg0NtIRwO49VXX8Xdu3fxhz/8AQBw48YN9uQQuVypJ/by5csAgE8++YTXLRnCHhxqK+t7bEqrObv9dVSidheJRLC6ugrgfz057IGlWtiDQ22ndEf44YcfAgAOHz6MPXv28K6QyMW6u7uRTqf1nhy7Fxsl72GBQ20pEongBz/4AR9ZEbWQcDiMvXv3AgAWFhZ4vdKWbC1wCoWCnYcjarhIJIJvfetbAJ49smJPjrsxx1Bp0DGvV6rF0hichYWFsrU4UqkU3nrrLYshETlr43wbN27c0PdTczHH0Ebd3d2b5schqsR0gXPmzBkUi8Wy5c7tnqSHyCmVBh9zEGNzMcdQNZFIRC9sFhYW4Pf7ea3SJqYLnIMHD2J4eLhs37Vr1ywHRNQs7MlxF+YY2sr6R1UAb0hoM9NjcCotvBUOhy0FQ9RslcbkcObj5mCOoa2UbkhKLwnwURVtZLoHJ5/PI5VKob+/HwCgaRpmZmbwwQcf2BYcUTNUW+yPd4jOYo6hWtY/qiLayHQPzvT0NEKhEDRNg6ZpAKD/l6jV8TXy5mOOoXrwtXHayHQPztjYGAYGBsr2SZJkOSAiN+Hg4+ZhjiEjOBaHqjHdgzMwMICHDx/iypUruHLlCh4+fIje3l47YyNyhY3P+tmT4wzmGDKCY3GoGktjcM6cOaMPBEwmk7hw4YK+tD2Rl1RbwyoUCvEV1QZhjiGjOBaHKjFd4Fy/fh3pdLps329+8xsmH/KsaoOPAXaLNwJzDBFZYbrACYVCm/b19fVZCobI7SKRiF7oFItFLCwscDbVBmGOITM48R+VWHpEtRHXiaF2weTZeMwxVA8ONqaNTBc4kiTh9ddfRzQaBQDIsoyzZ8/aFhgRtTfmGKrHxpnI2atKpt+i6u3txblz5/Q5Ks6fP7/plU4iIrOYY6hekUiEY7RIZ2k1cVEUy+6oCoVCxefmRERmMMcQkVmGC5zr169DkiS88MILAIArV66U/V5VVciyjMuXL9sbIRG1BeYYIrKT4UdU77zzDrLZrL793nvvQVEU/Y+mafjiiy8aEiQReR9zDNmJSzeQ4R6cjfNR/OpXv9o0qyinUScis5hjyA58m4pKTA8yvnr1qj59+okTJ/DTn/6Ur3ASkW2YY8gMLt1AJaYLnP7+frz22muYnp5GT08P3nrrLSwvL9sYGhG1M6s5JpPJIJPJIJVKQZblim1Onz6NXC6HXC6HyclJmyKnZuPbVARYKHAEQQAAzMzM4NVXXwUABAIBQ59l4iGiWqzkmHw+D1mWEYvFkEgkkEwmK7YrFAo4fvw4pqamMDo6ak/gROQKlmcyzufz6OnpQT6fh6qqhj4nyzImJiYAACMjIxWfq5cST19fHy5cuGA2TCJqUWZzDPBsUsDSWAzg2bgMWZY35ZpTp04hFovZFzQRuYbpAmdwcBCpVAoffPABisUiUqkUdu7cWfNzTiceTdOwsrKyZZvV1dWy/7oN47OmkfGtP3atf2dGj+NGRuPTNA0+n8+Wc5rNMQCwtLSEYDCobweDwYrFUemtLUVRAACJRMJUrMwzjVdvfHZdm0Z57ftzWiNyjOkCx+/344033tC3z549a2gAoNOJZ21tDQsLC4baLi4umjqHUxifNY2Ir3TMxcVFbN++3bbjuZWR+J5//nlbzmU2x1RTyiXrjY2N6T8fOnQIg4OD+qOxejDPOMdofHZfm0Z55ftrFjtzjCsm+mtk4uno6EB3d/eWbVZXV7G4uIjdu3ejs7Oz7nM0GuOzppHxPXr0CACwe/duS4MavfId3rt3z/Q57Mwx4XC47MZpeXkZoiiWtclkMshms3quEQQB+XxeX/uqHswzjVdvfHZdm0Z57ftzWiNyjOEC55133oHf79fXgnnvvfcwNDRU1sbIJFxOJx6fz4cdO3YYatvZ2Wm4bTMwPmsaEV/pQrTr2K3+HVp5PGVXjgGezZez/uWEQqGgPwZXVRWCIEAUxbKbJlVVTeUYgHnGSUbjK12bi4uLePHFFx2bC8cr31+z2JljHJ/oz+nEQ0Stwc6J/kRRxNDQEDKZDBRFwalTp/TfxeNxpNNpRKNR/Y3ObDaLd9991/r/BLkGJ/wj02NwRFHE5cuXkUgk8MILL2Bubg79/f2GPsfEQ0S1mM0xJdVeUpidnd3Uhm9SeU9pwr8bN27g2LFjnPCvDZkucGZmZsq6iwcGBnD9+nV8//vfr/lZJh4iqsVKjiECnhU5LGzal+kCJxgMYnh42M5YiIh0zDFEZIXpmYz/9re/4eHDh2X71q8ETERkBXMMEVlhugcnkUjgyJEjCIfD8Pv9uHPnDs6dO2dnbETUxphjiMgKS4OM0+k0ZmZmoKoqfvazn2163ZuIyCzmGCKywvQjKgD6YplvvPEGCoXCpu5kIiIrmGOIyCzTBc7U1BQEQdDnpRgYGKi6MjgRUb2YY4jICtMFTn9/P4aHh9llTEQNwRxDRFaYLnAqLXrHNxyIyC7MMURkhelBxr29vYjH49i5cydkWYYsyzh79qydsRFRG2OOISIrTPfgDAwM4MKFC+jp6YGmaTh//ry+SB4RkVXMMURkhekenB/+8IcYHR3lHRURNQRzDBFZYboHJ5FIbFoTZm5uznJAREQAcwwRWWO6B8fn8+GXv/wlwuEwRFGEoijIZDLsQiYiWzDHEJEVpgucS5cuYWBgAF988YW+4u/y8rJdcRFRm2OOISIrTBc4ExMTm+6k2H1MRHZhjiEiK+oqcBYWFnD16lWEw2G89tprm37PrmMisoI5hojsYrjAmZubw8jIiP4sXJZl/Pa3v21kbETURphjiMhOht+iSqVSuHnzJv70pz/hxo0b2LVrV8WZRomIzGCOISI7GS5wQqEQ/H6/vj06Ooo7d+40JCgiaj/MMURkJ8MFTjgcLtv2+/3QNK1s38LCgj1REVHbYY4hIjsZLnDy+TwePnxY9qdQKJT9PD093chYicjDmGOIyE6GBxknk0n87ne/K9unaRqmpqb0n30+H86dO2dvhETUFphjiMhOhguc4eFhjI2NVf29pmm4dOmSLUERUfthjiEiOxkucI4ePVo2ALCSoaEhywERUXtijiEiOxkeg9Pb22tLGyKiSphjiMhOplcTJyIiInIrFjhERETkOSxwiIiIyHNY4BAREZHn1LWaODnj9OnTePvtt8v2/eMf/8Dvf/973L9/H4lEAgCwtLSEgwcPQpIk286dyWQAAIqiQBTFqsdOJpMQRREA8N3vfnfTMQRBsDUuIiKierDAcZlMJoO5uTnk83m9gACAr3/96+jo6MCf//xnvcABgL1792J2drasrVn5fB6yLGNiYgIAMDIyUrFIGRkZwYULFyAIAuLxeFmBo6oqLl26hFOnTlmOh4iIyCwWOP9VKBTw6NEjdHZ22nrcYDCIl156yXB7RVEwPDyM6enpLSc9KxEEAaqqWglRJ8ty2Twkfr8fsiyXFTm5XE5vk8vlkE6nsbKyov9+ZmYGg4ODtsRDRERkFgscAA8ePEA8HseXX35p+7G3bduGzz//HF1dXTXbqqqqPxaKx+M1C5xUKoWBgQFEo1FbYl1aWkIwGNS3g8HgpuJpfn4ehUIB+XweADA+Po6f//znAJ4thChJkv6Yi4iIqFlY4ADo6upCOp1GV1dXQ3pwjBQ3wLMelFgsBgAQRXFT7wnwrMAoFRCSJJU9ripRVRUXL16sep6jR48afqSlKMqmYwcCAb2omp+f11d4LhQK+MY3vmHouERERI3EAue/QqEQenp6sGPHjqbFkM1m9Z/7+vowPT29qcAJhUJ6EVSNIAiGHm9tFA6Hy3pslpeXNxVCoiiW7QsEAigUCrh16xb279+PTCaDbDarjyGyq3eJiIioHixwXCKXy5X1rMRiMRw4cMDUscz24EiShMnJSX27UCjoBZaqqvqbUalUSm+Tz+fxne98p6xAzGaz6O/vZ3FDRERNwwLHBWRZxtTUFBKJhP7IKZfLAXg2xuXYsWP417/+hevXr+P+/fsVH12tZ7YHRxRFDA0NIZPJQFGUsjeh4vE40uk0BEFAIpFAKpWCqqo4e/Zs2cBkWZb1t8Ci0agtb3cRERHViwWOC0iShHQ6XbYvGo3i5s2bAICVlRUUi0VMTk42/BFatcdfs7OzVdusf4uq0v8LERGR0ziTMREREXkOCxwiIiLynKY8ojKyHIDRJQOIiCphniFqb4734JSWA4jFYkgkEkgmk6baEBFVwzxDRI734BhZDsBIG6M0TSsbBFvJ6upq2X/dhvFZ08j4Ssf861//aun4jx8/xv3796EoCr7yla/YFZ5tHj9+jGKxiN27d2/ZTtM0+Hw+Z4LaAvNM/bwan13XaC2tcA27PT67c4zjBY6R5QCMtDFqbW1Nn2m3lsXFRVPncArjs6YR8f373/8GAJw4ccL2Y7vNtm3bcO3atbJrs5Lnn3/emYC2wDxjntfia6drtNXZnWNc8Zr4xuUAzLappKOjA93d3Vu2WV1dxeLiInbv3m37Ug12YHzWNDK+np4e3L59G8Vi0dJxSndXX/va11x9d7Vv374tv8N79+45GFV9mGe25tX47LpGa2mFa9jt8dmdYxwvcIwsB2CkjVE+n8/w3DGdnZ1NXaqhFsZnTaPie/nlly0fY2VlBQsLC01fLqSaUny1vkM3PJ4CmGes8GJ8dlyjtbTKNez2+OzMMY4PMpYkqWzNpY3LAdRqQ0RUC/MMEfk0TdOcPun6VzMDgYA+M+6hQ4f05QCqtanHX/7yF2iaVvN5naZpWFtbQ0dHh2vuQNdjfNa4PT7A/TEaje/Jkyfw+Xx45ZVXHIyuMuaZ+jA+axifNY3IMU0pcJxy69YtaJqGjo6OZodC1BbW1tbg8/mwf//+ZofiGOYZIufUk2M8XeAQERFRe+JSDUREROQ5LHCIiIjIc1jgEBERkeewwCEiIiLPYYFDREREnsMCh4iIiDyHBQ4RERF5DgscIiIi8hwWOEREROQ5LHCIiIjIc1jgEBERkeewwCEiIiLPea7ZATgtk8kAABRFgSiKkCTJVJtmx6coCnK5HGKxmOviW99WEARXxpdMJiGKIgAgFou5Kr5SmxKn4lNVFalUCgBw8uTJim2aeW20CuYYZ2Jc35Z5pv742iLPaG1kaWlJe/PNN/Xt48ePm2rTKEbOPT8/r83MzGiapmmKomjf/OY3XRVfiaIo2pEjR/RYnWA0vuPHj2uKomiapmlHjhxxJDZNMxafoijapUuX9O317RttZmZG+/Wvf112/vWaeW20CuYY65hnrGGe+Z+2ekQlyzL8fr++7ff7Icty3W2aGZ+iKPo+QRAQCASQy+VcE1/JzMwMBgcHHYmrxEh8uVxOb5PL5ZBOp10VnyAISKVS+t/p+vaNFovFEA6Hq/6+mddGq2COcSbGEuYZc/G1S55pqwJnaWkJwWBQ3w4Gg1BVte42zYxPkiRMTEzo24qiIBqNuiY+4NkF3YxHF0bim5+fR6FQQD6fBwCMj4+7Kj4AOHv2LOLxOOLxOEZHRx2Lr5ZmXhutgjnGOuaZxscHtEeeaasCpxJFUWxp0yhbnXt8fBznz593MJrNKsWXz+f1587NtjE+VVURCAQQjUYRjUYxPz/v6N3pRpW+v2w2i3Q6jUAggOPHjzsfVB2aeW20CuYY65hnrGnXPNNWBc7GbrHl5eVNF4iRNo1Sz7kzmQwkSXJ04JqR+JLJpB5fNpuFLMuOXdhG4hNFsWxfIBDQ77LcEF8mk8HBgwcRjUbx7rvvoq+vzzWPgZp5bbQK5hjrmGcaH1+75Jm2KnAkSUI2m9W3C4WC3sVZ6gLbqo0b4gOePaMUBAGxWAy5XM6xC8dIfCdPnkQsFkMsFtNHvzvVvW3073f995XP513196soCgKBQNln1m83gxuujVbBHONMjMwz1uJrlzzj0zRNsyW6FrH+9bNAIKDfnRw6dAjpdBqCIFRt44b4FEVBPB7X26uqik8//dQ18QmCAOBZgpyamkIoFMLY2Jhjd6hG/34VRYGqqhBF0VV/v4IgIJlM6t+jk//+ZFnG9PQ0isUiEomE666NVsEc0/gYmWesx9cOeabtChwiIiLyvrZ6REVERETtgQUOEREReQ4LHCIiIvIcFjhERETkOSxwiIiIyHNY4JCtcrkcxsfHsXfvXkxOTiKZTCKZTGJ8fLxhc2nIsox4PK6vULtxm4i8hXmGjOBr4mQ7VVVx4MAB3Lx5s2y+ijNnzuCjjz7S99mpNKdDIpGouE1E3sI8Q7WwB4ccIUkSVFV1zXTgROQ9zDO0HgscckRpnRgnVyUmovbCPEPrPdfsAMi7SuvZ5HI5LC8vY3Z2tmwq9dICeaIoIpvNYmxsDMCzdVump6fR398PRVEwODioT98tCALy+TyWlpb09kTUvphnqBr24FDDSJKk/5mbmytbzC2fz2NqakpfNC8cDiOZTEJVVYyMjGB0dBSxWAxLS0v6IL4zZ85AFEUkEgkUi0V9vRIial/MM1QNe3Co4aLRKPr6+jA1NYWJiQkAwPT0NAKBQNmz8mw2C0EQIIqiPkBwdHRU/31pMGE+n8fy8rKjKxwTkbsxz9BGLHDIEX6/H9euXSvb19vbC0mS9O1EIoFkMgm/36/vW/8mxMWLFxEMBhGLxRxbNZiIWgfzDK3HR1TkiHA4rN8J5XI5DA0NYW5urqyNLMuIxWK4c+fOpv2yLOPOnTs4efIkRFFEsVjUf1eiqmrZ5zZuE5G3Mc/QepwHh2yVy+Vw9epV5PN59Pf3Q5Ik/Y2G06dPo7+/X583QpZlfPzxx+jv7wfw7Fm6IAgV9wPAL37xCxw9elQ/1/T0NIaGhiCKIt58800AwPnz5wGgbJtvVBB5C/MMGcECh4iIiDyHj6iIiIjIc1jgEBERkeewwCEiIiLPYYFDREREnsMCh4iIiDyHBQ4RERF5DgscIiIi8hwWOEREROQ5LHCIiIjIc1jgEBERkeewwCEiIiLPYYFDREREnvP/963vMpweFMMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -406,10 +514,10 @@ "results.plot_pr_curves(iou_thresh=0.95, backend='matplotlib', ax=ax[1], color='black', linewidth=1)\n", "# Set the labels for the legends manually because\n", "# the default ones contain a line for the classes (irrelevant).\n", - "ax[0].legend(['AP = 0.66'], frameon=False)\n", - "ax[1].legend(['AP = 0.41'], frameon=False)\n", + "ax[0].legend(['AP = 0.64'], frameon=False)\n", + "ax[1].legend(['AP = 0.40'], frameon=False)\n", "fig.tight_layout()\n", - "fig.savefig(fig_save_dir + 'APpt5-pt95.pdf', format='pdf', bbox_inches='tight')" + "fig.savefig(fig_save_dir + 'APpt5-pt95-final.pdf', format='pdf', bbox_inches='tight')" ] }, { diff --git a/classification/evaluation/eval-train-yolo.ipynb b/classification/evaluation/eval-train-yolo.ipynb index 7092e25..95f39c5 100644 --- a/classification/evaluation/eval-train-yolo.ipynb +++ b/classification/evaluation/eval-train-yolo.ipynb @@ -26,7 +26,16 @@ "execution_count": 1, "id": "c0727442", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zenon/.local/share/miniconda3/lib/python3.7/site-packages/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.13) or chardet (5.1.0)/charset_normalizer (2.0.4) doesn't match a supported version!\n", + " RequestsDependencyWarning)\n" + ] + } + ], "source": [ "import matplotlib.pyplot as plt\n", "import pandas as pd\n", @@ -94,103 +103,103 @@ " \n", " \n", " 0\n", - " 0/299\n", - " 7.49G\n", - " 0.04468\n", - " 0.01796\n", + " 0/69\n", + " 7.28G\n", + " 0.02551\n", + " 0.011000\n", " 0\n", - " 0.06264\n", - " 87\n", + " 0.03651\n", + " 12\n", " 640\n", - " 0.7777\n", - " 0.6004\n", - " 0.7016\n", - " 0.5741\n", - " 0.04719\n", - " 0.007429\n", + " 0.7350\n", + " 0.5716\n", + " 0.6676\n", + " 0.5290\n", + " 0.02950\n", + " 0.005770\n", " 0\n", - " 0.677645\n", - " 0.58685\n", + " 0.643083\n", + " 0.54286\n", " \n", " \n", " 1\n", - " 1/299\n", - " 5.66G\n", - " 0.03713\n", - " 0.01763\n", + " 1/69\n", + " 7.27G\n", + " 0.02155\n", + " 0.010970\n", " 0\n", - " 0.05476\n", - " 87\n", + " 0.03252\n", + " 6\n", " 640\n", - " 0.7596\n", - " 0.5931\n", - " 0.6851\n", - " 0.5284\n", - " 0.04633\n", - " 0.007840\n", + " 0.7681\n", + " 0.6184\n", + " 0.7172\n", + " 0.5787\n", + " 0.02820\n", + " 0.005597\n", " 0\n", - " 0.666103\n", - " 0.54407\n", + " 0.685168\n", + " 0.59255\n", " \n", " \n", " 2\n", - " 2/299\n", - " 5.9G\n", - " 0.03728\n", - " 0.01787\n", + " 2/69\n", + " 7.27G\n", + " 0.02127\n", + " 0.010850\n", " 0\n", - " 0.05515\n", - " 64\n", + " 0.03212\n", + " 22\n", " 640\n", - " 0.7899\n", - " 0.5904\n", - " 0.6901\n", - " 0.5618\n", - " 0.04848\n", - " 0.007925\n", + " 0.7820\n", + " 0.5965\n", + " 0.7014\n", + " 0.5684\n", + " 0.02819\n", + " 0.005582\n", " 0\n", - " 0.675733\n", - " 0.57463\n", + " 0.676769\n", + " 0.58170\n", " \n", " \n", " 3\n", - " 3/299\n", - " 5.87G\n", - " 0.03721\n", - " 0.01785\n", + " 3/69\n", + " 7.27G\n", + " 0.02089\n", + " 0.010820\n", " 0\n", - " 0.05507\n", - " 128\n", + " 0.03170\n", + " 9\n", " 640\n", - " 0.7593\n", - " 0.5991\n", - " 0.6911\n", - " 0.5547\n", - " 0.04522\n", - " 0.007872\n", + " 0.7795\n", + " 0.6028\n", + " 0.7099\n", + " 0.5858\n", + " 0.02629\n", + " 0.005540\n", " 0\n", - " 0.669754\n", - " 0.56834\n", + " 0.679856\n", + " 0.59821\n", " \n", " \n", " 4\n", - " 4/299\n", - " 5.9G\n", - " 0.03695\n", - " 0.01766\n", + " 4/69\n", + " 7.28G\n", + " 0.02061\n", + " 0.010730\n", " 0\n", - " 0.05461\n", - " 39\n", + " 0.03135\n", + " 33\n", " 640\n", - " 0.7454\n", - " 0.6202\n", - " 0.7018\n", - " 0.5798\n", - " 0.04608\n", - " 0.007888\n", + " 0.7653\n", + " 0.6153\n", + " 0.7170\n", + " 0.5929\n", + " 0.02638\n", + " 0.005602\n", " 0\n", - " 0.677061\n", - " 0.59200\n", + " 0.682151\n", + " 0.60531\n", " \n", " \n", " ...\n", @@ -213,151 +222,151 @@ " ...\n", " \n", " \n", - " 295\n", - " 295/299\n", - " 5.91G\n", - " 0.02877\n", - " 0.01319\n", + " 65\n", + " 65/69\n", + " 7.25G\n", + " 0.01648\n", + " 0.008796\n", " 0\n", - " 0.04196\n", - " 46\n", + " 0.02527\n", + " 14\n", " 640\n", - " 0.6611\n", - " 0.6464\n", - " 0.6605\n", - " 0.5391\n", - " 0.04283\n", - " 0.009531\n", + " 0.7416\n", + " 0.6157\n", + " 0.6932\n", + " 0.5738\n", + " 0.02396\n", + " 0.006050\n", " 0\n", - " 0.653667\n", - " 0.55124\n", + " 0.672811\n", + " 0.58574\n", " \n", " \n", - " 296\n", - " 296/299\n", - " 5.86G\n", - " 0.02869\n", - " 0.01313\n", + " 66\n", + " 66/69\n", + " 7.25G\n", + " 0.01645\n", + " 0.008787\n", " 0\n", - " 0.04182\n", - " 35\n", + " 0.02524\n", + " 8\n", " 640\n", - " 0.6792\n", - " 0.6322\n", - " 0.6616\n", - " 0.5396\n", - " 0.04283\n", - " 0.009532\n", + " 0.7360\n", + " 0.6175\n", + " 0.6915\n", + " 0.5715\n", + " 0.02398\n", + " 0.006076\n", " 0\n", - " 0.654858\n", - " 0.55180\n", + " 0.671563\n", + " 0.58350\n", " \n", " \n", - " 297\n", - " 297/299\n", - " 5.91G\n", - " 0.02872\n", - " 0.01319\n", + " 67\n", + " 67/69\n", + " 7.25G\n", + " 0.01629\n", + " 0.008693\n", " 0\n", - " 0.04191\n", - " 98\n", + " 0.02499\n", + " 3\n", " 640\n", - " 0.7010\n", - " 0.6163\n", - " 0.6619\n", - " 0.5394\n", - " 0.04282\n", - " 0.009539\n", + " 0.7511\n", + " 0.6058\n", + " 0.6895\n", + " 0.5694\n", + " 0.02401\n", + " 0.006101\n", " 0\n", - " 0.655927\n", - " 0.55165\n", + " 0.670670\n", + " 0.58141\n", " \n", " \n", - " 298\n", - " 298/299\n", - " 5.92G\n", - " 0.02870\n", - " 0.01315\n", + " 68\n", + " 68/69\n", + " 7.25G\n", + " 0.01627\n", + " 0.008705\n", " 0\n", - " 0.04185\n", - " 47\n", + " 0.02498\n", + " 27\n", " 640\n", - " 0.6962\n", - " 0.6193\n", - " 0.6637\n", - " 0.5406\n", - " 0.04284\n", - " 0.009546\n", + " 0.7536\n", + " 0.6024\n", + " 0.6883\n", + " 0.5680\n", + " 0.02404\n", + " 0.006127\n", " 0\n", - " 0.655502\n", - " 0.55291\n", + " 0.669570\n", + " 0.58003\n", " \n", " \n", - " 299\n", - " 299/299\n", - " 5.9G\n", - " 0.02875\n", - " 0.01319\n", + " 69\n", + " 69/69\n", + " 7.25G\n", + " 0.01622\n", + " 0.008689\n", " 0\n", - " 0.04195\n", - " 44\n", + " 0.02491\n", + " 28\n", " 640\n", - " 0.6892\n", - " 0.6242\n", - " 0.6642\n", - " 0.5413\n", - " 0.04285\n", - " 0.009554\n", + " 0.6964\n", + " 0.6407\n", + " 0.6871\n", + " 0.5661\n", + " 0.02406\n", + " 0.006154\n", " 0\n", - " 0.655092\n", - " 0.55359\n", + " 0.667390\n", + " 0.57820\n", " \n", " \n", "\n", - "

300 rows × 17 columns

\n", + "

70 rows × 17 columns

\n", "" ], "text/plain": [ - " epoch mem train/box_loss train/obj_loss train/cls_loss total \\\n", - "0 0/299 7.49G 0.04468 0.01796 0 0.06264 \n", - "1 1/299 5.66G 0.03713 0.01763 0 0.05476 \n", - "2 2/299 5.9G 0.03728 0.01787 0 0.05515 \n", - "3 3/299 5.87G 0.03721 0.01785 0 0.05507 \n", - "4 4/299 5.9G 0.03695 0.01766 0 0.05461 \n", - ".. ... ... ... ... ... ... \n", - "295 295/299 5.91G 0.02877 0.01319 0 0.04196 \n", - "296 296/299 5.86G 0.02869 0.01313 0 0.04182 \n", - "297 297/299 5.91G 0.02872 0.01319 0 0.04191 \n", - "298 298/299 5.92G 0.02870 0.01315 0 0.04185 \n", - "299 299/299 5.9G 0.02875 0.01319 0 0.04195 \n", + " epoch mem train/box_loss train/obj_loss train/cls_loss total \\\n", + "0 0/69 7.28G 0.02551 0.011000 0 0.03651 \n", + "1 1/69 7.27G 0.02155 0.010970 0 0.03252 \n", + "2 2/69 7.27G 0.02127 0.010850 0 0.03212 \n", + "3 3/69 7.27G 0.02089 0.010820 0 0.03170 \n", + "4 4/69 7.28G 0.02061 0.010730 0 0.03135 \n", + ".. ... ... ... ... ... ... \n", + "65 65/69 7.25G 0.01648 0.008796 0 0.02527 \n", + "66 66/69 7.25G 0.01645 0.008787 0 0.02524 \n", + "67 67/69 7.25G 0.01629 0.008693 0 0.02499 \n", + "68 68/69 7.25G 0.01627 0.008705 0 0.02498 \n", + "69 69/69 7.25G 0.01622 0.008689 0 0.02491 \n", "\n", - " target img_size precision recall mAP_0.5 mAP_0.5:0.95 val/box_loss \\\n", - "0 87 640 0.7777 0.6004 0.7016 0.5741 0.04719 \n", - "1 87 640 0.7596 0.5931 0.6851 0.5284 0.04633 \n", - "2 64 640 0.7899 0.5904 0.6901 0.5618 0.04848 \n", - "3 128 640 0.7593 0.5991 0.6911 0.5547 0.04522 \n", - "4 39 640 0.7454 0.6202 0.7018 0.5798 0.04608 \n", - ".. ... ... ... ... ... ... ... \n", - "295 46 640 0.6611 0.6464 0.6605 0.5391 0.04283 \n", - "296 35 640 0.6792 0.6322 0.6616 0.5396 0.04283 \n", - "297 98 640 0.7010 0.6163 0.6619 0.5394 0.04282 \n", - "298 47 640 0.6962 0.6193 0.6637 0.5406 0.04284 \n", - "299 44 640 0.6892 0.6242 0.6642 0.5413 0.04285 \n", + " target img_size precision recall mAP_0.5 mAP_0.5:0.95 val/box_loss \\\n", + "0 12 640 0.7350 0.5716 0.6676 0.5290 0.02950 \n", + "1 6 640 0.7681 0.6184 0.7172 0.5787 0.02820 \n", + "2 22 640 0.7820 0.5965 0.7014 0.5684 0.02819 \n", + "3 9 640 0.7795 0.6028 0.7099 0.5858 0.02629 \n", + "4 33 640 0.7653 0.6153 0.7170 0.5929 0.02638 \n", + ".. ... ... ... ... ... ... ... \n", + "65 14 640 0.7416 0.6157 0.6932 0.5738 0.02396 \n", + "66 8 640 0.7360 0.6175 0.6915 0.5715 0.02398 \n", + "67 3 640 0.7511 0.6058 0.6895 0.5694 0.02401 \n", + "68 27 640 0.7536 0.6024 0.6883 0.5680 0.02404 \n", + "69 28 640 0.6964 0.6407 0.6871 0.5661 0.02406 \n", "\n", - " val/obj_loss val/cls_loss f1 fitness \n", - "0 0.007429 0 0.677645 0.58685 \n", - "1 0.007840 0 0.666103 0.54407 \n", - "2 0.007925 0 0.675733 0.57463 \n", - "3 0.007872 0 0.669754 0.56834 \n", - "4 0.007888 0 0.677061 0.59200 \n", - ".. ... ... ... ... \n", - "295 0.009531 0 0.653667 0.55124 \n", - "296 0.009532 0 0.654858 0.55180 \n", - "297 0.009539 0 0.655927 0.55165 \n", - "298 0.009546 0 0.655502 0.55291 \n", - "299 0.009554 0 0.655092 0.55359 \n", + " val/obj_loss val/cls_loss f1 fitness \n", + "0 0.005770 0 0.643083 0.54286 \n", + "1 0.005597 0 0.685168 0.59255 \n", + "2 0.005582 0 0.676769 0.58170 \n", + "3 0.005540 0 0.679856 0.59821 \n", + "4 0.005602 0 0.682151 0.60531 \n", + ".. ... ... ... ... \n", + "65 0.006050 0 0.672811 0.58574 \n", + "66 0.006076 0 0.671563 0.58350 \n", + "67 0.006101 0 0.670670 0.58141 \n", + "68 0.006127 0 0.669570 0.58003 \n", + "69 0.006154 0 0.667390 0.57820 \n", "\n", - "[300 rows x 17 columns]" + "[70 rows x 17 columns]" ] }, "execution_count": 2, @@ -366,9 +375,10 @@ } ], "source": [ - "df = pd.read_csv('../../classification/yolo-second-run/runs/train/yolov7-custom7/results.txt',\n", - " delimiter=',',\n", - " names=['epoch', 'mem', 'train/box_loss', 'train/obj_loss', 'train/cls_loss', 'total', 'target', 'img_size', 'precision', 'recall', 'mAP_0.5', 'mAP_0.5:0.95', 'val/box_loss', 'val/obj_loss', 'val/cls_loss'])\n", + "#df = pd.read_csv('../../classification/yolo-second-run/runs/train/yolov7-custom7/results.txt',\n", + "df = pd.read_csv('results-final.txt',\n", + " delimiter=',',\n", + " names=['epoch', 'mem', 'train/box_loss', 'train/obj_loss', 'train/cls_loss', 'total', 'target', 'img_size', 'precision', 'recall', 'mAP_0.5', 'mAP_0.5:0.95', 'val/box_loss', 'val/obj_loss', 'val/cls_loss'])\n", "df['f1'] = 2 * np.divide(df['precision'] * df['recall'],\n", " df['precision'] + df['recall'])\n", "df['fitness'] = 0.1 * df['mAP_0.5'] + 0.9 * df['mAP_0.5:0.95']\n", @@ -385,10 +395,22 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 3, "id": "f2a956f0", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zenon/.local/share/miniconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " \n" + ] + }, { "data": { "text/html": [ @@ -420,31 +442,31 @@ " 0\n", " 0\n", " precision\n", - " 0.7777\n", + " 0.7350\n", " \n", " \n", " 1\n", " 1\n", " precision\n", - " 0.7596\n", + " 0.7681\n", " \n", " \n", " 2\n", " 2\n", " precision\n", - " 0.7899\n", + " 0.7820\n", " \n", " \n", " 3\n", " 3\n", " precision\n", - " 0.7593\n", + " 0.7795\n", " \n", " \n", " 4\n", " 4\n", " precision\n", - " 0.7454\n", + " 0.7653\n", " \n", " \n", " ...\n", @@ -453,58 +475,58 @@ " ...\n", " \n", " \n", - " 595\n", - " 295\n", + " 135\n", + " 65\n", " recall\n", - " 0.6464\n", + " 0.6157\n", " \n", " \n", - " 596\n", - " 296\n", + " 136\n", + " 66\n", " recall\n", - " 0.6322\n", + " 0.6175\n", " \n", " \n", - " 597\n", - " 297\n", + " 137\n", + " 67\n", " recall\n", - " 0.6163\n", + " 0.6058\n", " \n", " \n", - " 598\n", - " 298\n", + " 138\n", + " 68\n", " recall\n", - " 0.6193\n", + " 0.6024\n", " \n", " \n", - " 599\n", - " 299\n", + " 139\n", + " 69\n", " recall\n", - " 0.6242\n", + " 0.6407\n", " \n", " \n", "\n", - "

600 rows × 3 columns

\n", + "

140 rows × 3 columns

\n", "" ], "text/plain": [ " epoch metric value\n", - "0 0 precision 0.7777\n", - "1 1 precision 0.7596\n", - "2 2 precision 0.7899\n", - "3 3 precision 0.7593\n", - "4 4 precision 0.7454\n", + "0 0 precision 0.7350\n", + "1 1 precision 0.7681\n", + "2 2 precision 0.7820\n", + "3 3 precision 0.7795\n", + "4 4 precision 0.7653\n", ".. ... ... ...\n", - "595 295 recall 0.6464\n", - "596 296 recall 0.6322\n", - "597 297 recall 0.6163\n", - "598 298 recall 0.6193\n", - "599 299 recall 0.6242\n", + "135 65 recall 0.6157\n", + "136 66 recall 0.6175\n", + "137 67 recall 0.6058\n", + "138 68 recall 0.6024\n", + "139 69 recall 0.6407\n", "\n", - "[600 rows x 3 columns]" + "[140 rows x 3 columns]" ] }, - "execution_count": 12, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -529,7 +551,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "id": "e04f6713", "metadata": {}, "outputs": [], @@ -551,7 +573,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "65aca46f", "metadata": {}, "outputs": [], @@ -577,7 +599,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAFbCAYAAADY/fSfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkLUlEQVR4nO3dd3xT1f8/8Fe6W7rYM4UyBGlxgPiBIALCB8pQBEfZitgy/AgOEEQEBBWhbESFgiACUhEU0LYiKkNSNkobhqy2KRvaJtDd5P37o7/cL6EtTRct4fV8PHxgknvPPTm9SV73nHPvVYmIgIiIiMiOOFR0BYiIiIjKGgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsjpOtCxqNRkRERAAAQkJCClwmOjoaAGAwGKBWq6HRaMqgikRERETFY3MPjlarRWpqaqGv6/V6aLVaBAUFITg4GOHh4WVRPyIiIqJis7kHJygoCAaDAUajscDXtVotvLy8lMdeXl7QarUl6sU5evQoRATOzs7FXpeIiIjsU05ODlQqFR5//PEil7U54BQlMTERvr6+ymNfX99Cw1BRRAQiguzs7DKqHRGVNbPZjIyMDLi7u8PBgdP5iKhyKbOAUxCDwVCi9ZydnSEiaNq0aRnXKE9GRgbi4+PRqFEjuLu7l8s27BXbruTsre2uXLmCNWvWYNiwYahdu3a5bsve2u5eYtuVHNuu5Mqr7c6cOQOVSmXTsmUWcPz8/Kx6bFJTU6FWq0tcnkqlgoeHR1lUrVDu7u7lvg17xbYrOXtpOzc3N+Xfe/V+7KXtKgLbruTYdiVX1m1na7gByuA0cUuo0Wg0iI2NVZ5PSkriWVRERERUIWzuwdFqtdi7dy9u3rwJtVqNoKAgAED//v2xefNmqNVq9OrVC9HR0TAYDAgNDS23ShMRERHdjc0BR6PRFNgjs2PHDuX/LaGHiIjoQWQymZCTk1PR1ahwWVlZyr8lPQnB2dkZjo6OJa5DuU4yJiIielDcunULSUlJEJGKrkqFM5vNcHJywsWLF0sccFQqFRo0aABPT88Src+AQ0REVEomkwlJSUnw8PBAzZo1izUZ1h6ZTCZkZWXB1dW1RL0wIoJr164hKSkJzZo1K1EZDDhERESllJOTAxFBzZo1eUo58gIOkHeWZUmHmWrWrIn4+Hjk5OSUqAxenYuIiKiMPOg9N2WptG3JgENERER2hwGHiIjoARMREWHzsmFhYRg7dmw51qZ8MOAQERE9YPbu3Wvzsh06dECvXr3KsTblg5OMiYiIHiARERFISkqyefn79a4EDDhERESVkFarxdy5cwEAM2fOhF6vh8FggE6nw4wZMxAREQEfHx9ERkZi5MiRCAgIsFo/PDwcarUaer1euQOB5a4Eer0e4eHhAICQkBBlWw0aNMCAAQOUHp5evXph7ty50Ov1Vhf2BfIPcwUHB5dXU5QIh6iIiIgqIY1Gg/Hjx8NoNMJgMCAoKAjBwcHQarUICwtDcHAwgoKC0KtXL3z44YdW644dO1YJNSEhIYiIiIBOp4NGo8GAAQOgVqsREhKCkJAQZVuhoaFKz45lSCogIADjx4/PV7fw8HAkJiYiODgYwcHB8PHxQXR0dDm3SPEw4BAREVVSPj4+0Ov1VsNEarXaapmAgADo9XrlsV6vx6+//mp1+6SgoKAiJxZ7e3srISggIAATJkwocDmj0Yi5c+di5MiRynORkZFWdagMOERFRERUid0ZaLy8vODn51fo8lqtFt7e3tBqtcpziYmJNgWQO7dVkLi4OHh7e8Pb21t5bvHixUWud68x4BAREdkRo9EItVpt1etzt4nCljk6AKxCy93Kvx9wiIqIiMiO3DlkZVFYMNHpdMUuv6CyKlvwYcAhIiK6j9y8efOur2s0GgQGBuab9BsVFQUAyplVQF7vzZ1nXxVFrVajR48eyllYQF64sZRfWTDgEBERVUI6nQ7Lli2zOqU7PDwccXFxiI6OhlarhU6nQ1hYGIxGo/IvAKxatQqxsbGIiIhAdHQ0oqOjldO41Wo1Xn75ZYSFhUGr1UKtVkOr1SI8PFzZliUAFVQHIG/OTWpqKsLDwxEdHY2oqKhKd5o45+AQERFVQgEBAfkm795+ardFYRN8CzsLqqDXNBpNgfN0CqqDLeVXBuzBISIiIrvDgENERER2hwGHiIiI7A4DDhEREdkdBhwiIiKyOww4REREZHcYcIiIiMjuMOAQERGRzbp161aq1+8VBhwiIiKy2apVq0r1+r3CgENEREQ2s9x5vKSv3ysMOERERGVMRJCRkVEu/4lIkdvXarVo27atci+qqVOnKveX0mq16NatG7RaLYYPH67cvyosLAzR0dEIDw9X7jAeHR2NiIgIpRydTodu3brBaDRCp9Mp98SaOnUqAFi9DgArV65U7oVlufmnTqdD27ZtodVqER0djbFjx5Z5+wO8FxUREVGZEhGMGDECx44dK5fyH330UaxYsQIqlarQZTQaDdRqNXr27Alvb28EBARg+PDh2LFjBzQaDby9veHj44NFixbB29sbERER8PX1RVBQEABg+PDhGD9+PCIjI7F48WLo9XqEhYVh8eLFSg9NZGQk/Pz8oNFo4OPjAyDv3lWW1zdt2gQASplTp06FWq1GQEAAAgMD4ePjA41GA71ej+joaGW5ssIeHCIiojJ2t/BxL3l7ewPIGzYyGAxKzwqQF0Ysr+t0OqSmpkKr1UKr1SrhpkOHDsr6d950c+TIkdDpdOjfvz+WLVuWb9snTpxAgwYNlMeWu5bfWbfywh4cIiKiMqRSqbBixQpkZmaWS/lubm42Byij0Qhvb28YjUb4+PgUGioCAgKQmJio3FFcp9PB19cXiYmJ+cqyiIqKwowZMwBAGQK7ff7Nww8/jKSkJOWxXq+36qWx9PqUFwYcIiKiMqZSqeDu7l7R1UBUVBR8fHwQGxurnN2k0+mg1+sRERGB4OBgAEBwcDDCw8MREREBHx8fqNVqhISEICwsDOHh4VCr1Up40ev1iIqKQmJiojKvxvK6pezo6Gi88MILWLduHaKjo2EwGBAQEACNRpNv+1qtFl5eXsrQWVlhwCEiIrJTlgBze89JQEAADh48mG/ZkJCQfM9NmDAh33M7duwodHsBAQHYsWMHTCYTMjMzMWLECDg6Oha4jEV5nVbOOThERER26vY5Nw8aBhwiIiI7c/sw0IOKQ1RERER2prBhqAcJe3CIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiIp05402b7+pZmXEgENERERFuv1Gmrf/f2XF08SJiIjKQUZGhtVjV1dXODg4IDMzEyKiPO/s7AwnJyfk5OQgNzdXed7BwQGurq4wmUzIzs5Wnq8Mt4C4HzDgEBERlYOOHTtaPY6IiECTJk0wduxYHDlyRHn+vffew8svv4yvv/4a4eHhyvNdu3bF7NmzcfToUYwaNUp5/tChQ0VuW6vVYurUqZgxYwbCw8OxaNEieHt7IywsDK1atYJer4dGo0FAQIByrygg7waYQUFBCAsLQ4cOHbB3714MGDCg0vfWFIRDVERERHbGcuNKHx8fJdxERETA19cXQUFBCAkJwdy5c6HT6RAZGYng4GBoNBpERkYCAHx9faHRaNChQwer0HU/YQ8OERFROdizZ4/VY1dXVwDA4sWL8w1RAcBrr72GYcOGKc87OOT1QTz++OP5yrJVQECA8v86nQ5eXl7QarUAgPHjxyMyMhIdOnQAkHdH8MWLFyvLR0REwGg0IjU1tUTbrmgMOEREROWgsLkybm5uBT7v7OyshJ3bOTo6lsm8m4CAACQmJkKj0QDICzy+vr5ITExUljEajYiKikJqaipCQkKg0+kQGxsLnU5nFZbuB8UaooqOjkZ0dDQiIiKUBFjYMpb/iIiI6N4q6GabwcHB8PX1RUREhPL7HBISAgAIDw9HdHQ09Ho9AgMDcfPmTWi1WmVujl6vtyrzfriZp809OHq9HlqtFjNmzAAADB8+XEmBFkajEXq9XmmwqVOnIigoqAyrS0REREUp7Gablt/n202YMCHfc5bfegBWv/U7duwo8P8rI5t7cLRaLby8vJTHt4/jWVgmMel0OmUZqlyOHTuGLVu2KI9NJhM+/PBDLFiwwOo0RCIiovuZzT04iYmJ8PX1VR77+voWeAXD8ePHo3///ggICMDq1atLXDERQXp6eonXvxvLtQnuvEbBg2DBggXYsmULEhISkJubi9deew3btm2DiGD58uXYtWsXPD09C13/QW670rK3tsvMzFT+La/PqoW9td29xLYrueK0XVZWFsxmM0wmE0wmU3lXrdKzTKIWkRK3h8lkgtlsRkZGBsxms1KeSqWyaf1STTK2jM3dLjY2Fps3b8bcuXPx6quvYvPmzSUqOycnBydOnChN9YoUHx9fruVXRqdPn0ZKSgq2bt2KQ4cO4eeff8acOXNQpUoVjBo1Clu3bsXjjz9eZDkPYtuVFXtpO8vn//z580hOTr4n27SXtqsIbLuSs7XtnJyckJWVVb6Vuc+Upj2ysrKQm5uLc+fOWT3v4uJi0/o2Bxw/Pz+rHpvU1NR8F/6Jjo5Ghw4dEBAQgFWrVmHq1KnQarX55urYwtnZGU2bNi32erbIyMhAfHw8GjVqVO5XhExMTESdOnVs/oOUt1u3bgEAEhIS8Ndff6FXr14YNWoUMjMzMXr0aOTk5ODhhx8udP172Xb2xt7a7sqVK9izZw/8/f1Ru3btct2WvbXdvcS2K7nitF1WVhYuXrwIFxeXQs+SepCICLKysuDq6mpzj0tBZTg5OcHPz085xf7MmTM2r29zwNFoNAgLC1MeJyUlKcHFaDTC29sbBoPBKvRoNBr4+PjYXJnbqVQqeHh4lGhdW7m7u2Px4sW4efMmPvnkkzIvPzs7G+3atcObb76JmTNnlnn5JXH58mUAwIYNGxAbG4t169bBw8MDHh4eaNCgAfR6vU3t7u7uXu5/H3tlL21n+RJ3c3O7Z+/HXtquIrDtSs6WtnN2doaDgwNMJhMcHR3vUc0qL8uwlEqlKnF7mEwmODg4wNPTUzl9vjhhyeaAo1ar0atXL+WSzqGhocpr/fv3x+bNmxEcHIzw8HDExcUByLvkc2U/b37Dhg0wGo3lEnAOHjwIg8GAr7/+GtOmTYOTU8Vedig3NxdXr15FkyZNEBsbC1dXV/Tp00d5vVmzZsVKx0RElMfJyQkeHh64du2aEnYeZCaTSRmeKknAMZvNuHbtGjw8PEr821mstQo75fv2U8UKOgWtssrOzsbx48eRk5Oj9EKVpZ07d8LJyQkXL17E9u3b0atXrzItv7iuXr0KEcGgQYMwc+ZM9OjRw+o9N23aFAcOHKjAGhIR3Z9UKhXq1q2L8+fPIyEhoaKrU+HMZjNyc3Ph5ORU4rDn4OAAPz+/Eg9xPZBXMt63bx8yMjKQm5uLnJwcAHmnTz/11FN3Xe+3335DUlIShg8frjy3a9cufPbZZ/jnn39w9OhRq7kIO3fuRPfu3ZGUlISVK1fek4BjMpmQnp5e4Cn6ly5dAgD06dMHv/zyi1UvHJAXcNavX1+sWepERJTHxcUFzZo14yU3kDd/6dy5c/Dz8yvx3C8XF5dS9YQ9kAHn448/BgAMHDgQQF7XYlEBJzc3FyNHjkRmZqZVwBk8eDB8fHxw+fJlREdH45VXXgGQ1zu0d+9ezJgxA87Ozhg/fjxu3rxp87WBxo8fj6tXryI8PFyZXGWLsLAwLFu2DOfPn8/32sWLFwHkDTcePnw43+vNmjXDrVu3cPXq1XKfNEoEAGlpaRgyZAjmzZuHxo0bV3R1iErNwcGBk4wB5bRuV1fXCmuPB3KQsFOnTti3bx8OHToEf39/tGzZEv/8889d19m0aRPOnz+PS5cuKT0hBoMBFy5cwJQpU9C6dWv8+uuvyvIHDx5ERkYGOnfujP/+97/Izc21efgnMTERCxcuxLfffotnn322wOsN3c5kMiE3NxcigjVr1iA+Ph7Xrl3Lt9ylS5fg4OCAWrVqFViO5ay106dP21RPqtyio6MxcODAAi/nUFn88MMP+Omnnyr9FVGJ6P7zQAacPn36ICMjA+vWrcNjjz2GRx999K4BR0QQFhamTJi29H5YrtPTokULBAUFYfv27cjNzcXChQsxZswYeHt747HHHkOLFi3g6+sLrVYLEcGuXbuQm5tb6PaWLFkCLy8vbNu2Dfv27cNjjz2GmJiYQpd//fXX8fTTT+PYsWNKnQq6htClS5dQq1atQid8WY6gOdH4/jd58mT07NkTGzZswJ9//lnR1SmU5WKgDNVEVNYeyIDTokULqNVqpKWl4dFHH8Wjjz6K2NjYQq+2ePz4cRw+fBizZ89GtWrVrAKOSqVC8+bN0aNHD9y4cQODBg3CO++8g0aNGuH7779XJli1a9cOWq0WW7ZsQefOnTFq1CikpaVh7dq12L9/P65cuYKVK1di0aJFWL58OUaOHIk+ffrg77//Rp06ddCxY0dMnToVkydPRo8ePfDRRx9Br9cjKSkJ3377LWJiYpQbqTk5OeH48eP53sfFixdRt27dQtvFcqr46dOnER8fXy5X4/zpp5+UoTIqHyKCFStWYPTo0ahTp06B96OpSCkpKZgxYwb++usv7Ny5E66urvj333+V1/fv348nnngCqampxSrXbDZj9+7dStc4ET3YHsiAo1Kp0LlzZwBQAk56enq+qyVaWJ5//PHH0aZNGxw5cgRAXsBp2LAhPDw80K5dO3h5eWHjxo2YPHkytmzZgh49eihlaDQa7Nu3D19//TVq1qyJlStXonbt2hg6dCjatWuHOnXqIDQ0FO+//z4A4H//+x+AvF6V3bt344MPPsAnn3yCL774AiqVCgsWLMAzzzyD2bNnw8PDA8HBwTh16hT69euHZs2aFRhwLl26hHr16t21bZo2bYrZs2fD398fzZo1wyeffIKYmBj89ttvCAsLw4gRI/DNN98ok7OLY8mSJejXrx9eeumlEoUno9GIbt26sYepCJcvX8a1a9fw3//+F23btsWhQ4cqukpWJk2ahGnTpqFjx47w9PTEkCFDrAJOdHQ0Dh8+jIULF9pcZmZmJgYNGoROnTrh22+/LYdal7/Y2Fjs3r37nm931qxZeO655+wmGJ47dw7Lly+v6GpQZSCV0LFjx+TYsWPlVn5aWpqsXbtWqlevLhcvXpRr166JSqWS5cuXK8skJCTItGnTxGw2y9KlS8XZ2VlMJpNMmjRJ6tevLyIiffr0kZ49eyrrvP766/Lf//5XcnJy8m1zx44dAkAAyJIlSyQ8PFzeeOMNOX36tOzcuVO++eYbuXr1qoiImEymAut98eJFSUtLExGRM2fOSNWqVQWAvPnmm3L16lV59NFHZe/evfLCCy9I165d863/xBNPyOuvv37XttmwYYOEhobKhg0bZMiQIVKlShWl3lWqVJE2bdqIo6OjPPbYY3Ljxo0iWvr/REVFiUqlkueff15UKpVMnTpVNm/eLKdPn7a5jJ9++kkAyIcffmjzOkXZvHmzvPPOO2I2m8uszMKkpaXJoUOHlL9hSSUkJNz19aioKAEgZ8+elY8++kiqVatWLu/v4sWLMn36dLl48aLV87du3ZLQ0FBZvXp1vvd66NAhUalUMnPmTHnrrbdk/vz58vnnn4uzs7Pk5uaKiEi/fv0EgPj4+EhKSoqIFN12r732mri5uUnDhg2lV69eZf5e74VnnnlGAMjMmTPL9O+1a9cumTRpUqFt95///EcAyOeff15m26woZrNZOnXqJADk1q1bpS6vrD6zD6Lyarvi5IMHNuDc2fA9e/aUtm3bKo9ffvllASAJCQkyadIkadSokYiIbNy4UQDI5cuXpUmTJvLOO+8o65hMpkK/mIxGozg4OIizs7Ncv369TN7Hr7/+Ko0bN5Z///3X6vkPP/xQ6tatqzzesmWLbN++XerXr1/scJCdnS0HDx6Uf//9V0wmk6SlpcmaNWvEzc1NPv30U2W5w4cPyyeffFJoOc8884x06NBBTCaTvPXWW0pocnNzk88//1zMZrOYTCb5+OOP5fPPP5eFCxdKkyZNZP78+UoZb7/9tgCQwMDAYr2Hu+nevbsAkHXr1pVZmYUpiw/8tm3bBIB89NFHhe5rs2bNEm9vbzGZTBIZGamEnbK2cOFCmT59upw4ccLqectnBIA0bNhQdDqd3Lp1S1auXCmNGzeWwMBAq4OA7du3W9XR399fBg8eLO7u7tKvXz85d+6cVdslJibKt99+q6xvNpulRo0aMnnyZFm8eLE4OztLcnJymb/f8mQymcTb21seffRRASCdO3eWn3/+WRYvXizr1q0r1d9Po9GIq6urpKam5nstJydH3NzcpHbt2lKlShWJj48vzdsoMbPZLNeuXbN6LiYmRnbs2FGscm7f9w4dOlTqejHglBwDTiEqIuBYegeOHDkiR44cUT4kv//+uwwaNEg6duwoIiLnzp0TALJhwwZxcHCQ8PBwm7fbtm1beemll8r8/dzpu+++EwCSnJwscXFx4uLiIm5ubuLg4CBffPFFqcq2tN2QIUOkYcOGkpubKwkJCVK7dm0BIEajMd86SUlJolKp5OuvvxaRvNC0e/duiY+PlzfeeEMAyBdffCFLly4VAOLs7CyOjo7SpEkTqVWrlmRkZIiIyOOPPy516tQRAMXq+SlMTk6OeHp6ipeXl1SrVk0uX75c6jLvpiw+8CEhIeLh4aEc6RdkwIAB8tRTT4mIyNWrV5X9tawNGDBApk+fLiNGjLB6fsSIEdKyZUs5deqUBAYGipeXl7i7u4tKpZI+ffqITqezWv78+fMCQKKioiQ1NVUAyJo1a2TNmjVSs2ZNcXZ2ll9++UVpuzFjxggAuXTpkoiIxMXFCQD57bff5MKFC6JSqWTVqlVW2xg9erRVWK5sTp06JQBk+/bt8ttvv4m/v78AEBcXFwEgKpVK3njjjQJDyt1Y2gaA7N27N9/rx44dEwDy888/S9WqVWXy5Ml3LW/37t2yZMmSYtXBFkuWLBEnJydZv369iIgkJydLjRo1xMXFRY4cOWJTGZmZmdKwYUOlJ2zNmjWlrhcDTskx4BSiIgJOTk6O1K9fX7p16yZPPPGENGvWTBwdHWXZsmXSsWNHGTRokIjkHWm0bdtWGR7666+/bN7ulStXxGAwlPn7udM///wjAGTnzp3Stm1badGihTz22GMCQH766adSlW1pu127dgkAmTNnjgQEBIi3t7cAkP3790t2drZ888038tZbb8mqVatk7ty5hR5BioiMGTNGXF1dxcvLS0JCQiQ9PV2uXbsmJ0+eFADy9ddfS0pKiqhUKlmyZIm4u7vLnDlzSvU+RPKGSwDI5s2bpUqVKlY9UuWhtB94s9ksarVa3nrrLXn33XfF09OzwDZt0aKFvPHGG8rjhg0byujRoyUpKanMhj7MZrMEBgbK9OnTpW7duuLn5yc1a9aUpKQkqV+/vtKzmZqaKuPGjZNZs2bJuXPnCiwrNzdXXF1dZfHixbJ7924BoHz+09LS5JlnnpG6devKjh075ObNm1K3bl0BoBxcLF26VJycnJQhiaefflq6d++ulJ+RkSGurq7SoEGDQod/K9ratWsFgDLsm56eLidPnpScnBy5ceOGLFiwQDw9PaVu3bqyceNGm/+Ob775ptSoUUMcHR1l8eLF+V5ftWqVcmDy2muvSZMmTZSyL1++LFOmTFGCZEpKinKA8fvvvxe5bbPZLElJSRIfHy9ms1nMZrMMGTJEJk6cKCJ5PTSWg57HH39cvLy8BIBMnDhRhg8fLl5eXvLII49I06ZNCzxwutOyZctEpVLJ8ePHxc/PTyZNmmRTG90NA07JMeAUoiICjkhe176jo6O0bNlSfv/9d2ncuLFMmDBBGjVqZPVhOX36tPJhLM48lHslIyNDHBwcxN3dXRwdHWXfvn1y5swZefrppyUxMbFUZVva7tatW9K6dWsBIC1atJD9+/crvTQ//vijMjxhmbvzwgsv3LW+jzzyiNSpU0eZc2HRu3dvadWqlWzatEkAyJkzZ6Rv377Kl993330naWlp8sILL8jChQuL9V4WLFggrq6ukpmZKd27d7eaT1Valy9floiICKvnCtvv0tPTZffu3SIiYjAY5MMPPyxwGFOn0yk9HRcuXBAnJydZsGBBvrLu7FkMDg5WjuI3b95cqvd18uRJOXr0qCQmJkrdunVl+vTpMn36dHn33XelevXqyvyH7du3F6vcgIAA+d///ieLFy8WFxcXyc7OVl5LSkqSatWqSZcuXZS5bDVq1JDnnntOREReeukl0Wg0yvJr1qxRAr6IyO+//668/z179pTq/ZeXcePGSZMmTe66TGJiovTt21cAyMCBA4vszUlMTBQfHx8ZP368NG/eXIYOHZpvmTfffFMeeughEckb8r59aKd///4CQKpVqybz5s2TYcOGiaenp3IAaOlZvXz5coEHbgsXLlTaPTg4WPkMu7q6ypUrV6RFixbi4OAg33//vQCQH374QWbMmCHu7u4CQBYsWCCnT58WDw8PGT9+fL7y33nnHfnggw9EJK9XuFGjRvLyyy+LSN6Ug2efffau7WMLBpySY8ApREUFHBGxmhvQvXt3ee6558TZ2VmWLl1qtdzmzZvv+qNd0YYNGybDhg2Tf/75p0zLvb3tDhw4IMuWLZOsrCwRyZs7MX78eHnvvfekQYMGIpLX9ezg4CA///zzXctNTU2VCxcu5Ht+z5494ujoKM7OzlK/fn0xm81y7NgxGT9+vPTq1UscHByU3ilvb2/lSz8rK0u++eYbuXLlSqHb7N+/vzz99NMiIvLxxx+Lt7e3MtG1tD766CMBIKtXr1aeK2y/Cw0NVXoDP/nkEwGg9BiKiPz1118yfPhwmTBhgri5uUl6erqIiAwaNEgaN25sVed9+/YJADlw4IDy3OXLl2Xbtm3SpEkTGTVqVKnel0ajEbVaLRs2bFACjmWS8fz58wWAuLu7Kz9+tnr++eele/fuMmLECHn88cfzvb5hwwYBIA899JDUqVNHZs+eLe7u7pKWlia1atWyGloxmUzSvn17CQgIkOzsbPnggw+kRo0a0qBBA6uerdIqTW/Y77//Lu+9957s3btXzGazdOjQQYKDg21ad/369eLj4yNdunQpdJm4uDipX7++NGzYUM6cOSP9+/eXhx9+WEwmk+j1emW5Dh06yMCBA0Uk77uvRo0a8t5778nWrVsFgCxdulQGDRqkDJUtWLBAdDqdODs7y+DBg+Xw4cNStWpVqVWrljK8ZNGnTx9p166dLF26VFQqlbi4uEinTp3Ezc1NCcLVq1cXFxcX8fHxUfaZpKQkWblypfJdPHPmTHF2dpZTp04pZZvNZqlVq5byuVmwYIFVz9+7775bZGC0BQNOyTHgFKIiA87txowZIzVq1BAAsnXr1nKrz/3kbm1nOausU6dOVuGvtMNyx44dk6CgIJk6darV8yaTSUaMGCGurq6yZs0acXFxkc8++0wOHz6sTNb08/OTo0ePWq136tQp2bZtm9SqVUs5ArQMudk63l+UZ599VlQqlbi7uyshMy0tTfbv3y9hYWEyduxY+fjjj+Xnn38WAOLh4SEdO3aUmjVrSsuWLZXelqysLHnooYeUI+EePXoo2zhw4IAAkFdeeUX27NkjgwYNEg8PD6latWqBf5/Q0FBp2bKliORN2J4+fXqxzjRJSEhQ6hEYGCiPPvqoVcCxzIHo06dPsdtrypQp4urqKlWrVpVXX3013+tpaWlKj8KoUaOUOSuWkwHu7DE6cuSIODg4yMcffyzt2rWTl19+Wd59912pVatWgWc5FofZbJaFCxdKzZo1JTIystjrvvnmmwJA6QUOCgoSDw8PmTt3rs3lrFy5UlQqVYE9fSaTSQIDAyUwMFA583Lq1KmiUqlk2LBh4ujoKAcOHJDc3Fzx8PCQsLAwZd2RI0eKSqVS9jVLiLt165bs379feRwRESFOTk7i6Ogojz/+uLz00kvK5HfL+6xWrZpMnz5dRPIOdGrUqCH//vuvDB8+XADIU089JREREQIg3zyu26Wnp0vDhg2VHjuRvN4py0GNr6+vAJDRo0fna5/S/rgy4JQcA04hKkvAsRyRAsj3I/mgulvbvffee1K/fv18X5rlyWw2KwHq9ddfVyaztmrVSn755Rdp06aNeHl5KcHFbDZLQECA8ne1nKWRkZEhLi4usmjRojKpV926deXtt9+Wxx57TBo1aiRXrlyRtLQ0+eyzzwSAtGzZUpks3KZNG/nhhx8EgDg4OMiZM2fk+eefF3d3d3nhhRfEwcFB/vjjDwkJCZHo6Gir7axevVopp3HjxjJr1qxCz4SxzPOwzHNRqVTi4+MjjRs3lnnz5hX5nsLCwsTV1VUJj4MHD853mnh8fHy+08ZtYTQaZerUqdKkSRP5/vvv872elpYmf/31lwwbNkyZpNymTRvx9fWVXr16Kb1at5s8ebI4OjqKg4ODLFu2TDl54K233ipR70t2draEh4dLUFCQAJDmzZuLm5vbXeejZGZmSnJysrI9y1lwc+fOlZycHPnpp5+kWrVqAkB27dplc10uXLggAOS7777L99rmzZut5gempaUpw0AApGbNmtKqVStZvHixAJA//vhDWVev18vcuXNl7dq1Rc572bp1q7zwwgvK2U+ffvqpAJB58+Yp8+duD56WnsYjR46Io6OjREZGitlslilTpsjJkyfvuq0VK1aISqWSpKQkERFlGDwyMlIaN24sX3zxhdXfNCYmpkwOWBhwSo4BpxCVJeBYumkBlNmp3fe7u7Xd6tWrK3Suw9mzZ6Vdu3by5ZdfKkfpN2/elCeeeEJq164tZ8+eVX7kvvnmGzl8+LDVl2KHDh3kxRdfLNY2X3/9dWV+Vlpamly/fl358dm8ebNyhlm7du3k4sWL0qxZM3nmmWdEROTatWsyZ84cOXXqlJjNZunYsaNynaL09HQZMmSIAJAxY8YU+b6joqKKHF6zHPW2bNlSqlatKsePH5ePPvpIWrdubXWJhDtZJog+8cQT0r9/f/nmm28EgMyaNavA6+CUh4L2u7tdlkEkL5BYrvFiOevOcqbenb2Btvj444/FwcFB2rVrJxs2bJDMzEzp0aOHeHt75zszzMIyFOPj4yNff/21BAQESJcuXazqffbsWZk5c6bVvCNbtGrVSuntsgwTm81mad26tXTu3FlZzjKcXLNmTXn99dfl6NGj4uTkJADk9ddfL7NhWRGRsWPHSpUqVWTevHmiUqkK7b2985TwoqSkpIiLi4sSxKdMmSK1a9cu9O9vMBiUkyD2799fvDdxGwackmPAKURlCTjHjx9Xhg/uxYXg7gd3a7uDBw8KAHF0dKxUXwhXrlyRxo0bi0ajkXHjxknNmjULHKZ4//33pWbNmvm+lC9cuCBDhw7NNxyRnZ0tVapUEU9PT7l165YEBwdLkyZNlKNLywX59u/fL97e3sqp9Hf2wljk5ORY7Wdms1l27NhRpm3ZqFEjAWA1FyUsLEw8PDwKPMPIEhJ8fHwEgEREREhGRoYMGDBA9u3bV6EBxxZ6vV65zpKFpRetOL2MJpNJGjduLMOHD7d63mg0SmBgoDRu3FiuXLkiJpNJFi9eLEePHlXmQ02dOlUJq3fOjyqNCRMmSJ06dWT06NFSs2ZN0ev1yiUibu9VsrTdhQsXlHbYuHFjuQy7X758WVxcXMTT01NatWpVpmU///zzShDv2bNnkRd09PPzU9q8sABalPs14JjNZiX0VhQGnEJUloCTkZEhKpVKmjdvXm51ud/cre1u3rwpAKR169YVULO7s8yxcXBwkLFjxxa4zMmTJ8XHx0eefvpp5f0dOnRI/Pz8xNXVVQBI3759Zdq0aXLlyhXRarXKF+iUKVOUuQuPPvqo1KxZ0+pH9cSJE9K0aVNp27ZtmVxhtaSGDRtmdaaMyP9d+fj207izsrLEbDbLZ599Jg4ODvLBBx/IpEmTrCYPF3Yl4/JQ1l+WkydPFgDy/vvvS0JCgrzzzjt37XX8888/C+2ZPH/+vNSpU0eaNm0qgwYNEgBSr1496dGjhzRt2lRyc3PFbDbLV199JR9//HGZ1F/E+urolv22WrVq8uKLL1rte/f6R3rEiBECQEaOHFmm5Vrm65w+fVpq1qxZ5EVLDxw4IFu2bBFnZ+cSX6X5fg047733njg6OkqbNm3K/EQTWzHgFKKyBByRvKOAbt26lVtd7jdFtV2zZs0KDRAVzXKBuIMHDxa6jFarlSpVqkjVqlWlbdu2SmDR6/WyfPlyad++vVSpUkWCg4Pl448/Fi8vL2UYonbt2tK+fXsBUOAp5waDQbRabYV+We7cuVNGjRpl9QNoGbqyHNFnZGRI7dq1pWnTpuLm5ibvvvtugWXdzwHHEt4cHR2VkNChQ4dClx86dKg0a9as0J7cc+fOyUMPPSQODg4yf/58pbeuPC6KZ5GZmSmtW7eWxYsXK1esrlOnTr7h9Hv9I63T6cTBwaHMrw6elpYmXl5e0qZNGwEgW7ZssWk9jUZjdYHVmzdvFjnnx8JoNMquXbvuu4DTrFkz6dSpk3h6et71CvPliQGnEJUp4Lz22mvKmQFUdNudP3/+nlzMsCQyMjJsmsh54sQJmTZtmvTr10/Wr1+fb27EokWLxMnJSR555BHp3bu3Mnn3008/Va6IPWXKlHzlVtajQbPZLN7e3jJr1iwREfnll18EgLz44ovSrVu3Qnuc7ueAYxETEyOzZs2SFStWCACJjY2VjIwMyczMFJG84clhw4aJSqUq8uKSKSkpytHyX3/9Jf369ZObN2+WaX3vZuXKlQUOf1XEfnfq1KkyndtjsXPnTmXoqaDLShTk/ffft5qvExwcLK6urjYNFS5evFhq1apVob2uxRUfHy8AZNOmTdKuXTsZNmxYhdSDAacQlSngkDW2XV5PjKenp3I2TGZmpnz22Wdy8+ZNyc3NldGjR0tcXFy+9Spz27Vv316GDBkiInmnkzdt2rTIeWf2EHAssrOzpU6dOtK3b1/x9/eXJk2ayMaNG6VBgwZSq1YtWbp0aalPL68olXm/KwlLT6itoqOjBYCcPHlSTp06JSqVSqpWrSoNGjQo8sKngwcPFgBW1w4qrfK+mnZ4eLg4ODhISkqKvPLKK/Lkk0+W6/YKUxkCjgOIqFi8vb3xyiuvAAC6dOkCV1dXTJw4EZ6ennB0dMQXX3yBgICACq5l8QQEBCAuLg5msxlbt25F3759oVKpKrpa94yzszNGjBiBLVu2wMPDA56ennjppZdQtWpVHD16FGPGjIGTk1NFV5OQ9/lr3769zctrNBo4Ojpi165d+Oyzz1CnTh0cOnQIZrMZDz30EMaPH4+cnJwC19XpdACAhISEMql7WloaAgICMH369DIpryC//fYb2rZtC19fXzRv3hynTp2CiJTb9iozfmKJSmDy5MmoUaMGHnvssYquSpkIDAzE2rVrERMTg8uXL+P555+v6Crdc2+//Tbc3Nzw5ptvwtnZGWvXrsXLL78MX1/fiq4alYKXlxdat26NN998E9nZ2Zg7dy4aN24MnU6HRYsW4ZNPPkFCQgLWr18PZ2dnZT2TyYSTJ08CAOLj49GhQ4dCtxEXF4fY2FhkZmaiffv2qFKlCm7evImHH37Y6kBh9uzZOHnyJD799FMMHDgQzZs3L9P3ajKZsGPHDowZMwYA0Lx5cxgMBly9ehW1a9cu023dD9iDQ1QC9erVw/Tp0+HgYB8foYCAAGRmZuLll19GrVq1inWEbC+qV6+OKVOmwMfHBx4eHggNDWW4sRPz58/HlClTsG7dOowbNw4A4Ovri2nTpmHjxo3YsmULXn31VZjNZmWdc+fOITMzE0BewCnI9evX8eqrr6JVq1YYNGgQXnvtNTz88MPw8/NDQEAABg8ejNTUVADAkSNHEBYWhrfffhsNGjTAuHHjyrRn5caNGxgwYACSk5PRu3dvAFAC1KlTp8psOwVJT0/H0KFDsWfPnnLdTnGxB4eI0LZtW3To0AEtWrTAqFGj4OjoWNFVIiozTz31FJ566qkCX+vbty/WrVuH4OBg+Pn5YdasWQDyemWAvOCbmJiYb72UlBQ888wzSEpKwvLlyxEcHAwHBwdotVqYTCZcvnwZ48aNw4YNG1CjRg1cu3YNjRs3xowZM9C+fXu8/PLLiI2NxSOPPFLq92cymdC9e3ecP38eERERaNeuHQCgadOmcHBwwKlTp/D000+XejuF2blzJ9auXYvvv/8eq1evxsCBA8ttW8XBgENE8PHxwV9//VXR1SCqEC+99BISExMxfvx49OnTBx06dEBsbCyqV6+Oli1bWvXgJCcnY/v27Vi4cCEuXLiAv/76Cy1btlRe7969u/L/3bp1w/bt25GQkIAnnngC//3vf+Hu7o7nnnsO3t7e+PHHH0sVcGJiYuDn54fIyEgcOXIEMTExSrgBAFdXVzRq1EjpwRERJCYmom7dunBxcSnxdu/0xx9/oF69eujatSuGDh2KunXr4sknnyyz8kvKPvrXiYiISuHtt99G06ZNsWzZMgB5PTgBAQGoX7++Msn45MmTePTRRzFw4ECkpqYiMjLSKtzcSa1WY8SIEZgxYwaee+45uLu7A8gLHr1798aPP/6I3NxcfPvtt8jOzi5WfaOiovDUU0+hRYsWmDhxIoYOHWoVbiwsE43//vtvdOnSBY0aNUKVKlXwyCOPYPjw4bh+/XqxtluQP/74A127dsXXX3+NTp064aWXXsLFixdLXW5pMeAQEdEDz8HBASEhIfj++++RnJyMuLg4tGzZEvXq1UNCQgLOnTuHjh07wsfHB+fPn8fJkyfxn//8p8Tb69evH/755x8MGzYMw4YNw6+//mrzuidPnsSAAQPQs2dPDB06FJ6ensrQ2p1atGiBHTt2oHXr1rh69SrWrl2LRYsWQaPR4IcffkBYWFiJ3wOQ16NlCU9OTk6IiIhA06ZNce7cuVKVWxYYcIiIiAC88sorMJlMGDRoEE6dOoXAwEDUq1cPmZmZ+OCDDwAAu3fvRqNGjUq9rZ49e8LV1RXfffcdgP87Jf12+/fvx+7du/NNRv7yyy/h5eWF7777Dl988QUSExNRv379ArfTqVMnVKtWDYsWLcI///yDwYMHY8yYMfjqq68QGhqK8PBwpKenl/h97Nq1CyKCZ555BgBQo0YNxMTEFDrn6V5iwCEiIgJQu3ZtvPjii/jzzz/x5ptvYuDAgUpw2LBhA4YPH45q1aqVybY8PT0xYsQIDB8+HO3atSsw4Lz88svo1KkTHnnkEVy9elV5/sCBA+jUqRO8vLyK3E7fvn1x4cIF5fIHt/vf//6H1NRUrF27tsTv448//kDjxo3RsGHDEpdRXhhwiIiI/r+VK1fiwoULWLhwIdzc3FC3bl3ltdDQ0DLd1tKlS/H1118jMDAwX8C5fPkyEhMTMWnSJCQkJGDu3LkAgJycHBw9ehRt27Yt9fb9/f3x3HPPYeHChTCZTEr5t8vJyVFOlxcRq94eEUFkZCS6detW6rqUBwYcIiKi/8/DwwM1atRQHnt6eqJatWro2rUrmjZtWi7bbNmyJU6cOKGEDAA4ePAgAGDUqFEYO3Ysli5dimvXriE2NhZZWVlldpbS5MmTceLECaxevRrz589H1apVsWnTJuX11157DX5+fli7di26dOkCb29vDBw4EPHx8dDpdDh37hz69u1bJnUpaww4REREdzF37lzMnz+/3Mq3XGjz9tPRDx48iJo1a8LPzw9vv/02HBwcMG/ePBw8eBCOjo5ldhX1J598EgMGDMCECRMwYcIE1KtXDy+++CKWLl2K48ePY926dfDx8cHQoUNx5swZTJs2Dbt27cIrr7yCLVu2oEqVKsr8m8qG18EhIiK6i+DgYHh4eJRb+ZZ71+l0OjRp0gRAXsBp27YtVCoVqlevjrfeegthYWHo2LEjAgMDy7Q+n376KTZv3oyuXbsiMjISEyZMwJtvvonAwEA0aNAAcXFx2L59OzQaDapXr442bdqgd+/eiI2NRc+ePeHm5lZmdSlL7MEhIiKqQPXq1YO3t7cyD0dEcPDgQathqIkTJ6J69erYsWNHmV9Ez9/fH7GxsdiyZQucnJwwb948BAcHIzY2FpMmTYKrqyueffZZVK9eHUDeGWCdOnVCSkpKpR2eAhhwiOj/S0lJQadOnTBgwICKrgrRA0WlUiEgIADHjx8HAJw/fx43btywmkjs6empXLOmLCYY3+mhhx5SLkTo4OCA1atXIyIiAiEhIQXWd/78+WjXrh369OlT5nUpKxyiIiIAeTcfdHd3R0REBObMmQM/P7+KrhLRA6NJkyZYt24ddu7cidzcXAD5g8zAgQNhMpnw/PPPl3t9XF1d8fLLLxf6euvWrRETE1Pu9SgN9uAQlUBOTg6ysrKQlpZW0VUpE2vWrEG7du2wYcMGbNy4ETVr1qzoKhE9UEwmE0QEAwcORLVq1VC1alX4+PhYLaNSqTB06FCbrn9DDDhUxpKTk5GVlVXR1ShQZmYm9uzZY9OyIgK9Xp/vCqIAYDAY0KhRI7i5uWH58uUAgEOHDuHYsWP466+/MHDgQBgMhjKte3mLiYlBWloafH19ERgYiPDw8Iqu0j13/vx5ZGVlITU1FdHR0QgNDYXJZML169dhNpsrunpUgS5cuKBccbi8xMXFITQ0FHPmzMHChQuRkpKCI0eOWC1jMBgwevRo6PX6cq2LLUwmE/7555+KrsZdMeBQmapevXqlnXT22muv4emnn8a+ffvuutyFCxfQrVs3+Pn5KZdnvz3ozJo1CykpKWjbti2+//577N27F0OHDsW4ceMwb948bNiwAYMGDSrX91LWkpOTlYmLhw4dwrhx43D48GEAsOsfdxFBdnY2srKy0Lt3b4SEhCA0NBQ9e/ZETEwMVCoVgoKCEBQUVCY3JaTK78aNGzh79qzyOCcnBxMnTsSgQYNw5syZctvutm3bMGnSJABA586d8fHHH1tdZNBsNmPw4MH46quvlCGssmQymYr1/iZOnIjHHnusyO/TisSAQ2UqNDQUBw4cKLDnoyKlpaXhwIEDeO655wo9AyErKwt79uyBj48PRATLli3DsGHDsG3bNvTs2RO9e/fGtWvXUKVKFUycOBHvv/8+fHx80KlTJ9SuXRs7d+7ETz/9hJYtW+L3339Xrv5pMpnw/fff29x7VBEiIiKwYsUKAMCzzz4LV1dXfP/99wgPD0efPn2wefPmCq5h2TKbzVi1ahUCAwMxbtw4fP/99zh9+jQmTJiASZMmISYmBseOHYODgwM+/fRTHDp0CBMnTqzoatM98Pzzz6Np06YYPXo00tPTkZCQgB9//BEAMHPmzHLZpk6nQ0REBGrXrg0AcHZ2RkhIiFVPzfnz53Hw4EGsWLHCKoCVhczMTMyaNQtPPvkkTpw4AbPZjPDwcDzxxBM4depUgeuMHj0aALB3794yrUtZYsApwvz588u9a9Je/PHHH/jzzz/Ro0ePUt28rTREBMnJyVbPbd++HQcOHMCxY8ewZMkSvPbaa7hy5Uq+defNm4fevXvD0dERf/zxB0JDQ9GiRQs4OTkhPj4e2dnZuHHjBsaPH4+pU6eiX79+6NatG0wmEzZv3owNGzbAYDBg1apVqFatmnImRJcuXRAcHIyff/4ZW7duxf79++9Vc+QTERGBjh07Wg0jxsXFoXPnzkhMTAQA+Pj44OTJk5g0aRL8/f2xe/dujBgxAsuWLcOCBQuQkJCAmjVr4ujRo/e8/sXtTbp16xYOHDiQr4zz589jzJgxaNasGcaNGwcfHx9MmzYNrVq1QuvWrdGuXTuoVCoAQPfu3fHDDz9g+vTphW4nIyMDb7/9Np588kkkJCRg4cKF6NmzJ3t9KgmTyWTzd9KSJUswZMgQPPbYY8jKylIuvvfLL79g/vz5iIyMtLogX1mIjo7G9OnT4eLiojy3fPly9OnTByaTCceOHYOnpyfOnj2Lq1evon///mXWi5OcnIyHHnoIdevWRb169TBixAgYDAZ88MEHiI+PV3poLKHqypUrePHFF5GUlIRbt27h3XffrXQHtAqphI4dOybHjh0rt/LT0tLk0KFDkpaWdtflzGazAJBK2kx31bNnT1m6dGmZl3u3ths/fryo1WrJzc2VS5culfm2C2IymZT/v3DhgmzatEl8fHxk4cKFkpGRIW+//bYAkFdffVVERG7cuCFubm7SuXPnfOX4+/vLK6+8Uqztf/rpp/LZZ59ZPWc2m8VsNovJZJLc3FwZOHCg7Nq1S4xGowQEBIi/v79cvnxZbty4IX///bfk5uaKiMjNmzclMzNTKScrK0s6deokUVFRxarT3dSrV08AyF9//aU8t3LlSlGpVHLz5s0C10lMTJTr16/LpEmTxMvLS5555hkBINu2bZPp06fLxYsXy6RuZrNZsrKyCnwtLS1Nfv75Z6lSpYps3rxZREQiIyNlzpw5snr1ajGbzQWuFxoaKgDk3LlzYjab5fPPP5c2bdpIenq6XLhwoVj127p1q4waNUpSUlLyvTZx4kRxc3OT1157TdLT06VJkybi6ekp06dPF7PZLAcPHpRff/21WNuzxc2bN2Xjxo3K4xs3buRbxtbvO3s2cOBAmTRpkmRlZUl8fHyBy1y/fl169+4thw8fFhGRf/75R3766SdZtWqVjBw5UkTyviceeeQR8ff3L3A/KC6z2Sw//PCDvPjii9KhQwer13bu3CkAJDIyUvz9/eW5554TEZG//vpLAMjBgwdLvX0RkXfeeUe8vb3l4sWLcuHCBVmxYoWI5LVHVlaWpKWlyQsvvCAvvfSS5OTkSP369aV27dpy4MAByc7OFo1GI1999VW+cstrvytOPqiUv9yVJeCYTCZZtmyZDBs2LN9rubm5cvToUcnOzi6vahapsPonJiYKAFmwYIGsX79eRowYIbt27ZLjx4/L1atXS71NS9vduHFDTp06pbzWsWNHefnll2XIkCHKhzU5OVm++OILMRgMRZZd0I9UamqqvP/++/L7779bPZ+bmys7duyQgIAAiY2NlVWrVomDg4NERETIqFGjRKVSydatW6VXr16ycOFCq7Jnz54tHTt2lEuXLsmBAwdEJC9MLFy4UA4dOlSidrnTRx99JABk/fr1ynNpaWmybt06cXd3l99++03Wr18vAKR3795y/PhxqVevnjzzzDNiMpnk999/l4yMDGnfvr3UrFlTzp49KxMmTJCdO3cWuL3k5ORCf+Rvd+HCBdm/f7/o9XoZM2aMaDQaGT9+vLRo0aLIdS9evCguLi7y6quvyrZt2+TPP/8ss4ATHx8vXbp0kTFjxhT4elpamnz55ZcCQJ566im5du2auLm5iaenpyxfvlxycnKslr9+/bps2bJFUlNTBYDMmjVLtmzZIgBk1KhRcuvWrWLXcePGjeLg4CCurq5y4sQJMZvNkpiYKL/99pukpKSITqdTlk1PT5fTp09LWlqa+Pv7CwDp1q2bLF26VN59912rcmNiYmTixImSkZFRrPqcPn1aPvnkEwEgzz77rGzbtk18fX3l6NGjVss96AHn1q1b4ubmJu+8844MGDBAHn/8casDIxGRuLg4adCggVSrVk3OnDkjIiJjxoyR5s2by2+//Wb1/XX+/Hnx9fWVjz/+uFT1SkxMlOeee04ASGhoqOzfv9/q9fT0dJk0aZK0aNFC6tSpI2fPnhWRvO+q6dOnFxrUimvatGl3fS+WOn7++edy/vx5eeWVV6w+871795b//Oc/+dZjwClEZQk4w4YNkxEjRihH4xaXL1+WOnXqCADlB7Ioubm5sn79ejlx4oSkpqaKiMipU6fkyJEjsmnTJsnKypLz58/L3r17Cw0hsbGxcu3aNWVdPz8/Wbt2rXJkuGHDBrlx44bs2rVL6tatK9evX5dvv/1WXFxcxNfXVwDIF198YVN9C2NpO71eLw8//LDUqlVLcnNzJSsrS27duqUcAahUKvnzzz9l3LhxAkDGjRtXaJnp6enSt29fadu2rdI2Fq+++qp4eHhIWFiYzJs3T+nh+PbbbwWAtG/fXv7++28BIE2bNlUC58mTJ5WelMIMHjxYHn74YTGbzbJly5Yy7XVasmRJvqMsS9slJSVJenq6JCcny/r166V27dqybNkyadGihbz00kvy66+/iqurqyxZskQuXbokLVq0kBUrVggAefLJJ5XysrOzZcqUKZKVlSUdO3aU9u3by6RJkwqt09dffy1fffWVmM1meeKJJ8TJyUneeustERGbf/AtX6qbNm2SunXrWgWc3NxcCQ0NlTlz5hS7vUaOHCm1atWSDz74QCZPnpzv9aioKNmxY4ecOHFCMjIyxGw2S1RUlNy4cUOOHDki27ZtU5ZNSEiQ5s2bS+3atSUlJUX2798vGRkZEhcXJ9OmTSt23W6XlJQk69atE5G8XlIAUr9+fUlPTy90ndmzZ8vPP/8sOTk58vnnnwsAGTBggIiIvPDCCwJA3njjjWIfLD377LOi0WhkypQp0qhRIzl79qy0bt1a6tWrZ/Udcvt+l5ubK2azWdatWycxMTElaAFrd37G/v33X3n//ffl9ddfl3nz5pW6/LIQFxcnzZo1k9OnT8vevXsFgKxatUq6dOkizz77rHz//fdy8+ZNeeWVV0Sv1yvrrV69WgCIWq3O17N74sQJMZlMkpiYWOJ6zZo1Szw8PGTYsGECQC5fvlzgcufPn5fk5GSr565fvy579+61aTvx8fHy6aefKj3Ftzt16pRVr3FBLl26JMePHy/09e+++04ee+yxfN8hDDiFqMiAc+vWLdm9e7cYDAbx9vaWd955R2rVqiU//PCDssy4cePE3d1dAMj8+fOV53/55Rd5/vnn8x1BiYhs375dGe4CIFevXpXXX39deXz48GGZOXOmABBXV1er4GQymeStt95Sjl7j4+PF0dFRWrRoITNmzBAASvf5hAkTRMS6NyQuLk5Onz4tDz30kPKDVtq2mzx5slStWlW2bt0qx48fFwDy+OOPS0pKimRmZsr06dPl7Nmzcu3aNfnwww9l5syZ+crKzc2Vixcvyu+//y5eXl6i0Wjk+PHj8sUXX8jChQvl77//loEDB8qKFStEp9MJANm4caNMnz5d4uLiZPfu3cqH9p9//in2kMOvv/4qAGTu3Lni7Owsc+fOLVXb3M5sNufrwi5sv7M8NplMYjabpUuXLvLUU08pXzyWcL1+/Xp55513lMdLliwRlUolhw8fll9//VU6d+4sPXv2lEuXLuUbqjh37pw0btxY+aK+ePGiGI3GEr+/5ORkqVevnkyfPl12794tR48elUOHDom7u7tUqVLFarhr3759RYbHXbt2yaZNm2TdunUCwOoIccuWLeLk5CQDBgyQtLQ0mThxogBQjmhHjx4tDRs2VPb5GTNmSIMGDeT06dNKXbt06SILFiywqZfLFjk5ObJs2TL54YcfitWDZTabJTw8XBk+fuedd2TlypWyc+dO+f77720u5+rVq+Lk5CRLliyxev7ixYsye/Zsqx+ztLQ00Wq10r17d7l27ZoMHDhQCd979uyx2ldOnDghe/bskdTU1Hz77+0Hebt375adO3fKa6+9JlOnThUREa1WK9WrV5fmzZtL586dRaPR2Px+bJWamiq//PJLsdbJycmx+rt/8skncvToUQkPD5e2bdsWGlD1er0sXLhQABTYw7Ft2zZxcXG560FuTEyMnD17VtLS0qx6u0VEHnnkERk4cKCkp6fLzJkzi/V5/Oyzz0SlUsmKFSvk8uXL8uKLLxbaS/7+++8LADGbzVY91N988434+/vL8OHDbd5uQSxtaxle3r17t4wdO1Zu3brFgFOQigo4ERER4ujoKF5eXpKUlCRdu3aV2NhYqVu3rnzwwQciknfU7O/vLx999JFMnTpVfv75ZxHJ++OmpKTI008/LQDkk08+sSp7yJAh8tBDD8l3330nAGTp0qWSmpoqWq1WkpKSRETEaDRKbGyszJo1S27evCm3bt2SLVu2iMlkkpCQEJk7d67ExsaKiMiaNWskJSVFcnJyxN/fX2rXri1vv/22VKtWTQICAmT16tX53ndYWJhy9Fkclu7/+Ph4+eKLL2T8+PFiNBqVHxCDwSAPP/ywACj0KDQ9PV2++eYbyczMlPj4eHnkkUfE3d1d6ZG4fv26mM1muXbtmjg5OYmrq6sMHjxYRP7vA/Too48qgdDSDqWRm5srH330kXh6ekrXrl0Lnf9RVmw5oklLS5OZM2fK9evXC3w9IyNDTpw4IdnZ2dKgQQMZMWKE1etZWVni7u5uFbxF8sJctWrVymwITkRk8uTJMn36dKlbt64AkDNnzsi///4rcXFxIpL3d7tx44Z4enqKk5OTfPjhhwWWk5qaKlFRUZKeni5Xr14VlUolq1atkuzsbDGbzRIYGCjPP/+87Nu3T9LS0qRv377KvBoRkR07dggAOXTokDLMc/uXfWZmprLf3Dk0UVm88cYb0qhRowIDWFJSkmRlZcmPP/4oAwcOlOnTp8uOHTtk/PjxBfb2ms1mmTx5skyePFnS09MlLS1NFi9eLA4ODrJp0yapUqWKrFmzRjIzMyUgIEC+/PJLZd2uXbvKJ598Ij/++KM8+uijkpycLEePHpX//Oc/ykHAxo0bxdXVVfr16ycff/yxAJCIiAjZtGmTdOrUSW7cuCHLli2TGjVqFNk7UBwZGRnSqFEjcXV1lTNnzhTa43G7gwcPSp06dWTt2rWFLnO30Ltnzx5Rq9USHR2d77WsrCx58sknxcPDQ1JSUqxCpdlsljVr1oizs7P89NNPMm3aNHF3d5fly5cry1y8eFEZDiuu7OxsGTVqlLRu3Vpu3rwpbm5uEhISUuCy3bt3l2effVZ++eUXASCdO3eW7Oxsee6556R+/fo2j0LczezZs6V58+aSlZUlY8aMkS5dusi1a9cYcApSUQFn2bJlMnjwYGUs/c8//xQRkaFDhyoBRyTvSCYrK0vMZrOcPn1azGazLFmyRJo1aya3bt2SDRs2yK5du2TBggVKF6ZWq1WOPCzDTHfz1VdfKV/Ku3btuuuyV65ckfj4eDl9+rQ0atRImQB6J7PZXOQcnE2bNsmUKVMkPT1dZs+eLe3atZMXXnhBRERq1aolAOSZZ57J1x2Zm5tb4ARHi+3bt4uLi4u0aNFCsrKyZOnSpbJgwQLRarX56pibmyuZmZn5vsD27t0r1atXl6CgoLu+h+I6d+5cvqGx8lAWXbYjRowQtVotP/30kyQmJsqVK1fyLdO1a1fp1auXiOR9Efbp00f27NlT5gHu4sWLMn36dFmwYIHs3btXCQ8HDhyQPn36SKtWreTatWty8uRJmT17tsydO1eOHTsmL7zwgtUR808//SQA5Pz58yIisn//fvn777+lefPmcvbsWdHpdJKSkqK0XXJystVnIicnR77++mv5+++/5bnnnpOhQ4fmq+uPP/6Yb1+rTH7++WcBICdOnJB9+/aJXq+XP/74Q9q0aSNOTk7y7bffyoEDB6RDhw5Sq1atIg9UZsyYIY6OjtKgQQM5d+6cvPTSS0qAuj10dO3aVbp37y4ieUfeAGTTpk0SFxcn1atXlz59+khmZqaEhobKW2+9JTExMfLss8/KgAEDJDMzU8xms7z33nuycuVKEfm/Xp7MzEyrH/yvv/5annnmGbl27ZocP35cEhISit1GkZGR4uDgIH///bfUrVtXJk6cWOQ6rVq1EgDyzz//FHt7IiJPP/20dOrUqdDP7PXr1+Wbb76RrKwsadeunbzyyisSFhYmJpNJnJycZNiwYZKdnS23bt2S119/XTw8PESv10ufPn2K3RN1J7PZLD/++KNkZGTIV199JZ6engX2Ju7bt09iYmLEbDbLzJkzpUqVKrJnz55SbftOkZGRAkCmTZsmOTk5kpmZySGqwlREwMnJybnrOLrFG2+8oYQdyxDHv//+K4888oj069dPWc5oNIqHh4d88sknsnHjRiUs2SoyMlIWLlyYr1uzKFFRUVKtWrUCuytXrFghDg4Odz2qCgwMlJo1a0pubq40atRI+vXrJxs2bBCRvPebkJBQ4p1Wq9VKvXr1ZOvWrcVe1+LSpUvFbpPKoiw+8Hv27BFXV1cZO3Zsoct8++23Spd6dHS0MgRa1iwB584v1bi4OHF3d5cXX3wx3xyFv//+W9zd3WXAgAFiNBplzpw58s4770iDBg2UI2nLcGRgYKAyJ8KWtnvzzTeV3tH7TVpamnzzzTcyfPhwASAffPCB7Nu3T4YMGSLz58+3aZL+nf799185cOCA3Lx5U3bv3i379u3Lt0xERIQyxPTPP//ImDFjlJBy+PBhGTJkSL65G+np6Tb1hE2ZMkVef/11uXXrlkybNk1cXFxkxIgR0q5dO/H29paxY8dKbm6uzJ8/v8jAY9k3LMu9+uqr0rJly0KXP378uLRu3Vp2794tR44cKbKuhWnXrp0AKPQMQ4vs7GyZPHmy+Pv7y/vvvy8ieYHx9t4hk8kk586dU6YV2DqHxhZms1mSkpLk4sWLMmfOHGW7V65ckXXr1lnVvzx6MS1/R0vvrch9OAcnKipKoqKiZMOGDXf94yxfvlxZtiQqIuD88ccfStfnnWJiYqRJkyaSmJgoVatWVbraU1JSBIAsXrxYevToke/9DhkyRKpXry5Vq1ZVTlO+FwrbgS2nHR4/flxu3LiRr2v21q1b4unpKatWrRIRKXBSWml32so6RHAvlNUH3pZ5JKmpqXL9+nWZOHGiNG3atMzmntyusIAjcve/89q1a6Vx48by559/ikqlku7duyv7nEjekMzEiROtetVsaTuDwSB//vlngfvt/eDKlSvSsGFDWbRoUZm9B4PBIO7u7uLn51foPCij0SivvPJKvrN4SuuNN94QALJo0SIxm83yyy+/KGcXTp8+XZlT16RJE6WXuCCWHvKnnnpKCXq//fabTJgwQZYvXy7z58+XW7duWfXqLVu2TBwdHYsMJkWJj4+XJUuWlOmPdI8ePZS5kmXNcvLFpk2bRCQvwAIosKe3vN1XAScxMdFqDL2wH+xXX31V2Qlv79EojooIOJMnT5aaNWsW+MV86dIl8fT0lFq1aomzs7PVmGXfvn0L7Z05efKkDBkyRHx9fStkB7vTlStXJCgoSH777TcBIKNHj863TFZW1l1PV33QTzktjXvVdmazWWrUqKHMISvtpQEKc7eAUxRLL+J7770nLVu2LHKC5YOy35XHPDC1Wi0ACu0Fsgxr3z4XpyxYzji7vcc4OTlZGc5q37699OrVSz7//HNxdHRU5lTdGcYHDRokAPJdrsNy4sbIkSNl1apV4uzsrBxkTpo0yeqMw5Iqj/3uzksalLV27dopv70TJkwQPz+/ct1eYSpDwHGy9YKAWq3W6g6mXl5e0Gq10Gg0ynM6nU5ZRqfTlery7iJSblfDzcjIgNlsRkZGhvKcm5sbgoODlcvr387b2xtbt27FmjVrMG/ePLi4uCh1W79+PQAUWFe1Wo0vv/wSb731Fjw9PSvs6r4Wnp6e2LRpk3LZ8SpVqljVaf78+cjIyMAHH3xQaF0tbXZ725Ft7mXbzZgxA4sXL8bUqVOxcuXKctn3LJ+VzMzMEpWfnp6OyZMnw8PDA6mpqXB0dCx02Qdpvyvr+wz9+eefOHLkCHJycgr8O61evRp6vR79+/cv0/2katWqeP75562uIuzq6ooBAwYgPT0dGzduxLVr19CgQQO4u7vj2LFjmDBhAhISErBr1y7odDrUr18fn376KQYPHozOnTtb1W/dunXo27cv5syZAxHBxo0bMWDAAMTGxuLDDz/EpEmTSv1+ymu/y87OLtPybhceHo66desiPT0dffr0QatWrSrkt6e82k5ElKuMF0UlYts1lsPCwuDr64uQkBAAwNSpU6HRaBAUFKQsExERgYiICOV+HREREZgxY0Zx64/Y2Nhy3QF27tyJNWvW4IsvvoCbmxuuX78ONzc3eHp6lts2K4v//e9/qFWrFt577z0AwKZNm9C7d2/4+vpi4MCBaNGiBaZNm1bBtaSyYjKZ7hocSsNgMGDPnj3o2LEjfHx8ymUb9GBISUnBp59+ioSEBPTo0QMBAQH43//+Bx8fH6xbtw516tQpsoysrCycP38enp6eGDduHObMmYMmTZrcg9pXPitWrIBOp8PTTz+Nbt26WXVO2AMXFxe0atWqyOVs7sEpiMFgsHpsNBrh4+ODgIAAAHn3uNHpdMrj4nB2dkbTpk1LU71Cpaen44MPPsCXX36JZcuW4fnnn4fRaMQff/xhczK8XyUkJGDfvn345ptvcPLkSXz77bf44YcfsGrVKiQkJGDChAl4+OGHC10/IyMD8fHxaNSoEdzd3e9hze9/9tZ2V65cwZ49e+Dv76/cJLC82Fvb3Uv3Q9vl5OQgLCwMLVq0gEqlgojg33//RU5ODjp37mzz9/Jjjz0Gf39/XL16FW3bti31fnk/tF1BLPeTa9iwIZo2bYpq1ard8zqUV9sV547nNgccPz8/GI1G5XFqairUarXVMmq12uo5Hx8f6PX6EgUclUoFDw+PYq9nizZt2uD9999HfHw8jh8/jh07dmDbtm2oUqVKuWyvMvnhhx9w4sQJ+Pr6ol27djh8+DCGDRuG9PR0JCcn29zu7u7u5fb3sXf20nZubm7Kv/fq/dhL21WEyt52bdq0sXq8aNGiEpXz+++/Y+fOnfD39y+LagGo/G13p88++wyfffZZRVcDQNm3XXE6IWwOOBqNBmFhYcrjpKQkZf6N0WiEt7c3NBoNIiIilGX0er3VHJ3KpE+fPmjatCni4uIwduxY9OnTp6KrdE9oNBqrv4mfnx927txZcRUiIipDgYGBCAwMrOhqUCVgc8BRq9Xo1asXoqOjYTAYEBoaqrzWv39/bN68Gd7e3ggODkZERASMRiPGjx8Pb2/vcql4WXB2dkaHDh3QoUOHiq4KERERlaFizcG5fULx7Xbs2FHkMkRERET3ikNFV4CIiIiorDHgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjtOxVk4OjoaAGAwGKBWq6HRaO66rLe3912XISIiIioPNvfg6PV6aLVaBAUFITg4GOHh4YUuazQasXz5chiNxjKpJBEREVFx2BxwtFotvLy8lMdeXl7QarUFLhsVFYWePXuWvnZEREREJWDzEFViYiJ8fX2Vx76+vgX20Oh0Omg0GmU4q6REBOnp6aUqozAZGRlW/5Lt2HYlZ29tl5mZqfxbXp9VC3tru3uJbVdybLuSK6+2ExGoVCqbli3WHJw7GQyGfM/p9XoEBQWVplgAQE5ODk6cOFHqcu4mPj6+XMu3Z2y7krOXtrN8/s+fP4/k5OR7sk17abuKwLYrObZdyZVH27m4uNi0nM0Bx8/Pz6rHJjU1FWq12mqZ8PBwqNVqREdHIzY2Fnq9Hmq1GgEBAbZuRuHs7IymTZsWez1bZGRkID4+Ho0aNYK7u3u5bMNese1Kzt7a7sqVK9izZw/8/f1Ru3btct2WvbXdvcS2Kzm2XcmVV9udOXPG5mVtDjgajQZhYWHK46SkJOUMKaPRCG9vb4SEhCivx8bGolWrViUKNwCgUqng4eFRonVt5e7uXu7bsFdsu5Kzl7Zzc3NT/r1X78de2q4isO1Kjm1XcmXddrYOTwHFmGSsVqvRq1cvREdHIyIiAqGhocpr/fv3t+rd0Wq1iImJQWRkJPR6vc2VISIiIioLxZqDU9jcmh07dlg91mg02Lx5c8lrRURERFQKvJIxERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsDgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsDgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsDgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsDgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsDgMOERER2R0GHCIiIrI7DDhERERkdxhwiIiIyO4w4BAREZHdYcAhIiIiu8OAQ0RERHaHAYeIiIjsjlNxFo6OjgYAGAwGqNVqaDSaApcxGAzQ6XQICgoqcBkiIiKi8mRzwNHr9dBqtZgxYwYAYPjw4fnCi06nAwAEBwfDaDSia9euOHjwYBlWl4iIiKhoNg9RabVaeHl5KY+9vLyg1WqtljEYDMpz3t7e8PHxUUIPERER0b1icw9OYmIifH19lce+vr4wGo1Wy2g0GqteHYPBgICAgBJVTESQnp5eonWLkpGRYfUv2Y5tV3L21naZmZnKv+X1WbWwt7a7l9h2Jce2K7nyajsRgUqlsmnZYs3BuZPBYCj0talTp2LmzJklLjsnJwcnTpwo8fq2iI+PL9fy7RnbruTspe0sn//z588jOTn5nmzTXtquIrDtSo5tV3Ll0XYuLi42LWdzwPHz87PqsUlNTYVarS5w2ejoaGg0GgQFBdlafD7Ozs5o2rRpide/m4yMDMTHx6NRo0Zwd3cvl23YK7Zdydlb2125cgV79uyBv78/ateuXa7bsre2u5fYdiXHtiu58mq7M2fO2LyszQFHo9EgLCxMeZyUlKQMRxmNRnh7ewPIm6vj7e0NjUYDnU4Hb2/vQoPQ3ahUKnh4eBR7veJwd3cv923YK7ZdydlL27m5uSn/3qv3Yy9tVxHYdiXHtiu5sm47W4engGIEHLVajV69eimngYeGhiqv9e/fH5s3b4bBYMC4ceOU541GI06dOmVzZYiIiIjKQrHm4BQ25LRjxw4AeWdO8bRwIiIiqmi8kjERERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdocBh4iIiOwOAw4RERHZHQYcIiIisjsMOERERGR3GHCIiIjI7jDgEBERkd1hwCEiIiK7w4BDREREdsepOAtHR0cDAAwGA9RqNTQaTYmWISIiIipPNvfg6PV6aLVaBAUFITg4GOHh4SVahoiIiKi82RxwtFotvLy8lMdeXl7QarXFXoaIiIiovNk8RJWYmAhfX1/lsa+vL4xGY7GXsUVOTg5EBMeOHSv2urYQEQDA6dOnoVKpymUb9optV3L21nYmkwldunTB5cuXce3atXLdlr213b3Etis5tl3JlVfb5eTk2Fxesebg3MlgMJTJMneyVL68diiVSgUXF5dyKdvese1Kzt7azsnJCVWrVr0n27K3truX2HYlx7YrufJqO5VKVfYBx8/Pz6o3JjU1FWq1utjL2OLxxx8v9jpEREREFjbPwdFoNIiNjVUeJyUlKWdIWULN3ZYhIiIiuldUYhkos8Htp4D7+PggKCgIANCtWzds3rwZ3t7ehS5DREREdK8UK+AQERER3Q94JWMiIiKyOww4REREZHcYcIiIiMjuMOAQERGR3WHAISIiIrvDgENERER2hwGHiIiI7A4DDhEREdmdUt1s8350+5WW1Wo1byVRhLFjx2LkyJEAgMjISEyYMAEA27EgRqMRERERAICQkBDl+cLaim34fwprO+5/tomOjobBYIBOp0NQUFCR+xjb7/8U1nbc92wTHR0NtVqNuLg4AEBwcLDyPFDB+548QBITE+XDDz9UHr/66qsVWJv7Q79+/eSJJ56QV199VQwGg4iwHQsTFRUlc+bMkeXLlyvPFdZWbENrBbWdCPc/W8TFxUlUVJSIiBgMBnniiSdEhPueLQprOxHue7YwGAzSr18/5f8feughEak8+94DNUSl1Wrh5eWlPPby8oJWq63AGlV+oaGhOHjwIFatWgVvb28AbMfCBAUFwc/Pz+q5wtqKbWitoLYDuP/ZwmAwKO/f29sbPj4+0Ol03PdsUFjbAdz3bOHt7Y3NmzcDAPR6vdIbU1n2vQdqiCoxMRG+vr7KY19fX+VO6FQwy93hDQYDgLzuR7aj7QprK7ahbbj/FU2j0Vh18xsMBgQEBCAyMpL7XhEKazuA+15xREREYO/evVi0aBGAyvO990AFnIJYdl4qmGXcGci7a3zPnj0LXI7taLvC2optmB/3v+KZOnUqZs6cWejr3PcKd2fbcd+zXXBwMNRqNebOnYsZM2YUuExF7HsP1BDVnV3gqampUKvVFVSbyi86OhphYWHKY29vb+j1erZjMRTWVmzDonH/K57o6GhoNBoEBQUB4L5XHHe2Hfc921l6YDQaDaKioqDVaivNvvdABRyNRqN0OwJAUlLSAz8D/m7UajU6dOigPDYajQgICGA7FkNhbcU2LBr3P9tptVp4e3sjKCgIOp1OmQ/Bfa9oBbUd9z3bREREYNmyZcpjHx8f+Pj4VJp9TyUiUm6lV0K3n6Lm4+OjJHYqmKW9YmNjMWDAACVtsx3z02q12LBhA27evIng4GCro0Egf1uxDf9PUW3H/a9wer0e/fv3Vx4bjUacOnUKAPe9otjSdtz3Cmc0GpWAuHfvXvj6+iqXeagM+94DF3CIiIjI/j1QQ1RERET0YGDAISIiIrvDgENERER2hwGHiIiI7A4DDhEREdkdBhwiIiKyOww4RGQ3tFot+vfvj4iIiIquChFVMAYcIrIbGo0G7du3r+hqEFElwIBDRHbl9rsVE9GDiwGHiIiI7I5TRVeAiOyfVquFTqeDWq1GbGwsJkyYAK1Wi6lTpyo34TMYDNDpdBg/fjy8vb0BADqdDlqtFmq1Gnq9HkFBQco9gfR6PTZs2IBWrVrBYDCgZ8+eynqWe+To9Xrs3bsXixcvrrD3TkQVgwGHiMqVXq/H3LlzsXnzZgB5N9kLDw9HSEgIevToAV9fX6sb8Y0bNw6rVq1S1lu1apVSVv/+/bF69WoAwPDhw7F582Z4e3sjLCwMERERyo3+YmNjrW76p9PpEBAQcA/fNRFVNAYcIipXGzZsgI+PD7RarfJcbGys8v+WXhcACAoKwrhx42A0GrFhwwa0bNnSqqwGDRogKioKAKBWq5V1R44cabVcq1atlP/38vKCwWAouzdERPcFBhwiKnctW7aERqNRHgcHB5eqPKPRCC8vL+Xx7SGJiAjgJGMiKme9evVCTEyM1XO39+YYjUbl/6Ojo6HRaODt7V3gesePH0fPnj0RFBSE48ePF1omEZFKRKSiK0FE9k2r1WLv3r3K0JElxISFheHmzZsICgqC0WhEbGwsRo4cqfTI3Dk5uVevXspcmoLK1Ov1+PDDDwEAM2fOVObxtGzZEhMmTFAmKBOR/WPAIaIKExYWBj8/v1IPWRER3YlDVERERGR3GHCIqEJotVrExMQop3ETEZUlDlERERGR3WEPDhEREdkdBhwiIiKyOww4REREZHcYcIiIiMjuMOAQERGR3WHAISIiIrvDgENERER2hwGHiIiI7A4DDhEREdmd/wfjvW6Cfyzi1QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAFbCAYAAADY/fSfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUoElEQVR4nO3deXhMZ/8/8PdkkUWWsdU6UYoiaJUuRilFRTzVom0spbTCY22r0ZUI2m9boYq2SrRoPUir6UKTeGprU2PXVgyKEpkg9sxkX2Y+vz/8ch4j2ySZbJP367pyxZw5y30+Zibvuc99zlGJiICIiIjIgThVdQOIiIiI7I0Bh4iIiBwOAw4RERE5HAYcIiIicjgMOERERORwGHCIiIjI4TDgEBERkcNhwCEiIiKHw4BDREREDsfF1hlNJhMiIyMBAMHBwYXOExsbCwAwGo3QaDTQarV2aCIRERFR6djcg6PT6ZCSklLk8waDATqdDgEBAQgKCkJERIQ92kdERERUajb34AQEBMBoNMJkMhX6vE6ng7e3t/LY29sbOp2uTL04f/zxB0QErq6upV6WiIiIHFNubi5UKhW6du1a4rw2B5ySJCYmQq1WK4/VanWRYagkIgIRQU5Ojp1aR1S7WCwWZGZmwsPDA05OHGpHRLWP3QJOYYxGY5mWc3V1hYigTZs2dm7RLZmZmUhISMDdd98NDw+PCtlGTcJ6FFTTa3L58mV89dVXGDt2LBo3blzu9dX0elQE1qQg1sQa61FQeWty5swZqFQqm+a1W8Dx8/Oz6rFJSUmBRqMp8/pUKhU8PT3t0bQieXh4VPg2ahLWo6CaWhN3d3fltz3bX1PrUZFYk4JYE2usR0FlrYmt4Qaww2ni+aFGq9UiPj5emZ6UlMSzqIiIiKhK2NyDo9PpsGfPHqSmpkKj0SAgIAAAMGzYMERFRUGj0SAwMBCxsbEwGo2YOHFihTWaiIiIqDg2BxytVltoj8z27duVf+eHHiIiotrIbDYjNzcXAJCdna385mD/W0pTE1dXVzg7O5d5WxU6yJiIiKi2SEtLQ1JSEkQEwK2zGV1cXHDx4kUGnP+vNDVRqVRo0aIFvLy8yrQtBhwiIqJyMpvNSEpKgqenJxo1agSVSgWz2Yzs7Gy4ubmVqyfCkdhaExHB1atXkZSUhLZt25apfgw4RERE5ZSbmwsRQaNGjZTTn81mM4BbZzMy4NxSmpo0atQICQkJyM3NLVP92GdGRERkJ6U5jZmKV95aMuAQERGRw2HAISIiqmUiIyNtnjc8PBwzZsyowNZUDAYcIiKiWmbPnj02z9uzZ08EBgZWYGsqBgcZExER1SKRkZFISkqyef6aelcCBhwiIqJqSKfTYdGiRQCABQsWwGAwwGg0Qq/XY/78+YiMjISvry+io6MxadIk+Pv7Wy0fEREBjUYDg8Gg3IEg/64EBoMBERERAIDg4GBlWy1atMCIESOUHp7AwEAsWrQIBoPB6sK+QMHDXEFBQRVVijLhISoiIqJqSKvVIiQkBCaTCUajEQEBAQgKCoJOp0N4eDiCgoIQEBCAwMBAzJkzx2rZGTNmKKEmODgYkZGR0Ov10Gq1GDFiBDQaDYKDgxEcHKxsa+LEiUrPTv4hKX9/f4SEhBRoW0REBBITExEUFISgoCD4+voiNja2gitSOgw4RERE1ZSvry8MBoPVYSKNRmM1j7+/PwwGg/LYYDBg27ZtVrdPCggIKHFgsY+PjxKC/P39MWvWrELnM5lMWLRoESZNmqRMi46OtmpDdcBDVERERNXYnYHG29sbfn5+Rc6v0+ng4+MDnU6nTEtMTLQpgNy5rcIcO3YMPj4+8PHxUaYtW7asxOUqGwMOERGRAzGZTNBoNFa9PsUNFM4fowPAKrQUt/6agIeoiIiIHMidh6zyFRVM9Hp9qddf2LqqW/BhwCEiIqpBUlNTi31eq9WiU6dOBQb9xsTEAIByZhVwq/fmzrOvSqLRaDBw4EDlLCzgVrjJX391wYBDRERUDen1eqxcudLqlO6IiAgcO3YMsbGx0Ol00Ov1CA8Ph8lkUn4DwJo1axAfH4/IyEjExsYiNjZWOY1bo9HgueeeQ3h4OHQ6HTQaDXQ6HSIiIpRt5QegwtoA3Bpzk5KSgoiICMTGxiImJqbanSbOMThERETVkL+/f4HBu7ef2p2vqAG+RZ0FVdhzWq220HE6hbXBlvVXB+zBISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRzfr371+u5ysLAw4RERHZbM2aNeV6vrIw4BAREZHN8u88XtbnKwsDDhERkZ2JCDIzMyvkR0RK3L5Op8ODDz6o3IsqNDRUub+UTqdD//79odPpMH78eOX+VeHh4YiNjUVERIRyh/HY2FhERkYq69Hr9ejfvz9MJhP0er1yT6zQ0FAAsHoegHKvqvwfADhx4gQeeeQR6HQ6xMbGYsaMGXavP8B7UREREdmViOCll17C0aNHK2T99913H1avXg2VSlXkPFqtFhqNBoMGDYKPjw/8/f0xfvx4bN++HVqtFj4+PvD19cXSpUvh4+ODyMhIqNVqBAQEAADGjx+PkJAQREdHY9myZTAYDAgPD8eyZcuUHpro6Gj4+flBq9XC19cXwK17V+U/HxkZCQDKOkNDQ9G8eXN06NAB/v7+8PX1hVarhcFgQGxsrDKfvbAHh4iIyM6KCx+VycfHB8Ctw0ZGo1HpWQFuhZH85/V6PVJSUqDT6aDT6ZRw07NnT2X5O2+6OWnSJOj1egwbNgwrV64ssG29Xm91uEqj0WDv3r0F2lZR2INDRERkRyqVCqtXr0Z6ejqysrLg7u4OZ2dnu63f3d3d5gBlMpng4+MDk8kEX1/fIkOFv78/EhMTlTuK6/V6qNVqJCYmFlhXvpiYGMyfPx8AlENgtwcaf39/5bAYABgMBgwYMEB5nN/rU1EYcIiIiOxMpVLBw8MDKpXK7gGnNGJiYuDr64v4+Hjl7Ca9Xg+DwYDIyEgEBQUBAIKCghAREYHIyEj4+vpCo9EgODgY4eHhiIiIgEajUcKLwWBATEwMEhMTlXE1+c/nrzsmJkZZZ2xsLIxGI/z9/aHVavHHH38gKSlJ2b5Op4O3t7dy6MxeGHCIiIgcVH6AuX18i7+/Pw4ePFhg3uDg4ALTZs2aVWDa9u3bi9yev7+/1fN3rtNsNqNDhw7Ytm2bEvoq6rRyjsEhIiJyULePualtGHCIiIgczO2HoWorHqIiIiJyMEUdhqpN2INDREREDocBh4iIiBwOAw4RERE5HAYcIiIicjgMOERERFSiO2+0eftNNasjBhwiIiIq0e030rz939UVTxMnIiKqAJmZmcjKyoKIwNnZGW5ubnByclKm5XN1dYWLiwtyc3ORl5enTHdycoKbmxvMZjNycnKU6R4eHpW6HzUVAw4REVEF6NOnj9XjyMhI3HPPPZgxYwaOHDmiTH/99dfx3HPP4csvv0RERIQyvV+/fvjwww/xxx9/4N///rcy/dChQyVuW6fTITQ0FPPnz0dERASWLl0KHx8fhIeHo3PnzjAYDNBqtfD391fuFQXcugFmQEAAwsPD0bNnT+zZswcjRoyo9r01heEhKiIiIgeTf+NKX19fJdxERkZCrVYjICAAwcHBWLRoEfR6PaKjoxEUFAStVovo6GgAgFqthlarRc+ePa1CV03CHhwiIqIKsHv3bmRlZSl3E3dzcwMALFu2rMAhKgB48cUXMXbsWGW6k9OtPoiuXbsiLi6uTG3w9/dX/q3X6+Ht7Q2dTgcACAkJQXR0NHr27Ang1h3Bly1bpswfGRkJk8mElJSUMm27qrEHh2q8bdu2oVu3bnj99dexb98+WCyWqm4SERE8PDysfvIDi7u7u9V0F5dbfQ2urq5W0/MDkbOzs9X0ssoPO1qtFlqtFsCtnprExERlHpPJhMjISKSkpCi9OsCtcFTTlCrgxMbGIjY2FpGRkUoCLGqe/B+iinTkyBEMHz4ceXl5WLduHXr06AE/Pz9Mnz4du3btshqwR0RUWxR2s82goCCo1WpERkYqf5+Dg4MBABEREYiNjYXBYECnTp2QmpoKnU6njM0xGAxW66wJN/O0+RCVwWCATqfD/PnzAQDjx49Xkl0+k8kEg8GgFCw0NBQBAQF2bC7R/yQkJGDw4MHo2LEjdu3aBXd3d+zZswdRUVGIiorCJ598goYNGyIoKAihoaG46667qrrJRESVoqibbeb/fb7drFmzCkzL/1sPwOpv/fbt2wv9d3Vkcw+OTqeDt7e38vj243j58gcx5Xdl3T4/kT3dvHkTgYGB8PDwwNatW1G3bl04Ozujd+/e+Pjjj3H+/HkcPHgQEyZMwIYNG9CuXTssX7683D06IgKtVosVK1bYaU+IiKgi2NyDk5iYCLVarTxWq9WFXsEwJCQEw4YNg7+/P9auXVvmhokIMjIyyrx8cTIzM61+13Y1rR7Z2dkYMmQILl++jB07dsDLy6vQ10rHjh3RsWNHTJ48GfPmzcPLL7+MlStX4qOPPsKjjz5a7DaKqsnRo0exd+9enD59GsOHD4eXl5f9dsyOsrKylN/2eB/VtNdIZWBNCqrNNcnOzobFYoHZbIbZbAYAZSCxiCjTarvS1MRsNsNisSAzM1MZWykiUKlUNm2rXGdR5R+bu118fDyioqKwaNEijBs3DlFRUWVad25uLk6cOFGe5pUoISGhQtdf09SEelgsFrzzzjs4cOAAPvvsM5jNZpteJ1OmTEGfPn2wcOFCDBw4EIMGDcKMGTPQqFGjYpe7sybr1q2Dp6cnUlJSsGDBAowbN64ce1Nx8t+b586dw40bN+y23prwGqlsrElBtbUmLi4uyM7OLjC9sGm1nS01yc7ORl5eHs6ePWs1vU6dOjZtw+aA4+fnZ9Vjk5KSUuDCP7GxsejZsyf8/f2xZs0ahIaGQqfTFRirYwtXV1e0adOm1MvZIjMzEwkJCbj77rt5RUjUrHrMnj0b27dvx/r16/H000+XatkOHTpg6NChWL9+PebMmYNnn30WH330EUaPHl1g3qJqcuDAAQQGBqJ+/frYsGED3nnnHfj4+JR3t4q0du1arF27Fhs3bkTTpk1tXu7y5cuIi4tDq1at0Lhx43K3oya9Rkrr2LFjWL9+Pd5//32bvxkCjl2TsqrNNcnOzsbFixdRp04duLu7A7jV25CdnQ03N7dSvbYcWWlqIiJwcXGBn5+fckbZmTNnbN6WzQFHq9UiPDxceZyUlKQEF5PJBB8fHxiNRqvQo9Vq4evra3NjbqdSqeDp6VmmZW3l4eFR4duoSap7PT777DMsWbIES5YswahRo8q8nn//+98YMWIEJkyYgFmzZmHMmDHKB9Kdbq/JhQsXcOTIEbz22mvo3bs31q1bh9WrV2P27Nllbktx0tPTERYWhqtXryIwMBC7d++2OeTk74+7u7td/0+r+2skPT0ddevWLdUyS5cuxYYNG/DUU0+hX79+pd5mYTXZs2cPNBoN/Pz8Sr0+R1DdXycVwdXVFU5OTjCbzXB2dgYA5RCMSqVSptV2pamJ2WyGk5MTvLy8lGsFlSYo2hxwNBoNAgMDlUs6T5w4UXlu2LBhiIqKQlBQECIiInDs2DEAty75fPtFhogMBgO2bdsGi8WCFi1aQKPRoEWLFlCr1VYv3CtXruDw4cM4fPgwjhw5gsOHDyMxMRGvvPIKXnnllXK3Q61WY8GCBfjuu+8QHR2NYcOGlbjMli1b4OzsjEGDBqFevXqYNGkSFi9ejGnTplmNT7OXzz//HDdv3sT27dvxwgsvoG/fvti1a1epenJqk/j4eHTv3h0//vijzWdvpqSkICoqCiqVCsuWLStTwLlTVlYWAgMD8eijj+Lnn38u9/qoZnBxcYGnpyeuXr1qFXbyD8Uw4Nxia00sFguuXr0KT09P5TpBpVWqpYr60Lj9VLHCTkFzBH/99ReWLl0KNzc3NGvWDM2bN7f6Xb9+/VJ3Qf7666+4du0ahg8fXkGtrnoWiwWHDx/Gli1bsGXLFvz5559wdnaGiFhdkK9u3bpo0aIFGjdujH/++QcXLlwAcCuIPPDAAwgKCsIjjzyCp556ym5t69ChA7p164b169fbFHB++ukn9O7dG/Xq1QMAvPnmm1i1ahU+/vhjhIWF2a1dAJCRkYGFCxdi3Lhx6NevH3bv3o0+ffrg8ccfx86dOxlyCvHGG28gJycHS5cutTngfPPNN8jJyUFYWBjCwsJw7tw5tGrVqlztiI6OhslkQnR0NE6dOoV27dqVa33lsW/fPuzatQv9+vVDt27d+Ee2AqlUKjRt2hTnzp3D+fPnAdz6/MvLy4OLi4tykb/arjQ1cXJygp+fX5kP7/FWDSW4cuUKZs+ejdWrV+Puu++Gr68vLly4gKtXr1rNp1ar8c4772DGjBklDoBKTU3F66+/js8//xwqlQrbt2/H448/XpG7YTfXrl3D8ePHodfrcfz4cVy/fl3pjr79t4eHB44dO4atW7fi0qVLUKvVCAwMxBtvvIGAgAB4eXkhOTkZBoMBSUlJMBgMMBgMSE5OhlarxQMPPIBu3bqhVatWFXrs+vnnn8cbb7yBGzduoH79+kXOl5aWhh07duDDDz9UpjVt2hSTJ0/GkiVL8PLLLyvBxx5WrVqF69ev4+233wYAtGnTBrt27ULfvn3x+OOPY9euXWjSpIndtlfT7dy5EzExMXj66afxww8/4J9//sE999xT4nJr167FwIEDERISgo8//hiffvopFi1aVK62bNy4EZ07d0ZycjKWL1+O5cuXl2t9ZWU0GjF8+HBcunQJb7/9NurXr48BAwbgiSeewMCBA9G8efNSr1NEYDAY0LhxY2VMhC1SU1Nx6dKlKg17laFOnTpo27atcufvzMxMnD17Fn5+frVuTFJRSlOTOnXqlC8YSjV09OhROXr0aIWtPz09XQ4dOiTp6elFzpOdnS3h4eHi4+MjarVaPv74Y8nJybF6/vz586LT6WTz5s0yZcoUcXZ2lnbt2klMTEyR692xY4e0bNlS6tatK5988on07dtXmjZtKleuXLHrPpZGcfX4559/ZOrUqdKnTx9p1KiRABAA4uLiIh06dJA+ffrIww8/LF26dJG2bdtK8+bNpX79+uLu7i5t27aVmTNnyq5du6xqV51cunRJnJycZOXKlVbT76zJd999JwDkzJkzVvMlJyeLh4eHzJ49225tysjIkCZNmsj48eMLPHfq1Clp1qyZtG/fXi5dulTkOi5evChhYWFy8eJFu7TJlvdMVTGbzdKtWzd55JFHJD09XerVqychISElLnfixAkBIJGRkSIiMmvWLFGr1ZKWlmbTdguridFoFDc3NwkPD5fZs2eLl5eXpKSklG3Hymny5Mni5eUlZ8+eld9//13mzJkjDz30kKhUKgEg/v7+Mn36dNm4caOcP39eLBZLoevJycmRHTt2yCuvvCL33HOPABB3d3fp37+/vP/++7J//37Jzc0Vkf/VxGg0ik6nk/nz50uvXr3ExcVFVCqV/Pbbb5VZgipXnd83VaW8NSlNPmDAuYPFYpEff/xR2rRpI05OTjJlyhS5evWqTes9evSo9O3bVwDIk08+KadPn1aeS01NlcmTJwsA6dOnj/zzzz8iInLhwgVp2LChBAYGitlsts8OllJR9UhJSZF27dpJkyZN5LnnnpOwsDD59ttvRa/XS3Z2dpW0tSIMHDhQevXqZTXtzpq88MIL4u/vX+jys2bNEi8vL7l27Zpd2rN06VJxdnYuEKby5YecDh06yNmzZwv9vyhtwMnLy5O4uDhZtGiRJCUlFXi+On9Qb9y4UQBIXFyciIjMnDlT6tevLxkZGcUu9+abb0q9evUkMzNTRETOnTsnTk5O8vnnn9u03cJqsnbtWlGpVGIwGOTChQvi4uIiS5YsKduOlUNcXJwAkOXLlxd47vr16xIZGSkvvviitG3bVvnS0rx5c3n22WdlyZIlotPpZP369RIUFCS+vr7K85MmTZLvvvtOFi9eLIMHDxYvLy8BIL6+vjJkyBCZPXu2PPbYY+Lj46NMHzp0qHz66afy8MMPS4cOHSQrK6vS61FVqvP7pqow4FRRwMnOzpbBgwcLABkwYIDEx8eXet0Wi0U2b94sfn5+UqdOHXnrrbfk559/lrvvvls8PT1l+fLlBYLMzz//LADko48+Ktd+lVVh9TCbzTJkyBBRq9VWQc0Rff311wJAzp07p0y7vSZ5eXnSoEEDefvttwtd/sqVK1K3bl158803y92WzMxMadasmYwdO7bY+f7++29p1qyZVY+aWq2W5s2by7333it9+/aVsLAwmT9/vvz888+FBp3U1FSJioqSF154QRo2bCgARKVSSYsWLQq8/6rrB3VWVpa0atVKnnrqKWXaqVOnBICsW7euyOXy8vKkWbNmMmXKFKvpTz/9tPj7+xfZm3G7wmoycOBA6d27t/J45MiR0rp1a8nLyyvFXpVPVlaWtG/fXnr06GHTdi9fviw//vijvPHGG/Loo4+Km5ub8rrq1q2bhIWFyeHDhwutSU5OjuzZs0cWLFggffr0ER8fH3nggQckNDRU9u7dq/TsiNz6XHdxcZEFCxbYdX+rs+r6vqlKDDhVFHBmzpwprq6uEhUVZdMHXEnbCAsLE3d3dwEgvXv3LvIb+e3bPnToULm2WxaF1WPevHmiUqnk559/rvT2VLbU1FTx9PSU9957T5l2e01+++03ASD79u0rch1vvfWW1K1bt9yHGj/55BNxcnKSU6dOlTjvpUuXZPPmzbJu3Tr57LPPZOHChRIaGiqvvfaaTJ06VcLCwqy+oTdp0kQCAwPl9ddfl8DAQOUPmb+/v7z11luyb98+SUpKkq5du4qPj4/88ssvhdajOvn444/FyclJjh8/bjV9wIAB8sgjjxS5XExMjACQAwcOWE3fuXOnAJAdO3aUuO07a3L58mVxdna26gHat2+fAJCffvqpNLtVLqGhoeLq6irHjh0r0/LZ2dly8ODBQnvySlLS6+TNN98UNzc3+fvvv8vUtpqmur5vqhIDThUEnOjoaAEgixcvtuu2EhISJDo6usTDT9nZ2dKtWzdp06aNmEwmu7ahJHfWY8uWLaJSqWT+/PmV2o6qNHr0aGnfvr0SbG+vSUhIiDRu3LjY/8Nr166Jt7e3zJo1y2p6Xl6enD9/Xnbt2iVRUVHFds9nZWVJixYt5Pnnny/3/uQforpw4YKcPXtWvvvuO3nnnXdk0KBB0qJFC+nbt68sWbKk0NBtMpkkICBAXFxcZM2aNSJSPT+oU1JSpEGDBhIcHFzguaioKAEgR44cKXTZoKCgQntqLBaLdOrUSZ5++ukSt39nTT755BNxcXEpcKjy4Ycfln79+tm6W+USHx8vrq6uEhoaWinbu1NJr5P09HRp1aqV9O3bt9xfImuC6vi+qWoMOJUccKrDOBgRkdOnT4uXl5dd/sCVxu31OHXqlPj6+spTTz1VpbWobPnf6A8fPiwi1jVp166dTJgwocR1zJkzRzw8PGTSpEnyxBNPSJs2bcTV1VXpQQEg9957r+zatavQ5VesWCEqlUpOnDhR7v0p7yDjnJwcmTBhggCQefPmSVpaWrX7oH7rrbfE09NTLly4UOC53Nxcad68eaHh58aNG8pA4MKsXLlSnJycrA5ZFubOzxGtViuDBw8uMN9//vMfAVDmHhVb5eXlySOPPCLt27evsnEutvzx2rZtmwCQtWvXVmLLqgYDTkGVGXBq/WniZrMZY8aMgaurK9auXVul1ypo06YNPv/8czz//PMYMGAAxo4dW+p15ObmKld8LK3U1FQ8/fTTaNKkCb766qtadd2G/v3746677sL69evxwAMPKNNPnTqFU6dO2XTq8KuvvooffvgB+/btQ+vWrfHUU0+hdevWaNWqFVq3bo3MzExMmzYNffv2xQsvvIBFixahYcOGAICcnBy8//77GDFiBNq3b19h+2krV1dXrFq1Cq1atcI777yD06dPY9q0aTYvb7FYkJKSgmvXruHGjRtITU2FyWRSfvIfN2rUCAMGDMB9991XqssBJCUlYcmSJQgJCUGzZs0KPO/i4oJJkybhgw8+wMKFC60uxLhp0ybk5eXh+eefL3Tdo0ePxhtvvIHPPvsMCxcutKk9CQkJ0Ol0WL9+fYHnnnnmGYSEhGDZsmVYuXKlbTtYBitWrMC+ffsQFxdXqlO4K9sTTzyBUaNG4bXXXsPgwYOV9wBVT2azGVeuXMGFCxdw8eJF5felS5cwcuRIu1wcs8KUKUJVsMrswXnvvfdEpVLZdMy9sowbN07q1q0rJ0+etHkZi8UiERERUrduXXnnnXdKtb309HQ5ePCgDB06VLy8vAqMZ6gtXn75ZWnSpInk5uYqr5F3331XPDw87PYNzGw2S0REhNSrV08aNGggX375pVgsFlm5cqWoVCrR6/V22Y49TxP/+uuvxdXVVe6//36ZPHmyTJkyRSZOnCjjx4+XMWPGyMiRI+Xpp5+WXr16SYcOHaRRo0bi5ORk1XN1+4+np6c0btxY2rRpI56engJAGjduLGPGjJH169fL5cuXS2zTiy++KI0aNRKj0VhsDVxcXGTp0qVW0x966CH517/+Vez6Q0JCpF69esX+v9/+OfL++++Lh4eHpKamFjrvggULxMPDQ65fv17sdsvq/Pnz4uXlJZMnT66Q9dvK1m/nly9flnr16skLL7xQOQ2rIjW5B+fUqVMycOBAcXZ2tnr/Ojs7S4sWLaRx48bSsWPHUh9q5CGqSgo4O3bsEGdnZ7tew8QeUlNT5d5775UGDRrIypUrSzwT4saNG/LMM88IAOnVq1eRp4cWJT09XaZNmyYAJCoqqrzNr7EOHjwoAGTbtm3Ka0Sr1cqQIUPsvq3Lly/L888/LwDkscceEz8/P3nuuefstn57XwcnOjpa2rdvLx07dpT7779funfvLo888oj06tVL+vbtKwEBAfL888/LK6+8Iu+++658/vnnsnnzZtm9e7f89ddfkpCQIDdu3LA6q0bk1rijHTt2yOuvvy733Xef8iHatWtXmTJlinz66aeya9cuq9ATHx8vTk5ONr3Gn332WauxVXq9XgDI5s2bi13u7NmzolKpZNWqVUXOc/sHdefOnSUoKKjIeS9fvix16tSRDz/8sMQ2l5bFYpHBgwdL8+bNq+yaO/lK88crIiKiyAHdOTk58uOPP8ozzzwjAQEB8p///KfE0/6ro5oYcLKysmT+/Pni5uYmrVq1kuXLl8uWLVvk8OHDkpycrAxdKM2A/Nsx4FRCwNm5c6doNBrp2bNngQ/d6iA5OVleeOEF5VRNnU5X6HxxcXGi0WhErVbLt99+KyK3zshSqVQlfojn++yzz8TJyUlef/11u7W/JrJYLHLvvffKmDFjJD09XX755RdxcnKS1atXV9g2f/nlF2nTpo2oVKoyXZagKDX1Qn+XLl2SdevWyejRo6Vjx47i4uKihJ6GDRtK7969pWPHjnLPPffYdC2m/A/hnTt3isitaxbVr1/fpjEqQ4YMkU6dOhX5DTW/JgcOHBAA8uOPPxa7vnHjxolGo7Hb543FYpH9+/crnxMlbb8ylOZ1YjabpVevXtK2bVvJzMwUi8Uihw4dkhkzZiiXLbjvvvvk0UcfFQCiVqtlypQpcujQoRozQLm6BJz8duRf86kou3fvlnvvvVdcXFzkrbfeKrbdFotF/P39bRqQX1hbGHAqSFpamjz++OOiVqvl/PnzFbYde9DpdNKtWzcBIGPHjlWuXpubmytz584VJycn6dWrl9V+mM1mGTlypLi5uRV75dDs7Gzl4oNDhw6t9LO3qqMFCxYop3vPnTtXVCqVJCcnV+g2MzMz7X5YsKYGnDvl5OTI8ePHZfPmzTJ//nwZMWKEdOvWzebLF1gsFmnfvr08++yzkpubK02aNJHp06fbtOz27dsFQJGDwvNrMmvWLKlXr16JgevIkSM29R6V5Pr167J06VLp3LmzABCNRlNl19C6U2lfJ8ePHxdXV1cJDAyUjh07KpczCAkJkb/++kuZ79SpU/LWW29J06ZNBYB06dJFPv74Y5svwlpV7P2+ycnJkW3btklCQoJN8yclJclbb70l9evXFwDi6uoqPXr0kJCQEPn++++Vy1pcvXpVxo0bJwCkZ8+eNn/ZWrFihTg5OdncHhEGnAoPOMuWLRMAsnHjxgrbhj3l5eXJqlWrpGHDhuLt7S3vvfee9OzZU5ycnGTevHmFfiPMyspSQlxhZ29cunRJHn30UXF1dZXly5dXi28Z1cE///wjAOTLL7+Uvn37ysMPP1zVTSoTRwk49rB06VJxcXGR1atXW50pVxKLxSIdO3aUfv36Fbrf+WPX7r77bpvOshMR6dWrV4GrZhe23ezsbDEajXLlyhVJTEyU06dPyy+//CKjRo0SNzc3cXFxkeHDh0tMTEylXkSwJGV5neSPTxo1apTExsYW28OVm5srW7dulWHDhomLi4u4uLjIk08+Kd98802JvROV7caNG/LNN9/IK6+8Im+88YZMmzZNxowZI08++aT06tVLunTpIs8++6xs27atxDNWU1NTZcmSJaLRaJQezfvvv19CQ0ML7dHav3+/jBw5UlxcXMTb21teeeUV2b17tyxfvlxGjBhhtZ62bdtKgwYNRK1Wy6pVq0p19mxqaqr4+vrKG2+8YfMyDDgVHHBGjx4tY8eOrXEf1jdu3JBp06aJk5OTtGzZUn7//fdi5zcajXLfffdJixYtJDExUZm+b98+ad68uTRt2lR0Ol2N/uNVEXr27Cm9e/cWd3d3mTdvXlU3p0wYcP7n5s2b4unpKe7u7tK5c+dSHd7YsmWLuLu7S/v27QtcUyc9PV3WrFljdQisJJs3bxYAMmrUKBk6dKg8/vjj0r17d2nbtq3cddddyoVBi/q59957JTw83KaB2FWhLK8Ti8VSpsN2V65ckWXLlsmDDz6o3BZiwoQJ8uuvv1bJJS6uXbsm33//vbz88sty//33K/f88vT0lBYtWkjnzp2lV69e8uSTT8qYMWNkypQp4u/vLwCkZcuWMm/ePKvP6fx9nDNnjtSrV09cXFxkzJgxsn//fomMjJTRo0eLWq0WANKsWTP597//LStWrJAePXoIAGndurV8/PHHRQ7EP3/+vGzYsEGmTp0q06ZNK3NP9SuvvCINGjSweYxUZQYclYiIvc7Ispf4+HgAQOfOnStk/RkZGThx4gQ6dOgAT0/PCtlGRTp79iwaNWoEb2/vEue9dOkSevToAS8vL8TFxeH777/H5MmT0a1bN2zevBnNmjWr8fWwt88//xyTJ08GABw6dAjdunWr4haV3qVLl7Bq1SpMnDgRTZs2Lff6avprJDg4GKtXr8ZHH32EV199tVTLHj9+HKNHj4Zer8eCBQsQEhICZ2dnZGRk4KWXXsLu3buRlJQEZ2fnEteVl5eH4cOH4+rVq/D19VV+fHx8lN8eHh5wc3ODm5sb3N3dlX/Xq1ev1KfTV7aqep2cPHkS69evx/r163H+/Hm0bNkSXbt2Rb169Qr81K9fH/fccw9atWoFF5eyXSnl5s2bOHr0qPJz4MABHD16FABw991347HHHkOfPn3w0EMPISMjAx07diy0HiKC/fv3Y/Xq1di0aRMyMzMREBCAMWPGYM+ePfjiiy+gUqkQHByMmTNnws/Pz2r53Nxc7NmzBz/99BN+/PFHnD17Fn379sUrr7yCwYMH2/SaLK8zZ86gbdu2+PLLLzF+/PgS5y/va6Q0+YABpwZ+WJfWyZMn0bNnT7i7u+PixYuYOHEili1bplwro7bVoyTXr19H06ZN0bhxY5w8eRJ169at6iaVGgOOtRMnTmD8+PHYsmULGjVqVOrlc3JyMGfOHISHh6N379746quvoFar0bp1a4wcORLLly+vgFbXPFX9OrFYLPj999+xadMmnDt3Djdv3rT6ycvLU+atU6cO2rVrh44dO6JDhw7o0KED2rRpg7y8PKSlpSE9PR1paWnKz7Vr1xAfH4+//voLBoNBWYe/vz+6du2Kxx57DI899hhatmxZpnqkpqZi06ZNWL16NQ4cOIAGDRpg+vTpmDZtGho0aFDivosIjEaj1TWfKktgYCCSk5Nx+PDhEgN4ZQacWn+hv9qgffv22Lp1K0aPHo2VK1di4sSJVd2kaq1BgwaYMWMGXFxcqvW3ZbJdhw4dsG/fvjIvX6dOHXz44YcYNGgQxo4diy5dumD06NG4fv06nnvuOTu2lMrDyckJvXv3Ru/evQs8JyJIT0/H9evXcfr0aZw4cQLHjx/HiRMnsHv3bly5cqXQdapUKtStWxf16tVDp06dMGrUKHTp0gX33Xcf2rVrV+YLq97J29sbwcHBCA4Oxrlz53DXXXeV6suVSqWqknADANOnT0dgYCD27t0LrVZbJW0oDANOLdGjRw+cPXu2qptRY8yfPx8nTpyo6mZQNdOnTx/89ddfmDJlCj777DNoNBqrK19T9aVSqeDl5QUvLy+0bNkS/fv3t3r+xo0bOHv2LNzc3FC3bl1lXg8Pj0r/otOqVatK3V55DRw4EG3atMEnn3zCgENEVFPVq1cPGzduxNChQ2E0GtnL5yDq16+P+vXrV3UzaiQnJydMnToVs2bNwuLFi+1yWNweas/NhoiI7Ohf//oXe2+I/r9x48ahTp06WLVqVVU3RcGAQ0REROWiVqsxduxYfP7558jJyanq5gBgwCEiIiI7mDp1KpKTkxEVFVXVTQHAgENERER20KlTJ/Tt27faXDaBAYeIiIjsYtq0adDpdDhy5EhVN4UBh4iIiOxjyJAhGDRoEDIyMqq6KTxNnIiIiOzDxcUF0dHRVd0MAOzBISIiIgfEgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEVEpmsxm//vor5syZU9VNIaIiMOAQkcPLzMzE5s2bYTaby7WemzdvYtKkSXjmmWdw/fp1xMTEID4+3k6tJCJ7YsAhukNWVhbS0tKwd+9eiEhVN4fs4M0338THH39crnWICPr27YuNGzeiX79+ePLJJ9G8eXN89dVX9mkkEdkVA04tcePGDbz22mvYvXt3VTel2luxYgUaN26M6dOnIy4urqqbQ/9fbm4uLl68iMzMzFItd/ToUXz66afo3r07Zs+ejezs7FItf+bMGTzzzDO4fPkyPvnkE5w8eRLTpk2Dq6srVqxYgQ8++KDUQbhfv35o0aIFOnbsCACYN28eHnvsMQQEBMBgMGDv3r349NNP8f333+Pq1avIyclBbm5uqbZBVNsx4NQgV69exeLFi5GXl4cTJ04gJyfHpuUyMzPRv39/LFu2DHv37oXRaERERESp/1DUBunp6fjggw8wduxYtGvXDosXL66wbZnNZnz11Vc4fvw4fvjhB/z3v/+tsG2Vl8FgwMqVK5GWloatW7dixowZmDp1Kk6dOoW9e/ciODgYs2bNwt69e5GSkoJNmzZh27Zt+OeffwAAJpOp2BAgIkhOTsa+ffsAAKtXr8aoUaPw+OOP48qVK/i///s/1KlTB82bN8dvv/2G9PR0m9vu7e2N4OBgvPjii1i4cCFWrVpl87LffPMNOnXqhEOHDiEpKQmPPvoomjVrpjzfrFkzvPfee3jxxRdtWl9YWBi2bNmCkSNH4qWXXsLw4cMBAE2aNEHLli1Rt25d1K1bF7/99htmzpyJYcOG4c8//8QPP/wAb29vDBs2DAcOHLC5/WQ7EUFGRgYsFktVN6VGM5vN1eewrVRDR48elaNHj1bY+tPT0+XQoUOSnp5eYduwt08//VTc3d3Fw8ND4uLipEmTJjJw4EBJS0srdrn09HSxWCwSHh4uf/31l+Tk5Mj3338vKpVKGjRoID/99FONrEdFuXjxojz77LNy/Phx+fzzz2XLli0Vsp3Tp09L586dBYB8+OGHEhgYKA0aNJDExES7rP/ixYsSFhYmFy9eLPe6vvjiC/Hw8JC6detKQkKCLF26VDp37iz333+/7N+/X2JjY+XBBx+Utm3bytdffy379+8XAAJApk2bJhkZGQJA3N3d5ZlnnhERkQkTJsi4cePkrbfeEhGRRx99VACIk5OTZGVlydy5c6VPnz4SFBQkFy5ckIMHD8rq1atl69atcurUKWndurV88cUXJbZ98+bN8t///ld5PH78eGnTpo2YzWab9j05OVk+/PDDQt9n+e+bjz76SJycnOTUqVPFrkun04lKpZKlS5fatG2LxSJXr16VzMxMOXv2rCxcuFAefPBB+eWXX2Tnzp0yYsQI+eGHHyQrK8um9VWG6vJZcuXKFTly5Ijs3LlTrl+/LidPnpSPPvpIQkNDZd++fXLq1CkZPHiw9OjRQz744AMxmUzi4uIiAKRPnz4iItKrVy/p1KmTDB48WEREli9fLsuXL5dDhw5JXl6eTe2oLvWoTJmZmfLqq69KQkJCoc+XtyalyQcMONWUxWKRmJgYGThwoOh0OomLi5P/+7//k2vXromIyPbt28XLy0tmzpxZ5Dpu3Lgh3bp1k7lz5xZ47syZMzJjxgw5efKkbNiwQZ588km5cuVKRe1OjWAymSQ2NlYsFovyGtm7d6989NFHdtvG/v375auvvpKMjAx59tlnZe/evSIicu3aNdFoNBIWFmaX7RQWcLKysuTy5csiIiUGYxGRrVu3yokTJ2TXrl3y8ssvy+7du216z1gsFjGZTJKYmCjJycmSlZUlGzdulKVLl8qGDRtERGT06NHyyCOPSGBgoIiI/PTTT/LDDz/I8ePHbQofwcHB4u7uLn/88UeR81y9elXq168vY8aMUaYlJyfLlStXxGKxFLt+s9ksI0eOlJ9//rnIefJfI9evX5cOHTrI999/X+w6X375ZenevbvNfxyL8/PPP0uXLl0EgHz77beSnZ0tOTk55V5veZX1s9WW12Nx/v77b1mxYoU8//zzkpKSIm+88YYSsv/73//Kpk2bpG7dutK8eXNZu3atnDt3ToYMGSLjxo2TDRs2iMVikc8++0y+/vpriY2NFRGR999/X6ZPny6vvfaaiNx6zbm6uoqzs7OkpaXJihUr5M0335QffvhBMjIy7FqPmspgMMjy5cuLfY0z4DDgyJdffikA5IEHHpBff/210Hn++usvMZlM8ssvvxT45p+bmysPPfSQ1K9fX/78889it7Vu3Trx9PSU3r17F/lGrQ3effddqVOnjly8eFF5jSxfvlxUKpWcPHmyxOVTU1PlhRdekNmzZ4uIyMSJE2X06NEya9YsERF59dVXBYA88sgjhf4Rv3jxolgsFjly5EiZ2p+WliYpKSly/fp1+eCDDyQsLEyWL18uubm5ctdddynbFhG59957pUOHDvLqq6+KxWKR3NxcZT3Jycnyr3/9SwAoPSzV7T2TmZkpL730kpw/f77Ied5//31Rq9WSnJxsNX3Pnj3Svn175ctCYT777DMBIL/88kuR89xeE7PZLOnp6UWu8/z582KxWOTmzZvF71gpHT9+XDIyMuTJJ5+UMWPG2NwzVVHK8jq5efOmdO7cWTp37iwzZ84Us9lc5H7kB9Ndu3ZJWFiY/Otf/5LMzEyZOnWqODs7y4MPPignT56UCxcuyKFDh+TMmTOSmZlZYqC1VWZmpvL+fPvtt6Vp06YCQK5duyaLFy+WIUOGSFhYmFy6dEny8vJKXY9Lly7J2rVr5ejRo5Kbm2v310tFslgs8tRTT0nTpk0lJSWlyPkYcGpxwNm6dassWLBAzGaz7Nu3r8Q3Zm5urnTo0EE0Go2cOHFCRG71ROTl5cmaNWuK/YabLz09XVavXi2TJk2SvLy8Kv+QrAopKSmiVqtl2rRpIvK/18iNGzekadOmMmPGjBLXMWrUKPHy8pL3339fRESGDx8ujz32mDz77LMiIjJ58mRZs2ZNsd9utm/fLgAkKiqq2G1ZLBb5/vvv5Y8//pDff/9d+aANDQ2VS5cuSevWrSUsLEzpEQoPD5c1a9bI77//LhaLRSIjIyU4OFhGjBghIiIPPfSQPPzww7J69WrJyMiQ3r17y+bNm5XXX3V9z/z+++8yefLkAu+TjIwMMZvNhQbTK1euiJeXl4SEhBS53tGjR8ukSZOK3fbtNbFYLNKpUyeZOHFigfn++ecf8fDwkK+//trGvSq9TZs2iUqlktdff73CtmGL0rxOsrKyZOzYsXLo0CHZtWuXjB8/Xjkc1K9fP+nZs6fMnTtXcnNzZd68eaLVaqVJkyaSl5cn48aNk4YNG8rAgQMlKSlJrly5Uu5eoLKwWCySlJQkIiJr1qyRAQMGSP369eX8+fPywQcfSJMmTaRHjx6i0+kkMTFR/vvf/0pCQoLyGZubmytxcXGSkJAgW7duFQCiUqnko48+km+//Va8vLxk2rRpcu7cuUrft9I6cuSIAJDNmzcXOx8DTi0NOLNnzxYAMmTIkFJ1YyclJYm/v79MnjxZUlJS5KGHHpLJkyfbvPzt9VixYoUMGDCg1vXkmM1m+eabb+TChQsiYl2Tv/76SzIzM4td3mKxyC+//FLiYYqSWCwWGT58uPj4+CiHk+508eJFpYflyy+/lMTERAkNDZWvvvpKTp48KRaLRS5cuFCqMTirV6+W5557Trp06VLseJPq9p758ccfBYAsWrRImZaTkyP33XefLFy4sMjlwsLCZOTIkQWCkdlsll27donFYinxkM+dNfnwww/F1dXVqjfVYrHIwIEDxc/PT1JTU8uyizZbtWqV/Pbbb1V6qMrW10lmZqYEBgaKm5ubxMTEFHg+IiJChg8fLg8//LCI3Or9HDVqlHzwwQeSkZFh114Ze7NYLGKxWGTfvn0ya9Ys6d27txw+fFjpFQQgK1eulPj4eFGr1QJA3nvvPblx44Z8/fXXylCBS5cuSWhoqDRq1Eh++eUXiY+Pl+3bt1t96Th8+LB8/fXXcuPGDdm4caN0795dZs6cWeJ4MHvLzMwUs9ksR48eLfH/hQGnCgPO9u3bi/zDUlEuXLggmZmZsnz5cgkPDy/TG/fmzZuSnZ0tY8eOFW9vbzl06JDNy95ej927d4unp6cMGDCgWhzTrwzXr1+XSZMmWYWBO18j7733nsyZM6fQ5XU6nfTv31+uX79ul/akpKTIxo0bCxw6ys3NlWPHjsm1a9eka9euxYYpew4yFqm+AUdE5PXXX5f+/fsr34oXL14sTk5Oxb4H8v8IHTt2zGr6J598IgAkPj6+xO3eWROTySTjx4+3+rZtsVhkzZo1hf4RrwhpaWny4IMPysqVKytle3ey5XVisVgkLS1NAgICrAaAO6Lb65GbmytnzpyR6OhoSUxMlEOHDklYWJjs37+/2C+0+WEuJCREAMg999wjJpNJXnvtNSUw7dq1S+Li4uT555+Xxo0by65du2THjh0yadIkiY2Nlezs7ALrzR8rd+7cuXKPv5w8ebIEBgba9LeLAaeKAk5+F9uBAwfs9u0gLi5OZs+erZyNc+TIEblw4YLygo6NjZWGDRsqYx3Kw2KxyDvvvCOHDx8u1XJ31mPnzp0SFhZW4A+so3rnnXfE09PTaqzGnTWZM2eOeHp6ytWrV62WvXz5sjRv3lx69uxp90D40ksvyb///W8RETl48KB07dpVGjVqJBkZGSW+PmtTwMnNzZXc3FzZvn27XLp0SVatWmXT+2nDhg3i7Owsf//9t4jc+qLh6elpc+9nYTWxWCyydetWuXjxoty4cUNmzJhht+BrC4vFItOmTRMnJyf57rvvyryesr7vS3qdpKWlSWBgoGzbtq3a9sDYkz3fNxaLRXbu3Cnjx48Xg8Egf//9t+zbt0+MRqPVfPljmL755htp3bq1AJCffvpJoqKipHfv3uLv7y8///yzREdHKwHptddek+zsbDl9+nSp2/X7778LAJvPDmTAqaKAM3jwYGnbtq38888/cv/998uBAwfKvI20tDRJSEgQJycnadiwoUybNk1ycnJEpVIJAHn44YflypUr4unpKQEBAQX+cFamouoRFhYmgYGB1eo0VHvLyckRPz+/AmMX7qzJ1atXpV69evLTTz9Zzffnn39Kt27dlOPw9rRq1SoBIN99952MHDmyVK/J2hRwRG6NuWnWrJkAkBs3bti0TGZmpmg0GnnuueeUHp1NmzbZfCipsJoYjUbx9fWVmTNnysSJE8Xb21s57FlZzGazzJgxQ44dO1ZkiMjNzZWUlBRZt26dvPvuu7JhwwbJy8uT+++/X+rXr68MRn/ttddk7ty5EhMTU+i6DAaD/PDDD/Lee++JxWKRGTNmSJ8+fSQsLKzA2WppaWnSu3dv8fLykt9++61idr6aqer3jcVikT///FMyMzMlNjZWRo0aJdOnT5dDhw5JcnKybNy4UWJjY+X69euyZs0acXJyklGjRpUq6MTFxUlQUFClnTpfmnzgUppr5sTGxgIAjEYjNBoNtFptofNFRERAo9EAAAICAkqziSo1ZswYeHt7w9fXF+7u7ujbty9iYmLQq1cvm9dx9OhRzJkzB0lJSTh06BD27t2L7t27w8nJCWazGUeOHEFSUhJcXV3RqFEj7NmzB126dIGTU/W75qJWq8X777+PF198Ef/5z38QHh4OAGjevDlGjRoFvV4Pk8mEtLQ09O/fH3v27MGff/6J1NRUTJgwAQaDAb/99hvq16+P3r17o2HDhkhKSkK9evXg6emJvLw8fPvtt0hISED79u0xYsQItGvXDnfddRcef/xxfPDBB9i1axfq16+Ptm3bwtPT0+776OTkhKNHj5Y4X37b69Spg+zsbLi5uWHVqlV44okncPDgQahUKru3bcKECfj999+Rm5uLzz//HJ6ennBxKdVbttbw8PDAhg0b0K9fP+zcuVO5gF5x3N3dsXTpUuTm5mL58uU4dOgQ1q5dW673oo+PD2bMmIEFCxYAAD755BOrCwNWBicnJyxduhRJSUno3r07Xn31VfTs2RMmkwnTp0/HiRMnMGXKFEyePBkvvPACGjZsiFGjRmHkyJEYMGAA6tWrh/bt2wMAEhMTsXPnTnz11Vc4e/YsJk+erFy0ccOGDZgwYQK2bduGBg0aYOLEiXj00Uexd+9eLF68GJMmTcJ7772H//znP3jooYfw5ptvonXr1vjggw/Qo0ePSq1JbaVSqXDfffcBAAYOHIiBAwdaPT9ixAirf2dkZODDDz/E9evXkZ6ejtzcXHTv3r3I9UdGRuLBBx/Epk2bKmYHysvW1JSYmGg1BmHcuHGFzjdu3Dily2zo0KG2rt5KVfTghIeHW51ympaWJlOnTpWrV68WezppvuTkZLFYLNK9e3e555575Ouvv64xZyOVNCZpwYIFIiLStWtX8fX1lXbt2omISO/evZUuzqysLJkyZYq4ublJgwYN5K+//pIVK1aIp6enAJDIyEjZtm2bMv/8+fMlMTFRnJycpGXLlvL222+LiMi8efNk/PjxSo9K/tlBd911l4iIXXtKkpOTpWXLloV+myysJtnZ2dK+fXtZtGiRbNmypcDg1opgNpvFZDKVerna1oOTryy9jX/++adyUcLSKKom169fl6ioKLl48aJdrnlTVmlpafLII48IAPnoo4/k7NmzMmLECJk3b57odDqxWCw2nUxgsViUcYlvv/229OjRQ4YPHy65ubly8uRJSUpKKnC2XX4v2I4dO2Tq1KnSvXt3OXPmTMXtbDVVU943t8s/PDlu3DgBIF26dJHLly/Lr7/+Kl988YX8+uuvkpaWJn///be4ubkpn922qsweHJWIbTdRiYyMRGJiImbNmgUAmDFjBkaMGGHVi6PX67Fy5Uq8++67MBgM8Pf3L1Poio+Ph4igTZs2ZVq+JJmZmUhISMDdd98NDw8P7N69G4MHD8amTZvw5JNPWs2bmJiIHj164I033sCMGTOs1uHh4YE1a9Zg9erVOHbsGPbv34+6deuiSZMmcHV1rZC2V4Q761ESi8UCJycnJCYmIjU1Fd7e3mjRogUAFPrtNysrC05OTsjIyIBer8fNmzfRtm1btGvXDnl5ecXW6vr16zh9+jRSUlLQvXt33HfffRg0aBAWL14MX1/fMu1v/i0uHn/8cfzzzz/Q6/WoX7++1TxF1WTSpEnYvn07GjZsiJYtW2LTpk3Vsvft8uXL+OqrrzB27Fg0bty43Osr7WukJtm1axc+/fRTrFu3DnXr1rV5uZpQk7y8PFy4cAEtWrSAs7NzhW+vJtSkMtXkepjNZnz//ff49ddfsWTJEsydOxdLly6FiCAuLg7btm3Dhg0bcODAgVLtW3lrcubMGahUKnTu3LnEeW0OOOHh4VCr1QgODgYAhIaGQqvVWh2CioyMRGRkpNI9GxkZifnz55d6B+Lj422+z5I9TJ8+HUajEevWrStwqEFE8Nlnn2HNmjUIDQ2FiGDr1q04duwYtm7dih07diA+Ph4PP/wwnnjiCdSpU6fS2l3biAiio6OxcOFCDBkyBK+99prNy5rNZmzcuBE7d+6ESqXCF198gSVLlkCr1eLhhx+2eT0JCQkIDw/HzJkzcdddd8Hb27ssu1LhjEYj4uLi0KtXrzIHQSKi22VnZ+PixYto1qwZTpw4AS8vrwrriChOnTp1bAo45TqgbzQarR6bTCb4+voqPTfHjh2DXq8vU0+Oq6trpfXgfPvtt7hy5QruvffeQuf/5JNP0KtXLwwePBgrVqyARqPBmDFj4O/vj0cffbRC2liZatK3jI4dO+K5556Dj48PYmNjcfToUcydOxdubm5W84kItm3bhn379iEzMxMffvghfvvtN2g0GgwdOhQdOnQo9qaLRdWkQ4cOGDRoUIXtn71cvnwZcXFxaNWqFXtwKghrUhBrYs0R63H//fdb/S4te/Tg2MrmgOPn5weTyaQ8TklJUQYS59NoNFbTfH19y3yoSqVSVcig0tu5ublh+PDhmDBhQomDEsePHw8AmDt3boW2qSp5eHhUeM3tIX8AZGZmJlasWIFdu3Zh9+7d2Lp1K/bs2QNXV1csX74cM2fORGZmJgYMGAAPDw8cPHiw1IeTakpN7uTu7q78tmf7a2o9KhJrUhBrYo31KKisNSnNCR02f9prtVqrW6AnJSUp42/yg49Wq4XBYFDmMRgMRZ5pVR389NNPiI2NxV133VXVTaEymDp1Kg4ePIihQ4dCrVYjJCQEcXFxyh/3gwcPIjk5GevXr4dKpaqWY2WIiKhi2NyDo9FoEBgYiNjYWBiNRkycOFF5btiwYYiKioKPjw+CgoIQGRkJk8mEkJAQ+Pj4VEjD7eGPP/5AQEBAqU4Dp+qlS5cu6NKlCwDg3LlzVt8IGjVqVFXNIiKiKlaqMThFXdNm+/btJc5T3Vy9ehVhYWEcFOxA2AVMRET5amWffW5uLiZMmIA5c+bUqNO5iYiIyDa1MuB8/fXXuHjxotVVHImIiMhx1MqAo9Fo8OKLL6JTp05V3RQiIiKqALXyxjYDBgxQrrxLREREjqdW9uAQERGRY2PAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOx6U0M8fGxgIAjEYjNBoNtFptsfP6+PgUOw8RERFRRbC5B8dgMECn0yEgIABBQUGIiIgocl6TyYRVq1bBZDLZpZFEREREpWFzwNHpdPD29lYee3t7Q6fTFTpvTEwMBg0aVP7WEREREZWBzYeoEhMToVarlcdqtbrQHhq9Xg+tVqscziorEUFGRka51lGUzMxMq9+1HetRUE2vSVZWlvLbHu+jml6PisCaFMSaWGM9CipvTUQEKpXKpnlLNQbnTkajscA0g8GAgICA8qwWAJCbm4sTJ06Uez3FSUhIqND11zSsR0E1tSb5781z587hxo0bdltvTa1HRWJNCmJNrLEeBZWnJnXq1LFpPpsDjp+fn1WPTUpKCjQajdU8ERER0Gg0iI2NRXx8PAwGAzQaDfz9/W3djMLV1RVt2rQp9XK2yMzMREJCAu6++254eHhUyDZqEtajoJpek8uXLyMuLg6tWrVC48aNy72+ml6PisCaFMSaWGM9CipvTc6cOWPzvDYHHK1Wi/DwcOVxUlKScoaUyWSCj48PgoODlefj4+PRuXPnMoUbAFCpVPD09CzTsrby8PCo8G3UJKxHQTW1Ju7u7spve7a/ptajIrEmBbEm1liPgspaE1sPTwGlGGSs0WgQGBiI2NhYREZGYuLEicpzw4YNs+rd0el02Lt3L6Kjo2EwGGxuDBEREZE9lGoMTlFja7Zv3271WKvVIioqquytIiIiIioHXsmYiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOx6U0M8fGxgIAjEYjNBoNtFptofMYjUbo9XoEBAQUOg8RERFRRbI54BgMBuh0OsyfPx8AMH78+ALhRa/XAwCCgoJgMpnQr18/HDx40I7NJSIiIiqZzYeodDodvL29lcfe3t7Q6XRW8xiNRmWaj48PfH19ldBDREREVFls7sFJTEyEWq1WHqvVaphMJqt5tFqtVa+O0WiEv79/mRomIsjIyCjTsiXJzMy0+l3bsR4F1fSaZGVlKb/t8T6q6fWoCKxJQayJNdajoPLWRESgUqlsmrdUY3DuZDQai3wuNDQUCxYsKPO6c3NzceLEiTIvb4uEhIQKXX9Nw3oUVFNrkv/ePHfuHG7cuGG39dbUelQk1qQg1sQa61FQeWpSp04dm+azOeD4+flZ9dikpKRAo9EUOm9sbCy0Wi0CAgJsXX0Brq6uaNOmTZmXL05mZiYSEhJw9913w8PDo0K2UZOwHgXV9JpcvnwZcXFxaNWqFRo3blzu9dX0elQE1qQg1sQa61FQeWty5swZm+e1OeBotVqEh4crj5OSkpTDUSaTCT4+PgBujdXx8fGBVquFXq+Hj49PkUGoOCqVCp6enqVerjQ8PDwqfBs1CetRUE2tibu7u/Lbnu2vqfWoSKxJQayJNdajoLLWxNbDU0ApAo5Go0FgYKByGvjEiROV54YNG4aoqCgYjUa8/PLLynSTyYS///7b5sYQERER2UOpxuAUdchp+/btAG6dOcXTwomIiKiq8UrGRERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIofDgENEREQOhwGHiIiIHA4DDhERETkcl9LMHBsbCwAwGo3QaDTQarVlmoeIiIioItncg2MwGKDT6RAQEICgoCBERESUaR4iIiKiimZzwNHpdPD29lYee3t7Q6fTlXoeIiIioopm8yGqxMREqNVq5bFarYbJZCr1PLbIzc2FiODo0aOlXtYWIgIAOH36NFQqVYVsoyZhPQqq6TUxm83o27cvkpOTcfXq1XKvr6bXoyKwJgWxJtZYj4LKW5Pc3FyblyvVGJw7GY1Gu8xzp/zGV9QLQqVSoU6dOhWy7pqI9SioptfExcUF9erVs9v6ano9KgJrUhBrYo31KKi8NVGpVPYPOH5+fla9MSkpKdBoNKWexxZdu3Yt9TJERERE+Wweg6PVahEfH688TkpKUs6Qyg81xc1DREREVFlUkn9AzAa3nwLu6+uLgIAAAED//v0RFRUFHx+fIuchIiIiqiylCjhERERENQGvZExEREQOhwGHiIiIHA4DDhERETkcBhwiIiJyOAw4RERE5HAYcIiIiMjhMOAQERGRw2HAISIiIodTrptt1kS3X2lZo9HUyltJmEwmREZGAgCCg4OV6bW5NrGxsTAajdDr9QgICFD2vbbXRKPR4NixYwCAoKAgZTpQO2sC3Np/Hx8fvkYAzJgxA5MmTQIAREdHY9asWQBqd00iIiKUezDmX8m/NtdjxowZePfdd+Hj42M1vVJqIrVIYmKizJkzR3k8bty4KmxN1YmJiZGFCxfKqlWrlGm1uTbHjh2TmJgYERExGo3SvXt3EandNTEajTJ06FDl3+3atROR2l0Tkf/VJf/1UtvrMXToUOnevbuMGzdOjEajiNTumtxeh/z3T22uR2JiorRr1066d+8u3bt3l3bt2smqVasqrSa16hCVTqeDt7e38tjb2xs6na4KW1Q1AgIC4OfnZzWtNtfGaDQq++rj4wNfX1/o9fpaXRMfHx9ERUUBAAwGg/LtqjbXBABiYmIwaNAg5XFtr8fEiRNx8OBBrFmzRvmGXltrotfrlf3W6/XK+6e21gO49dlx8OBB5Wf+/PkIDg6utJrUqkNUiYmJUKvVymO1Wq3cCb22q8210Wq1Vt2jRqMR/v7+iI6OrrU1yRcZGYk9e/Zg6dKlAGr360Sv10Or1Spd60DtrgcAxMfHA7j1ngFuHcasrTU5duwYkpKSYDAYAAChoaGYP39+ra0HAKvP1cjISOXLQWXVpFYFnMLkvzGpoNpYm9DQUCxYsKDI52tbTYKCgqDRaLBo0SLMnz+/0HlqS00MBoMypqI4taUeAJQxNwDQv39/q96t29WGmphMJvj6+sLf3x/ArcCj1+sLnbc21ON2BoMBJpOpwDic21VETWrVIao7D8ukpKQog8FqO9bm1qA3rVar/BGr7TXJ/0al1WoRExMDnU5Xa2sSEREB4NZrJD4+HjqdDnq9vtbWA7hVi/DwcOWxj48PDAZDra2JRqOx2k9fX99aXY/bbdq0SQl+QOV9ttaqgKPVapUuVQBISkqqVaPZi1Pba6PT6eDj44OAgADo9Xpl3EltrUlkZCRWrlypPPb19YWvr2+trUlwcDACAgIQEBCgnPHh7+9fa+sB3PqD3rNnT+WxyWSq1TXRarXK4Sngf2PXams9brdt2zarAFNZNVGJiNh9rdXY7aem+fr62tTl7Gh0Oh02bdqE1NRUBAUFFXoqY22qjcFgwLBhw5THJpMJf//9N4DaWxOTyaSEvj179kCtViuXFKitNQFuvXcWLVqEFi1aYNasWdBoNLW6Hvn7Hh8fjxEjRih/xGprTfIvN2EymaDRaGr9Z2u+YcOGYe3atVaHqCqjJrUu4BAREZHjq1WHqIiIiKh2YMAhIiIih8OAQ0RERA6HAYeIiIgcDgMOERERORwGHCIiInI4DDhE5DB0Oh2GDRuGyMjIqm4KEVUxBhwichharRY9evSo6mYQUTXAgENEDuX2uxQTUe3FgENEREQOx6WqG0BEji//7tsajQbx8fGYNWsWdDodQkNDlRsSGo1G6PV6hISEKPes0ev10Ol00Gg0MBgMys0ugVv3ENu0aRM6d+4Mo9GIQYMGKcvl30vLYDBgz549WLZsWZXtOxFVDQYcIqpQBoMBixYtQlRUFIBbN9eLiIhAcHAwBg4cCLVabXVTwpdffhlr1qxRlluzZo2yrvyb9gHA+PHjERUVBR8fH4SHhyMyMlK5IWh8fLzVzUH1ej38/f0rca+JqKox4BBRhdq0aRN8fX2h0+mUafHx8cq/b7/DcEBAAF5++WWYTCZs2rQJHTt2tFpXixYtEBMTAwDQaDTKspMmTbKar3Pnzsq/vb29YTQa7bdDRFQjMOAQUYXr2LEjtFqt8jgoKKhc6zOZTPD29lYe3x6SiIgADjImogoWGBiIvXv3Wk27vTfHZDIp/46NjYVWq4WPj0+hyx0/fhyDBg1CQEAAjh8/XuQ6iYhUIiJV3Qgicmw6nQ579uxRDh3lh5jw8HCkpqYiICAAJpMJ8fHxmDRpktIjc+fg5MDAQGUsTWHrNBgMmDNnDgBgwYIFyjiejh07YtasWcoAZSJyfAw4RFRlwsPD4efnV+5DVkREd+IhKiIiInI4DDhEVCV0Oh327t2rnMZNRGRPPERFREREDoc9OERERORwGHCIiIjI4TDgEBERkcNhwCEiIiKHw4BDREREDocBh4iIiBwOAw4RERE5HAYcIiIicjgMOERERORw/h+8WlSO1OMUwAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -591,11 +613,11 @@ "sns.lineplot(x='epoch', y='value', style='metric', dashes=[\"\", (2,1)], data=df_aranged,\n", " color='black', linewidth=1)\n", "ax.set_ylim([0, 1])\n", - "ax.set_xticks(np.arange(0, 350, 50))\n", + "#ax.set_xticks(np.arange(0, 70, 50))\n", "ax.set_ylabel('')\n", - "ax.axvline(133, 0, 1, lw=1, color='grey')\n", + "ax.axvline(27, 0, 1, lw=1, color='grey')\n", "fig.tight_layout()\n", - "fig.savefig(fig_save_dir + 'precision_recall.pdf', format='pdf', bbox_inches='tight')" + "fig.savefig(fig_save_dir + 'precision_recall_final.pdf', format='pdf', bbox_inches='tight')" ] }, { @@ -608,13 +630,13 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 14, "id": "bc5a84dd", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAACoCAYAAADtjJScAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqKElEQVR4nO3dfVBU570H8O8i77LLEiWGhEVNjClvURsSy+pMU2N1YXInSmvWZhJrTMSkvQkzV5w00+gU8XrnRuxU722skBetN62rN9zEtuxqrE1qOBhNYyusxLcEORAkvsBZkHc49w9nT0VZ2F3YF85+PzOOnrPPOb/nHPTxt895zvNoZFmWQURERKQiYYGuABEREdFYY4JDREREqsMEh4iIiFSHCQ4RERGpDhMcIiIiUh0mOERERKQ6THCIiIhIdZjgEBERkeowwSEiIiLVCQ90BYiIfMFmswEAJEmCwWCA0Wh0u4zD4YDFYgEArF692qNzElFwYA8OEamOKIoQBAEmkwlmsxllZWUelREEAa2trR6fk4iCR0j24Jw8eRKyLCMiIiLQVSEal3p7e6HRaDBnzpxAV2VIgiBAq9Uq21qtFoIgDOpxGa6MyWSCJElwOBwendMdbH+IvOdJ2xOSCY4syxhpjVFZltHb24uIiAhoNBo/1Uzd8QcGBuBwOKDT6RAWNnznYSCvX433fqzjB/savfX19dDr9cq2Xq8flKy4W2Y05V1xtj89PT0eH0veGRgYQGdnJ2JiYkZse0g9QjLBcX5zyszMdFmmo6MDtbW1mDFjBmJjY/1VNVXHb2pqwvvvv4/8/HwkJSX5Pb671Hjvxzp+dXW1n2s1epIkjUmZ0ZQHbrQ/sixjxowZLst0dnairq4O06ZNQ0xMjMcxRiuQ8X0Ru7m5Gb/97W+xYsUKTJkyxe/xPRHK8d2Jff78ebe/+IVkgkNE6paSkjKod6W1tRUGg8HjMqMpPxyNRuNW8hoTExOQJDcY4o9l7OjoaOV3d88Zyvc+0PGHi+1Jrzb76ohIdYxG46BepoaGhkFvSI1UxtNzElHwYQ8OEamOwWBAbm4ubDYbJElCfn6+8lleXh7Ky8uHLSMIAiorK9HW1gaDwQCTyTRseSIKPkxwiEiVTCbTkPsPHz48Yhmj0Thk74yr8kQUfPiIioiIiFSHCQ4RERGpDhMcIiIiUh0mOERERKQ6THCIiIhIdZjgEBERkeowwSEiIiLVYYJDREREqsMEh4iIiAKuu7t7TM/HBIeIiIgC4uuvv8aePXuwZMkSJCYmoqqqaszOzaUaiIiIyK+OHDmCF198EWfPngUAzJo1C1u3bsXDDz88ZjECkuDYbDYAgCRJMBgMQ675MlyZsrIyGAwGAFwbhoiIaDyQZRkHDhzA7t278Yc//AHz58/Ha6+9BpPJhMTERHR0dKC2tnbM4vn9EZUoihAEASaTCWazGWVlZR6VefbZZ2E2m2EymVBaWurPqhMREZGHZFnGwYMHMX/+fCxZsgT19fXYsGEDDh48iGeeeQaJiYk+iev3HhxBEKDVapVtrVYLQRAG9dC4KhMfH6/st9vtKC8v91/FiYiIyCMNDQ1YtWoVPvzwQ2RlZeHgwYNYtGiRX2L7PcGpr6+HXq9XtvV6PRwOh1tlRFFEQ0MDRFEEAGzYsAEbN270qh6yLKOjo8Pl552dnYN+9zc1xu/q6lJ+H+7e+yq+u9R478c6vizL0Gg0/qoSEY0zX375JcrKyvCb3/wGsbGx+OMf/4jc3Fy/thtBMchYkiS3yjgcDsTHxyM9PR0AUFNTA7vdrmx7ore3161nfXV1dR6feyypKb7z5/zVV1/h2rVrfo/vKTXde1/Ej4yM9E9FiGhc+d///V88++yziIyMxI9+9CNs2rQJd9xxh9/r4fcEJyUlZVCPTWtrqzJgeKQyDodjUNn4+HiIouhVghMREYEZM2a4/LyzsxN1dXWYNm0aYmJiPD7/aKkxfnNzM44ePYrp06djypQpfo/vLjXe+7GOf/78eZ/Xo6SkBFOnToXJZEJBQQF0Oh1yc3P91r1NRJ7p6OjA+vXr8ctf/hJmsxlvvvkm4uLiAlYfvyc4RqMRW7ZsUbYbGhqU8TcOhwM6nc5lGYfDAYvFouwXRXHIN7DcodFoEBsbO2K5mJgYt8r5ipriR0dHK7+7e85AXr+a7v1Yx/dHN3NmZiYWL16MN998E+np6Vi7di327dvn87hE5BlZlrFjxw4UFxfjypUr+NWvfoWXX3454I+x/Z7gGAwG5ObmwmazQZIk5OfnK5/l5eWhvLzcZRmdTgez2QyLxQKHw4HCwkLodDp/XwIR+YHz37bVasWmTZsA3Oi1JaLg0d3djZ/+9Kd466238OMf/xgbNmzAvffeG+hqAQjQGBxXc9ccPnx4xDKc94YoNDhfJhBFEampqRBF8bYXEogocP7yl7/AbDbj6tWr+O1vf4tnnnkm0FUahEs1EFFQysnJwenTp/Hee++hvb0d+/btY4JDFCTOnz+PJUuWIDMzE6dOnQq65AYIkreoiIhutXPnTkydOhUJCQl4+eWXodVqkZmZGehqEYW8y5cvY8mSJZgyZQrKy8uD9tExe3CIKChlZmZi2bJl2Lt3L9LT07Ft2za0trYGulpEIW337t2477770NzcjA8++CBokxuACQ4RBambBxnn5uYC4CBjokD6z//8T6xcuRJ5eXmorq5GampqoKs0LK8fUXGOCiLyJQ4yJgoex44dw89//nO8+uqr2Lx5c6Cr4xavExzOUUFEvpSTkwOLxYL33nsPbW1tsFgsSEhIcPt4m80G4MYM2gaDYcg5s1yVcbXfYrEoE4wajUavJhklGk9kWcb+/fuRn5+Phx9+GEVFRYGuktu8fkTF7mMi8iWtVovly5fj2LFjsNlseOGFF/Dcc8+5dawoihAEASaTCWazGWVlZW6XcbXfbrejsrISJpMJq1evRklJydhdLFEQ6uvrw9NPPw2z2YxFixbBarUiIiIi0NVym9cJjiiKqKqqYvcxEfmEKIpYsWIFPvnkE3zyySfIy8tza/04ABAEAVqtVtnWarUQBMGtMsPtv3VZGbvd7s2lEQU9WZaxatUq7Nu3D7/73e9gsVgGLYI9Hnj9iConJwf79u0bNEfFeLt4Igpehw4dQnl5+aB9W7dudWtgY319/aD2SK/X3/YFzFUZV/sNBgOqq6uV/aIoer0WnizL6OjocPn5eFhRfjzF7urqUn4f7r77Kr4ngiW+xWLBnj178Oabb+KJJ57wS33cuXZZlt1eAsLrBIdzVBCRLyUnJ9+2LyMjw+vzOVez96aMJEkwm82oqKiAw+FATU0NAHi9VExvb69bvVHBvqL8eInt/Ll+9dVXuHbtmt/jeyOQ8U+ePIlXXnkF3/ve9zB79my3e07HykjXHhkZ6dZ5OMiYiIKS8y2qmzU0NLh1bEpKyqAem9bW1tseLw1XxtX+7du3w263IyMjAzqdzuuEKyIiAjNmzHD5+XhYUX48xW5ubsbRo0cxffp0TJkyxe/xPRGo+LIsw2q1YufOnTh8+DBmzZqFsrIyJCUl+a0O7lz7+fPn3T6f1wkOF8IjIl8yGo1YtWqV8ghIEAQUFha6feyWLVuU7YaGBuVNKIfDAZ1O57KMKIpD7nc4HHjttdewfft2iKKoJDne0Gg0bq0UH8wryo+n2NHR0crv7p4zlO59d3c38vLyUFFRgdmzZ2PTpk0oKChAXFycX+Lfarhr92SFcq8THM5RQUS+lJaWhqKiIlgsFgBAcXEx0tLS3DrWYDAgNzcXNpsNkiQhPz9f+SwvLw/l5eUuy7jar9PpMG/ePNhsNoiiiI0bN47xFRP5X2NjI/Lz83H48GG8//77WLhwIb744guEhY3/eYBHNch4NHNUEBGNxGAwDOq1qa2tdXv2VJPJNOT+w4cPj1jG1X6z2exWbKJgt3//fuzYsQPHjx9HXFwc3nvvPTz++OMjDsIeT7xOcJxzVFitVgDACy+8ELDuLCIa//bv3z/s55IkwWq14r333vNTjYjUp7e3F2vXrsV//dd/4dFHH8VPfvITvPrqq6rsoBjVI6qCggJl8F1ZWRm2bdsW9GtTEFFw+v3vf69MGuqKLMt+qg2RekiShL/+9a/YunUrzp49i8uXL+PXv/41XnzxRY/GtIw3Xic4o5mjgojoVuvWrUN2dvawZYZaboGIBmtubsann36Kuro67Nq1CydPngQAZGdn4+mnn8aTTz6JrKysANfS97xOcMZ6jgoiCm0jJTcA3B5kTBSKrl69is2bN+ONN95AV1cXIiIisGDBAuzZswcZGRmYNWuWqntsbjXqt6hu5u4cFeOFLMv40Y9+hFdffRXf+c53Al0dIiKiIQmCgOeffx6NjY145ZVXsHr1aiQlJanibShveZ3gjGaOivFCkiQcOHAAjY2N+OyzzwJdHSIiokE+//xzrF27Fh999BFSU1Nx/PhxPPDAA4GuVlDwOrVzzlEhyzJkWUZxcbFbXczjiXPGxJsX3iMiIgq0/v5+bN68GQ899BCamppQXl6OmpoaJjc38boHBxjdHBXB7sKFC3jhhRcAABMnTgxwbYiIKJR1dnaivr4edXV1ePfdd3HkyBE0NjZi3bp1+Pd//3dEREQEuopBx+0EJ9TmqLh5EHV7e3sAa0JERKGmra0NV69eRV9fH44fP46CggI0NzcDAL71rW9h2bJlMJvNmDt3bkgNHPaE2wlOqM1RERUVhQULFuDIkSP4+OOPsWnTJphMppB4tY4oGDQ0NChfNNra2iAIAtLT04d8g5NILerr67Flyxb83//9H3p6epT9CxYswK9//WtMmzYN3/72t5nUuMHtBCcU56h4/fXXUV5ejs2bN2P9+vVYv349Ll26NOJqtEQ0elVVVVi2bBmAG+PgFi9ejP379yv7iNREkiQUFhbi3XffhUajwc9+9jMYjUaEhYXhgQcegMFgYFLjIbcTnFCdo+LW8TdPPPEE/vSnP2HSpEkBqhGRerW1tcFqtUKj0aCysvK2z2tqapjgkOrY7XY89dRTuHjxIl566SU8/vjjeOihhwK6mrkajGqQcSh48cUXsXDhQpw6dQo9PT0oLCzEihUr8Morr2DevHmYMGFCoKtIpBparRbZ2dkoKytDfX39bY+jnn/++QDVjGhs1dXV4cSJE9i1axcqKiowffp0VFZWYvr06aitrQ109VSBCc4IoqKi8Mgjj+CRRx4BANxzzz348Y9/jO9+97vQ6XRIS0vDAw88gPDwcMiyjOTkZEyZMgVRUVGYPn06pk+fjvj4eMTFxSEyMjLAV0MU/AwGAzZu3IiqqirVTT1BoaO9vR01NTXQarU4d+4crl69iu7ubvT19WHPnj3K3Gr33HMP9uzZgx/+8IeIjo5W1WregcYEx0NPPPEELl26hJMnT+Ljjz/G6dOncebMGWU+IKvVim+++QYDAwODBl1HRUVh1qxZyMrKQlZWFmJjY9Hb24v+/n7IsoyJEyciPj4eAKDX69Hb26uqQdtEnsrIyMBbb70Fs9mMuLg4VFVVITMzE3FxcYGuGpFLVqsVP/nJT1BXV3fbZ+Hh4ejr64PJZMLu3buxaNEi3HnnnSE927AvMcHxQnR0NLKzs11+u5RlGT09Paivr8eXX34JSZJw6dIlfPbZZ/jzn/+MN954w604EyZMwNy5c3Hvvfdi0qRJmDx5MqKiotDS0oLOzk50d3ejq6sL3d3d0Gq1mDZtGlJSUqDT6dDT0wNZlhEXF4e4uDhMnDgRcXFxiIqKQlRUFBITEzlgjQAAPT09kCQJ/f396O/vD5rn/larFS0tLcp2dnY2Dh06hEWLFgWwVkRDO3nyJLZv345du3Zh8eLF2LRpE+6//35cv35daZvDwsLQ3t7OyWP9xOsE56233sJzzz034r5QpNFoEBUVhfvvvx/333//bZ9fv34dAwMDCA8PR3h4uLKvtbUVsixDkiS0tbWhoqICZ86cwcWLF/H555/jypUr6OzsxKRJkxAbG6skK1FRUZAkCfv27Rv0H8JwdDqd8jgtOTkZ06dPR0xMjNKz9PXXX+PChQvo7+9He3s77rzzTqSmpqKzsxPt7e2Ij4/H1KlTodfrER0djZiYmEH1iY6ORkJCAiZPnqxcI/mWLMtoa2tDT08P4uLi0NfXh9raWvztb3/DxYsXcf36daVsW1sbLl68iLq6Oly8eBEDAwPKZzk5OSguLg7EJQyi1+vx5JNPBroaRApZlnH58mVMmjQJEyZMQG1tLc6cOYNDhw5hx44dSEpKwo4dO7BmzRqXXyCZ3PiP1//z7N27V+k6BoCDBw+itLSUCY4bhpoZWa/XQ6/XK9sdHR2IjY1FamqqR9+o29vb0dbWhsjISGg0GrS3t+P69eu4fv062tvb0d3djY6ODpw9exZff/01mpubceHCBfz5z39WPgsPD8ekSZMwceJEJCcn4+6774Yoivj444+VHqGWlhY0Njaiv79/2PpoNBpMmjQJCQkJCA8Ph9lsxvLly9HY2IiOjg5ERkYq54yOjsbkyZMxZcoUREdHo6WlBYmJiYiMjMTAwICSFCYlJaGlpQUnTpxAU1MTtFotdDod7rrrLjz44IOYPHkyJk+ejMjISLS2tt72q6WlBQ6HAzqdDgkJCYiLi0NCQgL6+voAAPHx8bh+/Tp6e3txzz33YNKkSYiJifGqx6upqQlXrlzB+fPncfbsWZw9exbnzp3D9evXERYWBo1Gg5aWFoSHh6O/vx+TJ0/GXXfdhfDwcOj1ekRERGDatGmIi4tDV1cXIiMjIcuyci1tbW1obW3FuXPncObMmSGf34eHhyM5OXlQwxobG4upU6ciKysLM2bMQGJiopJwz5gxAw6Hw+NrHWunTp2C0Wgc9EiqurqaPTjkV/39/fjoo49w7Ngx/PGPf8SxY8dw9913K4OCgRu97SUlJSgoKOAXuiDi9U/CbDbDarUiIyMDFRUVqK+vx+rVq8eybuQFZ7LgdMcdd3h1no6ODmXpDVcJVn9/Pzo7O5Vf3d3dyq+uri5cu3YNzc3N+Oabb3Dt2jXo9Xr09/dj9uzZ+M53voPY2Fj09PQoSVl3dzcuX76Ms2fPor29HT09PcpbamFhYQgLC0N3dzcuXboErVaLhx56CBkZGWhvb4fD4cCRI0dQWlo6ZNIVHh6OhIQEJZHU6XT48ssv0draivb2dly7dg0REREYGBhAZ2fnbccnJCQgKysLaWlpGBgYQEdHB7q7u9Ha2gqdTgeNRqM8LnRe/+XLl/HFF18o59DpdJg5cyZmzpwJrVYLWZbR39+P+Ph4JXm7fPky6urq0NTUhJiYGMiyjN27d6OrqwvR0dHo7u6GRqNRrsWZ3GVlZeHpp59GcnIyIiMjldm3Z86ciQcffBDR0dEe/eyDIcExm81YunQpUlJSoNVqcfr0aRQVFQW6WhQCZFnG8ePHUV5ejn379qG5uRl6vR4ZGRl4++238fnnn0MURezevRuPPvooACAlJSWwlabbeJ3gPP/882hra0NeXh7S09Oxbds2t4+12WwAbkxsZDAYhpwgcKQyNpsNOp1OdZMLjicTJky4LaEaTlNTE0pLS/Gzn/0MSUlJw5YdLsGSZdllb8rAwAAkScKVK1fQ09OjJDSxsbFu9cAMDAzg6tWr+PTTT6HT6dDR0YGrV6/iyy+/xIkTJ3Do0CGEh4cjNjYWERER0Ov1aGhoUB5LRkdHK4/tMjMz8Ytf/AIGgwH33Xcf7rzzTrfqcOu133q9w12/mhgMBpSXl8NqtcLhcGDt2rUwGAyBrhaNI01NTTh27JjSs1lXV4euri6kpKQMmuJDlmXU19fjH//4B44fP44//OEPOHXqFO6++2489dRTWL58OR5++GHl392zzz4bkOshz3id4CxatAharRbbtm2DVqvFvn370NbWNuIjKlEUIQgCNm7cCODGX5Rbk5SRyjgcDpSWliI/P9/b6tM4Ntx/7mFhYUhISEBCQoJX5w4LC8PEiRORlJTk8eNBX7n1ekMhuXGyWCyoqanBr371K1RVVSmPFIluJcsympqa0NjYiL///e9466238OmnnwIAkpKSsGbNGvzgBz9AU1MT7r33XsyaNQstLS1oa2tDe3s7zpw5AwCYNGkSUlNTsW/fPuTl5XGus3HM6wQnLi4Ou3btUp7rx8fH4wc/+MGICY4gCIPGAmi1WgiCMCiBGamM1WpFTk6Ot1UnonGgpKQEKSkpyr97vkVFt+rt7cUHH3yAr776Ch999BEqKioA3PgSsHjxYvz+97/H/PnzcfHiRRw+fBhvvPEGIiMj8e677+LKlSuYMGECUlJSEBkZiddffx3f/va3kZCQgC+++AKpqalMbsY5rxMc5yhx5yrjOTk5bo3Bqa+vHzSYVq/X3/a8f7gydrsdRqNReYTlLVmWh51QyTkOY6jxGP6gxvhdXV3K7yNNZhXI61fjvR/r+P54TJaZmYnFixejqqrKp3FofDl79iyOHj2KU6dO4X/+539w7do15dHwf//3f2P27NmYOXMmEhMTlWOcicrcuXORlJQ07MLRnGhPPbxOcNLS0rBixQrlmXhZWZlH43BuJkmS22VEUYTJZPIqzs16e3vdmg57qMma/ElN8Z0/w6+++grXrl3ze3xPqene+yK+r2fmbmhouG0f36JSv97eXhw/fhyVlZX47LPPcOHCBTQ2NuLOO++EXq/HX//6V3R3d0Ov12PNmjV46qmnkJGRAQCcMI8G8TrBOXToEMrLywft27p1K1JTU4c9LiUlZVCPTWtr620DB12VKSsrg8FggM1mQ3V1NURRhMFgQHp6usf1j4iIwIwZM1x+3tnZibq6OkybNg0xMTEen3+01Bi/ubkZR48exfTp00dckT2Q16/Gez/W8c+fP+/zeqSlpSEvLw8JCQkQBAGCIKCwsNDnccn/WltbYbPZ8MEHH8BqtSpfhtLT0zFr1izMnz9feSvztddew9q1axEdHR1S49HIc14nOLcuggdAyaKHYzQasWXLFmW7oaFBecbunJvEVZmbx+lUV1cjMzPTq+QGuPGM1p0BpM7J7wJFTfGdrypHR0e7fc5AXr+a7v1Yx/fHfyzZ2dnYtm0bLBYLZFlGcXEx0tLSfB6XfOcvf/kLjhw5gm+++QYXLlzAxYsXIcsyLl68iL6+PsyZMwf/+q//irS0NDz++OPQ6XSBrjKNY14nOKIo3rZvqC7lWxkMBuTm5sJms0GSpEFvQuXl5aG8vHzYMsCNQchVVVUQRRHp6el8dZRIpQwGg9e9NqOZjmKk/U5j8bhcrZwDgC9cuICpU6eioqICe/bsQWJiInQ6HTIzM7FkyRKEhYUhJSUF//Iv/4KUlBRlmgROmEej5fXfIKPRiFWrVik9KJ50H7tqFA4fPjxiGWfsWx+PEdH49txzz+H5559X1nj7/ve/73LCwYyMDBQVFQ3ZkwyMbjoKV/sdDgdEUVReptiwYYNfE5w9e/Zg//79uO+++1BSUhKUb/j09/fj5MmT+NOf/oSysjI0NjYiNjYWHR0dSElJwW9+8xvk5+fz0RL5xagGGRcVFcFisQAAu4+JaFQWL148qDc2OztbSTJuJYoiDh486HJaitFMRyGKostjLRYLjEYj0tPTR7WmkDdvcW7cuFEZ+/Too4/i+9//vtfxR+Lpm3y1tbXYvn07Dhw4gNbWVkycOBHLli3DmjVrkJGRgatXrypvNY10zlB+gzPU44/1G5yj6gM0GAx44YUXAICTbxHRqNy6sOa6detclrVYLMNO5jia6SiGO7awsFCZvX3Xrl0jX5QLnrzF+c0330AQBJw/fx4lJSV444038MMf/hAzZ87EggULcOXKFTz22GOYM2eO1/UZLj5w4z+VkydPor6+Hh0dHejr68MjjzyCS5cu4YMPPsDRo0eRmJiIZcuWYe7cuUhPT0dERAQAKBPoXblyxavYY2G8vcEZ6vHH6g1OrxOctrY2FBQUQBAEaDQaGI1GbNu2jYkOEY0JZw+Jc12tm9uWmycAdJcn01G42l9dXY3y8nKUlJRg5cqVXj8q9+QtzmeeeUZJhp566ik8+uij2LNnDz799FPs2LEDCQkJ2L9/PzZu3IiCgoIxefzjjO9wOHDq1CkcOHAAR44cAQBERUUBALZv3w4ASE1Nxc6dO/Hkk0+OydQBofwGZ6jHH+s3OL1OcHbu3InVq1fj7bffBgCcPn0aVqsVy5Yt8/aURESK4b5E3drbc6vRTEcBYMj9NpsN8+bNQ3p6Ot555x1s2LDhtsde7nLnLc76+nocOHBgUE9PUlISkpKS8NBDDwG4sXbawMAA1q9fj5///Of43e9+h9LS0lGt0dfX14eTJ0+iqKgIH374IcLDw5Geno73338fixcvhizL6O7uRm1tLZKTk5GcnOyTMTWh/AZnqMcfqzc4vZ4VKTMzUxkMCNwYk+PtK9tERLdyfon64osvUFtbi7Vr18Jqtbp1rNFoRHV1tbJ963QUw5VxtV+SJMTHxw+KcfP2WPvlL3/pcgySU1hYGMLDw/Ef//EfOHr0KKKiojBv3jwsWLAAH374IXp6etyOd+nSJRQVFeHee+/F/PnzIQgC3n77bbS3t+Pvf/87nnjiCURHRyMmJgZ6vR7Z2dkwGAwcMExBy+senKHmJ+CcBUQ0Vob6EuWu0UxH4Wq/2WxGWVkZampqANxYf8+XX+qcj+aAG4+Fbp4bbCjz589XVsJ+6aWXsGjRIkyePBk//elPsXDhQnzrW98CcGMtv6ioKNx1113Q6XS4dOkSSktLUVFRgYiICJjNZixfvhyxsbGYPXu28kiKaLxxO8E5dOjQoO3KykqcPn1aSWocDgcMBoPL1zaJiDwx2i9Ro5mOwtV+d9bbGwsDAwM4e/as8ibZwoUL3TpuwoQJWLJkCXJycnD69Gls374dRUVFKCoqGva49PR0bN68Gc8++ywSEhKUuWiIxjO3E5wtW7bAaDQqA/+0Wi1aWlrQ0tKilGltbeU6MUTkFX6J+idJktDR0aH0vngqKioKc+bMwTvvvIOtW7fi3LlzaGpqQmdnJ7773e8iIiICLS0tkCQJEydORGpqKh81keq4neBs3LhxUHcxEdFY4peof3LO1TJx4sRRn+uOO+7A3Llzb9t/82rbRGrkdoLD5IaIfIlfov5pqFfjicgzXOyDiILCUMlNe3u78uZUTk5OyPyH7+zBCeRrwkTjndeviRMR+ZIoilixYgU++eQTfPLJJ8jLywuZga/swSEaPfbgEFFQOnTo0G0zBW/duhWpqakBqpH/XL9+HcDYjMEhClXswSGioDTU21IZGRkBqIn/ORMcPqIi8h4THCIKSqIo3ravoaEhADXxP/bgEI0eH1ERUVAyGo1YtWqVMluwIAgoLCwMcK38o6OjA5GRkQgPZxNN5C324BBRUEpLS0NRURFkWYYsyyguLg6Z18jb29sDspI0kZrw6wERBS2DwRAyvTY36+joYIJDNErswSEiCjLt7e0cYEw0SkxwiIiCTEdHB6KjowNdDaJxjQkOEVGQ4RgcotHjGBwioiDz4IMPQq/XB7oaROMaExwioiDzb//2byGzLAWRr/ARFREREakOExwiIiJSHSY4REREpDpMcIiIiEh1mOAQERGR6jDBISIiItVhgkNERESqwwSHiIiIVIcJDhEREakOExwiIiJSnYAs1WCz2QAAkiTBYDDAaDS6XcZms0GSJNjtdphMpiGPJSIabTsz1P6XX34ZmzZtgk6n88clENEo+L0HRxRFCIIAk8kEs9mMsrIyt8vY7XYAgNlsRmFhIQoKCvxadyIaH0bTzgy3/+DBg3jsscfw8MMP44EHHhjyvEQUHPzegyMIArRarbKt1WohCMKgb1euyjg/M5lM0Ol0iI+Ph91uR3p6ukd16O3thSzLOHXqlMsysiwDAM6dOweNRuPR+ceCGuP39/fje9/7Hi5duoTLly/7Pb671Hjvxzp+b29vQOrmrtG0M6Ioumx/Tpw4ofTeWCwWmM1mj+vG9sf/scdL2xPq8ce67fF7glNfXw+9Xq9s6/V6OBwOt8rc+khKkiSPkxsAys0Z7iZpNBpERkZ6fO6xosb44eHhSEhICFh8d6nx3o91fI1GE9QJzmjameHaHyeLxYKcnByv6sb2x/+xx0vbE+rxx7rtCcgYnFtJkuRxmQ0bNqC4uNireHPmzPHqOCIav7xpZ4baL4oiHA6H1+Nw2P4Q+Yffx+CkpKQM2m5tbYXBYPCojM1mg9FoHPSNiojIaTTtzEjH7t2716ueYyLyL78nOEajEdXV1cp2Q0OD8tjJ2YU8XBlBEKDT6WAymWC32yGKoh9rT0TjwWjameGOBYCDBw/eliwRUfDRyM5RPX508yuY8fHxSk/MwoULUV5eDp1ON2QZURSRl5ennMfhcODMmTP+rj4RjQPetjPDHQsAeXl52LVrF18VJwpyAUlwiIiIiHyJMxkTERGR6jDBISIiItVhgkNERESqwwSHiIiIVIcJDhEREakOExwiIiJSHSY4REREpDpMcIiIiEh1gmKxzWB080ymBoNh0FTtvvDyyy9jzZo1AICKigqsW7fOp/VwOBywWCwAgNWrVyv7XcUb63q4iu/P+2Cz2SBJEux2+6CV6v1xD1zF9tf122w2GAwG1NTUAADMZvOwcfz97yGUBeJeh1L7E+ptz3DxVdf+yHSb+vp6ef369cr2ypUrfR5z6dKlclZWlrxy5UpZkiSf18Nqtcqvv/66XFpaquxzFc8X9Rgqviz77z7U1NTIVqtVlmVZliRJzsrKGjbWWNbBVWxZ9s/1S5IkL126VPnzzJkzh40TiH8PoSpQ9zqU2p9QbnuGiy/L6mt/+IhqCIIgQKvVKttarRaCIPg0Zn5+Pk6cOIF33nlHWePGl/UwmUy3rZrsKp4v6jFUfMB/90GSJOUcOp0O8fHxsNvtfrkHrmID/rl+nU6H8vJyAIAoioMWsvXXz5+GFqh7HUrtTyi3PcPFB9TX/vAR1RDq6+uh1+uVbb1er6xA7CvO1YslSQJwo8vO3/VwFc+f9fDXfXCuGu0kSRLS09NRUVHh83vgKjbg378HFosFlZWV2LZtG4Dg+PmHukDda7Y/odH2DBcfUF/7wwTHTc4fuK84n3UCN1Y7zsnJCUg93I3nq3oE4j5s2LABxcXFLj/35T24NbY/r99sNsNgMKCkpAQbN270KI6//x6GMn/ca7Y/odf2DBVfbe0PH1EN4dbuy9bWVhgMBp/Fs9ls2LJli7Kt0+kgiqLf6+Eqnr/qEYj7YLPZYDQaYTKZAPj3Htwa25/X7/wGZDQaYbVaIQhCwH/+5P+2B2D7A4Re2zNUfDW2P0xwhmA0GpWuOgBoaGjw6ZsMBoMB8+bNU7YdDgfS09P9Xg9X8fxVD3/fB0EQoNPpYDKZYLfblefB/rgHQ8X21/VbLBbs3LlT2Y6Pj0d8fHzAf/7k/7YHYPsDhFbb4yq+GtsfjSzLstc1VbGbX0uLj49Xslxfx6uursby5cuVDNVX9RAEAXv37kVbWxvMZvOgLH6oeGNdj5Hi+/o+iKKIvLw8ZdvhcODMmTPDxhqrOrgT25fX73A4lAausrISer1eeV3WXz9/ci0Q9zqU2p9Qbnvcja+W9ocJDhEREakOH1ERERGR6jDBISIiItVhgkNERESqwwSHiIiIVIcJDhEREakOExwiIiJSHSY4NK4JgoC8vDxYLJZAV4WIQgjbnuDHBIfGNaPRiOzs7EBXg4hCDNue4McEh8a9m1eaJSLyF7Y9wY0JDhEREalOeKArQOokCALsdjsMBgOqq6uxbt06CIKADRs2KAuoSZIEu92OwsJC6HQ6AIDdbocgCDAYDBBFESaTSVkPRRRF7N27F5mZmZAkCTk5OcpxzvVNRFFEZWUltm/fHrBrJ6LAYdtDCplojNXX18tLly5Vtvfu3SuXlpbKsizLr7/+uvJnWZZlq9Uqr1y5UjnO+WenpUuXypIkyZIkyY899pgsSdJt5yktLZVfeukl5ZiVK1fKNTU1vrk4IgpabHvoZuzBoTG3d+9exMfHQxAEZd/Ny907v/kAgMlkQkFBARwOB/bu3Yu0tLRB50pOTobVagUAGAwG5dg1a9YMKpeZman8WavVQpKksbsgIhoX2PbQzZjgkE+kpaXBaDQq22azeVTnczgc0Gq1yvbNDRURkRPbHnLiIGMac7m5uaiqqhq07+ZvVA6HQ/mzzWaD0WiETqcb8rjTp08jJycHJpMJp0+fdnlOIiK2PXQzjSzLcqArQeojCAIqKyuV7ltnQ7Jlyxa0tbXBZDLB4XCguroaa9asUb4V3TpAMDc3F+np6S7PKYoi1q9fDwAoLi6GKIooKSlBWloa1q1bpwwSJKLQwLaHnJjgkF9t2bIFKSkpo+42JiLyBNue0MNHVERERKQ6THDIbwRBQFVVFWw2G+x2e6CrQ0Qhgm1PaOIjKiIiIlId9uAQERGR6jDBISIiItVhgkNERESqwwSHiIiIVIcJDhEREakOExwiIiJSHSY4REREpDpMcIiIiEh1/h9GaxAUuXZgzgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAACoCAYAAADgkuTbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAs8klEQVR4nO3de1BUZ5o/8G+DKKB9ujV454BcvEDDGuIloc1kN8FLNzXZKkgmODcXL5Gpmo1mEsnWbiJZwaqZHXESJ0ltKUllNlUzEbPhj90IrWOcmUQPm5gJWaG9xQv2wWiMKN0oqCjn9we/PksrDX2jr99PVQr77fec874cffKc97znPRpFURQQERERxYC4UDeAiIiIKFiY+BAREVHMYOJDREREMYOJDxEREcUMJj5EREQUM5j4EBERUcxg4kNEREQxg4kPERERxQwmPkRERBQzxoTioBaLBQBgt9shiiKMRqPHdSwWC0RRRFtbGwCgrKxsxPojHYuIope/8Wao8g0bNmDr1q0QBMHrYxFRiClBZrPZlM2bN6ufy8vLPa5jt9uVkpIS9c9z5swZtr4nxyKi6OVPvBmufM6cOcrChQuVhQsXKnPmzFF27drFeEMUIYI+4iNJErRarfpZq9VCkiSXK6Ph6jQ0NAAAZFlWt3FXX5blEY/liZaWFiiKgoSEBO86SxTD+vr6oNFoUFBQELI2+BNv3MUPADhy5Ig62lNfX4+ysjLU19cz3hCFiDfxJuiJj81mg16vVz/r9Xo4HA6v6tTX1+Pw4cPYsWPHsPU9OZYnFEWBoii4ffu219vS/+nv70dvby+SkpIQF8fpZTT6/Ik37spNJpNaVl9fD7PZ7PGxPMF4EziMOTSUkMzxuZfdbveqTllZGURRRG1tLaqrq73apyfHuldCQgIURUF2drbbOr29vWhvb8esWbOQlJTk9THCVSD79e233+K9997DqlWrMHXq1AC10Hc8Z6Pr9OnT0Gg0ITu+O97GG3flsizD4XDcN8/H22Pdy5N4A4TPeQ60aI05PF+jy5t4E/TEJy0tzeUqqKurC6IoelzHGWiMRiM2btwIk8k0Yv3hjuUpjUaD5OTkEeslJSV5VC/SBKJfiYmJ6s9w+h3xnI2OcEh6AhFv3G27e/duLFmyxKtjecrTeAOE/jyPlmiNOTxfo8ObeBP0sT+j0YjW1lb1c0dHh3oP3Bk03NWpr6/Hzp071XKdTgedTue2/nDHIqLo50+8GSl+7Nu3zyWxYbwhigxBH/ERRRHFxcWwWCyw2+1Yv369+l1paSkaGhrc1jGbzZAkCZIk4fDhwygrK4PBYACAIesPd6xA++abb9De3o6cnJxROwYRecefeDNS/BAEATqdzqNjEVH4CMkcn8GTAwc7cODAsHUEQVDL772ScrdPd+WB9tZbb2Hv3r3qREciCg++xpvhygGoT5h6Wp+IwgOnuQdIdnY2zpw5gxs3boS6KUREROQGE58AKSgoQH9/v8s9fiIiIgovTHwCJDc3FwkJCfjyyy9D3RQiIiJyg4lPgIwdOxazZ89GS0tLqJtCREREbjDxCaCcnBwmPkRERGGMiU8A5eTk4OTJk5zgTEREFKaY+ARQTk4O+vv78dVXX4W6KURERDQEJj4BlJWVhXHjxuGvf/1rqJtCREREQ2DiE0BjxoxBXl4evvjii1A3hYiIiIbAxCfAHnroIY74EBERhSkmPgFWUFCA48eP4/r166FuChEREd2DiU+AFRQUQFEUTnAmIiIKQ0x8AiwnJweJiYlYuXIlFixYgBUrVuDq1auhbhYRERGBiU/AJSQk4J133sEzzzyD/Px87N+/H5999lmom0VEREQAxoS6AdHoRz/6EX70ox/h7t27+MMf/oAzZ86EuklEREQEjviMqvj4eGRmZjLxISIiChMc8RllWVlZOH36dKibQRTRamtrkZ6eDpPJhI0bN0IQBBQXF2P58uWhbhoRRZiQJD4WiwUAYLfbIYoijEajx3UsFgvsdjusVitMJpNavmHDBmzduhWCILjsZ8OGDaioqAAANDY2orKyctT6NZSsrCwcOHAgqMckijb5+flYsWIF3n77bRgMBrz44ovYs2ePR9v6G2/cbVtXVwdRFAEAJpMJQOjjDRGNLOi3umRZhiRJMJlMKCsrQ11dncd1rFYrAKCsrAybNm3Cxo0b1fr79u1DUVERFi1ahLlz56rbdHR0oLy8HLW1tWpACqasrCycPXsW/f39QT82UbRwXtA0NTWhuLgYAKDT6Ubczp94M9y2q1evRllZGUwmE3bt2qWWhzreENHIgj7iI0kStFqt+lmr1UKSJJcrKXd1nN+ZTCYIggCdTger1Qq73Y4jR46owbG+vh5lZWUAgPXr16tXY/5QFAU9PT1uv+/t7XX56ZSamopbt27hzJkzmDlzpt/tCDZ3/fLFzZs31Z/D/S6DJZB9Cyfh0i9FUaDRaAKyL1mW1Z85OTmQZRkOh2PE7fyJN7IsD1mu0+nUcqvVioaGBrVOsOINED7nOdCiNebwfI0ub+JN0BMfm80GvV6vftbr9fcFMHd1Bt/aAgaGnw0Gg8u29fX1MJvN6ufW1la1LgA1IfJWX18fjh8/PmK99vZ2l8+KogAA/vSnP2HBggU+HTsc3NsvXzjPwblz58JqbaNA9C0chUO/xo4dG5D9mM1m7NmzBx9++CGuX7+OPXv2uMQId/yJN+7KZVlGR0eHmoxVVVWhuroaQPDjDRAe53k0RGvM4fkaPZ7Gm7CY3Oz8y+lNnaqqKtTU1LiUOa8CB8/zGXyPfenSpTCbzffNA/JEQkICsrOz3X7f29uL9vZ2zJo1C0lJSWp5RkYGNBoN7t69i5ycHK+PG2ru+uWLb7/9Fp9++ikyMjIwderUALXQd4HsWzgJl34FclL/zp07kZ6ejokTJ2LDhg3QarXIz8/3aV++xJvB5Q6HAzqdTr3oamtrg9VqhcFgCFq8AcLnPAdatMYcnq/R5U28CXrik5aW5nLF1dXVpU4Q9LSOxWKB0Wi8b0h59+7dWLJkiUu91tZWNRgJggBZlu8bJfKERqNBcnLyiPWSkpJc6iUnJ2PmzJno6OjwaPtwdW+/fJGYmKj+DKffRSD6Fo5C3a9A3eYCfJ/c7G+8Garc4XC47EOn00GWZciyHPR4A4T+PI+WaI05PF+jw5t4E/TJzUajUR0OBgYmAzpvXzmDzHB1JEmCIAgwmUywWq3qcDMA7Nu3zyUgiaLokgg5HA6fgpC/srOz+Ug7kR98ndzsT7wZrnxw3JFlGUajMWziDRENz+cRH1/X1RBFEcXFxepj6evXr1e/Ky0tRUNDg9s6siyrT3IBA4Hl5MmT6mfnhGcng8EAi8Wijvy8++67vnbXL1lZWXxpKZEffJ3c7E+8cVcuCALKyspQX18Ph8OBTZs2QRCEsIk3RDQ8nxMff9bVcPfUw+D1boaqI4oijhw54na/g5+uuHc/gXjSwldZWVn48MMPQ3Z8okhnNptRX1+PDz/8EN3d3aivr8fEiRM92tbXeONPeSjjDRENz+fEZ/DQ89atWwF4NvQci7KystDV1YWrV69i0qRJoW4OUcTRarVYuXIlmpqaAAA/+9nPMGHChBC3iogikc9zfGRZRnNzs9dDz7EoKysLAPjOLiIfybKMVatW4dChQzh06BBKS0s9ftybiGgwn0d8fF1XIxYNTnwWLVoU4tYQRZ79+/ffdyt7+/btEblEBBGFls8jPjt37oQgCOq6Gjab7b7HRGmAXq/HpEmTOOJD5KPU1NT7yvLy8kLQEiKKdD4nPvn5+fjBD36A3bt3w2AwYMeOHejq6gpg06ILH2kn8t3gx8edOjo6QtASIop0Pic+vq6rEauysrLQ0tKCrVu34sEHH0RRURGamprUV1oQkXtGoxFr1qzB9u3bsX37djz11FPIzc0NdbOIKAJxcnOQzJkzB//7v/+LX/3qV8jNzUV3dzeKi4sxf/582Gy2UDePKKzl5uZiy5YtUBQFiqKgpqYGhYWFoW4WEUUgvyY3+7quRizasGEDFi9ejL/7u79DcnIyFEXBJ598gr//+7/H7373O1RVVYW6iURhTRRFbNq0Sf18/PhxTm4mIq/5nPhwXQ3vTJo0Sb0lCAy8V+Rv//Zv8fjjj+PgwYNMfIgG+eCDD4b93m63o6mpiQuDEpHX/LrVxXU1/FdUVITm5mb09PSEuilEYeP999+H3W53+x8Azo8jIp/4POLDdTUCo6ioCLdv38ahQ4dGfM8ZUayorKwccQ6P82WjRETe8HnEh+tqBEZOTg6mTZuGjz/+ONRNIQobnkxc5lNdRNHvxo0bePPNN/HXv/41YPv061bXvbiuhvc0Gg2eeOIJHDx4MNRNISIiCgs3b97E66+/jszMTLzwwgs4e/ZswPbt860u57oaBoMBACBJkssTF+S5oqIivP/++7h27RqfjCMiopjV29uLuro6/OpXv8Lly5dRXl6OzZs3Iz09PWDH8HnEh+tqBE5RUREURcGf//znUDeFiIgo6G7cuIHf/OY3yMrKwi9+8QssX74cx48fx9tvvx3QpAfwY8QH4LoagZKeno6srCx8/PHHKCkpCXVziIiIgsJut+PNN9/Ea6+9Brvdjp/85Cf4l3/5F8yePXvUjulx4sN1NUZXUVERLBaLui5SXl4eX/pKRERRqaurC2+88QZ+85vfoLe3F2vXrsVLL70U8NGdoXic+Lz//vsuC/ANxdN1NSwWC4CBZEkUxSEfS3VXx2KxwG63w2q1wmQyqeUbNmxARUUFAKCxsRGVlZUeHyscfP/738euXbvU37Fer8fBgwdRUFAQ4pYRhV5HR4f6JGl3dzckSYLBYBjy6dJ7+Rtv3G1bV1enXpyYTCaPj0UUqxRFweeff46dO3di9+7d6O/vR0VFBf7pn/4JM2bMCFo7PE58ArWuhizLkCQJ1dXVAIDVq1fft527OlarFQBQVlYGh8OBoqIiHDlyBMBAYCwvL0deXh527Njh8bHCxZNPPonLly+jr68Pt27dwsqVK7Fs2TL8+c9/5jIBFPOam5vxgx/8AMDAqvErVqzABx98oJa540+8GW7b1atXY8eOHRAEAaWlpTCZTBEVb4iCpb29HR9++CE++eQTSJKEK1euID09HS+//DLWrl2LadOmBb1NHic+gVpXQ5IkaLVa9bNWq4UkSS4Bwl0d53cmkwmCIECn08FqtcJgMGD9+vXqVZc3x/KUoijDrq7c29vr8tMX48ePV//c0NCA4uJiPPHEE6isrERKSgpEUURhYSE0Go3Px/BWIPrldPPmTfVnOKxUHci+hZNw6ZeiKH79Xe3u7kZTUxM0Gg0OHz583/dtbW0jJj7+xBtZlocs1+l0arnValUXcg1mvAHC5zwHWrTGnFg6X+fOncNHH32EhoYGfP7550hKSsLixYuxbt06PProo3jssccQHx8PAAE7L97EG78mN/vCZrNBr9ern/V6/X1vdXdXZ/CtLWBgONn5OH1ra6taBgyMCnlyLE/19fV59EqO9vZ2n/Y/lO3bt6OyshKbN2/GrVu3AADr16/H+vXrA3YMTwWiX85zc+7cOVy9etXv/QVKIM9ZOAmHfo0dO9bnbbVaLQoLC1FXVwebzXbfba1169aNuA9/4o27clmW0dHRoa5lVlVVherq6pDEGyA8zvNoiNaYE43nS1EU7N+/HwcPHsSf/vQnnDlzBgkJCXjkkUewdetWPPbYY0hOTlbrnzp1alTa4Wm8CXriMxTnX05v6lRVVaGmpkb97JzTAwBLly6F2Wz2+VhDSUhIQHZ2ttvve3t70d7ejlmzZiEpKcmnYwzl8OHD6tXfW2+9hS1btiAvLw9r164N2DGGE8h+ffvtt/j000+RkZGBqVOnBqiFvhutcxZq4dKv06dP+70PURRRXV2N5ubmgC2X4Uu8GVzucDig0+nUi662tjb1NrwvxxrKSPEGCJ/zHGjRGnOi7XzdunULhw4dwt69e7F37150dHRAr9fDbDajuroaS5cuDeqLy72JN0FPfNLS0lyugrq6uu57emmkOhaLBUaj0WVCYWtrq5r8CIIAWZY9OpanNBqNS8bqTlJSkkf1vDV+/Hi8+uqruHr1Kp5//nmkpqYG9dH3QPQrMTFR/TkavyNfjdY5C7VQ9yuQt2Tz8vLwzjvvoKysDBMmTEBzczPy8/NHDKz+xpuhyh0Oh8s+dDpdyOINEPrzPFqiNeZE8vk6efIkPvroI/zxj3/EJ598gt7eXsycOROLFy/GG2+8geLiYr9Gef3hTbzxeQFDXxmNRvW2FDAwKdl5+8oZNIarI0kSBEGAyWSC1WqFLMsQRRFLlixR6zscDhgMhmH3E4k0Gg1ef/11PP3003j66afxyiuv4Pbt26FuFtGoa2pqwrVr19TPhYWF6ry/4fgTb4YrH/zKHlmWh61PFKlu3LiB5uZm/Nu//RsKCgowb948bN68GQBQXV2N1tZWnDx5Ei+//DKWL18esqTHWz6P+Lzzzjv33W4ZquxeoiiiuLhYfSx98HyV0tJSNDQ0uK0jyzI2btyo1nc4HDh58iSAgVEf58jPu+++O+KxIlVcXBx+//vfIz8/H1u2bEFjYyPee+89PvlFUU2v1+OZZ57xejt/4o27ckEQUFZWhvr6ejgcDmzatAmCIEAQhKiLNxQ7Ojs70dLSgpaWFnz55ZdoaWnBqVOnoCgKkpKS8OSTT6Kqqgpms1kdSQMCNzk5mHxOfHbv3q0OOwPAvn37sGvXLo/mntz79JXTgQMHhq0jiqL6+Lq7fd67nbtjRbIxY8bglVdegdlsxqpVq1BQUIAXXngBVVVVLk+GEUWLo0ePwmg0utzaam1txfLly0fc1td4E8hyonBy7do1fPnllzhy5Ag+//xzfPHFF+oo5vjx4zF//nwsXboUlZWVeOihh5Cbm4tx48aFuNWB43PiU1ZWhqamJuTl5aGxsRE2mw3PPvtsINtGI1iwYAG+/PJL1NbWYuvWrXj//fexefNm/PSnP3XJyIkiXVlZGUpKSpCWlgatVotjx45hy5YtoW4WUVjr6enBF198gaNHj+Ls2bM4c+YMjh49qj5ZptVqsXDhQvzwhz9EQUEBCgoKkJ2drT5qHq18TnzWrVuH7u5ulJaWwmAwqIsGUnCNGzcOL7/8Mn74wx/ipZdeQkVFBTZv3oy1a9ciMzMTDzzwAPR6PZKTk5GUlIQxYwZOeUJCAjIzMxEXF/RpXkReE0URDQ0NaGpqgsPhwIsvvshXuhD9f9euXYPVaoXVakV7eztkWcapU6fQ0tKCO3fuICEhARkZGcjMzMRTTz2lJjlz586N+iRnKD4nPsuXL4dWq8WOHTug1WqxZ88edHd3B+0xa3KVmZmJ//zP/8SpU6ewfft27Ny5E52dncNuo9PpUFhYiCVLlsBoNOLhhx/mrTIKW/X19Whra8Prr7+O5uZmTJw4MaiPyxKF0p07dyDLMs6ePYuzZ8/i1KlTaG1tRVtbGy5cuAAAiI+PR2pqKkRRxLx581BeXo4lS5YgLy8vJhMcd3xOfCZMmIDf/e536kqlOp0OTz31FBOfEJszZw527tyJnTt34s6dO7h27Rq6urrQ29uLnp4e3L17F8DAbP0jR47g8OHDqK2thd1uR3x8PERRREpKClJSUpCZmYnMzEyMHz8es2bNithHMMl7N2/eVBfpk2UZNpsNsizjypUruHLlCubNm4edO3cGrT21tbVIS0tTn5IqLCzE/v37PZrjQxQJFEXBN998oyY27e3tsNlssNlsOHfuHM6fP487d+4AGHjIJT09HXl5eVi1ahUMBgPy8/Mxd+7cqJqLM1p8TnwqKiqg0WjUt7abzWbO8QkzY8aMweTJkzF58uQhv3f+T6O/vx/Hjh2DJElob2/HlStXcPnyZfzlL3/B22+/jdu3b+P555/Ho48+ikceeQRpaWlIS0vDggUL3O6bwlN/fz8uX76MM2fO4MSJE/j6669x6dIlXLlyBZ2dnWpi09XV5bLd5MmTkZqaiilTpkAURcyfPz+o7c7Pz8eKFSvQ3Nwc1OMSBdLNmzdx/PhxfPPNN7h48aIaa1tbW/HVV1+5rC49depUpKWlQRRFlJSUIDMzExkZGcjKykJ6enrEPDoejnxOfHJzc7Fq1Sr1PntdXR3n+USouLg45OXlDflIfHd3NxobG3H+/Hn85S9/wXvvvYcLFy6gv78fAPDggw9i6dKlWLhwoToxjvOG/KMoivpuIeerShRFQV9fH3p6enDjxg1cu3bNJVHp7OyE3W5HT08Puru71duct27dgqIoAAZWjr1w4YK69pNGo0F6ejpmzJiBBx54APPmzcPkyZPxwAMPYOrUqRBFUf0v1CvNdnR03Ffm6VNd0erf//3fMXfuXOTk5IS6KYSBf2vnz5/HxYsXcenSJXR0dKgjpc6Rm++++06tr9FoMGnSJKSkpCA3NxfPP/885s+fj+zsbGRkZIT831w08znx2b9/v/pyPqft27fzH2GUiY+PR3Z2Np588km89NJLAP7vXvOhQ4dw4MAB1NfXo7a2FsDAZGvn/ywffPBBLFu2TH1Pi/OFgefOncOZM2dcXmqn1WqRkpKCSZMmYfz48Rg7diw0Gg3u3LmD3t5ejBs3zuMrHEVR0NXVhQsXLqiJwfXr1++rd+vWLXR2duLs2bPQ6XTqyp8TJkyAKIqYPn26el9cURTcuHEDnZ2duHTpknoLqK+vD8nJyS7/KYqi3ibq7u5Wt7916xZ6enqGfEmhoii4cuUKZFnGN998o96SHMnYsWPVW5N6vR7jx49HcnIyxowZg+nTp2PChAlqIjp27FiIooi0tDRkZGQgOzs7YoJrbm4uSktLMXHiREiSBEmSsGnTplA3K6TeeustPPzww3jiiSdC3ZSY09/fj6+//hqff/65+t9XX33lsqDs+PHj1RGbgoICmM1mxMfHY8mSJcjNzcW0adM47yZEfE587n1hIAAuohcjxowZg4yMDGRkZOCnP/0pAODKlStoaWnB8ePHIcsyzp8/jw8++ACvvfYa4uLioCgKpk2bhoqKCjz99NO4ePHisMeIi4tDfHw8+vr61DJncpSSkoIHHngA48ePx9WrV3HlyhU1mXDeyhkq0fFWXFycer/8zp07Lm0BgOTkZIwbN85lZMYpISEBqampLglVYmIikpKSkJiYOOTy6llZWXj88ceRmpoKQRCQnJysJoDAwO99/PjxSEpKwqRJk9Tfwb376unpwfHjx5GTkxM187IKCwuxY8cO1NfXQ1EU1NTUIDc3N9TNCqlly5bho48+Ukf0QuXatWtoaWnB119/rSbugiAgLS0N6enpmD17NmbPnh1WSbaiKOjt7YXdbkdXV5d6gdTd3Y3e3l7cvHkT8fHxSEhIgKIo6jvabDYbTpw4gZMnT6oXNXPmzMGiRYvwk5/8BPn5+Zg+fTqmTZsGQRBc/m1G47/LSOVz4jN4yXanoYajKTakpKRg2bJlWLZsmVqmKApOnTqFTz/9FIqiIC4uDh0dHXj77beRkZGB5ORkaDQaKIoCh8OBzs5OdHZ2oqenBz09Pbhz5476GP7NmzfVWzvOn93d3Zg6dSpyc3PVfQFQ56GkpqZi8uTJSElJwYQJE+5LEG7cuIGjR49CFEWX23N2ux02mw0dHR1qQhMXF6cOS0+ZMgVpaWmYOHGius+7d++qE8j7+/sxZcoU3vILMFEUY36UZzCz2Yxdu3bh2LFjWLRoUUD2eefOHXz22WcwGo1u333U09ODP/7xj/iv//ovHDx4UF0TJi4uDjNnzsSMGTPUJOHGjRsA/u+2jnOfqampKCgowIMPPojp06cjJSVFvUjo7e3F+fPnoSgKBEFAQkKCOtrrvNBx7ldRFNy+fRs9PT24fv06Ll++jIsXL6qvNxk3bhyysrKwcuVKnDp1Cr29vejr68OtW7fcjqrGxcUhMTERd+/eVS92dDoddDodZsyYgfz8fDz99NNYsGABFi5cCL1eH5DfPQWPz4mP0WjEmjVr1DcUc+iZ7qXRaDB37lzMnTsXAHDx4kXs2rULBQUFmD59eohbNzAqk5ycjClTptx3BZafn+/VvuLj4zFhwgQ+Xh0ga9euxbp169Q3si9btszlBaCD5eXlYcuWLUOOQkezxx57DElJSWhsbAxY4vPyyy/j17/+NTZu3IjXXnvNJfm5c+cOfvvb3+LVV1/F9evXMW/ePJSUlKjz+2bPnq2uEwYMJCWdnZ04deoUTpw4gcuXLwMYGJU9e/YsWlpa8Pvf/z5g7xuMi4vD1KlTMW3aNDXJci7PMX/+fBQVFSE5OVlNpARBgE6ng16vV0eRBUFwGWV19iOQL9yl0PNrcvOWLVtQX18PABx6JqKAWbFihcsChYWFhaiurh6yrizL2LdvX8wtpZGYmIhHHnkEjY2NePXVV/3e36FDh7Bt2zYsX74cO3bswO3bt/Hmm2+ir68Pzc3NePHFF9HS0oKf//zneO655zBnzpxh96fRaNRb0+5e1trf3w+73a5OzgcGnnw6c+YMUlNT1dvdfX19UBRFHXUdfIt33Lhx990WdnJebP3zP/+zzxdbTHqij8+JDzAw9Pyzn/0MAHilS0QBc+8LSSsrK93Wra+vx8SJE0e7SWHpe9/7HmpqanD58mVMmTLFq2337t2L7777Ds888wz6+/vxD//wDygsLERjYyP+4z/+A+vWrcP+/fths9nQ19eHv/mbv8H//M//YPHixQFrf1xcHCZOnOhy/np6epCYmMi5MDRqfE58uru7sXHjRkiSBI1GA6PRiB07djABIqKAcy6U6py0PjjODF7YMNY8+uijAAaSmNWrV3u83VtvvYXnnnsOiqLghRdewJw5c3Dp0iXs27cP8fHxWLNmDXQ6HRobG/HQQw9h0aJFeOihh1xuZRFFKp9nX+7cuRPPPvssTpw4gePHj+PFF19EU1NTINtGRARg4EJrzZo1WLhwIRYtWoS1a9eqSdAzzzwTc/N7nCZNmoTFixfjv//7vz2q39/fjy1btuAf//Ef8Ytf/AKnT5/G2rVr0d7ejjfeeAPZ2dlq3aeeegrvvPMOfv7zn2Px4sVMeihq+Jz45OfnqxMPgYE5P86JzkREgcQLLffMZjP27duHP/zhD0O+n+/EiRPIz8+HIAiIj4/Hv/7rv+KXv/wlamtrkZWVhW3btuHSpUtYs2ZNCFpPFHw+p/CCIHhURkTkr6EutGjAj3/8Y3z00Uf48Y9/jLi4OBQXF+Pdd99FSkoKOjs78f3vfx8JCQl49dVXodPpMHfuXHzve98LdbOJQsbjxGf//v0unw8fPoxjx46pyY7D4VDXTiEiCiReaLk3Y8YMHDlyBBcuXMDevXvxyiuvYOHChdizZw9eeukl2O12fPbZZ8jMzAx1U4nCgseJz7Zt22A0GtVJhlqtFteuXVMXigKArq4uj96dY7FYAAwsFCeK4pATE93VsVgssNvtsFqtMJlMI5Zv2LABFRUVAIDGxsZhnw4hovAQyAstf+PNUOXu4koo483MmTOxfv16mEwmlJSU4OGHH8bYsWPx8ccfM+khGsTjxKe6utplqNlXsixDkiR1TY7Vq1ffF4jc1bFarQCAsrIyOBwOFBUV4ciRI27LgYHVpMvLy5GXl8eXqBJFiEBdaPkTb4bb1l1cCYd4k5aWhkOHDuGVV17Bo48+qj75RUQDPE58ApH0AAMrPDuDGTAQ0CRJcglG7uo4vzOZTOqqm1arFXa7fchyg8GgXgH5S1EU9PT0uP3e+a6ooV5AGckC2S/nS0qdbx4PNZ6z0eXPireButDyJ97Isux2W3dxJVjxBhj5PNfU1ABAWPxb80a0xpxw+XcZaOHSL2/iTdCfT7TZbC7vNtHr9fctRe+uzuBbWMDA8LPzSTJ35a2trWoZMDAq5Iu+vj4cP358xHrO99ZEm0D0y3kOzp07h6tXr/q9v0DhORs9zncseWuopOf69evqk1xms9mjNcP8iTfDbesurgQ73gDhcZ5HQ7TGHJ6v0eNpvAmLhRmcfzm9qVNVVaVe0QxXPvge+9KlS2E2m32aFJmQkOCyxsW9ent70d7ejlmzZoXVW4j9Fch+ffvtt/j000+RkZGBqVOnBqiFvuM5G12nT58O2L5kWcbGjRvV11jU1dVhx44dyMnJ8XpfvsSbe8vdxZVgxRsgfM5zoEVrzOH5Gl3exJugJz5paWkuV1xdXV0u7+TxpI7FYoHRaLxvSPnecovFgtbWVjUYCYIAWZZ9Wm9Io9F4tHx6UlJSVC6zHoh+JSYmqj/D6XfEczY6AvmOo/3796OhocGlbPv27SMmPv7Gm6HK3cUVWZaDHm+A0J/n0RKtMYfna3R4E298XsDQV0ajUR0OBgYmAzpvUzmDzHB1JEmCIAgwmUywWq2QZdltuSiKWLJkibofh8PBRRaJItBQT2/l5eWNuJ0/8cZdubu4wnhDFBmCPuIjiiKKi4vVx8/Xr1+vfldaWoqGhga3dZzD3U4OhwMnT550Ww4MjPo4r9DefffdIPWSiALJeYEzWEdHx4jb+RNv3JUbDIYh44q7ciIKLyGZ4+PuqYcDBw4MW0cURfUxdU/KB+8nEE9aEFFoGI1GrFmzRh1BkSQJmzZt8mhbX+ONJ+X3fs94QxT+gn6ri4jIW7m5udiyZQsURYGiKKipqQnYEhtEFFvC4qkuIqKRiKLo8SgPEZE7HPEhIiKimMHEh4iIiGIGEx8iIiKKGUx8iIiIKGYw8SEiIqKYwcSHiIiIYgYTHyIiIooZTHyIiIgoZjDxISIiopjBxIeIiIhiBhMfIiIiihlMfIiIiChmMPEhIiKimMHEh4iIiGIGEx8iIiKKGWNCcVCLxQIAsNvtEEURRqPR4zoWiwV2ux1WqxUmk8ml3F39kY5FRNHL33gzVPmGDRtQUVEBAGhsbERlZaXHxyKi0Ar6iI8sy5AkCSaTCWVlZairq/O4jtVqBQCUlZVh06ZN2Lhx47D1PTkWEUUvf+LNcNt2dHSgvLwctbW1agLEeEMUGYI+4iNJErRarfpZq9VCkiSXKyN3dZzfmUwmCIIAnU4Hq9WKtra2IevLsjzisTzR19cHRVFw9OhRt3UURQEAfP3119BoNF7tP5wFsl93797F448/jkuXLuG7774LRPP8wnM2uvr6+kL+e/Un3gwXP9avXw+TyeT1sTzhSbwBwuc8B1q0xhyer9HlTbwJeuJjs9mg1+vVz3q9Hg6Hw6M6g29tAQPDyQaDAY2NjUPW9+RYnnD+Mof7pWo0GowdO9brfYe7QPZrzJgxmDhxYkD2FQg8Z6PfjlAHeH/izXDbtra2AhiIQcDAKHQw443z+3A4z4EWrTGH52v02xG2ic9QnMHDmzpVVVWoqanxep+eHOteBQUFXm9DROHJl3hzb7lzTg8ALF26FGaz2edj3Yvxhmh0BX2OT1pamsvnrq4uiKLoVR2LxQKj0agONbur78mxiCh6+RNv3JVbLBZs27ZNLRcEAbIsM94QRYigJz5Go1EdJgYGJgk6b185h4WHqyNJEgRBgMlkgtVqhSzLbusPtx8iin7+xBt35aIoYsmSJWq5w+GAwWBgvCGKEBrFOTMpiAY/8qnT6dSRm6VLl6KhoQGCIAxZR5ZllJaWqvtxOBw4efLksPt0V05EscHXeDPcts7y1tZWrFy5Uh3ZYbwhCn8hSXyIiIiIQoErNxMREVHMYOJDREREMYOJDxEREcUMJj5EREQUM5j4EBERUcxg4kNEREQxg4kPERERxQwmPkRERBQzwuIlpZFu8GqtoihG9DL1FosFdrsdVqsVJpNJ7Uu09VEQhKjqW11dnbp68FCrDkdqv2ho0XRuoz3mRGO8ASI85ijkF5vNpmzevFn9XF5eHsLW+KetrU1pampSFEVR7Ha7snDhQkVRoquPdrtdKSkpUfsZDX0rLy9X7Ha7oiiKUlJSoihKdPSLhhZN5zbaY040xhtFifyYw1tdfpIkCVqtVv2s1WohSVIIW+Q7u92utl0QBOh0Olit1qjqY1NTE8xms/o50vtmtVrV9lutVjQ0NACI/H6Re9F0bqM95kRbvAGiI+Yw8fGTzWaDXq9XP+v1evWtz5HGaDSiurpa/Wy322EwGKKmj1ar9b6h10jvW1tbGzo6OiDLMgCgqqoKQOT3i9yLpnMbzTEnGuMNEB0xh4nPKLDb7aFugt+qqqpQU1Pj9vtI7KMsy+o96eFEUt8cDgd0Oh0MBgMMBgPa2tpgtVqHrBtJ/SLvRMO5jbaYE43xBoiOmMPEx09paWkun7u6ujz6yx7OLBYLjEajOmEtGvpYV1cHYKBvra2tkCQJVqs14vsmiqJLe3U6HWRZjvh+kXvReG6jLeZEa7wBoiPmMPHxk9FoRGtrq/q5o6MjfGeye0CSJAiCAJPJBKvVClmWo6KPzz77LEwmE0wmk/q0gcFgiPi+GY1GdcgZgHq+Ir1f5F60ndtojDnRGm+A6Ig5GkVRlFA3ItINfoRPp9OpVy2RRpZllJaWqp8dDgdOnjwJIHr6KEkSamtrkZqaisrKSoiiGPF9cz4O7HA4IIrikI+WRmK/yL1oObfRHnOiMd4AkR9zmPgQERFRzOCtLiIiIooZTHyIiIgoZjDxISIiopjBxIeIiIhiBhMfIiIiihlMfIiIiChmMPGhmCBJEkpLS1FfXx/qphBRDGDMCV9MfCgmGI1GFBYWhroZRBQjGHPCFxMfihmD3xxMRDTaGHPCExMfIiIiihljQt0Aim3OtxaLoojW1lZUVlZCkiRUVVWpL76z2+2wWq3YtGkTBEEAAFitVkiSBFEUIcuy+jJAYOD9P7t370Z+fj7sdjvMZrO6ncPhgCRJkGUZhw8fxm9/+9uQ9Z2Igo8xh6AQhYjNZlNKSkrUz7t371Z27dqlKIqi/PrXv1b/rCiK0tTUpJSXl6vbOf/sVFJSotjtdsVutytFRUWK3W6/bz+7du1SnnvuOXWb8vJypa2tbXQ6R0RhhzGHFEVROOJDIbN7927odDpIkqSWtba2qn92XjEBgMlkwsaNG+FwOLB7927k5ua67Cs1NRVNTU0AAFEU1W0rKipc6uXn56t/1mq1sNvtgesQEYU1xhwCeKuLQiw3NxdGo1H9XFZW5tf+HA4HtFqt+nlwICMiYswhTm6mkCkuLkZzc7NL2eArMYfDof7ZYrHAaDRCEIQhtzt27BjMZjNMJhOOHTvmdp9EFLsYcwgANIqiKKFuBMUuSZJw+PBhdTjYGWi2bduG7u5umEwmOBwOtLa2oqKiQr2auneCYnFxMQwGg9t9yrKMzZs3AwBqamogyzJqa2uRm5uLyspKdZIiEUU3xhxi4kNhadu2bUhLS/N7GJqIyBOMObGDt7qIiIgoZjDxobAjSRKam5thsVhgtVpD3RwiinKMObGFt7qIiIgoZnDEh4iIiGIGEx8iIiKKGUx8iIiIKGYw8SEiIqKYwcSHiIiIYgYTHyIiIooZTHyIiIgoZjDxISIiopjx/wDwyJ3tc2Ex0gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -627,20 +649,20 @@ "fig, ax = plt.subplots(1, 2, figsize=set_size(width, subplots=(1,2)))\n", "sns.lineplot(x=df.index, y='val/box_loss', data=df, ax=ax[0], color='black', linewidth=1)\n", "sns.lineplot(x=df.index, y='val/obj_loss', data=df, ax=ax[1], color='black', linewidth=1)\n", - "ax[0].set_ylim([0.02, 0.07])\n", - "ax[0].set_xticks(np.arange(0, 350, 50))\n", + "ax[0].set_ylim([0.02, 0.03])\n", + "#ax[0].set_xticks(np.arange(0, 350, 50))\n", "ax[0].set_xlabel('epoch')\n", "ax[0].set_ylabel('box loss')\n", - "ax[0].axvline(133, 0, 1, lw=1, color='grey')\n", + "ax[0].axvline(27, 0, 1, lw=1, color='grey')\n", "\n", - "ax[1].set_ylim([0.007, 0.01])\n", - "ax[1].set_xticks(np.arange(0, 350, 50))\n", + "ax[1].set_ylim([0.005, 0.007])\n", + "#ax[1].set_xticks(np.arange(0, 350, 50))\n", "ax[1].set_xlabel('epoch')\n", "ax[1].set_ylabel('object loss')\n", - "ax[1].axvline(133, 0, 1, lw=1, color='grey')\n", + "ax[1].axvline(27, 0, 1, lw=1, color='grey')\n", "\n", "fig.tight_layout()\n", - "fig.savefig(fig_save_dir + 'val_box_obj_loss.pdf', format='pdf', bbox_inches='tight')" + "fig.savefig(fig_save_dir + 'val_box_obj_loss_final.pdf', format='pdf', bbox_inches='tight')" ] }, { @@ -653,13 +675,20 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 18, "id": "fe9b6f1c", "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.61718\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAFQCAYAAADayYZkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKK0lEQVR4nO3deVxU9f4/8NeAgwIyYJloOqiJhSwZ5DpuuSVYppJCieWOt6uZ3SDbruaSZVo3bXULKxemm5j5S0YzLckht8xwXG6a5JBLuTCDLIrw+f3hg/N1HEiWw5xZXs/HowfOcM6Z97w7MC8+53POUQkhBIiIiIhu4KV0AUREROR8GBCIiIjIDgMCERER2WFAICIiIjsMCERERGSHAYGIiIjsMCAQERGRHQYEIiIistNA6QKUcODAAQghoFarlS6FiIjIYUpLS6FSqRAdHX3LZT1yBEEIATkvICmEwNWrV2XdpitjP+y5Yk/Ky8uRn5+P8vJy2bftiv2oT+yHLfbDlpz9qMnnn0eOIFSMHERFRcmyvaKiIhw5cgShoaHw8/OTZZuujP2w54o9OXPmDL788kskJyejRYsWsm7bFftRn9gPW+yHLTn7kZOTU+1lPXIEgYiIiP4eAwIRERHZYUAgIiIiOwwIREREZIcBgYiIiOwwIBAREZEdRU5zNBgMAACLxQKtVgudTlfpcsuXL4dWqwUAxMbGAgCsViv0ej0AYNKkSQ6oloiIyPM4fATBbDbDaDQiNjYWiYmJWL58eaXLjRs3DomJiYiNjcWyZcuk541GI/Lz8x1ULRERkWdyeEAwGo0ICAiQHgcEBMBoNNosYzKZpGVMJhMyMjKk78XGxiIkJMQxxRIREXkohx9iOHXqFIKCgqTHQUFBsFqtNsscOnQIeXl5MJvNAICZM2dizpw5stYhhEBRUZEs2youLrb56unYD3uu2JN9+/YBAEpKSmT7Wangiv2oT+yHLfbDlpz9EEJApVJVa1mnuNSyxWKxeWy1WhEYGIiIiAgA1wODyWSSHsuhtLQUR44ckW17AJCbmyvr9lwd+2HPVXpy8uRJTJs2DZMnT8YLL7yA1NTUav9SqQlX6YejsB+22A9bcvXDx8enWss5PCCEhITYjBjk5+dLExEraLVam+cCAwNhNptlDQhqtRqhoaGybKu4uBi5ublo06YNfH19ZdmmK2M/7LlaT7Zs2YKGDRsCALKystCvXz888cQT0vevXr1a7V8ylXG1ftQ39sMW+2FLzn4cP3682ss6PCDodDosXLhQepyXlyedxWC1WqHRaKDT6aQzFYDrExurOtOhtlQqlew3AfH19eWNRW7AfthzlZ5s27YNnTt3BgA8/PDDSElJweOPPw6NRoMdO3agX79+aNGiBd5++2089thjtX4dV+mHo7AfttgPW3L0oyYjgQ6fpKjVajF48GAYDAbo9XokJydL34uPj5dCQmJiIvR6PZYvX46UlBRoNBoA1yc57tq1C0ajUTpdkpzDhg0bcO7cOenx5cuX7W4VLISAXq/HXXfdhXXr1jm6RPobQgisW7cOBoMBWVlZ6NGjBwDgH//4By5fvowNGzYAAD7++GPcdddd6Ny5M8aNG4dffvlFybKJqL4ID/TLL7+IX375RbbtFRYWin379onCwkLZtulq5s+fLwCIoUOHiv/973+iU6dOwsvLS0RHR4v9+/cLq9UqFixYIMLDwwUA0aZNG+Hr6ysOHjyodOkOUd19xGAwiFatWon//Oc/wmq1isuXLzukvvPnz4thw4YJANJ/e/bsEa+++qo4ffq06N27t3jwwQdFYWGh8Pf3F3PnzhVFRUWiY8eOIjw8XJSWltbo9fgzY4v9sMV+2JKzHzX5/OOVFKna/vzzT1y7dg3nzp3D119/jW+//RbFxcV4//338dJLL6F///7YuHEjHnroIZjNZrzxxhsoKSnB/fffj8DAQLzyyiuIjo7Gli1bYDKZcM8996BPnz5YvXq10m+t1hYvXoxOnTohKSmpTjP9hRBIT0/H0KFD0bhxYzz77LPQaDRo166dzczly5cvIywsDBs3bqxz7UIIfPfdd1i4cCHuu+8+7Ny5ExkZGXjnnXcwdepUtGrVSlo2KSkJ27Ztw6JFi1BYWIjHH38cvr6++Pjjj3H48GF8/PHHda6HiJxMneOIC+IIQs3t2bNHeHt7Cz8/P+Hl5SX9lXnHHXcIAGL69OmirKxMdOzYUajVarFq1SpRWFgoiouLRWZmpnjvvffEqVOnbLZ58eJFkZSUJACIH374weZ7ZWVlory83JFvscZOnTolGjVqJHr27CkAiDVr1lS57N/tI99++63o37+/ACASEhJESUmJ2LVrl/jwww/ttvuf//xHABCDBg2qU+0//PCD6NWrlwAg/P39xeDBg4XZbLZZ5vTp09IIwsWLF4Wfn58AIHQ6nc1ySUlJonnz5qKgoKDar+8JPzM1wX7YYj9sKTWCwIAgA3ffmcvLy0XPnj1FeHi4ePPNN8WKFStEbm6uOHjwoJgwYYJISUmRPsxPnDghtmzZUu1+lJWVifvuu0/07NlT2sb3338vWrVqJaZNm1av76uuRo8eLYKDg4XVahXdu3cXQ4YMkb5XXl4uJkyYIO644w4RGRkpLl68WGlP0tPTBQDRsWNHsXHjRrvX6N27t+jXr58QQoirV68KrVYr7rjjDuHl5SXOnj1bq7pffPFF6TW//vrrKoPYjQFBCCHOnDkjDh48KC5evGiz3MmTJ4WPj4+YPXt2tWtw95+ZmmI/bLEfthgQHIgB4dbKy8vFtm3bxLvvviv9lb9ly5ZqrVvTfmRmZgoAYunSpeLTTz8V3t7eIjQ0VAAQq1evFqdOnRLjx48XaWlpdXhH8tq7d68AIJYtWyaEEGLJkiVCrVaLn376SWRlZYmPPvpIABBPP/20UKlU4r333rPrSWFhodBqtWLYsGFVfkh/8sknAoA4ePCgNM/j+++/F2q1WixevLjGde/bt0+oVCoxa9YsUVZW9rfL3hwQ/s5zzz0nGjduXO3Q4o4/M3XBfthiP2wxIDgQA8KtrVy5UgAQarVaREVFiVdffbXa69a0H+Xl5WLixInSYYsJEyaI0tJS8eijj0rPqVQq0bRpU6focXl5uejVq5eIjIwU165dE0IIcfbsWZtDLxXvQwgh4uPjRbt27cTu3bul+n///Xfx2GOPCbVaLX799dcqX6uwsFB06NBBaDQaAUC8/PLLQgghhg4dKkJDQ2s0ibGsrEx06dJFREVFVWtSYU0CwoULF0RQUJAYMWJEtQ4NuePPTF2wH7bYD1tKBQSnuJIiKatiEty1a9cwatQo3HvvvVixYgUef/xxrF69Gl5e9TuXVaVSYdmyZejWrRv++OMPvPLKK/Dy8sK6devw/fffIy8vD/feey86d+6MTz/9VDrtDgAaN25cp9cWQuD06dPw9/e3uQR4hT179uDixYvo168ffHx8UFZWhlmzZiErKwsGgwHe3t4AgODgYLz33ntQq9Xo0KEDsrKyMGXKFADAiy++iM6dO2P27NlYuXIlTp8+jZiYGKjVanz44Yd/e8EuPz8/GI1GjBs3Dk2bNpUuOb5gwQLExMRg3LhxuPfeexEfH4/w8PBKt7Fx40Y0bNgQFosFe/bswffff48GDeT90b/tttuwcuVKPProo5g7dy5mzpwp6/aJSAF1jiMuiCMIth577DHRtGlT0b17d+Hv7y/UarXw9/cXeXl5tdpeffVj5MiRIjg4WEycOFEEBgaK1q1bi6NHj9Z6ewcPHhR33323ACBuu+02YTQabb5fXl4u7rzzTgFABAYGivj4eHH33XcLLy8v8dprr9XotZYuXSr8/PxE69atRceOHUW7du3EpUuXal27EEKsWLFCABDe3t6iXbt2wmKxCCGEWLt2rdi6dasQQoj9+/cLtVotGjRoIJo3by4efvjham+/JiMIFV5++WWhVqvFhQsX/nY5V/+ZkRv7YYv9sMXTHEkRxcXF+Oqrr+Dv74+9e/di/fr1yMnJwY4dO9CyZUuly7OxYMEC9O7dGzt37sSYMWPg7++PHj164NChQ5UuL4Socls5OTno0aMH/Pz8sH79ekRERKB///42dxb96aefcPr0aXz44YeYPn06zp49i169emHnzp146aWXalT76NGjsW7dOtx55504dOgQPvvss0pHLGpiwoQJOHfuHI4dO4Y///wTkydPRm5uLp588kkMGjQIEydOxKOPPoqoqCg89NBD+PPPPzF//vw6veatPP300ygrK8P69evr9XWIqP7xEIOH2759O4qKipCZmYlWrVrZ3Irb2bRt2xaff/659PjixYvo378/Bg4ciJSUFERGRqJ///44cOAAZsyYgX379mHw4MFYvHgxgoODbba1atUqNG7cGFlZWWjcuDEGDx6MBx98EEOHDsWPP/6Idu3aYdOmTQgMDMSECROgVqvx6quv1qn+li1bYsuWLSgoKMCdd95Zp21VaNasGZo1a4bly5fjsccew88//4ygoCBMnDgR69atQ4cOHfDuu++idevWyM3NRfv27WV53aoEBwejf//+WLt2LSZNmlTlcr/++iuuXr1ar7UQUd1wBMHDbdq0CaGhoQgLC3PqcFCZ2267DVu2bEFoaChmzZqF2NhYNG7cGF26dMHp06cxbdo07NixA8OGDUNJSYm0nhACGzduxCOPPCLNYWjUqBE2bNiAJk2aYPDgwbhw4QI2bdqE2NhYqNVq2Wr29vaWLRzcKDExEZMmTcLRo0fx/PPP4/XXX0dubi4yMzMRGhoKtVpd7+GgwqhRo6S5Izfas2cP3n33XcyaNQvR0dGYO3euQ+ohotphQPBgQghs2rQJQ4YMqZdb+TpCs2bNkJWVhYKCAuzZswezZs3CN998g5ycHMybNw//7//9P/z888948MEHcfToUQDA0aNHceLECTzyyCM227r99tuxefNmXLx4Effccw9++uknDBkyRIm3VSuLFy/GsmXLMHXqVEXrGD58OBo1aoTPPvvM5vnk5GRMmzYNc+bMwcCBA5GZmYlvv/1WoSqJ6FZ4iMGDnTx5EqdPn8aAAQOULqXOVCoVOnfuLN2BsELnzp2RmZmJiRMnIjo6GuvWrcOePXvg5+eH/v37220nNDQU27Ztw7p163D77bfj0UcfddRbqDNfX9+/HdZ3lMDAQCQkJGDFihWYMWMGvLy8YDKZcPDgQaSnp6NPnz4ICAhAnz598K9//Uv2URoikgcDggc7cOAAACAmJkbhSurXAw88gJycHIwePRrDhw8HAIwfPx6NGjWqdPmOHTuiY8eOjizR7UycOBGffPIJRowYgZMnTyI8PByBgYEYNmwYGjZsiKKiIqSmpmLUqFFYunSp4qMeRGSPhxg82E8//YTmzZujefPmSpdS73x9ffH5558jPT0du3btwrJly5Quya316NED4eHhMBgMsFgsWLt2LUaMGIGGDRtKy4SGhmL06NGYPXs2CgoKFKyWiCrDgODBDhw44PajBzfy9vZGYmIidDqddIEjqh8qlQpbt27F8ePHsWfPHowdOxb/+te/7JZ78cUXcf78eXz99dcKVElEf4cBwQMVFBSgtLQUBw4cQHR0tNLlkJtq2bIl7rzzTjRt2hRpaWmVXukxJCQE9913HzZt2qRAhUT0dxgQPNDIkSMRFRWFs2fPMiCQ4oYMGYLMzExcu3atRusJIZCdnY3S0lJkZGRg5syZf3txLCKqGQYED1NaWoqdO3fi2LFjAMCAQIp7+OGHcenSJZurWFZHZmYmdDod2rRpI90DYuPGjfVUJZHnYUDwMCaTCcXFxXj11VcxatQotG3bVumSyMN16tQJzZs3x9tvv43y8vJqr5eeno527dqhZ8+eeOuttxAbG4tnn31WuvnYlStXMHXqVPz8888Arl9WfNKkSdi+fXt9vA0it8OA4GH27NkDb29vpKSkYM2aNS57gSRyH15eXvjoo4+wadMmPPvss9U6TFBSUoIvv/wSTzzxBPR6Pf71r3/hnXfewe+//w69Xg8AeOONN/D+++9j6NChOHbsGEaNGoUVK1Zg5MiRMJvN9f22iFweA4KH2bNnDyIjI+Hv7690KUSSoUOH4v3338eSJUswf/58bNu2Db/99luVy1fc0yIhIUF67p577kHfvn3x2Wef4ejRo5g/fz4mTJiAoqIihIWFYdOmTfj000/h7++PpKSkGo1WEHkiXijJw+zZswfdunVTugwiO//4xz/wxx9/4JVXXgFw/doV77zzDiZNmoRVq1bBy8sLY8aMAQBkZGQgMjISHTp0sNnG6NGjMWHCBIwYMQKtW7fGu+++ixdeeAE///wzunbtCq1WC61Wi759+2Lp0qV46qmnHP4+iVwFRxA8SH5+PkwmE7p27ap0KUSVmjNnDrZv346DBw/iySefxOTJk9G5c2eMHz8ekyZNwq+//ory8nJkZmbi4Ycftlv/0UcfRcOGDXH06FGsXr0avr6+CA0NxYgRI6DVagFcv7LmpEmTMGPGDPz111+OfotELoMBwYPMmzcPDRs2RGxsrNKlEFVKpVKhb9++uPfee/HRRx9h/fr1OH36NF599VW0bNkS06dPx/79+/HXX38hLi7Obn2NRoP58+dj+fLl6NKlS5Wv89prr6GoqAgZGRn1+XaIXBoPMXiAhQsX4sSJE1i5ciVmz56Nli1bKl0SUbXEx8dj+PDhUKlU6NixI4YPH46zZ89Co9Gge/fula7z7LPP3nK7d9xxB/r27YsvvvgCkydPlrtsIrfAEQQ39+233+L555/H1q1b0alTJzz33HNKl0RUIxVn2gwbNgwTJkzATz/9hIEDB9b5DpAjRozAjh07cP78eTnKJHI7DAhuaP/+/bhw4QIKCwvxz3/+E7169cKJEyeQnZ1tc7McIlezZMkSPProo5gyZUqdtzVs2DAIIfDCCy/gxIkTMlRH5F54iMHFXLlyBePHj8fhw4eRlJSElJQUAIBer0deXh569uyJHj16IDg4GE2bNsUff/yBDRs28HoH5Bb8/PzwxRdfyLKt4OBgvPTSS1i8eDEyMjJw4sQJNGnSRJZtE7kDjiC4mG3btmHt2rVo2rQpnn/+eWRnZ+PcuXOYOHEiUlJS0K9fP9x33324++67YbFYYDQaK71JDhEBc+fOxf/+9z+UlJTg7bffVrocIqeiyAiCwWAAAFgsFmi1Wuh0ukqXW758uXRqUsXM++qu6642bdqEdu3awWAwQKfTISkpCffccw8aNGiAt956Cx988AHWrl2L9u3bo6ysDA0acJCI6O80b94cU6dOxTvvvIPp06fj9ttvV7okIqfg8BEEs9kMo9GI2NhYJCYmYvny5ZUuN27cOCQmJiI2NhbLli2r0bruqLy8HEIIbNq0CY888gi8vb2xevVqtG7dGgaDATNnzsS//vUvHD9+HHfffTdUKhXDAVE1paamoqSkRLpMsxy+/vprrF27VrbtETmawwOC0WhEQECA9DggIMDuLm4mk0laxmQySecqV2ddd9W3b1+EhYXh9OnTGDJkCACgffv22LFjB/766y9Mnz5d2QKJXFjFaY8Vv2vKy8uxaNEivPvuu/j2229rfEGlwsJCjBkzBklJSXjxxRd5WWdySQ7/E/PUqVMICgqSHgcFBcFqtdosc+jQIeTl5Uk3VJk5cybmzJlTrXWrSwiBoqKiWq17s4q7x1V8lVtxcTF27doFPz8/BAcHIyYmxqZ2Pz+/envt2qjvfrgiV+xJSUmJ9FWun5UKztiPIUOG4Nlnn4XZbMb27duRmpoKHx8fXL16FQCg0+mwcOFC3Hfffbfc1kcffYT8/Hw8++yzWLBgAfbu3Yunn34aXbp0QWBgoN3yztgPJbEftuTshxCi2pPWnWIM2mKx2Dy2Wq0IDAxEREQEgOuBwWQyVWvd6iotLcWRI0dqtW5VcnNzZd1eBZPJhLKyMrzzzju46667cPz48Xp5HbnVVz9cmSv1pOJn6+TJk7h48WK9vIYz9eOee+5BeXk55s+fj02bNqFXr15YuHAh8vLykJOTgzVr1iA+Ph5r1qyR/lApKCjAH3/8gbCwMGk7JSUleOuttzBw4EAkJSWhXbt2mDVrFoYNG4YOHTrg008/rfIXtDP1wxmwH7bk6oePj0+1lnN4QAgJCbH5qz8/P1+aiFih4oYqFQIDA2E2m6u1bnWp1WqEhobWat2bFRcXIzc3F23atIGvr68s27x27Rq8vb2hUqmQnZ0Nb29vDB06VLbt16f66Ierc8WenDt3DllZWWjbti2Cg4Nl3baz9mPIkCH46KOP4O3tja+++gphYWGIiopCXFwckpKSoNPp8Prrr2PDhg3w9vZGQkICNm/ejPnz5+Ppp5+GSqXCU089hfz8fLz22msICwtDhw4d8OSTTyIjIwNjx47FtWvXcO+999q8rrP2Qynshy05+1GTPzAdHhAqhukq5OXlSWciWK1WaDQa6HQ6m8lCZrMZOp0OFoulynVrSqVSwc/Pr5bvonK+vr6ybPPAgQOIjY1FSkoKUlNTYTKZEBYW5nKzq+XqhztxpZ40atRI+lpfNTtbPzIyMnDs2DFcuXIF0dHRNt9r37491q5di0GDBuHNN9/EAw88gK+//hoPPvggXnzxRaSlpeH2229HdnY20tLSEBMTY7P+qFGj8Nxzz2HDhg1V3lHV2fqhNPbDlhz9qMk1cRw+SVGr1WLw4MEwGAzQ6/VITk6WvhcfHy+FhMTEROj1eixfvhwpKSnQaDR/u667+P3339GvXz9YLBYsWLAAhYWFOHDggN0vGyKSn7e3N8LDw+3CQYWBAwdi9uzZmDdvHgYMGIBu3brBYDDg+++/R/fu3dG6dWukpaVh7Nixduuq1WokJCRg3bp1nLRILkGROQhV3U1w27Ztt1zG3e9E+N133yE/Px/79u1D165d8f777+OXX35BYmKi0qUREYBXXnkF3bt3x5EjRxAXFweVSoXevXujd+/et1w3KSkJH374IbKystCnTx8HVEtUe04xSZH+z/Hjx3HnnXfi/vvvR1JSEmbMmAEAHEEgchIqlQoDBgzAgAEDaryuTqdDmzZtsGbNGgYEcnq81LKT+fXXX9G+fXsA168kuXnzZqxZswa9evVSuDIiqiuVSoXHH38cX3zxBa5cuaJ0OUR/iwHByRw/flw6u8LHxwdxcXEYNWoUvLz4v4rIHSQlJeHSpUvYvHmz0qUQ/S1+6jgRIYTNCAIRuZ+IiAj06tULU6dOlS4GR+SMGBCcyPnz52G1WmW7PgMROafPP/8carUaQ4YMka7USORsGBCcSMUFLDiCQOTemjdvji+//BImkwmvv/660uUQVYoBwYn8+uuvAIB27dopXAkR1bf77rsPL7zwAl577TWPuekcuRYGBCchhMCRI0fQokUL+Pv7K10OETnAK6+8Ap1Oh+HDhyMnJ0fpcohsMCAozGg0omXLltBoNHjjjTekG1QRkftr2LAhvv76a4SFhWHevHm3vMKiEAKPP/440tPTHVQheTIGBIUZjUZcunQJr776KtavX4+1a9cqXRIROZC/vz8WLFiAEydO4Msvv/zbZXfs2IH09HS8/PLLKCsrc0yB5LEYEBSWl5eHNm3a4LnnnkN8fDzuuOMOpUsiIgfr1q0bunXrhvnz50MIUeVyixYtQosWLfDbb79h48aNDqyQPBEDgsLy8vLQqlUrpcsgIoU9+eSTOHLkCLKzsyv9/u7du5GZmYkFCxagd+/eeO2111BSUuLgKsmTMCAojAGBiACgU6dO0Gq1WLVqld33zp8/j4SEBHTp0gWPPfYY3nzzTRw+fBgjRozA22+/jUOHDjm+YHJ7DAgKY0AgIgDw8vLCqFGjoNfrodPp0Lx5c4wYMQKnTp1CQkICioqK8MUXX0CtVqNr16744osvsGPHDqSkpOCf//yn0uWTG2JAUNC1a9dw5swZaLVapUshIieQlJSEy5cvo6CgABMnToTRaET79u2xa9cuZGRk2PyueOihh2CxWLBmzRpkZWXhf//7n4KVkztiQFDQ2bNnUV5ezhEEIgJw/SJpR48exf79+zFv3jzs3r0b/fv3x9q1ayu9o2uDBg0wbNgwBAUFVXpogqguGBAUlJeXBwAMCEQkad++PXx8fAAAWq0WmzdvxqOPPlrl8r6+vhg1ahQ++eQTXLt2zVFlkgdgQFAQAwIRyWH8+PE4ffo0tm7dqnQp5EYYEBSyc+dOnDhxAn5+fggKClK6HCJyYTExMbj33nvx8ccfK10KuREGhHr2xRdfICUlxea5s2fPok+fPpg3bx5atWoFlUqlUHVE5A5UKhXGjx+Pr776Cn/99ZfS5ZCbYECoZx999BGWLl1qc3W0ih/gy5cv8/ACEckiKSkJPj4+mDFjhtKlkJtgQKhHV65cwa5du3D58mWcPn1aev7SpUsAgD59+qB///5KlUdEbqRp06Z47733kJaWhnXr1ildDrmBBkoX4M5+/PFH6VKoR48eRcuWLQH8X0DQ6/UIDg5WrD4ici9jxozBN998g8mTJ6NLly5o166d0iWRC+MIQj3asWMHgoKCoFarcfToUen5/Px8AODkRCKSlUqlwocffohmzZohISHBZuSSqKYYEOrR9u3b0bdvX4SGhuLYsWPS85cuXYKvry8aNmyoYHVE5I40Gg0+//xz/PHHHwgPD0dWVpbSJZGLYkCoR0eOHEF0dDTCwsJw9OhRfPDBB9i5cycuXbqEJk2aKF0eEbmpmJgYHD58GBERERg/fjzv+ki1woBQj65du4aGDRsiLCwMP/74I6ZOnYpVq1YhPz+fAYGI6tVtt92GlStX4vfff8cbb7yhdDnkghgQ6tG1a9fQoEEDhIWFoaCgAEIInDlzhiMIROQQYWFhmDJlCt5//31ehplqjAGhHpWVlaFBgwaIjIwEALRs2RJnz57FpUuXOEGRiBziiSeewPnz57Fjxw6lSyEXo0hAMBgMMBgM0Ov1MBqNlS4zbdo0mEwmmEwmLFy4UHper9fDYDBg+fLlMJlMjiq5VipGEGJiYrB3714kJyfjzJkzPMRARA4THR2Ndu3aQa/XK10KuRiHBwSz2Qyj0YjY2FgkJiZi+fLllS6Xl5eHsWPHYtGiRZg8eTIAwGQyYdeuXYiNjcWkSZOwaNEiR5ZeYxUBAQA6deqEFi1a4M8//8T58+cZEIjIIVQqFRISEpCRkYGrV68qXQ65EIcHBKPRiICAAOlxQEBApaMIycnJ2Lt3L9LS0qDRaKR1tVqtzXLOOopQXl4OIYQUEACgefPmEELgxIkTDAhE5DBJSUm4dOkS0tPTlS6FXIjDr6R46tQpm+PvQUFBsFqtdsvl5OQAACwWCwAgMTERWq1Weh64PhphNpsRERFR4zqEECgqKqrxepUpLi62+QpASurXrl2TXqciFJSWlsLf31+213c2lfXD07liTypOjSspKZF9X3XFftSn+u5H27ZtERcXh/nz5yM+Ph5eXs49/Yz7hy05+yGEqPYNAp3iUssVIeBGqamp0r8HDBiAuLg4xMbGYvPmzbBarTh06BAASKMLNVVaWoojR47UruAq5ObmSv+u+OX6559/Sq9TUFAgfb+oqEj213c2N/aDrnOlnlT8XJ48eRIXL16sl9dwpX44Qn32IyEhAePGjcMHH3zgMveA4f5hS65++Pj4VGs5hweEkJAQmxGD/Px8u8MGBoMBOTk5UkjQaDTSSMGSJUtgMpkQGRkJjUYjnSFQU2q1GqGhobV/IzcoLi5Gbm4u2rRpA19fXwCQ3mNISAg6dOgAAAgNDYVKpYIQAuHh4dLz7qayfng6V+zJuXPnkJWVhbZt28p+zxBX7Ed9ckQ/OnToIN3IacqUKU59m3nuH7bk7Mfx48ervazDA4JOp7M5KyEvLw86nQ7A9Q9VjUYDrVZrMzJgtVoREREBq9WKV155BUuWLIHZbJZCQm2oVCr4+fnV7c3cxNfXV9pmxQiCv7+/zes0bdoUf/31F5o3by776zubG/tB17lSTxo1aiR9ra+aXakfjlDf/fj3v/+NgQMH4vPPP8eVK1cwdOhQtGjRot5er664f9iSox81CYYODwharRaDBw+GwWCAxWJBcnKy9L34+HhkZGQgIiJCOhUyJycHaWlpAK6PJPTo0QMGgwFmsxlz5sxxdPnVVlZWBgA2kxQBoEWLFvjrr784SZGIHK5///7o0qULxo8fD+D6odx+/fohMjISr732msLVkbNRZA5CbGxspc9v27bNbpmbl01MTKy/wmRUcdWymwNC8+bN8csvv/BCSUTkcCqVCsuWLcOOHTsQHx+PDz74AEajEfPnz0dSUhLCw8OVLpGciFNMUnRHVQWEiuE8jiAQkRI6duyIjh07AgDeeOMNXLlyBc2bN8eaNWs4ikA2nPtcFxf2dwFBrVbzuBoROYWGDRti5MiRWLt2LcrLy5Uuh5wIA0I9qQgI3t7eNs/369cPI0eOdOoZxETkWUaPHo3c3FxkZ2crXQo5EQaEelLVCMLAgQOxZs0aJUoiIqpUz5490axZM2zatEnpUsiJMCDUk6oCAhGRs/Hy8kJcXBw2b96sdCnkRBgQ6klVpzkSETmjwYMHIycnB2azWelSyEkwIMjg4MGDmDp1qs0EH44gEJErGThwILy9vZGZmal0KeQkGBBkcOTIEfz44482t1JlQCAiV9KkSRN0794dW7ZsUboUchIMCDKouDMaRxCIyJX17NkTP/74o9JlkJNgQJABAwIRuYMuXbrg9OnTyMvLU7oUcgIMCDKoCAgVExMBBgQicj1du3YFAOzevVvhSsgZMCDIoOJiSJWNINx8oSQiImd15513olWrVtizZ4/SpZATYECQAQ8xEJG76Nq1K0cQCAADgiwqCwi8DgIRuaKuXbti3759KCkpUboUUhgDggw4gkBE7mL48OG4cuUKlixZonQppDAGBBlU3HiJAYGIXF1oaCj+8Y9/YP78+bhw4YLS5ZCCGBBkUDGCIISQnmNAICJXNXPmTABAamqqwpWQkhgQZMDTHInIndxxxx146623kJaWBoPBoHQ5pBAGBBnwNEcicjfjx4/HwIEDMW3aNJs/fshzMCDIoKpJiiqVSvoeEZErUalUmDdvHn799Vds3LgRW7duxblz55QuixyIn14yqCog8PACEbmyLl26oE+fPpgwYQIGDRqE5ORkpUsiB2JAkEFV10FgQCAiV/fyyy+juLgYI0aMwFdffYX9+/crXRI5CD/BZMARBCJyVwMHDkRBQQFUKhVycnLw0ksvwWAwSKd3k/viCIIMGBCIyJ2p1Wo0aNAAixYtwtatW/HWW28pXRI5AAOCDKo6zZEBgYjcycMPP4wZM2bghRdewHfffad0OVTPGBBkUNVpjgwIRORu5s2bh969eyMxMRF//PGH0uVQPWJAkEFVl1pmQCAid9OgQQOkp6fDx8cHMTEx0Ov1SpdE9aTWAWHRokX473//i4KCAowfPx7Tp0/H1q1b5azNZVR1qWVeJImI3FGzZs2we/du9OnTB4899hhmzpxp8/uP3EOtA0JUVBRGjhwJvV6PiIgIvPPOO8jPz5exNNfBSYpE5GnuvPNO6PV6LFiwAHPnzsXq1auVLolkVutPMI1GAwDIzMzEvHnzAACBgYHVWrfi2t4WiwVarRY6nc5umWnTpmHy5MkAgM2bN0s3Dbn5uuCxsbG1ewMy4nUQiMgTqVQqPP/889i1axdee+01jBo1iiOnbqTWIwhmsxnZ2dkwm83o0KEDzGYzrFZrtdYzGo2IjY1FYmIili9fXulyeXl5GDt2LBYtWiQFBavVCrPZjNjYWMTGxsJoNNa2fFlxBIGIPNnLL7+MY8eOISUlBatXr+bhBjdR64AQFxeHw4cPY/369bh8+TI+//zzagUEo9GIgIAA6XFAQEClH/TJycnYu3cv0tLSpNEKjUYDvV4Pk8kkresMeJojEXmyLl26YOjQoViyZAmeeOIJvPjii0qXRDKo9SfY0qVL0bp1azRp0gTTpk1DQEAAoqKibrneqVOnEBQUJD0OCgqqNFjk5OQAuH4YAgASExMBACkpKYiPj0dERARWrVpV2/IhhEBRUVGt179RaWkpAKC4uFjaZklJCby8vGR7DVdSXFxs85VcsyclJSXSV7n3Y1fsR31yh36sWbMGQgi8//77eOGFFxAWFoaEhIRabcsd+iEnOfshhKj2VTBrHRCioqIwaNAgrFixAhEREXjuuefw+eef12pbFSHgRhVzDgBgwIABiIuLg0ajQU5ODjIyMrBo0SKMHTsWGRkZtXrN0tJSHDlypFbr3uzMmTMAgNOnT0vbPH/+vKyv4Ypyc3OVLsHpuFJPKn4uT548iYsXL9bLa7hSPxzBHfoxYMAA9OrVC7NmzUJ4eHid5iS4Qz/kJFc/fHx8qrWcwycphoSE2IwY5OfnQ6vV2ixjMBiQk5MjhQSNRgOz2Qyz2YwePXogIiICaWlpmDlzJoxGY6WTHG9FrVYjNDS0xutVpiKNNWvWDB06dAAANG7cGAEBAdJjT1JcXIzc3Fy0adMGvr6+SpfjFFyxJ+fOnUNWVhbatm2L4OBgWbftiv2oT+7Wj/nz56NXr144fPhwrUYR3K0fdSVnP44fP17tZWsdEMxms/S1JpMUdTodFi5cKD3Oy8uTPuCtVis0Gg20Wq0UQCqej4iIwKFDh2zChE6nq/aZEzdTqVTw8/Or1bo3q9iOWq222ebNjz2Nr6+vR7//yrhSTxo1aiR9ra+aXakfjuAu/ejZsycGDx6M+fPnY9SoUdX+i/Vm7tIPucjRj5rcZKvOkxQzMjJQUFAAvV5frYCg1WoxePBgGAwG6PV6m/uLx8fHS2HAarXCYDBg4cKFSEtLA3B9HoLRaIRer5eu3hUREVHbtyAbnsVARGRrwYIF+O2337B48WKlS6FaqvUnWEBAAIQQWLRoEd555x306NGjWpMUgaqvXbBt2za7ZW5edtKkSbWsuP7wOghERLYiIyMxZcoUzJ49G3fffTeGDh2qdElUQ3W61LJGo5EOD3Tv3t1prkvgaLwXAxGRvblz56Jfv34YNmwYpk+fbvM7kpxfnS61nJCQYDfB0BPxbo5ERPY0Gg02btyI9957D0uWLMFDDz2EjRs3Kl0WVVOtA0JeXp7dcxXXLvA0nINARFQ5lUqFKVOmYP369Thz5gyGDRtmd8l8ck61/gQLDw9HfHw8mjRpAqPRCKPRiJSUFDlrcxkMCEREf2/48OEYNmwYIiMj8dlnnznFfXTo79V6BKF79+5YvHgxOnToACEE5s6di+7du8tZm8tgQCAiujWVSoXRo0djw4YNKCgoULocuoVaBwTg+imLKSkpSElJQXh4eKWHHTwBAwIRUfWMGjUKxcXF+PLLL5UuhW6hTgHhyJEjyM7Olv5btGiRXHW5lKpOc+RtT4mIbLVu3RpdunTB5s2blS6FbqHWf+I+88wzKCgosLmjoqfed4B3cyQiqr4ePXpwBMEF1PoTrEePHnbX2N6yZUudC3JFPM2RiKj6unbtiv/85z/4888/0axZM6XLoSrU+hBDZdc/CAkJqVMxropzEIiIqq9bt24AgN27dytcCf2dOt2sSa/XS5dXFkIgMzMT69evl604V8GAQERUfSEhIQgODsaPP/6IIUOGKF0OVaHWIwjp6elo1aoVhBAQQgCA9NXTMCAQEVWfSqVCt27dOILg5Gr9CZaammp33YOK+zJ4mop7MdwYkBgQiIiqptPpMGfOHBQWFsLf31/pcqgSssxBKCgowJYtW6DRaGQpyhV5eXnxLAYiomoaOXIkCgsLkZGRoXQpVIVaB4Ts7Gzp3wEBARg0aJDNc55GpVKhvLwcp06dwtGjR3kdBCKiv9G2bVs88MADWLVqldKlUBVq9CduQUEBMjMzoVKpsGvXLrvvHzp0CCNHjpStOFfi7e2N8vJyzJ49GydOnOAIAhHRLYwbNw5jxoxBbm4u2rRpo3Q5dJMajSAEBASge/fuyMnJwalTp/D777/b/Ddx4sT6qtPpVYwgFBUV4cKFCwwIRES3EB8fDx8fH3z11VdKl0KVqPEnmFarxZw5c5Cdne2xN2eqjJeXF8rLy1FWVgar1cqAQER0C40bN0bPnj2xdetWTJs2Tely6CZ1upvjzS5fvlynYlzZjQHBYrEwIBARVcPAgQPx3Xff4erVqzbP79+/H3Fxcbh48aJClVGNAsKNAeDIkSN2/y1cuFD2Al1FxSGGihGE0tJSBgQiolsYOHAgCgsLkZ2djT179mDgwIFITU3FjBkzsHPnTqxevVrpEj1WtT/BtmzZgunTp+Obb75Bq1atMGbMGERFRdmc+28ymTB79ux6KdTZVZzmWFZWBiEERxCIiKohOjoat99+O8aMGYO8vDyEhYVh9+7daNy4MaKjo7FixQo8/fTT0vVmyHGq/Qmm0Whs7taYkJCAlJQUm2U89WZNgO0IQgUGBCKiv+fl5YXU1FT88MMPSE1NRXJyMs6fP4+jR48iPz8f8fHx2LdvHzp37qx0qR6n2p9geXl5No8rS3OeerMm4PppjkIIm4DA6yAQEd3ajBkzMGPGDOlxYGAgNBoNOnXqhFatWmHlypUMCAqo0QjCrFmz0KNHDwDXb9a0detW6fsWiwUGgwErV66Uv0oXwBEEIiJ5eXt7Y+zYsViyZAnefvtt+Pn5KV2SR6n2J9igQYOg0WikCyRZrVb88ssvNsvk5+fLWpwrufEshgoMCEREdTNu3DjMmzcPX3zxBZ588kmly/EoNfoE6969u3R6Y2XXQfDkSy0zIBARye+uu+5Cv379sGrVKgYEB5P1OgiefOEkHmIgIqofsbGx2LNnj81Zc1T/ah0QyNaNpzlWYEAgIqq7iIgIFBYW4tSpU0qX4lEYEGTCEQQiovoRHh4OADh8+LDClXgWRQKCwWCAwWCAXq+H0WisdJlp06bBZDLBZDLZXKFx2rRpsFqtjiq12iru5siAQEQkr5CQEPj7+8NkMildikdx+CeY2WyG0WjEnDlzAFyfoarT6eyWy8vLw9ixYxEZGYnFixdL627ZskWaDGm1WpGSkoJJkyY57g1UgSMIRET1w8vLCx06dOAIgoM5/BPMaDQiICBAehwQEACj0WgXEpKTkxEbG2vznNlsxt69e6HRaAAAer0eiYmJ9V90NVR2FgMvlEREJI/w8HCOIDiYwwPCqVOnEBQUJD0OCgqq9JBBTk4OgOsXYAKAxMREmxCh1+sRFxdX6zqEECgqKqr1+jcqLi6GSqXC1atXce3aNen5a9euyfYarqS4uNjmK7lmT0pKSqSvcu/HrtiP+sR+2KqsH+3bt0dGRgYKCws97r4Mcu4fQohq988pxsArQsCNUlNTpX8PGDAAcXFx0siB2WyG1WqVHtdGaWmpzb0l6srLywsWi8Xmf6DZbLYZLfE0ubm5SpfgdFypJxU/lydPnqy3W+66Uj8cgf2wdWM/GjdujMuXL+O7775D8+bNlStKQXLtHz4+PtVazuEBISQkxGbEID8/H1qt1mYZg8GAnJwcKSRoNBqYzWZEREQAANLT06VLPteWWq1GaGhonbZRobi4GF5eXvD397c5rBAaGooOHTrI8hqupLi4GLm5uWjTpg18fX2VLscpuGJPzp07h6ysLLRt2xbBwcGybtsV+1Gf2A9blfWj4kNNCOFxv1fl3D+OHz9e7WUdHhB0Op3NWQl5eXnSoYOKUQGtVmszOmC1WqVwAFy/a+Rjjz1WpzpUKpWs1/VWqVTSPIQKAQEBHn3tcF9fX49+/5VxpZ40atRI+lpfNbtSPxyB/bB1Yz/CwsLg7e2NP/74w2N7JMf+UZPDMw4PCFqtFoMHD4bBYIDFYkFycrL0vfj4eGRkZCAiIkI6FTInJwdpaWk229BoNAgMDHR06X/rxtMcg4KCkJ+fz7MYiIhkolarERISghMnTihdisdQ5BPs5rMTKmzbts1umcqWzcjIqJ/C6uDG0xxvu+02BgQiIpm1a9eOAcGBeCVFmdx4mmOTJk0A8DoIRERyYkBwLAYEmdw4ghATE4POnTvjjjvuULosIiK3UREQeNMmx2BAkMmNIwjt27fHnj174O/vr3RZRERuo127drh8+TL++usvpUvxCAwIMrnxbo68giIRkfzatWsHADzM4CAMCDK58RADAwIRkfzuuusuAAwIjsKAIJMbT3NkQCAikl9AQACaNWtWo4v9UO0xIMhEpVJBCMGAQERUjzp37oxvvvlG6TI8AgOCTG6cpMiAQERUP0aNGgWj0YiTJ08qXYrbY0CQiUqlQllZGYQQDAhERPXkkUcegZ+fH9atW6d0KW6PAUEmXl5eKC0tBQAGBCKietK4cWMMGzaMAcEBGBBkolKpGBCIiBxg8ODBOHToEC5duqR0KW6NAUEmXl5euHr1KgAGBCKi+tSpUycAwP79+xWuxL0xIMjEy8sL165dA8CAQERUn9q3b4+AgAAGhHrGgCATzkEgInIMLy8vxMTEYN++fUqX4tYYEGTCgEBE5Dj333+/NIIghOB8hHrAgCATTlIkInKcTp064eTJk7hw4QI+/PBDNG/eHLt371a6LLfCgCATzkEgInKczp07AwC++uorLFq0CKWlpUhISMDevXtRXl6ucHXugQFBJhxBICJynNDQUIwYMQLJyck4efIk1q9fj2vXrqFLly5ISEhQujy3wIAgE57mSETkWB9++CFuv/129OjRA8OHD8fJkyexePFirF+/Hr/88ovS5bk8BgSZcJIiEZFjNW3aFPv378eXX34JAPDx8cFTTz2FkJAQLFq0SNni3AADgkw4B4GIyPFatmyJpk2bSo/VajWmT5+OdevW4ezZswpW5voYEGTCEQQiIucwZswYqFQqpKenK12KS2NAkAknKRIROYfbbrsNDz30ENasWaN0KS6NAUEmHEEgInIeo0ePxr59+3D06FGlS3FZDAgyUalUnINAROQkHnroIQQEBGDDhg1Kl+KyGBBk4uX1f61kQCAiUlajRo0QExPDGzrVAQOCTBgQiIicS3R0NH7++Wely3BZDAgyYUAgInIu0dHROHHiBCwWi9KluCQGBJkwIBAROZfo6GgAwMGDBxWuxDU1UOJFDQYDAMBisUCr1UKn09ktM23aNEyePBkAsHnzZqSmpkrfW758ObRaLQAgNjbWARXfmkqlkv7NgEBEpLywsDA0bNgQBw4cQO/evZUux+U4PCCYzWYYjUbMmTMHADBu3LhKA0JeXh7Gjh2LyMhILF68WHp+3LhxWLx4MTQaDeLj450mIHAEgYjIuajVakRGRuLAgQNKl+KSHB4QjEYjAgICpMcBAQEwGo12ISE5Odnuw99kMknrmkwmZGRk1H/B1cQRBCIi53P//fdj8+bNsFqt0Gg0SpfjUhweEE6dOoWgoCDpcVBQEKxWq91yOTk5ACBNLklMTMShQ4eQl5cHs9kMAJg5c6Y0ElFTQggUFRXVat2bFRcX24wgXL16VbZtu6Li4mKbr+SaPSkpKZG+yr0/u2I/6hP7YUvOfkydOhXp6el44oknsHbtWps/5lyFnP0QQlS7B4rMQbhZZTNMb5xzMGDAAMTFxcFqtSIwMBAREREAgEOHDsFkMkmPa6K0tBRHjhypfdE3uTEgcNbsdbm5uUqX4HRcqScV+/DJkydx8eLFenkNV+qHI7AftuTqx0svvYQXXngBX3zxBSIjI2XZphLk6oePj0+1lnN4QAgJCbEZMcjPz5cmHFYwGAzIycmRQoJGo4HZbIZWq7VZNjAwEGazuVYBQa1WIzQ0tJbvwtbNIwhhYWG44447ZNm2KyouLkZubi7atGkDX19fpctxCq7Yk3PnziErKwtt27ZFcHCwrNt2xX7UJ/bDltz9aNu2LV5++WVcvnwZHTp0kKFCx5KzH8ePH6/2sg4PCDqdDgsXLpQe5+XlSfMPKo4RabVam2NFVqsVERER0Gq10Ov10vNms7nSCY7VoVKp4OfnV8t3Ufn2KgQEBMi6bVfl6+vLPtzElXrSqFEj6Wt91exK/XAE9sOWXP3w8/ND+/btcezYMZfurxz9qMkhFocHBK1Wi8GDB8NgMMBisSA5OVn6Xnx8PDIyMhAREQGDwSCNJKSlpQG4PpKQmJgIvV4Pq9WKlJQUp5l0wrMYiIicV1RUlDS3japHkTkIVZ2auG3bNrtlbl7WWU5rvBkDAhGR84qMjMSSJUtqNEnP0/FKijLhaY5ERM4rKioKFy5cwNmzZ5UuxWUwIMiEIwhERM4rKioKAHiYoQYYEGTCgEBE5Lzuuusu+Pn5MSDUAAOCTG4MCDf+m4iIlOfl5YX7778fO3fuVLoUl8FPMplUzEHw8vLiBBgiIif0yCOPYOvWrSgsLFS6FJfAgCCTilEDHl4gInJOw4YNQ0lJCbZs2aJ0KS6BAUEmDAhERM4tNDQUkZGR+PLLL5UuxSUwIMik4rACAwIRkfMaOnQoNm/eDCGE0qU4PQYEmXAEgYjI+XXv3h0XLlzA77//rnQpTo8BQSYMCEREzi8mJgYA8NNPPylcifNjQJAJAwIRkfNr0aIFmjdvzoBQDQwIMuEcBCIi1xATE1PtgFBUVISVK1di69atKC0ttfnepk2bEBkZiaKiovooU3EMCDLhCAIRkWu4//77sX//fgghcPXqVfzwww/4+eefUV5ebrNcaWkpEhISMHHiRAwaNAhjx461+f7ixYthMpmQnp7uwOodhwFBJgwIRESuISYmBn/++SfOnDmDjz76CL169UJ0dDQ+/vhjm+VeeuklbN26FQaDAUuXLsXatWvxwQcfYNq0afjuu++wfft2aDQavPvuu255VgQDgkx4iIGIyDV06tQJALB9+3ZkZGRgwIAB6Nu3L1avXi0t89tvv2Hx4sWYOXMmBg0ahEmTJqFXr16YMmUKPvjgA/Tv3x++vr5Yvnw5fv75Z2RnZyv1duoNA4JMOIJAROQaWrVqhQceeACLFi1CVlYWEhMTMWbMGOzcuRN5eXkQQuCFF15A06ZN8eyzzwK4/kfg2rVrkZ6ejpMnTyIqKgrjxo3DiBEjEBISgk8//VThdyW/BkoX4C4YEIiIXMdTTz2FxMREqFQqDBkyBI0aNcLkyZPx+uuvIz8/H//973/x2Wefwd/fX1qnVatWSExMBAAcOHAAQgh4eXlh1KhRWLZsGZYsWQJvb29MmDAB9913H55++mmX/kxgQJAJAwIRkesYNmwYmjVrhtDQUAQHBwMAhg8fjg8++AB+fn5IT0+XwkBlVCqVdGg5KSkJb7zxBgwGA86dO4dPPvkEn3zyCb7++mts3LgRfn5+DnlPcmNAkAnnIBARuQ4fHx/897//RUBAgPTcp59+irfffhtNmjRBo0aNqr2tyMhI3HvvvUhNTcWlS5eQlJSEcePGYejQoRg2bBjWr19v8zo1ceLECTRu3LhW69YV5yDIhCMIRESupXfv3oiOjpYeq9VqtGjRokbhoMKKFSsQGhqKhg0b4vXXX0f//v2xadMmZGdnIyYmBiaTSVr26NGj+Ouvv265zfPnzyM6Ohpr166tcT1yYECQCQMCEZHn6ty5M77++muYzWZotVoAQN++fXHgwAE0bNgQI0eOxG+//Ya+ffuiQ4cOGDly5C23+frrrwMAHn300XqtvSoMCDLhIQYiIrpZaGgo0tPTcfz4cURERODEiRN4/vnn8f333yMrK6vK9c6cOYP3338fzz33HJo2berAiv8PA4JMOIJARESViYyMxPz58xEaGoqdO3fi9ddfR1RUFObNm1flOl9++SXKysrwzDPPOLBSWwwIMmFAICKiqqSkpCAnJwdt2rSBl5cXZs+eja1bt9pdvbFCZmYmdDodgoKCHFvoDRgQZMKAQERE1TV8+HBMmjQJU6ZMwd69e22+d+XKFWzfvh1xcXEKVXcdT3OUCecgEBFRTSxZsgQ5OTkYNGgQduzYgY4dO2L16tXIy8tDYWEhYmNjFa2PAUEmHEEgIqKaaNSoETIzM9GvXz888sgjeOONN/DEE08AAFq0aIGOHTsqWh8PMciEAYGIiGoqKCgIGzZsgMViwahRozBw4EB89913yMjIkEamlcKAIBMeYiAiotpo3bo1VqxYgbZt2+Kjjz5Cnz590K1bN6XLUiYgGAwGGAwG6PV6GI3GSpeZNm0aTCYTTCYTFi5ceMvnlcYRBCIiqq0RI0bgxIkTuOuuu5QuReLwOQhmsxlGoxFz5swBAIwbNw46nc5uuby8PIwdOxaRkZFYvHjxLZ9XGgMCERHVhdKHFG7m8IBgNBptbloREBAAo9FoFxKSk5MrncFZ1fNKY0AgIiJ34vCAcOrUKZsLPwQFBcFqtdotl5OTAwCwWCwAIN12s6rna0oIgaKiolqte7Pi4mKb5CfXdl1VcXGxzVdyzZ6UlJRIX+Xep12xH/WJ/bDFftiSsx9CiGqPVDjFaY4VH/Y3Sk1Nlf49YMAAxMXFQaPRVPl8TZWWluLIkSO1K7gSFSMIly9flnW7riw3N1fpEpyOK/Wk4ufy5MmTuHjxYr28hiv1wxHYD1vshy25+uHj41Ot5RweEEJCQmxGDPLz86U7X1UwGAzIycmRwoBGo4HZbIbZbK70+YiIiBrXoVarERoaWod38n+Ki4tx/PhxAECTJk3QoUMHWbbrqoqLi5Gbm4s2bdrA19dX6XKcgiv25Ny5c8jKykLbtm0RHBws67ZdsR/1if2wxX7YkrMfFZ9V1eHwgKDT6WzOPsjLy5PmH1itVmg0Gmi1WptRAavVKoWAqp6vKZVKBT8/v1qtW9X2AKBhw4aybteV+fr6shc3caWeNGrUSPpaXzW7Uj8cgf2wxX7YkqMfNZkI6fCAoNVqMXjwYBgMBlgsFiQnJ0vfi4+PR0ZGBiIiIqRTIXNycpCWlgYAVT7vDDhJkYiI3IkicxCqOgth27ZtdsvcvGxVzyuNAYGIiNwJr6QoEwYEIiJyJwwIMuGllomIyJ0wIMiEIwhEROROGBBkwoBARETuhAFBJjzEQERE7oQBQSYcQSAiInfCgCATBgQiInInDAgyYUAgIiJ3woAgE85BICIid8KAIBOOIBARkTthQJAJAwIREbkTBgSZ8BADERG5EwYEmXAEgYiI3AkDgkwYEIiIyJ0wIMiEAYGIiNwJA4JMOAeBiIjcCQOCTDiCQERE7oQBQSYqlQp+fn7QaDRKl0JERFRnDZQuwF2oVCpkZ2cjLCxM6VKIiIjqjCMIMgoNDYWPj4/SZRAREdUZAwIRERHZYUAgIiIiOwwIREREZIcBgYiIiOwwIBAREZEdBgQiIiKyw4BAREREdhgQiIiIyA4DAhEREdlRCSGE0kU42k8//QQhhGxXPRRCoLS0FGq1WrqroydjP+y5Yk/KyspgtVqh0WhkvwmZK/ajPrEfttgPW3L24+rVq1CpVIiJibnlsh55Lwa5dziVSsVLLN+A/bDnij3x9vZGkyZN6mXbrtiP+sR+2GI/bMnZD5VKVe3PQI8cQSAiIqK/xzkIREREZIcBgYiIiOwwIBAREZEdBgQiIiKyw4BAREREdhgQiIiIyA4DAhEREdlhQCAiIiI7DAhERERkhwGBiIiI7DAgEBERkR2PvFmTnAwGAwDAYrFAq9VCp9MpXJEypk2bhsmTJwMANm/ejNTUVACe0x+r1Qq9Xg8AmDRpkvR8Ve/f3ftSVT88eT8xGAywWCwwmUyIjY295b7g7j2pqh+euo8YDAZotVocOnQIAJCYmCg9Dyi0fwiqtVOnTol///vf0uOxY8cqWI2yhg8fLjp16iTGjh0rLBaLEMKz+pOZmSnefPNNsWzZMum5qt6/J/Slsn4I4bn7yaFDh0RmZqYQQgiLxSI6deokhPDcfaSqfgjhmfuIxWIRw4cPl/599913CyGU3z94iKEOjEYjAgICpMcBAQEwGo0KVqSc5ORk7N27F2lpadBoNAA8qz+xsbEICQmxea6q9+8JfamsH4Dn7icWi0V6TxqNBoGBgTCZTB67j1TVD8Az9xGNRoOMjAwAgNlslkYDlN4/eIihDk6dOoWgoCDpcVBQEKxWq3IFKSgnJwfA9R984PrwmKf3p6r378l98dT9RKfT2QwBWywWREREYPPmzR65j1TVD8Bz9xEA0Ov12LVrFxYvXgxA+d8hDAgyq9ipPU3FcUIAGDBgAOLi4ipdzlP7U6Gq9+8pfeF+AsycORNz586t8vueto/c3A9P3kcSExOh1WqxaNEizJkzp9JlHLl/8BBDHdw8hJqfnw+tVqtQNcoxGAxYuHCh9Fij0cBsNnt8f6p6/57aF+4n13ug0+kQGxsLgPvIzf3w5H2kYgRAp9MhMzMTRqNR8f2DAaEOdDqdNBwGAHl5eW43s7Y6tFotevToIT22Wq2IiIjw+P5U9f49tS+evp8YjUZoNBrExsbCZDJJx5o9dR+prB+euo/o9XosXbpUehwYGIjAwEDF9w+VEELIvlUPcuOpJoGBgVIS9jQVfcjJycFjjz0mpVlP6Y/RaER6ejoKCgqQmJho8xcRYP/+3b0vt+qHp+0nZrMZ8fHx0mOr1Ypjx44B8Mx9pDr98KR9xGq1SoFp165dCAoKkk4PVnL/YEAgIiIiOzzEQERERHYYEIiIiMgOAwIRERHZYUAgIiIiOwwIREREZIcBgYiIiOwwIBCR0zIajYiPj5duHU1EjsOAQEROS6fToXv37kqXQeSRGBCIyKndeNc6InIcBgQiIiKyw9s9E1GNGY1GmEwmaLVa5OTkIDU1FUajETNnzpRuJmOxWGAymZCSkgKNRgMAMJlMMBqN0Gq1MJvNiI2Nla61bzabkZ6ejqioKFgsFsTFxUnrVVyr3mw2Y9euXViyZIli753IUzAgEFGNmM1mLFq0CBkZGQCu3yxm+fLlmDRpEgYNGoSgoCCbG8o888wzSEtLk9ZLS0uTthUfH49Vq1YBAMaNG4eMjAxoNBosXLgQer1eumFNTk6Ozc1rTCYTIiIiHPiuiTwPAwIR1Uh6ejoCAwNhNBql52689WzFX/0AEBsbi2eeeQZWqxXp6ekIDw+32VarVq2QmZkJ4PrtoCvWnTx5ss1yUVFR0r8DAgJgsVjke0NEVCkGBCKqsfDwcJv7zycmJtZpe1arFQEBAdLjG0MGESmDkxSJqEYGDx6M7Oxsm+duHE2wWq3Svw0GA3Q6HTQaTaXrHT58GHFxcYiNjcXhw4er3CYROZ5KCCGULoKIXIvRaMSuXbukof+KELBw4UIUFBQgNjYWVqsVOTk5mDx5sjQicPPkxsGDB0tzCSrbptlsxr///W8AwNy5c6V5DOHh4UhNTZUmOBKR/BgQiEg2CxcuREhISJ0PORCR8niIgYiIiOwwIBCRLIxGI7Kzs6XTEInItfEQAxEREdnhCAIRERHZYUAgIiIiOwwIREREZIcBgYiIiOwwIBAREZEdBgQiIiKyw4BAREREdhgQiIiIyA4DAhEREdn5/5eAASHH6nR9AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAFQCAYAAADayYZkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDjklEQVR4nO3de1xUdf4/8NegIFAzjK4tmg5CYgpoanmJQVPLcqDMxAu2bSUp4KXVTUXb9GuFlqVsibWaolF2kzKyiziW2Sp6rLx0GUbUMIkZM7OUGZWLqPP7g9+cZRxQGA5zObyej4cPnJlzzrzfcnv5OZ/zOQqbzWYDERERUS1+ni6AiIiIvA8DAhERETlhQCAiIiInDAhERETkhAGBiIiInDAgEBERkRMGBCIiInLCgEBEREROWnu6AE/47rvvYLPZ4O/v7+lSiIiI3Ka6uhoKhQJ9+/a95rYeCQh6vR4AYLFYoNFooNVq69wuOzsbGo0GAKDT6cR9LRYLjEYjdDpdvftejc1mg5QLSNpsNlRXV8Pf3x8KhUKy43oj9up9Ll++DKvVCpVKBT8/1wcFfaVfKbBXeWKvDduvodweEEwmEwRBQEZGBgAgOTm5zl/yycnJyMrKgkqlQmJiInQ6HYxGIwAgKSkJVqsVd911F/bu3dvoGuwjB7169WpCJ/9TXl6OoqIiREZGIjg4WJJjeiv26n1OnDiBTZs2ITU1FR07dnT5OL7SrxTYqzyx12szGAwN3tbtAUEQBCiVSvGxUqmEIAgOIcFoNIrbGI1G5OXlAagZcRAEATqdDiqVCiEhITAajYiJiWl0HTabDeXl5U3spkZFRYXDRzljr96nsrJS/NiUr2lf6VcK7FWe2Ou12Wy2Bo84uD0glJaWQq1Wi4/VajWsVqvDNoWFhTCbzTCZTACAhQsXIiMjA1qt1iFIWCwWl8IBUHMepqioyKV961NSUiLp8bwZe/UeFosFAHDs2DGcPn26ycfz9n6lxF7lib1eXUBAQIO284pJivYfcHZWqxUhISHiL//CwkKnkYKFCxdi0aJFLr+nv78/IiMjXd6/toqKCpSUlCA8PBxBQUGSHNNbsVfvc/LkSRQUFCAiIgKhoaEuH8dX+pUCe5Un9nptxcXFDd7W7QEhLCzMYcSgrKxMnIhop9FoHJ4LCQmByWQSA4Jer4dWqxUnLrpCoVBIfo4qKChI9ue97Nir9wgMDBQ/SlGnt/crJfYqT+y1fo2Z0Oj2dRC0Wq3DJAmz2SyeNrAHB61WK55eAGomNtq3EQQBKpVKnLRYezsiIiKShttHEDQaDRISEsTLFVNTU8XXEhMTkZeXB5VKhaSkJOTm5sJqtWLOnDlQqVQwmUyYOXOmuL3VasXhw4fd3QIREZHseWQOQn2nBrZt23bVbTQajUuXNRIREVHjcKllIiIicsKAQERERE684jJHIrq2U6dOobS0FBcuXHD4Y79MWMrlw4mIGBCIvJzJZMKSJUuwbt06XLhwwen1jh07Ii0tDSNHjsSAAQMwYsQI3HnnnVCpVB6olojkggGByEuVlpaKwUCpVOLpp5+GTqdDmzZtEBAQgICAAPj7++PPP/9EXl4eBg8ejM2bN+O1115D69atodVq0bt3b3Tt2lX8ExERIa6b0Byqqqpw5swZdOjQodneg4jcgwGByIvYbDYcPHgQK1asQE5ODlQqFTIyMjB9+nSHe5jUZl/4ZN68eVi+fDmOHj2KrVu3Ytu2bdi2bRvWrFmDqqoqcdtOnTqhS5cu4oJk9j8dOnRw6W6Q586dw5YtW5CXl4fNmzfj7Nmz6Nq1K4YNG4Y777wTw4YNY2Ag8kEMCEQedPnyZRgMBuzcuRM7duzAzp07cerUKbRv3x6LFy/GtGnTcP311zfqmF27dsW0adMwbdo08T2OHz+Oo0eP4ueff8bRo0dRWloKk8mEb7/9FmazWTx1oVarkZCQgAceeAD33HMPQkJCnI5fUVGBo0ePYt++ffjoo4+wdetWVFVVoU+fPpgzZw569OiBgoICbN++HWvXrgUAREVF4d5778X06dMRHh7etH80InILBgQiN7p48SK+//57MRAUFBTgzJkzCAgIwIABA5CamoohQ4YgLi5OsqVi/fz8xFGCoUOHOr1++fJl/P777/jxxx+xYcMGfPvtt3j33XfRunVr3HHHHRg0aBBOnDiB4uJi/PTTTzCbzQBqRiO0Wi2ee+45jB49GjfddJN4zPHjxwMAfvvtN/z3v//F9u3bsW7dOrz00ksYM2YMZs2ahdtvv12S/oioeTAgEDWzo0ePYuPGjdixYwd27dqFs2fPIjAwELGxsZg5cyaGDBmCgQMHeuzmMn5+fujQoQNUKhX+8pe/4NVXX8WpU6ewefNmfPbZZ1i1ahU6d+6Mbt26ITY2Ft26dUO3bt3QvXt3tG/f/qrH7tChAyZMmIAJEybg5ZdfxptvvomXX34ZsbGxiI2NxaxZs/DAAw+gdWv+KCLyNvyuJGomgiAgMzMTmzZtQnBwMOLi4jBv3jwMGTIE/fv3R5s2bTxdYr26dOnicJpCCtdddx2mTZuGKVOmYPPmzXjppZcwbtw49OnTB3l5eYiIiJDsvYio6bhQEpGELl26hI0bNyI2NhZxcXE4ePAgXnvtNZw6dQpbt27F/PnzMWjQIK8OB83Nz88PI0eOxFdffYWvv/4aVqsVt912Gz7//HNPl0ZEtTAgEEng0qVLeP3119GtWzeMGzcOgYGB+PTTT3Hw4EGkpqbK/t70rho4cCD27duH22+/HTqdDkuWLOGCT0ReggGBqAlsNhvy8/PRu3dvTJo0Cf369cO+ffvw1Vdf4b777nPpssGWpm3btvj000+xYMECPPXUUxg7dizOnj3r6bKIWjz+9CJy0b59+3DXXXfh3nvvRfv27fHtt9/i/fffx2233ebp0nxOq1atkJGRgU2bNuGLL77AwIEDYTQaPV0WUYvGgEDUAJcuXUJpaSl27tyJ9evX48EHH0T//v1x8uRJfPrpp/jqq6/Qv39/T5fp80aNGiXe0r13795ISUnB8ePHPVwVUcvEqxiI6nDhwgW88847WLt2LX7//XeYzWZcvHhRfD08PBzZ2dmYOHEiL9GTWPfu3XHgwAGsWrUKzz33HN5++23MnDkT8+bNQ9u2bT1dHlGLwREEolrOnDmDF154AREREUhNTQUAjB49GitWrEB+fj4OHjyI8+fP49ixY5g8eTLDQTMJDAzEE088gaNHj2LOnDl45ZVXcNNNN2Hp0qUoLy/3dHlELQJ/uhEBOHbsGJYvX45169bh4sWLePjhhzFlyhQANcsES7WqITVOSEgIFi1ahOnTp2PRokWYP38+li5diqlTp2L69Om8xwNRM+IIArVoR44cwSOPPILIyEi88847mD17Nn755RdkZ2cjKirK0+XR/9ehQwf85z//weHDh/HQQw/h5ZdfRpcuXZCcnIwff/zR0+URyRIDArVIhw4dwt///ndERUVh+/btyMrKQmlpKZ599lmEhoZ6ujyqx0033YSsrCyYzWYsXrwY27ZtQ+/evTF8+HBs27aNaygQSYgBgVqUoqIi/O1vf0N0dDR27NiBV155BcXFxXj88cd5GsGHqNVqpKen4+eff8Z7772HsrIy3H333dBqtdiyZQuDApEEGBCoRbBYLJgxYwZ69uyJXbt24T//+Q+Ki4sxbdo0BAYGero8cpG/vz8mTJiAvXv3YsuWLVAoFEhISMCAAQPwySefMCgQNQEDAsmazWbDW2+9he7du+P111/Hiy++iJ9++glTp05t0fdDkBuFQgGdTofdu3dj27ZtCA4OxqhRo9C3b1/s2LHD0+UR+SQGBJKtwsJCDB06FI888giGDh2KQ4cOYc6cOQwGMqZQKHDXXXdhx44d+O9//4vrrrsOQ4cOxbRp07h8M1EjeeQyR71eD6Bm2Fej0UCr1da5XXZ2NjQaDQBAp9MBAKxWK3JzcwEAKSkpbqiWPO3y5ct455138P333+PChQtOfxQKBfz9/dG6dWvx47lz57BhwwZERkbiiy++wPDhwz3dBrnZkCFDUFBQgJUrV+LJJ5/E5s2bsWbNGowYMcLTpRH5BLcHBJPJBEEQkJGRAQBITk6uMyAkJycjKysLKpUKiYmJYkAQBAFlZWVQq9XuLJs8pKioCKmpqdi1axe6d++ONm3aICAgQPzj7+8Pm82Gixcvorq6GhcvXsTFixdx+fJlLF68GLNmzUJAQICn2yAP8fPzw+OPP4777rsPKSkp0Ol0SE5OxqJFizxdGpHXc3tAEAQBSqVSfKxUKiEIgkNIMBqN4jZGoxF5eXniazqdDhaLBVar1X1Fk8hms+HkyZPNvkZAVVUVlixZgueffx4RERH46quvMHTo0GZ9T5Kv8PBwfP7553j99dcxa9Ys5OfnY+TIkUhNTUW/fv2gUCg8XSKR13F7QCgtLXX4379arXb6ZV9YWAiz2QyTyQQAWLhwoTjiIBWbzSbZkq0VFRUOH+Vs1apVSE9Px6RJk/Diiy8iKChI8vfYtWsX/vGPf+Dnn3/G7NmzMXfuXAQGBrp9iV1f+bxWVlaKH5vyb+Qr/TbFgw8+iDvuuAPPPvsscnNzsXbtWvTo0QOJiYkYPXo0oqOjPV2i5FrC59WOvV6bzWZrcCD2iqWWLRaLw2Or1YqQkBDExMQAqAkMRqNRfCyF6upqFBUVSXY8ACgpKZH0eN7m/PnzeP755xEVFYW3334bX331FZ5//nlERkY26jiVlZX44YcfUFJSAqvV6vDnzJkzKCwsxC233IK3334bkZGROHbsWDN11DDe/nm1f/8cO3YMp0+fbvLxvL1fKTzxxBN4/PHH8c033+CLL75AVlaWOFrVv39/9O3bF3379kX79u09XapkWsLn1Y69Xl1DT7u6PSCEhYU5jBiUlZWJExHtNBqNw3MhISEwmUySBgR/f/9G/2KrT0VFBUpKShAeHt4s/6P2FosXL0Z5eTmWLVuGkJAQpKWl4dFHH8Xzzz+PtLS0elNpeXk5vvnmG+zcuRMFBQXYt28fqqurERAQgHbt2qFt27ZQq9Vo27YtNBoNpk6dikceeQR+fp69yMZXPq8nT55EQUEBIiIimrQKpK/0KwV7r3//+9+RkpKCqqoqfPnll/j000+xe/duvP/++wCArl27QqvVYtiwYRg7dixatWrl4cobryV+Xtlr/YqLixu8rdsDglarxbJly8THZrNZnH9gtVqhUqmg1WrFKxWAmomN9V3p4CqFQiH5ynlBQUGyXY3vxIkTyMrKEm+QExUVhf3792Pu3LmYPXs2tm/fjlWrVqGsrAxFRUU4dOgQioqKUFRUhIMHD6K6uhrt27fH0KFD8dBDD2Ho0KGIjo72iXO/3v55tS/0FBgYKEmd3t6vlOy9BgcHY+zYsRg7diyAmq/3goIC8c9bb72F7OxsvP766+jRo4eHq3ZNS/y8tgSN7bUxP3PdHhA0Gg0SEhKg1+thsVjEW+oCQGJiIvLy8qBSqZCUlITc3FxYrVbMmTMHKpUKQM0kx927d+Ps2bPQaDTi1Q3UvJ555hkEBgZi9uzZOHHiBICaX0grVqzAiBEjMHHiRISFhYnb33DDDYiKisLtt9+OlJQUnwoERB07dsT48eMxfvx4ADXzYh577DH06dMHGRkZmDVrFm/1TbLnka/w+n6pb9u27ZrbaLVayUcTWgKbzYZVq1YhMTGx0bfILSoqwtq1a/Hvf/8barVaDAh29957LwwGA7744gtEREQgKioKf/nLX6Qsn8ijBg0ahO+//x4LFy7Ek08+iQ8//BA5OTmynNRIZMeVFFsIQRAwffp0rFixotH7Pvnkk+jSpQumTp1a7zYdOnTAww8/jEGDBjEckCwFBwcjMzMTu3fvhsViQd++ffHUU0/hiy++wMmTJz1dHpHkGBBaiJUrVwIAPvjgg0bdwKagoACffPIJnn/+eS5RTAQgNjYW3333Hf75z39ixYoVuOeee9ChQwd06NABI0aMQHp6OvLy8lBVVeXpUomahAGhBTh58iQ++OADjBgxAsXFxfjhhx8atJ/NZkN6ejpuu+028VwsEdVMDHvxxRdhtVpx5MgRbNy4EampqQgMDMQHH3yAMWPGoFOnTnjiiSdQWFjo6XKJXMJZNi3AunXr0KpVK7z55puIiorCxo0b0adPn2vu9+GHH+Kbb77B9u3bPX7JIZE38vPzQ7du3dCtWzeMGTNGfL6oqAjr1q3D+vXrsXz5cgwcOBCTJk1CUlKSOOGayNvxp77MXbp0Ca+99hoefPBBhIaG4oEHHmjQaYYLFy7gX//6FxISEjBs2DA3VUskD1FRUcjMzITZbMaHH36Idu3aYcqUKfjrX/+K+++/Hzk5Ofjzzz89XSbRVTEgyNzmzZthMpkwbdo0AMC4ceNw5MgRGAyGq+73zjvvoLi4GC+88II7yiSSpYCAACQmJiI/Px+//PILlixZgrKyMkyaNAmhoaG466678Oqrr+L333/3dKlEThgQZG7lypUYMGAA+vXrBwC46667oFar8cEHH9S7z+XLl7F06VKMGjUKvXr1clepRLLWuXNnPPHEE9i5cydOnDiBlStXwt/fH7NmzcLNN9+M1atX4/Lly54uk0jEgCBjxcXF2Lp1qzh6ANT8j2bUqFFXPc3w6aef4tChQ5g3b567SiVqUUJDQ5Gamgq9Xo9ff/0VY8eOxZQpUzB06FAcOnTI0+URAWBAkLXXXnsN7dq1c7oCYdy4cTh8+DCMRqPTPjabDS+88AIGDx6M2NhYd5VK1GK1b98ea9euxfbt23HixAn07t0bixYtwoULFzxdGrVwDAg+4NixY42+Y1dFRQVef/11PPbYY0438rj77rsREhJS52mGgoICfP311xw9IHKzYcOG4ccff8SsWbPw7LPP4tZbb8WuXbs8XRa1YAwIPmD8+PGIiorCa6+91uBFjjZs2IAzZ85gypQpTq/VPs1wpRdffBE9e/ZEQkJCk+smosYJCgrCkiVLsG/fPgQHB2Pw4MEYM2YMfvrpJ0+XRi0QA4KXKysrw/79+xEdHY2pU6di9OjR+OOPP66538qVK6HT6dC1a9c6Xx87diyKioocTjMYDAbk5+dj7ty5vKkSkQf16dMHX3/9NdavX4+9e/ciOjoaM2bMaND3PpFUGBC83K5du2Cz2ZCbm4tNmzZh165duOWWW/Dll1/Wu8/evXuxb98+TJ8+vd5t7rnnHqhUKmzcuFF8bunSpQgLC8OECRMk7YGIGs/Pzw8PP/wwDh8+jMWLF+PNN99E165d8eKLL6KiosLT5VELwIDg5Xbs2IEbb7wRXbt2xahRo/Djjz8iOjoad999N+bNm4fi4mIUFhZi7969KCgowOeff47FixejS5cuiI+Pr/e4bdq0wf333y+eZvjll1/w3nvvYdasWfD393dXe0R0DUFBQeL3+qOPPooFCxYgLCwMzzzzDNdPoGbFgODlduzYgaFDh4pD/jfeeCM+//xzvPjii3jppZfQrVs39OrVCwMGDMAdd9yBESNG4JNPPsGMGTPQqlWrqx573LhxMBqNKCoqwksvvYSQkBBMnjzZHW0RUSPdcMMNWLFiBQ4fPowJEyZg2bJlCAsLQ1paGg4fPuzp8kiGGBC8mNVqxf79+zFkyBCH5/38/JCeno5Dhw7hyy+/hCAI+O6773Do0CH88ssvOHXqFJ544olrHv+ee+6BUqnEa6+9hrVr1+Lxxx/Hdddd11ztEJEEbrrpJrzyyiswmUxYuHAhPvnkE/To0QMjR47E+vXr8fPPPzfqjq1E9eHNmrzY7t27cfnyZaeAYNe1a9d6JyE2RGBgIEaOHIkVK1YgKCgI//jHP1w+FhG5V7t27fDUU09h9uzZePfdd/Hqq6/i0UcfBQB06NABgwYNwqBBg9C/f38EBAR4uFryRRxB8GI7duxAaGgobr755mZ7j3HjxgEAJk2ahPbt2zfb+xBR82jTpg2Sk5Oxf/9+/Pnnn/jss88wceJE/Pbbb5g3bx7i4uLw0ksvcVSBGo0jCF7syvkHzSE+Ph4zZ87kwkhEMtCuXTvce++9uPfeewEAVVVVWLFiBebOnYu2bdvi1Vdf5SXM1GAMCF7q3Llz2LdvHx555JFmfZ82bdpg+fLlzfoeROQZbdq0wfTp03H69Gm88MIL8Pf3x8svv8yQQA3CgOClBEHAxYsX651/QETUUGPHjkXHjh0xc+ZM2Gw2LF++nCGBrokBwUvt2LEDN9xwA6KiojxdChHJwOTJkxEQEICpU6cCAEMCXRMDgpfasWMHhgwZwm9gIpLMlClToFAoMGXKFHEkwc+Pc9WpbgwIXqi8vBzffvstXnrpJU+XQkQyk5aWBoVCgbS0NBw9ehRvvvkmr2CiOjE6eqE9e/agurqa8w+IqFmkpqYiPz8f3377Lfr06YOdO3d6uiTyQh4ZQdDr9QAAi8UCjUYDrVZb53bZ2dnQaDQAAJ1O16h9fdmOHTvQrl07xMTEeLoUIpKp+Ph4fP/99/jb3/6GYcOG4dlnn8W//vWvay7RTi2H20cQTCYTBEGATqdDUlISsrOz69wuOTkZSUlJ0Ol0WLNmTaP29XX2+Qc8N0hEzalTp0748ssvsWDBAixcuBAjRozAb7/95umyyEu4fQRBEAQolUrxsVKphCAIDiMBRqNR3MZoNCIvL6/B+zaUzWZDeXm5q204sN96VYpbsFZWVuKbb77BokWLJKtPSlL26u18pdfKykrxY1O+ZnylXymwV0fz5s3DwIED8dhjj+GWW27Bq6++ivvuu89dJUqGn9drs9lsDZ787vaAUFpaCrVaLT5Wq9WwWq0O2xQWFsJsNsNkMgEAFi5ciIyMjAbt21DV1dUoKipyad/6lJSUNPkY+/fvR1VVFTp16iR5fVKSoldf4e29WiwWAMCxY8dw+vTpJh/P2/uVEnv9n9DQUKxfvx6LFy9GUlISEhISMGfOHKhUKvcUKCF+Xq+uoffm8IqrGOw/4OysVitCQkLEc/CFhYUwGo0N2reh/P39ERkZ6dK+V6qoqEBJSQnCw8MRFBTUpGN99NFHUKvVGDlypFeeC5SyV2/nK72ePHkSBQUFiIiIQGhoqMvH8ZV+pcBe67dlyxa8++67SE9Px4EDB/Cf//xHnAPm7fh5vbbi4uIGb+v2gBAWFubwv/6ysjJxIqKdRqNxeC4kJAQmk6lB+zaUQqFAcHCwS/vWJygoqMnHFAQBd9xxh8OpFG8kRa++wtt7DQwMFD9KUae39ysl9lq3lJQUJCQkICUlBWPGjEFycjJefvllhISENHOV0uDntX6NWVvH7bPgtFotDAaD+NhsNotzCOy//LVarXh6AaiZnKjVaq+6rxxUVVVhz549vLyRiDyuU6dO2Lx5M9auXYuNGzciOjoaq1evxoULFzxdGrmJ2wOCRqNBQkIC9Ho9cnNzkZqaKr6WmJgIq9UKlUqFpKQk5ObmIjs7WzwPdrV95WDv3r2orKxkQCAir6BQKDBp0iQUFhbijjvuwNSpU9GjRw+88cYbuHjxoqfLo2bmkTkI9Z3P2rZt2zW38ZVzYa7YsWMHVCoV+vTp4+lSiIhEYWFheO+99zB//nw8/fTTSE5OxpIlS/DMM88gKSmJl2TLFD+rXuTAgQPo37+/V05OJCLq2bMnPvzwQ+zfvx/dunXD3/72N/To0QP/+te/8PXXX+Py5cueLpEkxIDgRcxmM8LCwjxdBhHRVd1666347LPPsGfPHsTFxWHt2rWIjY1Fp06dkJqais2bN4vrc5DvYkDwIsePH0enTp08XQYRUYPcfvvtyMnJwW+//YadO3fioYcewldffYX77rsPnTt3xtKlS3H+/HlPl0kuYkDwEhcvXsRvv/3GgEBEPqdVq1YYPHgwMjMzceTIERiNRowbNw4LFixAREQE/v3vf3vlyrB0dQwIXuLkyZO4dOkSOnfu7OlSiIhcplAoEB0djVWrVuHIkSMYNWoU5s2bh5tuuglZWVktYhlkuWBA8BLHjx8HAI4gEJFshIeHIzs7G0eOHEF8fDxmzZqFyMhIrFy5kusp+AAGBC/BgEBEcnXTTTchJycHhw4dwp133onHH38cN998M9atW4fq6mpPl0f1YEDwEsePH4e/vz/at2/v6VKIiJpFt27d8NZbb6GwsBADBgzA5MmTER0djbfffhuXLl3ydHl0BQYEL3H8+HHceOONXHCEiGQvOjoa77//Pr777jtER0fj4Ycfxu23344jR454ujSqhb+NvITZbOYERSJqUfr06YOPP/4Yu3fvhsViQd++fbFmzRrYbDZPl0ZgQPAaXAOBiFoqrVaLAwcO4KGHHkJaWhpGjx6NU6dOebqsFo8BwUswIBBRS3b99ddjzZo1+Oijj7Br1y7ccsst0Ov1ni6rRWNA8AI2m40BgYgIwAMPPACDwYDevXsjPj4e8+fP5ykHD2FA8AJWqxXnz59nQCAiAtCxY0fk5+fjhRdewPPPP48pU6bwKgcP8MjtnsmRfQ0ETlIkIqrh5+eHefPm4a9//SsmT56MsrIyvPXWWwgICPB0aS0GRxC8gNlsBsBFkoiIrpScnIyNGzdi06ZNuP/++3nzJzdiQPAC9hGEG2+80cOVEBF5n9GjRyM/Px+7du3CPffcgzNnzni6pBaBAcELHD9+HO3bt0ebNm08XQoRkVe66667sH37dhw6dAhDhgzBzp07eYfIZsY5CM2orKwMR44cwYABA666Ha9gICK6tgEDBqCgoADx8fEYMmQIWrVqhZ49e2LAgAEYMGAAbrnlFq5GKyH+SzajnJwcDBs27Jqzb48fP84JikREDRAdHY2jR4/i+++/x6pVq9C/f3988803SEtLw8CBAzFr1iz88ccfni5TFhgQmpHFYkF5eTlKSkquup3ZbOYIAhFRA7Vu3Rq9e/dGSkoKsrOz8cMPP8BqtWL9+vUwGAwYOHAgtm3b5ukyfR4DQjOqqKgAABQVFV11O55iICJqmuuuuw5jxozBhg0bEB0djbvvvhvp6em4cOGCp0vzWQwIzcgeEA4ePFjvNhcuXMDvv//OgEBEJIH27dvj448/RmZmJrKyshAbG4vDhw97uiyfxIDQjBoygnDixAkAXAOBiEgqfn5+mD17Nr7++mucP38et956K6ZNm4Z9+/Zx2eZGYEBoRg0ZQeAqikREzePWW2/F/v37MWvWLHz88cfo378/evfujeXLl/NukQ3gkYCg1+uh1+uRm5sLQRDq3GbGjBkwGo0wGo1YtmyZ+Hxubi70ej2ys7NhNBrdVbJLao8g1JdauYoiEVHzue6667Bo0SKUlpYiPz8f3bt3x9y5c9GpUyeMHTsWP/zwg6dL9FpuDwgmkwmCIECn0yEpKQnZ2dl1bmc2mzFx4kRkZmYiLS0NAGA0GrF7927odDqkpKQgMzPTnaU3WkVFBdq0aYOzZ8/i119/rXOb48ePIygoCGq12r3FERG1IK1atUJ8fDw++OAD/Prrr8jMzMSPP/6Ivn37YuLEiTCZTJ4u0eu4faEkQRCgVCrFx0qlEoIgQKvVOmyXmpoKnU7ntK9Go3F4zmg0IiYmptF12Gw2yVbhso8U2D/anT9/Hr169cK+fftw4MABtG3b1mnfkpIS3HjjjU77eqv6epUjX+m1srJS/NiUr2lf6VcK7FWeGtprcHAwJk+ejEcffRRvvPEGnnvuOeTm5mLatGmYPXu2T/yHzdXPq81mg0KhaNC2bg8IpaWlDv/4arUaVqvVaTuDwQCgZi0BAEhKSoJGoxGfB2pGI0wmk0sBobq6+pqXHzbWlesdnD59GhEREQgICMDOnTvrvNfCoUOHEBISInktze1aazvIibf3av8eOXbsGE6fPt3k43l7v1Jir/LUmF4HDRqEjRs34u2338bKlSuxbt06pKSkICkpqcG/SD3Jlc9rQ++I6RVLLdt/wNWWnp4u/n348OGIj4+HTqdDfn4+rFYrCgsLAQAqlcql9/T390dkZKRrBV+hoqICJSUlCA8PR1BQkMNrnTp1Qrdu3XDmzBlERUU57Xv+/Hl069atzte80dV6lRtf6fXkyZMoKChAREQEQkNDXT6Or/QrBfYqT03ptV+/fpg3bx6ee+45ZGZmory8HEuXLvXakOBqr8XFxQ3e1u0BISwszGHEoKyszOm0gV6vh8FgEEOCSqUSRwpWrFgBo9GInj17QqVSoWfPni7VoVAoEBwc7HojdQgKCnI4ZlVVFZRKJXr27Imffvqpzvc7ceIE4uLiJK+luV3Zq5x5e6+BgYHiRynq9PZ+pcRe5cnVXrt27YrXX38dAwcOxJQpUxAcHOzVIQFofK+N6cXtkxS1Wq3DaQKz2SzOP7AHB41Gg7i4OHEbq9WKmJgYWK1WzJgxAzExMbBYLGJI8FYVFRUICgpCVFRUnacQbDYbV1EkIvIyaWlpeOWVV5CZmYn58+e32LUT3D6CoNFokJCQAL1eD4vFgtTUVPG1xMRE5OXlISYmRrwU0mAwICcnB0DNSEJcXBz0ej1MJhMyMjLcXX6j2ANC165dcerUKfzxxx9o3769+Pqff/6JqqoqBgQiIi/z+OOPo7q6GrNmzYK/vz+effZZT5fkdh6Zg3Dl1Ql2tW+uYd/mym2TkpKarzCJlZeXiyMIQM16CIMHDxZf5yJJRETe64knnkB1dTXmzZsHf39/LFiwwNMluZVXTFKUI5vNJo4gdOvWDX5+fvUGBI4gEBF5p7lz56K6uhoLFiyAv78/5s2b5+mS3IYBoZlUVVUBqJlA0qZNG0RGRjotuXz8+HH4+fmhQ4cOniiRiIgaYP78+bhw4QKefPJJdOzYEY888oinS3ILBoRmYl+8wn75SV0TFc1mM0JDQ9G6NT8NRETe7JlnnsHx48cxefJkdOnSBUOGDPF0Sc2ON2tqJlcGhOjo6DpHEHh6gYjI+ykUCqxatQp33HEHRo8ejSNHjni6pGbHgNBM6hpBMJvNOHv2rLjN8ePHOUGRiMhH+Pv7Y+PGjejQoQPuvfde/PHHH54uqVkxIDSTugICULO0sh1HEIiIfItarcbmzZthsVgwevRocb6ZHDEgNJMrA0KPHj0AwOE0AwMCEZHviYiIwMcff4y9e/fisccek+1CSgwIzeTKgHD99dcjLCxMnKhYUVGB06dPMyAQEfmg2NhYrF+/Hu+++65sF1Hi9PlmYg8ItdfIrj1RkWsgEBH5tvHjx+Onn37CggUL0LdvX4waNcrTJUmKIwjN5MoRBMDxUkeuokhE5PueeuopJCYm4pFHHpHdlQ0uB4TMzEx88MEHOHv2LB577DH885//xOeffy5lbT6tvoDw888/o7KykiMIREQyoFAokJOTg44dOyIxMRHnzp3zdEmScTkg9OrVC+PGjUNubi5iYmKwfPlylJWVSViab6srIERHR+Py5cs4cuQIjh8/DpVKheuvv95TJRIRkQRUKhXy8vJQUlKCyZMny2bSossBwX6b5S1btiAhIQEAEBISIk1VMlBRUYGAgAD4+f3vn7j2TZt4BQMRkXxER0cjJycHubm5yMrK8nQ5knB5kqLJZBI/RkVFwWQywWq1SlaYr7PfqKm2du3aITQ0FAcPHoTZbGZAICKSkXHjxmH27NmYM2cObrvtNoeb8/kil0cQ4uPjcfDgQXz44Yc4d+4c3n//fQaEWuoKCMD/JipyFUUiIvl54YUXMHjwYIwbNw6//vqrp8tpEpcDwurVq6FSqdC2bVvMmDEDpaWl0Gg0Utbm0+oLCNHR0TzFQEQkU61bt8aGDRvQunVrjB07FpWVlZ4uyWVNnqS4YcMGxMTEICsri5MUa7naCMLhw4dx4sQJBgQiIhkKDQ1FXl4evvvuO6SkpPjspEVOUmwmVwsI1dXVuHjxIgMCEZFMDRgwADk5OXj77bexZMkST5fjEk5SbCZXO8Vgx4BARCRfEyZMQFFREebPn4/u3btjzJgxni6pUZo8STEvLw9nz55Fbm4uA0It9QWEDh06iCMtnKRIRCRvTz/9NMaPH4+HH34YBw4c8HQ5jeJyQFAqlbDZbMjMzIRSqURcXBySkpKkrM2n1RcQFAoFoqOj4e/vjxtuuMEDlRERkbv4+fnhjTfeQM+ePTFy5EifurKhSUstq1QqaLVaADV3thIEQbLCfF19AQGomYfQsWNHh0WUiIhInoKCgvDxxx9DoVDg/vvvR3l5uadLapAmXcUwfvx4XtpYj6sFhLlz52L16tVuroiIiDylY8eO+PTTT1FUVITExESfuOrP5YBgNpudnjMYDE0qRk6uFhC6d+8OnU7n5oqIiMiT+vbti02bNuGbb75B//79vf53pstXMURHRyMxMRFt27aFIAgQBAFz5sxp0L56vR4AYLFYoNFoxNMUtc2YMQNpaWkAgPz8fKSnpzvsa+etv2ivFhCIiKhluvvuu7Fv3z4kJibi9ttvx7p16zBhwgRPl1Unl0cQYmNjkZWVhaioKNhsNixatAixsbHX3M9kMkEQBOh0OiQlJSE7O7vO7cxmMyZOnIjMzEwxKFitVphMJuh0Ouh0Oq+e81BeXs6AQERETrp27Yo9e/Zg9OjRePDBBzFr1ixUV1d7uiwnLo8gAIBGo3EYNTCbzde8dE8QBCiVSvGxUqmEIAhOowipqalOowMqlQq5ubnQarWIiYlxOI634QgCERHVJzg4GG+99RYGDhyIWbNm4cCBA8jNzUVoaKinSxM1KSAUFRU5TLTIzc3F8uXLr7pPaWkp1Gq1+FitVte5foL93IzFYgEA8RLKOXPmIDExETExMXjjjTdcrt1ms0k2k7SiosLho/3vrVq18pnZqg1VV69y5Su92td6r6ysbNLXm6/0KwX2Kk++2OukSZMQFRWFv//97xg8eDC2bt3aoJDgaq82mw0KhaJB27ocEGbOnImzZ886/C++qKjIpWPZQ0Bt9jkHADB8+HDEx8dDpVLBYDAgLy8PmZmZmDhxIvLy8lx6z+rqapfrrU9JSYn494qKClgsFsnfw1vU7lXuvL1X+/fPsWPHcPr06SYfz9v7lRJ7lSdf67Vt27ZYvXo1Jk+ejLvvvhurV692+I/01bjSa0BAQIO2czkgxMXFYfz48Q7Pbd269Zr7hYWFOYwYlJWVOV0qqdfrYTAYxJCgUqlgMplgMpkQFxeHmJgY5OTkYOHChXWenmgIf39/REZGNnq/ulRUVKCkpATh4eEICgpCdXU1Ll26hPDwcERFRUnyHt7iyl7lzFd6PXnyJAoKChAREdGk4Ulf6VcK7FWefLnXqKgobN26FSNGjEB6ejo2b9581fsbudprcXFxg7d1OSDUtf5BWFjYNffTarVYtmyZ+NhsNou/4K1WK1QqFTQajXgzKPvzMTExKCwsdHhfrVbr8g2iFAoFgoODXdq3PkFBQQgODhYDkFqtlvw9vIW915bA23sNDAwUP0pRp7f3KyX2Kk++2uutt96Kbdu2YejQoRg3bhy2bt2K66677qr7NLbXhp5eAJp4s6bc3Fz06tULQM15jS1btuDDDz+86n4ajQYJCQnQ6/WwWCxITU0VX0tMTEReXh5iYmKg1+vFkYScnBwAEK96KCwsBFBz98iYmBhXW2g29nNCvpZgiYjIs3r37g29Xo/hw4fj/vvvx2effeax3yUuB4QNGzZAq9U63Oe6ofe8rm/tgm3btjltc+W2KSkpjS3V7RgQiIjIVQMHDsTmzZuh0+kwduxYfPTRRw2eNyAllwNCenq607oHrswFkCMGBCIiaoo77rgDmzZtwsiRI/Hmm2965D/HksxBOHv2LARB8Mrhfk9gQCAioqa65557cPDgQY+tjeDySop79uwR/65UKjFixAiH51oye0DwxUkyRETkPbp27Yrrr7/eI+/dqBGEs2fPYsuWLVAoFNi9e7fT64WFhRg3bpxkxfkqjiAQEZGva1RAUCqViI2NRXZ2NkpLS52WVZ48ebKkxfkqBgQiIvJ1jZ6DoNFokJGRgT179jTo5kwtEQMCERH5uibdzfFK586da1IxcsGAQEREvq5RIwjnzp0TJ0vUdY+BDRs24Nlnn5WmMh9mv1GTv7+/p0shIiJySYMDwtatW/HPf/4TX3zxBTp37oxHH30UvXr1clgcyWg0MiCAt3omIiLf1+CAoFKpHEYNxo8fjzlz5jhs05CbNbUEDAhEROTrGjwHwWw2Ozyu64YPDblZU0vAgEBERL6uUSMITz/9NOLi4gDU3Kzp888/F1+3WCzQ6/VYt26d9FX6GAYEIiLydQ0OCCNGjIBKpRIXSLJarfjxxx8dtikrK5O0OF/FgEBERL6uUVcxxMbGipc31rUOApdarsGAQEREvk7SdRC4cFINBgQiIvJ1LgcEqh8DAhER+ToGhGbAgEBERL6OAaEZMCAQEZGvY0BoBgwIRETk6xgQmkF5eTkDAhER+TQGhGbAEQQiIvJ1DAjNgAGBiIh8HQNCM2BAICIiX8eA0AwYEIiIyNcxIEjs0qVLuHDhAgMCERH5NI8EBL1eD71ej9zcXAiCUOc2M2bMgNFohNFoxLJlyxyet1qt7iq10SorKwGAAYGIiHxao27WJAWTyQRBEJCRkQEASE5OhlarddrObDZj4sSJ6NmzJ7KyssR9t27dKt4Uymq1Ys6cOUhJSXFfA9dQUVEBgAGBiIh8m9sDgiAIUCqV4mOlUglBEJxCQmpqKnQ6ncNzJpMJe/fuhUqlAgDk5uYiKSnJpTpsNhvKy8td2vdK9lBQUVGB06dPAwAUCoVkx/cmtXuVO1/p1T5qVVlZ2aSvOV/pVwrsVZ7Y67XZbDYoFIoGbev2gFBaWgq1Wi0+VqvVdZ4yMBgMAACLxQIASEpKcggRubm5iI+Pd7mO6upqFBUVubx/XUpKSvDLL78AAH7//XfJj+9NSkpKPF2C23h7r/bvkWPHjokBtSm8vV8psVd5Yq9XFxAQ0KDt3B4Q6mL/AVdbenq6+Pfhw4cjPj5eHDkwmUywWq3iY1f4+/sjMjLS5f1rq6ioQElJCcLDw1FdXQ0AiIqKQlRUlCTH9ya1e5X7aRRf6fXkyZMoKChAREQEQkNDXT6Or/QrBfYqT+z12oqLixu8rdsDQlhYmMOIQVlZGTQajcM2er0eBoNBDAkqlQomkwkxMTEAgA0bNiAuLq5JdSgUCgQHBzfpGFeq/Ulq27at5Mf3JkFBQbLurzZv7zUwMFD8KEWd3t6vlNirPLHX+jX09ALggasYtFqtePoAqJmMaD91YA8OGo3GIQBYrVYxHADA1q1bnUKFt+AkRSIikgO3jyBoNBokJCRAr9fDYrEgNTVVfC0xMRF5eXmIiYkRL4U0GAzIyclxOIZKpUJISIi7S28QBgQiIpIDj8xBuPLqBLtt27Y5bVPXtnl5ec1TmAQYEIiISA64kqLEGBCIiEgOGBAkVlFRAYVCgTZt2ni6FCIiIpcxIEisoqICgYGBjZopSkRE5G0YECTGOzkSEZEcMCBIjAGBiIjkgAFBYgwIREQkBwwIEmNAICIiOWBAkBgDAhERyQEDgsQYEIiISA4YECTGgEBERHLAgCAxBgQiIpIDBgSJlZeXMyAQEZHPY0CQGEcQiIhIDhgQJMaAQEREcsCAIDEGBCIikgMGBIkxIBARkRwwIEiMAYGIiOSAAUFiDAhERCQHDAgSstlsDAhERCQLDAgSqqqqAgAGBCIi8nkMCBKqqKgAwIBARES+jwFBQpWVlQAYEIiIyPcxIEjIPoIQHBzs4UqIiIiahgFBQjzFQEREcsGAICGeYiAiIrlo7Yk31ev1AACLxQKNRgOtVuu0zYwZM5CWlgYAyM/PR3p6uvhadnY2NBoNAECn07mh4obhCAIREcmF2wOCyWSCIAjIyMgAACQnJ9cZEMxmMyZOnIiePXsiKytLfD45ORlZWVlQqVRITExkQCAiImoGbg8IgiBAqVSKj5VKJQRBcAoJqampTr/8jUajuK/RaEReXp7LddhsNpSXl7u8f232YGC1WiU/trex92r/KGe+0qv91FZlZWWTvu58pV8psFd5Yq/XZrPZoFAoGrSt2wNCaWkp1Gq1+FitVou/WGszGAwAak5DAEBSUhIKCwthNpthMpkAAAsXLhRHIhqruroaRUVFLu1bn9LSUvHjqVOnJD22tykpKfF0CW7j7b3av0eOHTuG06dPN/l43t6vlNirPLHXqwsICGjQdh6Zg3Al+w+42mrPORg+fDji4+NhtVoREhKCmJgYAEBhYSGMRqP4uDH8/f0RGRnpetG1VFRUoKSkRBzd6NOnD/z85Dn/095reHi47E+l+EqvJ0+eREFBASIiIhAaGurycXylXymwV3lir9dWXFzc4G3dHhDCwsIcRgzKysrECYd2er0eBoNBDAkqlQomkwkajcZh25CQEJhMJpcCgkKhkHy9gkuXLiEgIADXX3+9pMf1RkFBQS1mvQdv7zUwMFD8KEWd3t6vlNirPLHX+jX09ALggcsctVqtePoAqJmMaJ9/YA8OGo0GcXFx4jZWqxUxMTHQarXi6QWgZsJjXRMcPYU3aiIiIrlw+wiCRqNBQkIC9Ho9LBYLUlNTxdcSExORl5eHmJgY6PV6cSQhJycHQM1IQlJSEnJzc2G1WjFnzhyoVCp3t1CvyspKBgQiIpIFj8xBqO/SxG3btjltc+W23nRZ45U4gkBERHIhz5l0HsKAQEREcsGAICGeYiAiIrlgQJAQRxCIiEguGBAkxBEEIiKSCwYECZWXlzMgEBGRLDAgSIinGIiISC4YECTEUwxERCQXDAgS4ggCERHJBQOChDiCQEREcsGAICGOIBARkVwwIEiIAYGIiOSCAUFCPMVARERywYAgIY4gEBGRXDAgSOTixYu4dOkSAwIREckCA4JEKisrAQDBwcEeroSIiKjpGBAkUlVVBQAcQSAiIllgQJAIAwIREckJA4JEGBCIiEhOGBAkwoBARERywoAgEfskRQYEIiKSAwYEiXAEgYiI5IQBQSIMCEREJCcMCBJhQCAiIjlhQJAIAwIREcmJRwKCXq+HXq9Hbm4uBEGoc5sZM2bAaDTCaDRi2bJl13ze0yorK9GqVSv4+/t7uhQiIqIma+3uNzSZTBAEARkZGQCA5ORkaLVap+3MZjMmTpyInj17Iisr65rPe1pVVRVHD4iISDbcHhAEQYBSqRQfK5VKCILgFBJSU1Oh0+mc9q/veU+rqqpCYGCgp8sgIiKShNsDQmlpKdRqtfhYrVbDarU6bWcwGAAAFosFAJCUlHTV5xvLZrOhvLzcpX2vVFFRIQYEqY7prSoqKhw+ypmv9Gpfg6OysrJJX3++0q8U2Ks8sddrs9lsUCgUDdrW7QGhLvZf9rWlp6eLfx8+fDji4+OhUqnqfb6xqqurUVRU5FrBdaiqqkKrVq0kPaY3Kykp8XQJbuPtvdq/f44dO4bTp083+Xje3q+U2Ks8sderCwgIaNB2bg8IYWFhDiMGZWVl0Gg0Dtvo9XoYDAYxDKhUKphMJphMpjqfj4mJaXQd/v7+iIyMbEIn/2MfQVCpVIiKipLkmN6qoqICJSUlCA8Pl/2cC1/p9eTJkygoKEBERARCQ0NdPo6v9CsF9ipP7PXaiouLG7yt2wOCVqt1uPrAbDaL8w+sVitUKhU0Go3DqIDVahVDQH3PN5ZCoUBwcLBL+9alsrISwcHBkh7TmwUFBbFXL2Gf+xIYGChJnd7er5TYqzyx1/o19PQC4IGAoNFokJCQAL1eD4vFgtTUVPG1xMRE5OXlISYmRrwU0mAwICcnBwDqfd4bVFZWcpIiERHJhkfmINR3FcK2bductrly2/qe97SqqqoWk1iJiEj+uJKiRLgOAhERyQkDgkS4DgIREckJA4JEOIJARERywoAgEY4gEBGRnDAgSIQjCEREJCcMCBKprKxkQCAiItlgQJAITzEQEZGcMCBIhKcYiIhIThgQJHDp0iVUV1czIBARkWwwIEjAfrtdBgQiIpILBgQJ2O/HzYBARERywYAgAfsIAicpEhGRXDAgSIAjCEREJDcMCBJgQCAiIrlhQJAATzEQEZHcMCBIgCMIREQkNwwIEmBAICIiuWFAkABPMRARkdwwIEigdevWCAgIQHBwsKdLISIikgQDggRGjBiB9957D23atPF0KURERJJgQJCAv78/unTp4ukyiIiIJMOAQERERE4YEIiIiMgJAwIRERE5YUAgIiIiJ6098aZ6vR4AYLFYoNFooNVqnbaZMWMG0tLSAAD5+flIT093OoZKpapzXyIiImoat48gmEwmCIIAnU6HpKQkZGdn17md2WzGxIkTkZmZKQYFO6vVijVr1sBqtbqjZCIiohbH7SMIgiBAqVSKj5VKJQRBcBoJSE1NhU6nq/MYW7ZsQXx8fJPqsNlsKC8vb9Ix7OxLLds/yhl79T72lTwrKyub9DXtK/1Kgb3KE3u9NpvNBoVC0aBt3R4QSktLoVarxcdqtbrOkQCDwQCg5jQEACQlJQEAjEYjtFqteJrCVdXV1SgqKmrSMa5UUlIi6fG8GXv1HvbvkWPHjuH06dNNPp639ysl9ipP7PXqAgICGrSdR+YgXMn+A6622nMOhg8fjvj4eKhUKphMpnpHFhrD398fkZGRTT4OUJPgSkpKEB4eLvsbNrFX73Py5EkUFBQgIiICoaGhLh/HV/qVAnuVJ/Z6bcXFxQ3e1u0BISwszGHEoKysDBqNxmEbvV4Pg8EghgR7MBAEARqNRnzdZDJBo9EgJiamUTVUV1fDZrPh6NGjTW8INUM2AHD8+PEGD934KvbqfS5duoRhw4bBYrHg3LlzLh/HV/qVAnuVJ/Z6bdXV1d57ikGr1WLZsmXiY7PZLM4/sFqtUKlU0Gg0UKlU4jZWqxUxMTEOQcBgMKBXr16NDgcAJP/CUSgUDR6y8XXs1fu0atUKbdu2bfJxfKVfKbBXeWKvDduvob8DFTZ7DHGj2pc5hoSEiKcMhg8fjry8PKhUKnEbg8GACRMmOIwyCIKAzMxMdO7cGenp6U4jEERERNQ0HgkIRERE5N24kiIRERE5YUAgIiIiJwwIRERE5IQBgYiIiJwwIBAREZETBgQiIiJywoBAREREThgQiIiIyAkDAhERETlhQCAiIiInDAhERETkxO13c5Sb2jee0mg04p0p5cJqtSI3NxcAkJKSIj4v1771ej0sFguMRiN0Op3Ylxz71ev10Gg0KCwsBAAkJSWJzwPy6tVOr9dDpVLJ+vM6Y8YMpKWlAQDy8/ORnp4OQJ69AkB2drZ4wz77jf/k2OuMGTOwePFihzsdA83cq41cVlpaavu///s/8fHEiRM9WE3z2LJli23p0qW2NWvWiM/Jte/CwkLbli1bbDabzWaxWGz9+vWz2Wzy7NdisdhGjx4t/v3mm2+22Wzy7NXO3rP9cyzXXkePHm3r16+fbeLEiTaLxWKz2eTba+0e7V/Pcuy1tLTUdvPNN9v69etn69evn+3mm2+2rVmzptl75SmGJhAEAUqlUnysVCohCIIHK5KeTqdDWFiYw3Ny7dtisYh9qFQqhISEwGg0yrJflUqFvLw8AIDJZBL/1yHHXu22bNmC+Ph48bFce01NTcXevXuRk5Mj/m9Tjr0ajUaxJ6PRKH49y7FXk8mEvXv3in8yMjKQkpLS7L3yFEMTlJaWQq1Wi4/VajWsVqvnCnITufat1WodhucsFgtiYmKQn58vy34BIDc3F7t370ZWVhYA+X5ujUYjtFqtOBwLyLdXg8EAoObrF6g5dSTHXgsLC2E2m2EymQAACxcuREZGhix7rf1zKTc3Vwy6zd0rA4LE7N+ULY3c+l64cCEWLVpU7+ty6TcpKQkajQaZmZnIyMiocxs59GoymcTz01cjh17tcw4AYPjw4Q6jJrX5eq9WqxUhISGIiYkBUBMYjEZjndv6eq92JpMJVqvVaR5CbVL2ylMMTXDl0HtZWZk4WUbO5N63Xq+HVqsVf6HItV/7/zS0Wi22bNkCQRBk2Wt2djaAms+rwWCAIAgwGo2y7FWv12PZsmXiY5VKBZPJJMteNRqNQw8hISGy7dVuw4YNYiACmv9nEwNCE2i1WnE4DwDMZrMsZstei5z7FgQBKpUKOp0ORqNRPD8vt35zc3OxevVq8XFISAhCQkJk2WtKSgp0Oh10Op04yzsmJkaWvWo0GsTFxYmPrVarbHvVarXi6QXgf3Np5Nir3datWx0CQHP3qrDZbDbJjtYC1b7EJCQkpEHDmL5EEARs2LABZ8+eRVJSUp2XEcmlb5PJhMTERPGx1WrF4cOHAcivX6vVKoah3bt3Q61Wi5exyq1XO0EQkJmZic6dOyM9PR0ajUaWvdp7MhgMmDBhgvgLRa69WiwWWK1WaDQaWf98AoDExES88cYbDqcYmrNXBgQiIiJywlMMRERE5IQBgYiIiJwwIBAREZETBgQiIiJywoBAREREThgQiIiIyAkDAhF5LUEQkJiYKN5ynIjchwGBiLyWVqtFbGysp8sgapEYEIjIq9W+Wx0RuQ8DAhERETnh7Z6JqNHsd0TUaDQwGAxIT0+HIAhYuHCheMMci8UCo9GIOXPmiGvHG41GCIIAjUYj3oLZfq8Ak8mEDRs2oFevXrBYLIiPjxf3s987wmQyYffu3VixYoXHeidqKRgQiKhRTCYTMjMzkZeXB6DmJjHZ2dlISUnBiBEjoFarHW6aM3PmTOTk5Ij75eTkiMey33wGAJKTk5GXlweVSoVly5YhNzdXvIGUwWBwuJmU0Wh0uO0tEUmPAYGIGmXDhg0ICQmBIAjic7VvOVv7TnM6nQ4zZ86E1WrFhg0bEB0d7XCszp07Y8uWLQBqblVs3zctLc1hu169eol/VyqVsFgs0jVERHViQCCiRouOjna473xSUlKTjme1WqFUKsXHtUMGEXkGJykSUaMkJCRgz549Ds/VHk2wWq3i3/V6PbRaLVQqVZ37HTx4EPHx8dDpdDh48GC9xyQi91PYbDabp4sgIt8iCAJ2794tDv3bQ8CyZctw9uxZ6HQ6WK1WGAwGpKWliSMCV05uTEhIEOcS1HVMk8mE//u//wMALFq0SJzHEB0djfT0dHGCIxFJjwGBiCSzbNkyhIWFNfmUAxF5Hk8xEBERkRMGBCKShCAI2LNnj3gZIhH5Np5iICIiIiccQSAiIiInDAhERETkhAGBiIiInDAgEBERkRMGBCIiInLCgEBEREROGBCIiIjICQMCEREROfl/7AlxeTGH59sAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -671,11 +700,19 @@ "source": [ "fig, ax = plt.subplots(1, 1, figsize=set_size(width, subplots=(1,1)))\n", "ax = sns.lineplot(x=df.index, y='fitness', data=df, color='black', linewidth=1)\n", - "ax.axvline(133, 0, 1, lw=1, color='grey')\n", + "ax.axvline(27, 0, 1, lw=1, color='grey')\n", "ax.set_xlabel('epoch')\n", - "df['fitness'].max()\n", - "fig.savefig(fig_save_dir + 'model_fitness.pdf', format='pdf', bbox_inches='tight')" + "print(df['fitness'].max())\n", + "fig.savefig(fig_save_dir + 'model_fitness_final.pdf', format='pdf', bbox_inches='tight')" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4580a3cb", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/thesis/graphics/classifier-hyp-metrics.pdf b/thesis/graphics/classifier-hyp-metrics.pdf index f93f28cf7e5987d674aa0c9507f5b1648ae55352..9e1968bef56f4bce12743ca4872df291e91c4f28 100644 GIT binary patch delta 29 kcmdnq$hp0dv!R7?3)5sB~hz0DAj;>d>_32Y7@A0J1u8th|C8h0t)s#QW+^kz7gd!65_R#{y|%M8<( z^esU&bn6^G8oQ>HZ}T(ca{tl@p(gs%(*_}svq_(ZH1s-GLXNYD3SR>q1|9X+&n<4L zg^ANQ;_{xx@e6J1lRwWDgk2Ba^O!*R4pH`V{XQe$<#kD%^8GIbg*TbqDjARsU)KE0 zIhiy4cqRI&E0*VHZiy^oYx1i^q8T)4VshGOMO~61b`7|-k#fGOqzWQFOgLwsc^1)Z z5)S!7)MApayG3U0RcV3K3=Gz|pk9ViEAcq|o^OjA+CPqW3H2W@YorQ1uVN*=nqd>S zI`_`ouPWLJD#pkS*5^1h)y1it_J|!{YUB%&WFMTV1nd`X74?UO7~`b3uT+;l1eV{c z&yt#vC^e0&QVjZ|7_{{5GeRU_ad^s#ExjUjx!pE~_TH$nPdmlIkXl`j_{=7oGs%wk z%n|TmGlI3xgd#Jkn%y+F_2T|UrjSOlv>(#Ce<>0${#2fxWe_o160jX_pq|yPdqecN z6@hIarC5arWodY0Mu7n3OoHbi14!q?Zi}{bJZ))&WQk^3pJlfQ^B52s1R{U9e5ua|T>__taYvU%UzX=28vtyB(S%#PpOAx*{^Puh z(?4vpB3!Na)$0Ct;fhH4-78hM<1_u5dn(}*IuJTD5zfrs)Wy}=%*ZY&ngF(;iNlH? zo0FS_g~Y+w8csj}j#=K!-on+AgpGqM4U`y;7D&*`1-i<(_Wdv!nOvP2vi|&?)npidX81D0NCnm?eTh& z(?K7TIFMy3d>1$UIm;B6wbW0Gzja;MQiqXgmveagOw4uDQpP+q-0oS`?tXvu8J>B4 z4LE%IkO!Kejh%l=SXLJ3x!gbLpP+6cYT*w`Zl)_*PZ z1#(_~A>*6$hAeg8Jl!|u6P(swiG*NakjO1zj3ma1sPt}^X_QbmRXK9S$*01bu&aKf zZtG|C^1bMQr;Q&m0dSQ#s^HbA;wHR7R;&yE_#`sNdAPA6bXLF@!U1k*9tusMK#Eii z)#Mn(VRb7)C*i}z#2VGh<@%cmj-XJHb?Hxi-nP3mCk={3Oz=WX+bRxEDFZuv2&e|T zRn`m&KG(h}$-e>Hj9lYG#A~%cnjf_J%PEW$v&O@uOgU(PN$9BHEweo2?JK$- zC^_VE$=^kikHfW92Z*zN!}WO)Q~SpRF8N4aP`ahF9RyFK#9a!dN30c;`6fm&N(DmN z#hi^kN%i)Yu@0>yjb?4fzy2f#T?Mug1r=Iaq=<)K$YUQm>8E2GiXS;vO_N2KX&b~tU?(Q8j2usO`}qoHK^K08aM$~cyt7K0jAx{I^}HW;q4fEHK=+Qlj3?!j#S{2U zCc-TYic9N?E5Z=&q}iHEwPGAhmz(aZT4%U|{RXQ`V_Q7zjV>>U#|RU8GmgcOkjtIt z2sN09!U75^X%mU02bum8Ei{~SWX!&%lEeU9` z$-UdaGSjT?Fb<3+REynlmy^e7FagK)`c9JCvw~#=Cb0YDPBw=Ne>8zFb~D-TOT)0Q z3OVD+{-e=DlpLeIbnn3pEv7{G*c|?ZZts4^qukJ7VnzNNZV-6Twfhknf74N^_RPnj z`G@m8&Km9sBA;qHTAP_^cri4#822dFmSHo1JPKzX?bj*WF;rp|9#~ncef9DbJ!0A~ zTEf63>QJP2^t}Uw%#=>=>JJ~kZWwd6RW{48|4(ZqV#d1~HAMSqXEP+mo+4Zj$HPr> z4Mn7A_Nrj(>G89{q3&K`%x522jJrr64nGr z8jakfgimP#li&MkDp}3L`S}WYimG;4sg-m@NVttb5f+2XyOL(C&%DAYx~2g0dY5hj&f z)!SGP=g58} z^c!Rv@1dofv zU7V&eWW?r`(- zBz1gcAVyOQOw{ov&Ys6wCNT*hqL8nf7LFv3V4|78 zPf!$3=!39>$k2ZORxOD6GQ#|9B1P8Ym$2u{-F;)s-rbc!E-8=K75x}MougO8+5c`6 zC|uEOOpubnqY%-`j676KWQBHSIrc*8S+$;qz`5;18aafysyqCB1^FAx-Nsg&M-bLF zA=u;z)HYgdPtHl785TW%e#Ij?^+z!N`JEoZ`9?@V-#Y`9APcUeu$V-B7EpTgIl6z% zB-k-KOqm9ikx%V&eZIj0OEITn9;6N`V>Tv?)4{mSWak+jSM^SKugT3YsmUuR2}J`l$#gp)%P zd1ZF~&&N|K?iV~-=oAnXi1*vam96+W+Qd2GYoW_)AzxXyB2(L9^|?>laWqT|FT8Yt zXoW=Scaw)q<+>;jWJ#l;nYfPdA{0O^-03;Kr2M50&qx<|-nx4JtK^aU>;Y`k^8ApZ zV{=r^=#xcLlrIqXdEU5YD9y4j$Evrgbqq;+l+)EA68AOE!Jjw5 z#vCio>sTRqY5A(Pms8C*-{@-OF$6EJK7TS#SP2B`=i~?#))DN2OoBIqy5X;j9@Pas zd)@x6JH&}Kbo!H*z}Xg0#F*wHZZ zvr(Tl-V&i;LLCI8XC{87MRZL23bV`@bKU#8CD!TNh{{FtuigVJpBSkarP)UuZRtp2GAbz2Lw1RGjefk3?mp|!JQ_il@h_BoUs4x8rR^7ns?mk< zkrVK)qsw4PE%JmabHh>Hr+^{b_d_{{kO9W2ipaXE;pfzAcxnrV*qI8yo&*^V+w#gn z6#`b$+Ix7`c_&UzoK8;ey>prkD;pC~MO4UeC*Lqago7Aa(IlyHS#(=<3-g({%8UYRK~F1k7>pmRnJ3^po+r;hb+bJh`g6 z=RBQVd?CX|m9!Iv=q6G>iVzE0Z2?vhf~l_6o0-YdU}Ia`U(hCjXMQdHq}`GolQGuJ z^bC$P3siW?@gWtd!7yrJzZu%)xwqLw=rxiqX2id=gq9Tq70)a{g-)YL1<;&t+p@?7 zw@NP!2RpHF z4+F$*tqH_*1e0f+ojl@~A<1dZLCqQtkuu^5s5L0CLpSWzDPxGaJeCK8xQWqP1e=Km zD;XU8q873#9@w$b!DSgbTdjgYvL+CWz=voF=%Je8+)yG~3{ly-Ws^&Z=wBjM`e!DG zTxhI5NrIQ_>`z=aCXwl3^T4;^wvbI|$9ZLW{nhWu8GAkUf91%K45{PDk*z#ta*Q>- z#nUdDtBFqupK4qlO$J8fq2CK(puV67&~?#COksw4_kR2=ic~0T6R4Vm)0mubO*SPh z!eM$r%_9W3Zf{yk9x^;U)n4m?;mWJsE9oI{@$pGkVDKV}gx zqTJ3fJ<18xuH0WRM*`%7+RIrIvFz7aF|n)3%>xtN%t?{5xNJvJGK)F5>*QKdI;Y8U z2n#Ueri1vp@fQ;Y=@bgXhlY9e?dwc4%<2%`P8O{||6pMLfuk3L7^wUqs>+D)?!mnx zhCU?Y)QMnAC<%3xj)0|su_a$}mys>#8T0bOp)pW`Bq*+~JOz;EPfFEccrvKvejAH- z%{d`9ES3*45pTi}yY*`>M2u`JC8PjFklA#*!1^--Zx-P&h2I5(X#sxn$Km^QNZ)+* zr&?lfL@E3oxW?6f!D{=q64>_<$ueaNa%$c*MYT!lHcW-TQ{3J(nA3vD``s<=a6V_t z(*9*2agCrlP2T`^K3BS>i}q5JIU@Wo$&zF;VjTrG3!X)yO`kRnBXe=Y8?YZZ8x1)Vp~FU zQFm!fXZ~xd3aX1+bwVPbC-xz_#%8wl<#50FFK5SzzghvFYPZKQ#d@>hW2nsKHea#D znEWpf6W$mCw~W2@6_)PZ+_Xpgh$O_kBM>o>3|q0c&m8+ z(`N}*`4yrp3ly`RMay#p;x!faZr36BGYq+Qq7FK@9O-me?~g{0w^rYT)JHnT^HaL>Hldh+Fh}q) z4Ax*EXD6 zTW1p~`Cf_+iIH~Cv3cmcJJQ!XnFLamK%80tOV2KUPa4i#)lEXlw|8w)N{-0{A9^Z% zu-}E?q7d~kVFJz(ia0PL*9r!WJx#R)OZ3xX+yW_=eXEeSL2I4y#vPMD*{c#P)pE-I z1{?iA+EEs?tg1GE>CG9Oh3d8%3#zGalX^(92^}8aP1gxuyrc7gv+rDz7qx=?sxUl8 zI9uADdGGiFeg2gukQAPr2FAmigsMT9B$yJ3%lg0Cj+gy^wH+_#KW%5%AfGx4gUI>+ zmh;$oIg&^jX@N_3+EeeJ!gg3|HLky5&uj6SB+tHjHNb62;Jp+!kRPN)1!y z-%P&V1feO8nXCjBQZEs|{RseZ;(cM-h4zKe@zE<2^Z9Ohj=J725mxP(kG#(H4^GhzXpG5Z6F%Nv)atQ8LfhWr}Ql9Zk35yGYk{xw-`wnC=_G5 ze`;B3Ab-(P@RW>h2H!wJ?+rZL7!@(PGz6c*Mh%rQgM~!&0X7eWTPjFQ$;7$WRu^^R zg9bwu-w@z3OF($DQ)bg%w4F^-vyR80peKAcvr|dUDVE{Io(m%#V~DUva4bN$7IB`C zLX@*9O&Ey}o30Ik(pWq~LO4Z6%TrJ|<3kw>P+vD&hdhc#x`dt`q%1%jJ;vOFI=DYb zf;Fw8orBUoLq~;HrqQZIM$pDXV}+h)O;j@MQ3ODBp^3ZaFfb;cpY@V+4( zEfc&d+_J`AG)bHx@LtVAvC<(6;Yq_rV9*|q`9b>*mdUXUSx#-^FB;3DVy^8Zp612g z$_HCwQbDT5K2i!jsu2E4G$Xg6nah~wY?uj%>Y?9EQ2-Ct7Ar)FglT{j6FZ@25RF78A zwH%6DV374_Aaq{Y zT|z^;Cn99E;#V?+-aW*_cO0X{vF(Dh9R?%iBD3x|)1p!Pok?WQXnYtOr7;neBvGlu z{k95dE~|emZhSP)$N~l{6D4n* zg7j?ney~)#h>2NPk%^CuXUdX&`Ue-U1p0PJ7nwowK z)x=5q#Dbp?>p{A^~=e5#ZJ|_{}KUK&2NxyVN7bjo;826 z!_!ytIrkA_i$4q=(Qnq}Q@~vrPZd_p*`ssS-ahPPQpv_soMJ__GW1=gb>|9|{ya*e zno=^Q3G#t(h8a*lmHMLu?mO|yhUAJZ3@+4i{HIsb?*^J(LE$3bI{n58bH6M^-jWMg z8Bh3lS8$n5(4tN1cvpIqP6m4r+8WUOI({%OQ1N9fjuJHapD^rX1;8JedZ}NyyqBst zhI{ieM=2Ag3s5FJRqDv^_isbq1Tkg4!pj5iiANm;4-4J2;c_nln2LK3leZ~9=}Y6R zQZ;6@j;dD{k!lbilK-Uek01?@jgzo)h>07{1hcS|y-tcncA4c@uEKAHONMwaWJp-#;6aLsWTqW^< zR;10|ilmIXm;z|11j8STD(eAbDmuJ&!xGVlU{uybIJ!jQvji*KVlQZ z+ey0m(4xn@*3y(SM4fB?wiSpz;~4E=@f7jY6WiFPtX}DkQ)Y_vP10h@xniS z=8-Rr ziaDIl3!_&>DI1$w2A2o+wvNG2*sUljcJ{7Ser4Yai_BF7lb0Cs%$D3PGu8bTpBYiA zW0}y9Ha^MnZDN(G&Btgp@3I;%>9IN^4h8D3GXQJ9&Wf60=jq(DYCFvdyRZF<)XR3E zp6eamqGxJ7zuN;CsUyiEFTY#UjV!&*m74QMuPXD2<2pB&@_ap7z)IuUNvEq+U53QLa)O*&!(2NriOuQEcZ2BXw>69Sp9nIFurDIYqYEgw=sDPQD0 zDZtEu%d5w0&mHj{|Etm~vsYtwM9!o~=?WvW0MF}Vv zZSmhCKgUeG$namgd?_{W)T+(sx$mH1b?ejkUv;_@EbgRVlXUwDAm7Z}U-i4oGx3fz zH1m~eSVye+*SI-{f|CT=4zu?4$rKtsRsd9+-5xI7S4vk*c_Hgw_DvEI&!pxNJxG7` zXgz}o$))_L0VK3=-hrS5q=*Bsq}(OAkn)ZN>n;IZJ2ObqkuTAHp?5L=;4g90jtyHr zIRn3D5UT^^j^-K_^V#&rs|S=$+t`(W06zYxOE4E|?d(7H(P!ak;!lXj>e@YbTR=RF z4Srlp&4GE-M(myc-TqOLz7ih`NxqyaW_eKXnOVw2g%l>fnvHUKm0Vdg$L4bBlq0vR z(OP%kB{ILv2Xcq^gtoR~1{oTi6R{rO1<%Hr%QF?-;pmIu$z{PQR>wl2x}Q{udbE61 zmLE?3Rld=$y#%30DvkQ6iYXB5o(S7JvC0b(G|FRqIe2*mc|fio+J{=i zyeFVl%l-rrv7bVoNqxLGCK`Q`4SoNa^fNOAndkh4%prI^oO_uT%aNvBbSSP1-`>@}LVP_pCxpdF}- zh3_J{E^sY8(7nvro=u+5UWWrx548=@!1YA2;Zm0#+(&>hK>w<-vr*jZ!1n|* zxVclz(*FAiVsIO2aPVBDssof_s{7|!3+p?V`Ofgg#xFnomKQF4Q-DF0?cbLyVi%TK}{bOmna<$)Th`@dSq*Wdq?rc;f$yz-RT07U=J^3fUk z71rY0OP18ObIzs#`hAkufq+1sSFBMSy~$wXfCPN;@tLY)9y4gX1bs6C%RwG!<1Ef+PEULN^M>4v7^n@-VK1HxY-+h-7NjCqk8Kj zE(=z}eqCpxitNM=JX4)O-ohl(mGG4oVLwM$ut|cCdbo02KCU=_m_5SZt>=5K_jl*+ zP*33a$7<<4W6?YRPQOsLLw;w^J>$#TG3R@ydG5-^eTJWY!;H=L3_Ekf^hDJ?+j(a@ zd(G8kCBXj=|L4jls@8G)O!jP*`;Qx7lJe}bk+bS=6*t76Iw{5Z_gEOSQM7F&J|E5q zBU&j7*DpMF5Hg|#ylg`D6i{?}h@}>;o;raMSVbZ)`OJ}n(Nhv0n`2O;;S=Nt@#x-# z*(&rX;;eES&ofeF26&aPi^mseq9mvaN1)xFtSkUG@4Hy&o@s5-W{s1xZlk~gYlLqi zsb`VA{wPZEEwQ|56BZM3G*55sGMsL2X<$jw$hEtA7yjHK4YrU3D3 z%9g$+S7_J%ORGnF#R&~Nva@<|W_87bvStdgp0dBI=<6Khp)~fQ=VBIaTn2k#%T$c? zRJzkZ4sOR^e@*q-;=kFK==1}B_0$KR`usp6pPx}u%yUJEcG>B-E-Etg)HQY08lU^-7+<|j?`PcY=G$t_8h|8u zQ8^8WnYCoh?hi*I++$A&eSwj^AZ*#8=Rd3WXYN)Z1DgxdlyZ|lo0uR=*@SrWUJPw6 z*6|a3+XGO$YIVUpxnun9CFq$ukC+!N6JqEa=g8(|%|q`!_}!T=UI|3fT7XKeVo0DO zWaNqxIUs|mV#AMhV`~p96v!_`OPToO-*5ZS3lfv#@ty^Xlk3bZVI8ANM(0N@VKpNUPUfvQybs$ntjzui zmegLTyK%l`+pNS|AGD^cEirX`S1Sz{|Vr5a{O2J>v!^mb0!N$ z*t0-rs&QZeKAP*A)w~r~y5d@~b{WZrbsLYCdx_s0QGBiVyleZ(FrUXuoRIh&mdXRG zmjR_FxBOv*it2n~zICvgVi8kv5IjeDTD5~5NTd;M%b6Amv1U5+(xDmI#4}o0C4rRj9W0Er3txw*t?dxtziSvrMu4Vrbm_3&jC4n*FMaN4X3#TP|UZ-?spgVQ0T%F z7h{fGZ+xud+~(@zc8WdU|CPKqVv@mX+X?Oy;Uu-IZ}@f6Nd-552PR7igUu&X<=!9^ zsI)+S2?O34EUhRS*;1IUe``TwrRN~N`GT^?mz9kR5QvR4gYTeF+$7!4MKz&aZ@OC` zJDpe?pdn|Xlt{1wQx>u{T3XYX)(F+@vyjG=jdwDkpVV}#@N~aYd&zucA;T#v)8PWI z6&Fe_EZ4b;o(g|&k*fC9on{(}@GP@z5=gK7n=Nkm(SljEUo-ipC3XBy>Px+9Ydb(?w4jQ%?TJodgG|3a#keDS9AoJf!goLUm~&Wk3h+vYluAg{%p%wwtN_0 z!6W2kohA^99#G$VI=cV=W@6*!ND6FGO41QTgfcLYA9ijICQeQkHf~N9-hXi~HYP4sHXbh4e-$QQZy!ANe~tg+9kR3jPpyfagq<}> zS;!uOm79${tMHP^Pes=eB^*f-Vt^?U2VBQT*NUCop(^4eB zecG9+JTm6pOdx~!HD<`#dzWx=<*okM-tPH)9KQ2;d$dPi)a6+=JG1>0_yH zUWmJ3+LUB#+c@4+ZCLVuEYMCCFpe&vzX*+j<|O^C7uvckX^fL5cf&k7N}LW;aVw6I zx{3*xwfy@$@V51K@BJKAr|)>nc>#p)T-!K+a>e@ov?cJ1AeLX78(2?uNOM>=APOIL zOKb}Ib$uD(ZjVa1DX)$%B2XzdEWh_KGrvtdes0~R zz4J~`;%L=Q&ajGP>&SN~;jYfXv&V0T1^&1v@Kpre3Ims?U?_K{FbZd$1haAwoR@~8 z&R*zk$tSG}Mf%P^UptUiLMmr2gD6LS%rL5;WjGBr2P9hDxq}(}f;^g&39*&X$yvy2 z$?wYtNg&kr&iglz0yq~OJ{}gW;ItJEcfP1hrs^|mY~~h{!7nJ%O%HrUt2b1<3oZ@> z8`>)JSdNREVk?|@sIo#E^A}#kPl*A7fE8P-n9xW0%=N^1ihfyi7W*U~uL#$2&~5_* zfsgY;;0@BpMLIjU7hc=ooPd0o<3v2@Y%v_1>HBncMyxS zRw?s)IB8+A_Y1{dkxtvY-1PQhm|;M3xH)FV;|(z}@#iRqmY_-6Z}0Qlz5EuK+id;) z)PeYQX!qRNi6k3Oo_aF%_g1d9{pJHGx!ngtfVaM5Agz=;Z)u*CXp(BBWX1j)Giu-J z1xg=y5B19-YzYzK7p|Q59~<-wZYmtP2=JIZRerS2eN7TA5}`pW6E0#{g-U{ zl8=}@!XB^zHxB8*d;;uk*!Oj7;{;R=#bAwD{SBnP4OL(J~K;rg-|1=`)_{q1nMJ||&I2V$6E zl=d0mmgW&U73l*V`ojYE%CKJjxd59%;g7fbfpBEa=Z*9g#kcY(7+;hOL+5Bk3|wkxkh^cSm2mIH`$(3|)jR?}8azeXkqLa7z+j5j)0U3~)HiM+e|e(2?y8}q&DC38j-xVW75w(&wz z?qcj%i~!V7s1iAqomnJ<$E=s_ufZyC+}ec5ypssz`ZhVmr72oiVa*NWfd-FkNm8@) zX%_F;nF023x~qBPUTUF{(kPmA9yX-NbfGoSOrAju#bPWYtR%C8>X|`+Rx^OM48-vO zSCxqh2^GGRKhruWOG<8J5IV#-0AY90_9pM&jHiQW{f%HCtpUzB(q0H+MPzCT49-yO z%^q9JMhO_QIYVeTtGW?ib?1i7+D9Z&rfevA%v+Krmif(%=|>1=qE}}B!jA|p zCF(4YV4L6UyYQGyq9INXi7-k-2ZE{i$k9PJOI)$HjeeguT0a3O(z_0F^oz(s=`Y_` z>Q!M&MX@q@rX9-OTOF$nV-Ra@isu>}B}g!AtntK}`jZoUe?jewxF36yFvD#ZJJO_+ zmL1=_afyYv?q=jkm+A&cVLYf3F-rE~nP}vwV#k&?Gv=)fbA^X@(r`rh<}~|?yif@) z(N{$TR+&JqN|)%K30!@ylq*OvcMVEW9_OmKFY)?H@uC(gJ>I_pQc4$d;{DQ00^qCzRLfNNO}L0NSD=7{tqGrW99zmz|2sy zv;H6a$o7BmBisLYF&rf9Z2#%SK(KMJ@ccJfF6k)55wsz8t<;ni`bC6cNXm^*Db_{k`?(4XK8k{`d9Go7>?droIDKf9dnL{G56Ym4T7)R}&36-Oxr+#rHTs zm|^01VhXJ#E&Y7Wyl!xJxxwl?`mopMQ{cR?0gIk^NHG^5@Pwm_OJ;_;e)mfPw zn$u%4-#nYP{aXYIkIyeV4wYK!rYJ$Q438Z^XDORBY#Io`G9UU;8gt}_U;;ybPLu3b z8um)YLo&1@2g~{zVQA@`)h_U*y-83UocGSU%_sgn_u&ew$wouxpLWvzHc(+9oE?3YQ$w9doKv$? z-D2=HvvA9fSN%owm9Y!26Oi!(tH?a(Eh)3+ptBBC32RW4UT==%?avM|mTb#Co0?a+pyn-*S%+^Z@p{UMeH%rlLMLb)JggMx~`!7Y{?pxq^7437_ zAotsRUg~*J1!8fT4|F}WTap2ST9X6{=NQX7e4+Jn_p*25XVQmpnfo_R`t{G8 zZ(sdo&6NdwoDkPvhlssq%8yTN5#PHCB8f~6zF5C!8@206JF>g(EV4v`s)bnC=?JQ_ zm&m$OgUL4)^|$Q{dMG#oYTgn2RKGKPWaf<0)=4>g=T^sORh(_k=5yHa=af|%(n~=; zj3`ygdRN0PH@`*r6lk!Fhqpr`0?Y6`6 z{&9bRdS}ltT15>r=kP#=2OqBpyJER0tj3!gTugMcPUwJaz*AfY6pT_so*3_CL{1f~ zPe8HD-J9~Elk^_-ZaELS9&GCfoR+FWI(fy`I`jrz`XUFbPm&jc%bGrzTSQM4zHiR{VS(ZCBjnW_t#ZOk^Lxu2iT+zIb8ef(e`&6Ai>|@*LED|XJLS2a%i%Z#Q#z;w6GP9W3i&{KV0{8KaF$G{(HwSCRUZ!3w}`(W+T&N_S5-cHGVR8qpt zAvlJrKA1>EJXC3Pnjl_hq#J+jb&pmExguv2NqTt|}~H<{Aehl>9t z+K-WLLEe2dQW)3TiE@8-t8h7mbd)xL-1?3ZN~SQN5t$Hy;~e9evooI=h`tAvsGG} z=brE($z$d)a* zk`7)ys&*HQtkiSZEhBOki8#xg(`ldqKAo#QoEyNPyT*8+p%^W}Oy1 zt5HprW!Rn*u6`^?r;pi^?E`}99_-TxX?hay3vsg#bL3dYQV5>!=e-ER<{RCuYj^j#;_?N=2 z32bM3%|Cxt3y~75pVIOMO&4CCO!d6ij?=4_1@rSbI=Z^0;Fzzs#=gA{{N37!a{%6M zPn2Hnyi;z@W|6qZBsieGBs=B_&=ey0~Z+*7dBpTfl;|fVdO| z=8NZWHyVx`w}~VjQw5$;MP&pE@pH)T^_;qa4IX68R`Nv*qrO?!KuDS5U4mj~$JY+nrw|iG-7X<0ItLB=0aZnj`BZOI#55sa{Wy zdbop{qGp!T`Ot?c+8Ed`odxb6H=1R-FEu)vJetPI^xv{mOZbd5PSO}5obo`<d z`w7k3uR9_im>24Dhrtmu;p}L??;xP4o2Yv$ou!;&4NO$F^HkhgNvtJl#i*z7q)c6bVh^2isxGn(F1ij=2X;(7C6?Iepk2YVQQmpU1^u!bVv>%9q=Dc3wnfs&1Y22venI-7B{7_DDwyo1hAQDB-@7t z(uXokkWCmxW3ow52F%BG?JSFzkx_oj?hcl>#iQY)RDYA&4t?7Y8xBK=FPL1&1xnC= zEX2(u(4X1LWww2!PcN_b6tjaEl8z5z(0K;9+E?KGD2L08Vu03M4|+sTN3V!?_Mf`f zZ9~&GnL&xuq82O& z1@60}+e!jcSDnl^7VztIzBz%G z;s|T`;V$D^FGjs!$m1HJrv$!qk*=-P47FYu$^qk^y$njrLsAwQy?eS`0q`^-Ay(zj zw&LJ<*b|Ln-{(bYS-)E3}dlfZPE{JytL)?T7A$wv^ z{BT`*6gg4t`<{duaJ6|H4NP{!A*R*AO$1Mbl1B^2Tfc1VRA;8kaoWcIj9n>M^WFBV z%60QAZ$sB#-5rHe;HnKTOyzT_DbQ2R376)#L=X|85eWCTf(BcktcFsQu{E=|=6hnq z$%0hWT?{ugi_{1JA5P#1^DAQwPj|)%;TO(2n={a5<<^x(#BOJ!1ccsT+jp3?F8xbX zu#G0{pqQx7iTq~2Va+A7+;Q~UjH??!s}LJTE(UA%MibnU**cnLO5C9m4XBN54w}4M zj|?EODKEssIkqjS5Go+g?#Frl)f%wNwVWa_#9@Z@FK)7dmuRUq-EZbcdYpEdg2JgD zhSzzl`ttzi)MGg829TW}*X!`CUZX>g75%!-Y9AcIdC6;7zmTI04Oy7Ifz(8!Y@72W z%#xJa&j0T1`SS(pextmU3{GAKbpnDnm7Co^I9@samw+AFJ)=5^|IgJ&7GM zwHyae(j^MtH!Z~`J%i9HNxRU#12_yb7*I&iN0FjC3>vHyD`2!=Snzru4U5&2MQejJ zRRcFLy@G5W(7IWQd!UG8(1a!kTWR@v<=vk3xe;sdDaY<3GZeNZagz&7pt>;S3rL)= zt~3y;+zntTW66WZT9t9|$$&d=_ust}MsJlgWPv5RTCYYwGC0 z$ecYv@NJ*I0X5FYR267^4Tq}h3V$a_e0wXZ)3K^WycH3jtAZUAV`kxb4W8RjB4#)H zkN+IB!K)3N3Cz@*&tJn3S_I80ybnO~zB16!90zzEnT}5`nU8}E@$ciVxY^d5Th;Ti zVbWa6+-PX|cYwfK-n=3DzSNACsLsA{`d2~ctObGh0~IcE6#iUz|F^8~v0 z7n$%S%Z$hspXyQ;-(bTt<@a|m9A5~X_cxDVlO3t<4r`D{xyvt>dW3Qk{AH4&b6|I< z(&?f&LjqGbURhMxP&f>}6Rag(a=0&yGSi38=)ThNb`QtQ$ng9YAGIw{{Z+U(xzM+- zc@Ho78wkkeg+aT=QzK_S6^6q@3cPn?&)`MnBbtr@!4U@`^W^80uRlpCD+$nNCrg{; zthj4x zO@gniPZxg66Rf%dQ0&$8!||XT8B(a2FFb#}0XzKD_6e<3u0i!d*D4j0yWg>x#@VfS z{vW#DIXbc~%KwgScWm3Xla6iMcE#zAZFg*29ox2Tqm%s7&&>1AteJW1k8^j`zUS6m zwW{_y_1*h?HrdCGFuvG9;v^B^zSWKSQ&7vG;^r`1@90yqcb$YUO0|LVBcmak_qhz% zgF-JNFqX`54K^ACJC&uW8bljI#^5HWaD7y=rI&P|7Uww$rG!@bmKeG``&U$&Y$bL< zJJsch1?+oYAOI7>|3pq1GzZ_f!kL$nl!w;T1splmrxQnp(C_z+g~CQQ_LkSH?9mio z2qeNismbrlmE7D+iaIGO)Z zu)cZycLfWdjs1V7f>@bY=vg_K*;u$3nG)>1e&DdMasF5Khy8E1=^E(K^)}?^cQIWF-;&y}IAHa>n^UhbgX56PIrjrv_7W)OR>AN_N zbSF)u`z|?i+tqY4PhwhzqeG6rJUK>7)2rp%LHntQ+~Tq@$Kpy`Yie7s{Std^yaSre zO||-3P7}ZeQ~&8c32|%Z-2VFEPTV%|XA(^W`^u3{jH58-6v7t4N6q_vgr(K>pNC0q zen3}?FyfXDK7H50gf=IW`|b6`ZCH?}b1x)WdRxG@P?2lJ#jSmq`MpoOkMr}psjV{x z2oh8d1)*7nvgu=pKdP4*i0~TY?vHGo4dPq@U{G3zSqm>(wDWBi=N{q-&&V3CRQrTn zd7(gW61N*RWVh>9sq0N27>T7HE#G@v$N_n9_jFp32t$-ciNNBNwG-2+yU*zE)V-fjWOO%D)%_ML&O+$uhTU$!28}cFCWo{{|HM zUwJ!K|Gsm!?$ji#6XxdUV{P8Zj@Q-*aOZpxzJ%rzXpjEh;?BYJ4RNxH&vGAv+AP=g z7`C0_{?9oCKatH(Qv`s6+q;yp`%_ovo63-vonM-nbD#2Yc=B-`G)CLmcd@x{-vN!7 z<|NO@2Wf_g`0mYo8RYe{`>ua({L{*e6vrO*cr=(Sh|NdMPb(%i?liaG3WZBXV)CQKA zpJw!aP(+nfF`bCSJ>!|HAymy8S|Y=9(_oztZa92buia|(!Hn};vF|}piy2VWZ!UoZ>Qq609_8xLn?T&Si^baD&vwGeU1N<14}2cevC3rBzEwq zlj&PJqG@o`+D$AE7IMrQlO~j+HNW7Njv^^%dt8N{HDQ1yJ{?Jeh*cwzZQc6tDSjD> zlGuj2z%)bpbpNjm;NBL%K|cB(UtLoBmjAEP7A^fgXjMq?{+K3rMi{bi@C}`)KXB@a zMPw>*{1!3_!!QV$^>RPQA&U2nLlkkh3zRAciPt552jY?ntYV0_p;MFy1T*_IR2oNH zF}tx487R+aD(R-wr!U_Opqsh$7}-KanOR zM)5(_RPE%qim~ftw9^EOMAZUT#vL;0*}U-2-+%>=);PQrt0*iEU{*8 zvwVpiy7G@z@$fTvb^E_&{PEeh({}QuPUCVMsEk56$cY*sp*? zMkLB*o~Y~1B_;3ckX<2K?}TNvQE=$pZ_ zO+9oL9%Ka2qlyT})ylT&<40#6<|CKUNbEKN0KAUA>8 zgxlW{1F5T=BNQ{BO9~@SYV3H*a_oYB$BfDA_$$2@culL*t5?zs?j*j+nb*KU#bM~< zN4DzYY3d6yN#g5xofj)@^1L}1YfXyBs?1~IjvuHv95Zo^+Rk2Y_ENowTRuB(bZbXHRJT46U?vqo_j{wj# zt=C<_=3|LvoXd>4dpW2vO$u_$boOAP%X(ZztAHz4Doa=!OWhvJLy&VSr6gpraGHRf z*>uqAw;8BeRt5J%ViV}mpmOI`{E}&slBzMvPpMd|O7VJvdU_zfZxBpRD8oNZ65;y* zGf0aisikl5IEtb~eRRH+1B)9mjzL}qSo{rY#yt=5Q(#=>pdke*v+{6tFqftA(yNpA z_)Z-gXlZcZ zwGx^Mtco-BhWHN!hyChZpt@5hA@W!Q%*Y0~Qm-JF#vqdL824<}pOQvui6(YK^x)%x zOOM6O%|l^PB@vtSLNQ=pQvncvSrA)wThh_k;{vMT-3l|ax8qG6l03}&uaTpZNhx2) z64frSxD@$!8YR(6(@#x$)2QRCArR2XwlQqrHM1=bJPl0{ib!4}LtD#9$8!AwyLI~h^aH(8?I1J>aA){6$+tblzL9k< z?*Lpo(oFvMnvsR${{#YXvj3}*Nu{i{Aa^}gZ^wDnT7VF?j8i3;^W1b`#;{yw^77Y+ zHT0)OKoqoXd_0uGqmj9r>mi`jqWPEgs^iRB5ERaA*?+is-@Rsy+7`?fNYkKiY)Z6# zugeb)=aqrUl4$;Z&!skErk$kv=g|=K)78CPOMNE8u`x233A3(*bipv9K{65iQ7M5^RkWFJ_@Qber(@0LyQ$FNZSlk+2KUGD zhTX4Sw^f@R0xd%Fh9-bu>8|dEYlngREh3I?zuoS~`*G{d#}dHVn132&^@!0e3Mrb= zZEAwGcD*EwJW>UtAr)bZtd~Eq*bxS$n z!k~2IMa31Q;XRNG~ce|#KP%r>%3PI2ksC&>|SJ~gx zWkz`m2TTXr8nX%1FS3spS7L}S4v&?kPz~GgtJGNKPlQAL5ICa@88sU2QB=?_i%|3i%l|Ca@<&OuwA~L zo}s(WH5|(VaWepGr%0vM(hjXIb!KEyOsM?$ZsFevXVL_)Bla%mYsm2kq?-#ybu6&+ zbthkrdarff3NFd+8l7a3C-66&PiDJm|8BXL5EkVl@Kw(R-H%e{aRqTSG$hg2-UCy7qC+NrGB&4hF}3HY zsdn0*UTz9#ugWF|2G06k;g4zpC5tJ0hLuE2%2V^IPZ|`r z$sZKoQo&-c!}xg26E<<6k_1Q=Se<0j&0^KC`VxuZAV^cxDkKw`7 zoX!9M=v@eG;;E3UffBuo^$8(x0~^YmncXJkt`v3aSqg^vP}h)lWQ_)_6V-)aJTf$n zGWFFs&3MSH{oiUX9vdlm6)>Szg}k^a!BHZ2@P(S3g$Lw*2ahT5no*r;M0q_8l|IO^ zr$s+ZA~Rz=P<7zH>TQRGv|^Cbpk!#a(l=xRZfBj~z@xU-!5n*wP^glR!7w&}cx=w6 zQOg7U0k^zP=_Xd{^7P1`g+0hrP%dh}NLGua^inO#%SmB1i{-X)3mc;BIaD!n&^4By z_kf#TQDZQipp*lA)O7ce3>w&4yqwxY6;yvZ$tajFP0FgQE{!_Xo9^MZHg`=j>zD%r z1RKCx(wd+*QJS6aTz+0K+r4?o&q%igonxnJHz97fvok51F;X+vVi5-P?;~l*zv=x+ zNyx<+=Zvz(zwY5Smq3Di_efmkg^7E*Fw)i%&X=01&G2O@N*hC_OgFBBnC3Mwqx=Tm z(m;UgCs*1@m8(~?d)+w6ShM=P?B|RJIH^*)nW7wyrxv7FvbybNuK|TsYX;%l1&f(< za%9#!evNA(r^rFxW29^wp*?}%kFaBQEcrF$wf#2Co#bz1@Of{@b43pMN5oeFg-i!< zuXBkzzN%i}XuGqtTb4okIO$;clkxX%BgXo@vvtz#LqYKq^)t^BcQnTV)wdHt7%jLw z-eMI>q~lEKnt^rkl|u>Zas`fRj0^;IgigbIB)9e&Z;rttn4UfNw-A zw}#8N&!z%lf*Q6v$~4R(F<~*gpB*$lc{=MTvMYv(1y*I^FxPhm^X52%0F{dlwDY7p z9IUv=`hCilCU^ z4-_=?w_&RyxIj~GMgPG~yf6c+`WwTS8TQ1&iJdrL^QjS-M~stNmR7lSTI5m6JXrZ6 zlx+6%s(jv-M@f?X&?)kh^r1vbCQ zhQK5sRSL4UqyqN`w;F_BkD0lF(YG>vO)^*q=S%HlAg#&s@DHa}pR;11kqNy&*s`KC zzzy*UVC&GhoQA>C?r(m+`>Z)Wefx0}Ea!Q$_Zyy<*uCRAroKGmJ3vgurpBoTd=kvc z@mfJx0G3Q8QRFUPP~oUt0jF4j%vp*$fGC7WMAa&kEj3X_LF{%89a2%nDo(}@M24`Q z^rS2FRKp0O5W{;!b;-PElFqA_@%L}asG$XJ(IZ|Ni_q^QNx~w+J@uZYp>+ZrL=0Kx zTbo&&6aFg99otZeNHru=4evA6RsN7<&Y=B4u&#;t$@ht8{W4WHSi|7M6aa)v?i4s>-qw!09yz`# z{NbsPo1}h*T=fHXsXpz#7Bwg^GGD)q`pn6mqgq?sW$ zYe~se2!}Vt$vROdK86aP#DHS_&nq=Vn|O1J`xHEmTt6~us5xiJt|=3T)Pp`S@>_6? zGZi-@K)sh?htGyOH)t`*lA2y@S7+x7gIpE2=KrzoW8wHmD?CetfuQ^U%Em!Bnf{YE z5Qf9T`EO+#Ga(D--yIA8sR?p&{G$mnad9&LrzW_O{#6prjuLwHiq5?X>3kYAKn!~R zdxRXqX>&DyM1uP?42p4V~!c~rGRr(E1!UEI?Z5lp( zHZj0&jmH7smTBg(@gcsBC$6#~>m;qwRZitPY}&oEpvei`HVqEm(O941_qQB?rY`Mn za@Nh#LHzEa^^fwIQ)#88-O1xf>tStHqDV{aF`hl=G3)G1>So$P zT~@Yv>)|!d#zp*sjkIj-b*=b?QpKXOj(@A| zh@kVPsWko$uLt)EF{O5WmD(r$&GD$7VspnP-Zfl57br|}t)sxK^1C4;13bbhgEL!a}2MIj03jl=wXI=vg;o)3k|TUF@oHNLbO!OEa1QskH+gy{H=GtDpy9Jb z!+Jv?D4s2HasI{R;z!2+ zG{m_^(70vFgk{K$i83sYHo2d}6tLM6b{3vPzhH{X&oJZM06Et^u(Iu+J2e3l1nnIp z{wv5G0`QKMpOQbqQ1Sg7JP8giVVuU!0gPv8wbCL+uv7Q%&*ul~Q$v_A^5`KHB67XH zQy-3jM8*e4d)8%gS{Y;WL0;J=kX)oRBRI%5gE4eiAJks%(*4)0!8sbt&^|c z-r1Q0IU}Z4Ub${%v@ew}TQsR&FAx2L?l#LA>}L)V7JXr8Qnwn_o6&3UMyzLIlKSi9 z^ZIKqNV1NVAws=drPkxXJsl@o>01yc6ReM&FD#h|Al^Z7FXAxF3*C38mG)jVW}^)u|Q=#_Lif&Q-Uszr^LHw^5kA> zEu(S*aCq$>4L`m31+ym4>@t*eaX@9Rxr(u;LMIn5)xjeP9#xQf>YY8X-*Ty)@}MBzU#IwBh6S1bFH=^x^qNJSpP#ejTYQB^%#C zb!0Njco|mA*FJ`Y^=iQLghywQm`BHv<}vL9upX+KVBG<^yvJs(VigEGDUM=V&3BpV zwCHN_oKIGE?wtv%effU+z&SeL#)*-tn9*zSD8-MaFRxtDuGF!Y9(zi7M{nM^PQJ-V zjsm}YSc8Oef~xaVsotowrfcG7qv8o}RF7l(2tu)5z+JS+RiyI?hIo4{pLAMaKX!=% zzyo#YjlE)J-SM{r)TBuUR!$A%8`}OmupR6kRdCF@ql{u!B3-zlo2_rU6`(J5Phi^C z&_WZ&5tDt>TOkB>t5<;G=+qfm9mJmlx>IzO!?F~^?V05IS9m@S;GwP(M1w&qo3il2t~jQAq|*L*neMHGu?)sI zfyuLhq4J5TragQ6iKl}v{4<2RG`$cvk65?=^bQ|xB#}U$a)K38x*Pukl0W#H`u|=j zurmFnO8$@Cip-3h%!L0uU>Fjp=?DQ?U*yR37Wgl6qwBiO8!4oQ53ks%c`&!%<;nUs&l$37%}=)xyIINkQQKi6X$Tlj#>u1%?J zN|ZE>G|R%Bj$xNLinqhdJ@YtRgR2x#lhLFR=K>oP+fi9`m_gUuoy#rvz{2!ynr!yD zUa}CEv^wzHKQ9DPXd`QOuIHi5%&0GF6~ZO5(iyz0xr^-%nXgvv)i%)7ZA4)BoR(5mt&&m%y=Nj-92RNgtv!+FqQfbx7%X?`I4`Ws1bL#EhS>^YR z*oK5Ir-)(xh=gFwrMJ_M+s{HT`&d0}VZaywo#d-NV%~`-|uAG4By&*Pcm}qhS zZ>xN%szvyVrs2ORqvUer1FDGI%oCe4PDSPsvnxAhr!dlDEA%Z8fqf7vlVM|Vmi?n} zm!U4WqpyJsv?}Q`Fn(Zv^07*CvNZtht~EYWLlQB_NBQI&!}dyQ&T_)tKahHt9B+c= z5Lj|xH>_hNvO8rAP__cxuCx)$#MG>$VAT1$D4ZO(g>{4Kho)4(e^UUg2&~X5%;=^a0!BK)~Uh$$&&E=$epXhxWsg0^n=Ih7#oHxdvzKQ&JzSGx) z;Rq`Of@Mg3RN%v&!}B*RLz<9iUrrruFwNlP+dVZ8T@1}UHt4IHOlf1YEJ@F{#^NZf z$7}E`LLdmY_NvOJwZ!h_0kjYTANiI?VMVovC&D)SvN(VTXbMY<-1AnZlmEwF1_$$J z#{^6UHg)4zFeM6n+dh(_x>!Sl6;-|`5zDWL!XKMuf#Q8@R%Okt`SBkNti56ixsKHD zS5+#p1QcbQ0V*y3r+N{aZE1p)a7IDQd3!>YusVFoOra=foM zDBlFZ!gc^Q^m(@@>L%y$--ZJ*RVIUktGTQsXsxg5styI`hQdigXmUxRh)8pyPzNd; z>oyfqYIP(Dg+{cWgjBMAW)^akQO;#fO;o@EF6b~Mwph1!>VSUreaBQBr?Yze6K71! z&BZGb0J-io->QAMiH|pPpQtk<4qgD%a@T7#V8a9mT4T-*DVt0kOhQkVrD1Q%uKX%g zO^zjGHoOx+q3#C8%^HJA5%h%Y7@2%QGTy5_Oa$Vou2nj|zhcPztrj=+Gr*q&y}YM1 z)DUF*cL-(=N}r*GrUgXGGp{+VJr?G+V4|oW90d>w1D66&^l;W>qCta9jpT?b6_PXg zK_WTenC)FK!O!XhOb7-`Qgv1hh^*D4KMK9B&+@_bR%f5=$X-ZFqiFGuD5yV5%m>pv z(d!H>Y7UUXMrgYy6|=Pl4)v$_I6qe;D_)z|t}JXlwpDr$^$Z;2IQVcTL!js-oc}%(VFc zO#uVk4gk(~98CG+B2P;qV?^FSLF(KR@Tx{hbgfkwlDYc@#)Uhuj;JT&CCGzNGlI_- z@zp8T=)>Pad)hG*SXt-CI5#yi-64J8czSPixn5jBug_>?eBj%smiW9gDLL>EV2~Sw z-G-yP5?IMoOc%4sYne1A&W0UU@;cH03)}4s?hoR}VxpmTl7hoDhd~b{&OYKS0;r{ZL$WhMmUXLnN%W%_E@(ed|%1F~1rtOd}Mt z<)h>_9NON6pItTQTr%c}xZA>9MGS2fTHq*IGUmH0NmR_QWPUVwPT2`hJFW{r1(}%^ zF;?wV%wm{Eh#@ZS&)|5*Ltv}LYo7s`atU2mw-(fmS@C9EHT9MI<;s3On;+fX(`fpD z%fl*e5a{8 z_YKbNVDjyZDuNN5ynqX&`X$}UrQ+9oY)CSGU7@_;&eO{6_T%R5RwmgD{|9hRm!tu9y=_e>F z6K4W^%M=AG^S^aS%!I7W|B|g)zU+U=)~sLlU$V7by<_VIT*~nr7!?9L%YQKtIT;g} zep=LG`VmjMakjfQ+V3 zp{910iYXCpmsEJBpM(Tn1lcjSqz7CDlQd}&!xQh=Qsf$+t3hOD&^ow7;sxK+RT5AV z*K7dQYRIdJ3O^Tse;rD)r%*Kqt)f$sxKvRK+?hM<5ac3M&kvC(a##+0uuVG`;B;+5 zSym-1s*DBdLzE{Dfu))_k_*=nh20P-_HD+a3;gwX7!=ZLMw=0_Lx?hP0U^;?P%2#% zB*Fm*og{rI)|ZJ)g@l^jF;SufT^L})3tFo<63Ar|B~2gTAZkdJ3j@)wC^pRuO-wEV zw0}%f>0+ceoUT?u8Vu^M_|2G#Z?=rY7h4?j=P#JDrr1;ik&C>j z@(rh#-QyU5$*MH37Q@m;{dWM1H4Tf2=jy%hS|v3fuis74=dI?}y=|dWf1F31-orw1 zj@mAC0b*r#0$<*`w*a4@*&jhf@Sj)Rd@p%f@M&Fb24gSp?Zq2jj};f?#)*HPrO2|I z?O&~WDY8EsETK;-_(0}Wx2j(0G~!|TP_`P^9;z}LBbi0!IWBx=e7XRB%6Rn*K}d`9 zUaT5;bFhhvE`-3fG9tHAYUON{_(xpjN!73wjX4>9-vkQ1?1rEc02i=j@Zu{8~9n_0q5pKFnP=pE52egmupK7tSuv_jFEP>=yN=8q;#r zC??KL+tXvv__KR>HC+H}A2XhFs<)Cp8e-fKb!r7GXxWPNs&I) z2(`+z1!w69y+E9FJSDk8GpL2PK)ot~+zfHcrg;z@)qSRF=|=$PPWYTzp|xXq30)_W zkQ*yV_$Q2+I{4E*(S*RdAaKvxdFB3|}#{6^2@w!ylM7C%r zbd;vF@8h>KDZY^Y!xOrr-S*<~RcrVWU&=!)Kg+0YmwCrd1>uy#Ejat`YY0%x7o zFKejOWpM+zRQs3lu-F&FQbmjFREP%&&^_P;Ugk;2GBD^|lw?_d(cdq;5nK0i;uSF=5cVWH1?r8USTUmN>*=Jm$Ob`>n?}sdVK^hosYMq)*R{4-^zXT?aO}Q# zMs(|QU{c(P`*b78WA3i(!c~8^t=^e8a^b;Kt-u zBCw#|R~au0?Fj#tXwhc(?zNKr_>K*gQk;TJarVKSubr8tFCTAQRmi1Zt@Fm3T& zsCtyAli3ug#88J>1zPl?H?w9Rt=q60a9gpN8u(`Z!zDyWRcjyHmRiyVf^R&-OQ!9@HNaJ`~wMk9Mnf0Rvn8PrFyU1iLOP_W+}X z`}Qi$aJoZYoW!~_xz&SLR|GbSGxbUh1Z8YsA!HUN%#s{V)FUGzKO}|$C7mBh8WB;? zia;sH19BZG)dM&;3D272OnBh018C1e9d?*>McTSS+?~Cmej7jiW|VjtCsK^Y4*G&b z(`D8G(HfwiQDTGkdF2-SbKt9RzyObH`@6>q>uJ3So26!>ujuDEE3{iO$Ju{k*Q(uw}<9toCIAweF8;cikeM%4I3v7=T`N za%=(tn?9#(VyXBk>KrhQu^)yjatpsCquK3b@uS}cr@EP8z^wHz^6z5~aM+>y{r`{o zmn(*Ew-zyggk8p{-z|PUgh%=@q}zT_Ml10h5rp~%NtgSiW%bngft>yz>}Eh=Z6!bB zf?h7=0*76TWo&$OBn~ez~DMO!GMR~^-_q~ z`ck;p$I;!uPa1pgMu=KWAAscz`-86C!4$LVyf;a=r4ClzZD+F%);)886@@hXhA`p5 zKUv|M(^m+q{if*6eV8}Licb*>h;GI^x!x8+_=;eMr2&a9ev>bKSk>#BIh!-{vMH9b zj<|S(yicymTrS@rSFRx8`bQKAje}F`mG2=cPmKMBl!4^Z10?pxITYkPY$};>qbGw;kpx(5&&oOgJJx3xWsw4h zC?3LB5PPy7ohRJ$x{*n<^3sV zM`zN!Rs8unia)FX0|0`%j{6^nj;`Z~tdHg$N%xIT>j#dFgUlbNL|4tE2qH%1*4Fp$ zDB3tyM~GfNIydbu&h@+VgThYdKHSyW;UJ(YGDenpeD9XN>y-t@MHHUH}N= zpRW749Y}^VxNm2X84+?fVUArKo6hKwEj<-P2R&;7)xlb|?u1hftmqA+9!*xXk+bNQ za#%BhdTU0Pl+O6ztc@nVYRZ3WRJe!P66RPXUH$mk$QJzQAkxsqA`C_S-nJUD zj?yV>^(`=Br+$Yinx;LNPm+n+cPO3FeXO#!yy^lvscJyz@ywd>owd4hN&&nO(W@!( zrrTUOkD;h4b*CiJ25YO;ZEwy=n@Nys}|EdL*eo_F1UH{!*n&_0}AS zj2}F?f2#{0cy=h);N3UZWa3-LLcahGAboMTTQ^XrSF1HbU(+54=POti8Dt0w54hjj z6x3pW9)-|f*{0coK)-Wgk_TY^9aDtr;nF|N)R?k-CY;CV3%SWQ8FQ@q#41X4VF<<> z41bk&)_G&em8Ex=UDM-2vfEPPSr4$8=TFazu3eK9XPfsJg?@=tuv4drJ!@yv0S=mcAc8 zb7tiT*7fjRa=@}TFkQb#ab?4Q-X*V&y)Caac3D0^f2jK$y71lHr_JHHE?(6HdsM#ATaC!jf#{v?jD;%lqL(6^2HUesyT9+=yup4gYxYyQ7q5D zm?+^F8m+NH6I9pKVU zr)h)C{v!$tJkR)_v8&Ulc9k)na^ECylUUofdhS@je2^v3u60tgNcis1KjL@@@e|n4OHgy!{p$Ivz3ld(Deqx96K8re}ewQn{AITXD&7LPf=| zy5V?cx_n=pclkL$XS&nAHtTg5>cj;J+(Cjndja}Iz#tAa{g7hqjoO07VV z#m4VbS&T089j&x~UiChNF^qDoydMo>(f9uBFeM75wD(C^Imky5#tRX5Ijd*Z6AJKE{lG6|HUb)8*2&lm|rzoC71z`4~bvhtp)V>ZJC?vzWT;buM%a>TQE{*kotgfDPZ>?e4b zx55oC|O;R9shH|HA!c0w#WJh10F9ljsFg*Vhih%Bw@j37ENiq{D>r7pGy6K6M z4Io+FDED_}A?~0=C=N;R3-gyS=&TWh?A5tp|H`Yrv1mcwK};$y%E-{Gk`rq1yv0Xg zqbf&D+N8FYRZ;Tl794aw1pt(|zDKp;6MD~mQ}M*(hey}9iazfkK_kMw&0 zx5pegN5)YcQ<@8xKWR$h#sO1=oy$*ml~E9L!j16E(TR8E9RNvT0Twm%MVT? z-i+sMagMbQcm?FqIe5XDhBan zPAv7{>F$d-$L)%sl%U4k-Ux$_7dc9ca5}^lm2-I&b$tG4VT+`Z<8JD+IW&jyJ@u(& z#E!TeloFwXm)82Q45Q>&xhV<=jU^OP_(&^1QX;6Zvr9`Ch2rdU7Nd9iK6{&9;%u{Y z+A8Vl4<%R>Kt3sDY16j>aKvsR!maC%C4$YnUC(T&Zay|0JQXN5F)tvp26j81=^-Wk zJUR-lstUoyh0|VaV#K=8#JL+DRvYUuZzju8?vZlgdq-oL!IFUnw*KL*;%KgUb9WU- zP$H%PKl2+aL;aw6;oY)Wl96BNDoleR5eH6lttoU%08}u1@>}9h`ykGbc?KlWWlMYQ z{YF1Ar9)M)UUE;(I=?qt@Q2IVVty5ogfWj9_w3-s#%B--Y}F zDiDYz66!RM3>HTWE!>TSVyMM@c0cpAC=Q=?U=pxv{aD-(s91u2m@4^8RhfiCpb8D; z3d*$K0IfA6ITLb{A}FgOWY-KxV1kQYNKz1bh@T2ecU@Ve^e+&q`Ib9T0*;_2C`;SH$ z(5JSRaC#sm2544jO&O`T38krcCN7#P73XKDIni{x%cMwIjz3gx%*~JW3r!^PpjtqR zU$#GHR-_!dUOG8gbZVCfncYB+i67LXFGxksN6nI3Kfsg3RTg~5U~T}`xZ`pVrrC6~ z256c7j2jjc+7`#R=-Hi}xXXOu)D{f7QDbR!U78Bw zGpKbd4OW{ZnM7Yzf9_O^r%}}ErNlO~Ej>`BDll*iE=?tYXD=T`;4y;LH=pvY<8CiR zS?h6U+a|vEx6`s)rZvY$n=r@}#$?_{1xN>&40^v4PmGaPngG3@V=p;orLTlq=E{{{$O2;D>$~{Vhu$ zT=)}~e)_!fDf7o&^GB6hTAmGYWfwEA3H3Nu6rX2+O9X4ROk;MQmj{2AoQ#EcAOO)5 zN-kij&loaPpqszI+3bi5=orXKh(TstV|--YL2fiw1@fqmE;g=3X?f$+R3*O;Y+_=u zKYs1Z3|26ny>BOc!pdZHc-OtY9`41~W@Sb*cA+0}pEWNb&e-zs`Qlu|6TFv5gWtQ4 z@HnNjorsM5kyx6N2coU(7=QkcGyr-=L9EXv3V*O7Oejghw`2)zzNTz%s^p^>aub)z z-2hom%wscl`x-nDyqeVU24wC5c7ZCD-Vxj4rNWg#x1>qkM8zv^ti64dGNFW#Yizjh zmnBD&E{S}sikCZ$qZ?RGO&qq!eke$$dB0dSBkYwi|M^#f|>{`BdT4WDZwVOva~qCG`VS zb=?C#k=}&0yT=C?&CUft|Mn<|Az$oPg6)%_J1LEUotw!zYx1G8J*)V{y)1L4h|5-4i zH%=kw^UN=peBMv`=Ki!~`1H8AFDs=urd8X=S6_tTs##xGlRpp6!+MURE*xQ_ugcba zvd;Q)HM{&P<9*s(0D-{m6W8tY0?i{)wpIxMZB4r@V+cDDowCtP5YOiD7$9YM8m_xH z0bB1$CTnQ0S-&`B%N9Y#lO|nO*!#_k6~8ruP8kFU8ik4WR{Fa z2WY8MfG^s%iDM8*yl~Uh+nP=w^F25Naf5Nsh8r=h>NyGFkR{C*p`F0q!O;gdhglck z#NAFXIC1evwAS|m)Qv6xF~@?h^X{{`&i6Lgnsxl5-IxbBvP0y6xPv-5lw)w4iUE(^swE`K4*&go)X#F;vjQ*)De z0Pg4?ZwGw9J93J@HD2$HrrpIexe-EQGR}Atiqg`LG+Fc( zH@-=JNa&SFe?~B(b)UT=2JZ z(k*rfYc66YU@0j{I58v8cy3*5hg%&f#iPC-jfsDjO~q+nn107Z{Rj^pzHOiEoVN4W zQ=qdAIwJ*zC1uBdB?ikZXgiPrBv1dImo7_ZxJ$GWQ5NMsvDbw0aNv7Od4*son1D{X z@sok&*y9v-3WeqVL+|`;H@HZ%GMzlcCR__msoGeMYi*as71&pzlHn8CAt_U@_Q1MY z!&Fo+t#PMaeNT(mT$Ko>v37KX`ct2#GNgi?RuEf-be*)9ZN7*^u84F2V0DM5*od4o zqv91nol&+`HlY5SUTZS=Oyy;SJifkRQvsf5>{3b(V`8lc!lbmbhZDg)M)6u9{c@l8 zeubai!VB(I`P-W^rPb^igdtf7gc-5$R&|%0g3hlyK6Ex8yfw}KZjd#55A3wY!kSjY zw+@Z)4(2=VWjE#ek*+uyX$I zo&StX^h~T=987FXoPRTE^qjgd3`(ZX_O4FGrp|=Cyf6&n_I55`#(xA1&VRW8Ujc*b z-+bIxz~K5fAIJ1%|C^6v`?CKd*zohiFlZ3U8(Ene|GgFrKR<(*hl_-=i=m6@KW`$$ z^mRzd8v#Q_6A>b0gkdl?BxL$J4TeF8`M-OZ{=0|eUk}#bIrOam`2HUMnaBFC7vmrA zS03=cuF3YVkNO`U=YP)R{5$jO-V_X7TuhzpzE1l4OxeQF#L~_@!H}OF@$Z#oP3_EG zEC^XySpP*}Uu1q!J)4n3?YYMPA6xGj9!b#t3&*yzv2EM7ZEifVC$?>4V{dHRw(V@N z$tG`}=YP(7&WH1%uI{d>zPs+4?rWyHeyBUsb4NZ&qW6ay6LB{Mg#x2$48peqPb_U= zFuU$cqbK_kbZoE+*T^ZmGMK(04MGO%iud_;&uqA0NZQ5*w);Llyd5Wx5-}3_{q8&i z3IJPNCOuwXrcKjt?{3qF8RGA6vvUmu>nC42jdKBome_B%-%b=Bcl{W|KCg9-9-Va_ z*ztFdTGp5MNLqLkk*d1XnHbeCp!TX1YO9>QJ*sWGhXlj&*J#(>veCyG6s<^r6Hi4JEoL<8W0i3~j#s z%lZw`Wc+&>a2~(oDb|_*D7dq@9j@eoP1H$|omJzqbCQ)_ZggA3mgZa{FE}*Jmu!bn zV>G#l-O1+D!~YLS=t)WlVMNVoI9-_xDv;@O@$=xY(^G6dx!jcOn#oY_^Kx+|Pz}ce z8vY{-a4!zkTO-03HB`<~=Q3ZgJHCTB}}g}rk8dY!yT2jtWmSvI|?$|0WMlV@k zH&IC4;=`RK>!6xA>%L*~=KeS()JKqQP`8y#8^4K|=>;9;^Z-BC=iK@O2uz>Dq{NS-Yszfk9fCns#FMF`>^39gBN^Mvc&bI{)2;h0z2 zhWg?dTbUp!oL#~g_w)7$nS&)bDcI|exvL4-^T8T;ktni<)ttw%`#B8lDTE9I;FD+%nzQeEvXMjC&iG+ACl?= z$~BYWXoJ(Jz)!ZhdAs`o*n=~Eib+KfZX(o8cSF7NG+F$}VW285kVl=qj0(~6 z?(RN^#Y1un3)PS3V7LI&$5r6O##Q~pny}4NvHsCIOc{Za^uuv4V@R4jE-VKz49B5L zflTTFR(i;5&j~PA(f20iQnD9t=QPv=OR=g7o#)lSdvyQX>0X!lc5AFDuyp)yAhxZj zqCDIop6C(p&4fhH~|*<6-A15_14 zCn;!}Oe!nnWTF^10-XZw%Q~ztGwETCAw>#Qwm!}hCWp33i7Y+`NEck%kQTUH>XUEl=nbOMjj!7SNMI?8VB>_$HS?A2TO zzuYw|%h`&5REHdRyA?uqowHM$Wjj3gCz&rwR+HxL)0T&>&x)4s^t|6xGxw{^;Yu&N z?BM~KtDNDDpLTh`p$DC-{FA8bCDuvt#VL+)*QP1%>5}9rI<}Sr(k42_lz<~u9%{yv zumgh(X?nMq1JM_1M%SbxRV^Au*Ng+vRvAXOyaQ2eT1MBBJy{Rh9gE5V(Pddijrs#o z4!RwQ-v^?}wmTeMCkBtUJGKzR5(P;nL#Dq|v&vDzEi-q7jLKYFdNg7C%DYi;zx# z8bXe5W%odo+?(`AG*R<6aV9?Xi3-T{-=&WgLN(9>5kJrOJpi#;mL>|8) zBM>bJsy;uM>wEuOE@fxj0+&Nur$ZnGt9yatoka8mUa~*a#U)aKydz42sv3t4D?&c7 zsB4G4D_L)Hz}df58vCyV!LSwIEoAU0HP}AbMMuDHrfd|8{7YFrXQ466Gn)m#kk%;> znByX7nh@mxObc5WEStsSF4J-Tw0ti=nH#a16d87%p z92RoOUKhB*c2s71qD3|CCWM$kS2E==eLW{6hl-^}VtKVG)y;JLENu4m3mrLmW|IrO zl+7x1CoZ`~DK^3ck;H?`j;`G!;;L!bFvgHHeXAs1C*DI`3c<=!O3w|Mo;8St7@;oU z<-KdT;ZsifJ_$AVo$pmx1$)drU*c(^L?kT0s)cE~{xAp?QrB=0tz(gV7h)1Lal;|# z*a_w|1Hf?78t$m6$3IqI#Ha*AJEYfH4OF2nkUS*Exc3n^F;YqkRnBNAkr}=u$uz+| zdQXsdvPPq>K2FN0-PDeRVPUY+w}1euU{1Fg?waOZ&OaQO|6 z=Vdri@P?c!)I0MxAoK4}-0P-0>%C{*L%-CYB}*8SDB=>rHXCoCPi7?G=i>s8+?LfU zwomXf?G}p6f-LUI`G4YF8oN1_+S88edM+SL7N*6q@AE#(n_{*+vmL7}!;Q1-Bj2zF zDoKS~N4lV&FsG_7Ua++(1Rx0-1d@}5+{ME7WKNF3%;%bA%kH8axP|Rf#E!4JQ-1Ut z1SsW|YIBQ=7HDkYe9nCqh(iM3;AEc6AH<>jY4}MzEu1@1BWo=`xuiMIMqBDIQQB~cWM+Dxfb^QSz29<&sl+R zPimu7k56?DwW&QVq@wO{_)bv#Z(b`VJ`$&J7Mt5szYBIUJ=(zVj=CFo?5FvbH|i&F zaiQohAfd;Q&Q+UQgXF~q`O!d`qKjra>A2eR4}sEg3*B*>=>nl_;2(lz3lv~tcpsr` z$P}>a#mHb_J@DHRl6s2^X>8ya-|_61Jya;N51PJ{vYxIM9uC^2^vFMh)yVgghyg!3 z$cEwaqd0fNS9bEK{IxV-@UUX+iJui!k=Mh|n$^FO2?Kt+)b~B}{xZThY&8CBsRtA@ z!u|r(w9obITBO;vTr+=>GD{9XEW?Jqf=zLej4hM>)|r^b!84*>t_7xtL8lh-016ln zAZ6T1)U!si^l?UT^omBZv{+R1<&Cbcud0Cdh6~*`8))FNWc2~i^iUJfFu&<+s_lVt zG*W+HN|vczVltIxa;W3nu2SQ@-b#xB0Kdc@cH@nD{z%W=jxz1~7hJs@rcVwM z^e)|Uc%_+T0H=CCXHq=Hhn!Db-(r?T2J^Gm(o-%R#{2b3~JnGL5>Uw*I>&71J zTu{6nz68087)SDF$M0%sF|d-r9BYU>4SKQuv`$(H-DS&nB^!GBtUNUH`z#m+JI_ff z1F-f#t`_4t8GSwV|7PJAN^fnEkCHR|qGv;N+1S5@iX|Eq}v z`hf3M8jDC|ic;cc5oc&`otQrzrGK#iw-1?~Z#~CW`T`QKAB)N7L{+~p^|TRb^M@+WIyX3p1~ zeNPVwf{K+7m_7aee8xo)<{{gA>~y-6-W6UR_-{*RyZiSL@^yG(V5uBzKR2TQ_l69F z_{xZZu;ces8YqeJJd@EK<18au`@t3Ji9mDxp*PnfPf-)lzZtNf-})mY{9FdW z{LTk(m^X<1hE3)MiKGBtntH4%Q%Hl?s#I8vn|I}ud@?+ayTEeS7!EyX7=a8 z(a^3YDOXr3_zD#EtLyXgFor{lRcR-%qWh3wjZg8~uZqFxr^C|dSPK?p)^Cr~jlHD& znS(ejuyzgihiqN`?W*uy8)zNfEz9Jj(`709`W;#e$!^_u_w3Sv4g3B1$AjQTci`y623r2q z2Bd&ptS)tGc2?((8+UtuSvj+q@#D+YHVy492)9^LQNN3 z2iL{pqXqM1>#V=0f4fO&)g+hHs-a=-EvLPJA$P-{`}joE)QWwn+xnk$Q^<#+jgM6b z6Q2ZCpb4J()9*DzrVA_aut3A1+tL(KH~lfZn7gAf|9pq_+g!Qa?p!9pI4PysPVkBi z`7Y+)UjvIoW%&%$ zc6k=ohA3OR~T^*N0PBj0Qx;ZipTL9?YPU|>% zrYxt_bzGIZE!CrNbi!~3DP|D<=-Z!jcz$!brbkmW;y4G_!^=87&Ft{ljjqnOi<^_% z-3#`0YfP-lx$MqCN`(P#I!>J*;h8dA9?K_U1%ubMW6^urN_ww)oM!C`O~$`E-QVwT z-m`&@HxB-t^Yuj=XI?#Uhf8+P<=MzY%Vj~1yN>EOm~SVMl6jnfq;QoV{XR`zz{ff~ z3e~sMuCkd$<{2&>1lu5aY}*qZ_L`r@3YeKc6&9FvX@0?@53FQQncuNj@6VnV3N8cJ z{5uybrGx7xOnN!IoVIR?sNr@7sooxf8Qy`v9f)2BdnfyWoQwVeMC_Uf;TWIW#PCAcN(m3l z+vnaldEaionoK6JyM28uynM6ZUSQR^i;g<@ZRb#!Dk%k5bjr5wf1WQ z{THDWWQ8J}AuY5!rzeeayV~{E(RsMTP`9^3%~GiQx}N{}#!055h$9g1GH)iJY;uZ= zS~pZKl`3;{BI7sS5m@&-FS%oP2*lk4sS=Y#7@h_-pw8w>!W@M966)tszZfF$R0YCy zZmwESO9;Qg>W+XKXDzo(kYF4WfZE91mGFLaCdhAcW@|{FZMl5i(^{Gg`-eDxKHlV% zaAr@vFV5ib;JEFLtT!VKTf>&CDg|~8 z7%c9UIT0N$iP$HNj5>m7SlFXhfIJ8!d-ylhC*ScNB&}hS?_)3lR{Sx+|LPSY%1y z6_9LyA0o8>&AUna7lmz1$M>nqSLcdqV3TV}5<;=E5nFHB0iD|IuJU8+QRHee@n5P_ zSGtx+(v)r2GANlW)N3D53}Od%-#9m!{>D5Iyl(;hImPez%oi@udmYaKu3C1E=c-Gi z;50zMNvbs~jsWRjrA0DMUa0mnX8NwgM1FJBYZQG)cGSD=sDLxE`7)I#jVRIUfM!VH z%#BEO+)(8!-XSFe_j544|4-I+4m72_kiDAXz174RA$U;H&E*~7fe576oGl9(sBW4p zKL-6ThU^iRymSWeE-4gPOz6)_zoWhKJ%uh&0seqMQ!o@wL|<@Xp?+?+wJT!}V_Ifv zb=t>}Wn-u14UjtFy8wXX5Xt1NYBJ8p#Vd^<9JA~PcxPDL%k@p}_3?(${R=mnNslo7K->Y&y8m z0QZ2%=wh6k#+y=j4ZZW;!{ z$)GK7KU$&RfUQ$s`#Da-KdYFkT!gC9!9{U62=U*FrLG$8Mtn}I+ZDb!YlOA8*Bbh? zm{cGG1Bdv)J2`1b{y%`jx2+U5;z1f@aTxi#+*{#8lyQ-AQR%j05|8YfxM}aL@&Ujvrp@QXBd@YE#pp zHSU0Jb@Pl=e*e;j>?k7j9|CiRcqlG;M^&bs-tjGvmMi3~xa$FzTV#+5I#)?b5R7or zZ|A0n8Iof(U(tf%a^>1)X6M-)DZlqD+MIsHE2A<3(oZy>F;pSLIFaD>1AM_?HlRLS zT3d}l742^8tLH6_kI>lc_Oq`}@4)U10;g+Yr5Cm^r>%qLL>z8T_w~A85U|SD(6vym z`H};~QhW;hb!Hm~tGcgDanGt2EG)XpLG~*QPwt4s?CXgHmKAm5hbfAFPVsAsIq%g| zB1mOR{1%4MexF;jBBvQKwCIG9wyUfHu$8fEB&L`jj;(()Ur)ahL>-@s4+8`d!zK7b7wqrHRg%cHHs)ihqE9*yd2$(KsQVCat;uUNz*r*c)cO`&0X>%E_qIcK;s zh>%7A!6MiNeE(wxIBbti^L_B$vL`^6)ZHZSQqFLk|Bd}qOL)r=a%g2jp zS2K(56XEOX2~IR#%l7+V)z2e{UgSZ@Xf`1IxbT5KZX=omS`SHk?STRqHHlU$)5QFT zrs}0qedS)m!t-9A+~S$(+f?^qp#YvqDY!gq0pOYaKm@fyjp<=z$BMWIrbU5AI%9yv zWa(wN?#ei>AC%B<6N=@w4x(zqmB4iMx(_CP)VA0jv0<A~Gml{N@sxkQb$vKTkM(?r?xoa^$?yzhn%vsTx3i16$d8Sa}Ykw;LQZRuU?t25!n zu?NYbg9dbbd)ViXjvvV?+!PwfXj77{)%imrY?!S%bvZfYo55?q;lJ_#<-Mg<#=Q-v zM53%czaOd`_4OFmwZ@Sm`v<=0p^&DwZiphnPyFjwSc5Sgn0H9Y@l5T^<#bTL%&;({ ziQ*-{-t`8SQ1Z8>dtoXxDqh_`?WHfam{r05>=mk?&a}&k1xTBc6}oqRv>S)iiJ`j9mjDH^`2>_M>x#IyhKb3L^&EeQH*=5ON3>0l=v zGMUlBf4WrT`Lql~_ZD1qX&-Bh;q%946|iTc`%R9ezRgXWAING7URw)KOJiOV+`B3S z^h8Vg^d#la+6H9R&v?gno68VG69zD3W@7r~Y%q(G_x*N>jRv_OSXip;xq^5{#4 zRZraHYOuy1nIoAL{WXTh`9FJ;6fY21{rAmZEN0gxL=cl#c1H0*3sU@1?}EKI4-y#C za{(zCuRSHcPxpnll0pp*=Uj|R>#7rgo9ub#xTfgEh~$j(a=h?`zS5p<_b)d%8DElq zIsdf5iy9wbPSnqegs~-hTG|R^^9r3*+J@=k;;Lu89Y>U6>ZBGNBhPtKr$7W_pOz5| z(qP8aw-m#pygGGSdT8L5p*f`%15$bJ(1_K*?+ZmYx^*aA&hd8d2_4m>rbnuFDG}ca zA1->ygl)i)4y&u>U8K48Wc%lVybG0Ci^?h`)=+BUQ$~LCF8kqmuhbFu=aendh--fo>X;wVRwM+n020G{m4-gW={f z2AtyxSq94BIwd+|X!fvkgQ(|QJN|y*If=E`lypgtq_b0*g~nEtYvE_{VoxVBr}A)y zk+O}0kro{X8Y&H@`S+sN>xC9ZX5*Mj3yswWtz!1}U#)XGYMuUhNsi%4^Y3C$0!b(; z%;Rw5K(^e#-o16h2FsWpfAng|Z7RyPTG?lOda1Nyid7%P_rQOcesK`pHU_H^sRxzD zaA5GBI1nF%_p&!tv}caLMOwTQ_onlUm#(%E?uEXXoTCaCv)6=VV9%BWxKpjV)UTLD z9rFG@y0OSqx9+Q2>L{37KX+*3NHbQ|fIeqv{8V{tpI;WMH^mcT&PW<7U7sh^^{CEGWVp*0H* zU*vDbn#i}Awoy6>YW2W9OO5aJhX%2Du4iQ0~_iJY9@?5b|XX*~a1Dv{YvP6Gi# z1*|U)haR?7UAmyYZ7e>J)6#2#=PvX-rjt*UDN_gaO^bMJzr_1eB+?uAyqe7w;^lu< z+XV0YM<6>~XdD2?+V0skbIM&(93iC2Az;qB?o}rsfEq+X*d#14;%!5H76wIcI0+Ty zZ-WKSOn*_^^Zm?U{WYoCBg3^Au@JFC0KU-?K5D(0GmRJ-!nT1+9NH1c{^&pr`Lk4u zWGPzX_NRg9FOUoUp^_=x;#uosF+QPoA99&?xwo(%rCE9fQlhr1oZ(Y)`~fr(#kY=~ zl-Cq&P)#d{xQ}&&G|cqZtDNdZYSR(>6VzK9TCKasQnGY6!GjegW%x&*%_+cw4|q)F zI_L)2zDbWSL>c;AX`=`{v=((~^DeMGMf7otH%NnwDMDzdI|@XhnhjaMmCP6MR1+nj z{bgCN6Vr{vZToAgeum4w9n~|OcS23gh+(*B3dUHfZzU^`QG~Mwx8-uVZAXz=#6{eA zF`79Vrgn;G4=d|5YEN}>OF@8J2YBe-#%D-?YfNF{Q46lP*79m>mrI*x*$SC`MT0Vz z|H1#z-4n|V6!zXX$WvtI+V%14Mo2ipUTA-F{uUI!SAflC>rmr@jzGS1{>naqxV6+h zZzF_yEDrC1&79&#XRs-#iVMc|detKm8g{c_270F1rd{MV7U{%r%x$iwsPx6b`-9?QYZ#mK?V$-=_P zne5|jpNu@qOU1$VzhN}2#2jq@8%D$Sz5id}&Nl>y{d=GLo8s;W#>w)(#P+TY6q50W zQM+gBGRSy;X=MJn#(NEhaWIy6-Mi~2Ar~g;lMH!#_g`<~`_t$?$Jn{8J77o(F;&dl z$$F`wX{llHc%W4G^|)QNYUKC1ejg7M=)&nW>=qikXZZAWK^Sd)eVkN@%Riju3O@xE z>J=)POWUzULKND)pT)mO0;-`_^v!Sl`+Rotbn(2Wf#@D}$tOahVbZX{60nJtyF{Iq z_ts{2s}Q~83uF7_Fq9(@#qa95+8uoaD)5YuFcr+6<0R-Q3c-$T;hVFCSl!bAl zVwCJTELVAgPIqLO;5(LepOg?h{YB;Un`Q5i5nLUJ%(T%)8oh&2eGem%Xj5Ta{!&4G zWN=c_dgzeDPzIMj;0nH6i!($d$Fy^n9G;$Po$WWJhhqa1&4#5RQ4w2K4=1^xL+gtm zAAFdk?Cm32(l*56fak9dmxEOM>-Wcc{FPjU3eh9v3VIi~i*rA|_ABp0U+7tEm)3}1 zD**zLpO2GLjgIQp-!B$uX3m~hVqY^mY;I|5Ztb@}##W{=(NPp_S#NQ7`g`VzkLF58 z(;jA??c=9+2-EcCl#=~s?~tDD-F_CHu07tY_?bUb#=@^O0TBXcx zj~bgozx}Sbj)OdegVzVZcl!tC#G98k^w8Hg2jZtq+JX{VLjR}!4t0aoKU7^2KW&>H ze+J+19V?#T@pKE5AH872MZ~s$Lbl3Ax{PSZ`sP}z;7|-kT zb2(n98~6!xxatgh20pL^^2U=gM>hf^WZb*r5)@E(!cyi+Y-409tze&EYuIdjvSb!C zfE$JxjfT3E$_N@&9t90QaE7EEWXcLrQ?5csf*tKG&dOR7SL<1(oN{|#A~!&siaU#& z8#2Ebk{)N6R>HP}u{{M@e0iTp$E`1Bmy>1)^n;vAS$Rykh3nltOCxsJpWTKD8W0X>et8e@A;OxNp6Q8`+ zGqnaZh=!GWjmgP2Tuw(&9Br@*&3{Cm0EyyHV3I^!N}xxsGAKk6o1F#8XwGSZb6X)! zPPZi}y(DgJ znyxv^bR9$J3yd6&p{DiD?jG2tAA{sq)!+Q)wi-=Dk{-k#cST*?HGAo@4$ld7fs7Kd zCzo&0mYZgg-4@zZyIFogmF}~sQh23~5drdQ?TNm>As6XZ z$_diGT+)mPkg5_f@}8fgZGE91A4+AVdp!9b-;KI+e=2>X>E+c5$o$>I0~-4NQ1Xzq z=k*t}x^lPrgCaK|FXPvpt#f{0tUKWbebElyuzAT=L>olr>2p&(U6&;GU~ROp@w6Pc zhjF#cQL`R4$daFh8enMk$e;T|Z5PIGxDo|ve(&2Zne3tj=leZ(zR}oTyGI>T2(rbF zm#4Mhj+A7F`KgvW>Pyq$G%y+tn~|oZcx=HXZ9!a-3pD00*x<5*gISAQdi4*?%zf{t zuai*^BO{{Mx=+t>WbUHy{Lnv|1g3*yPar@C^NMpY2Q_7;1LD$#`|4W)CX1n!TKR~A z9wG&ABMHhO9@krol|P2iE!DOhJ)tYE3vPRcS|eNw%QxH^--}^Ca)6En@*O*;&2b!% zE-Ve?X)=p}J_@+I(u-(zsNrJ?59gf8hD%R|Qk>Pcnr$-j`7+CFR~!_cWD*TOtdeo+ zrE@K9yGqXfabD}pn{z>z1fUy!2hjKqu)3CJO^Uv7wn(w>Dzo~2z1{c?Is_BV5sbg+ z>#mJ)EU6+@WJx>$9w<4`7%luU#Ph7K+-os_R4LK=?xV&CmnvqVfwlxGvUOGEaZ=^W z`lyM5*syoyPlg}H3eYzk7QSQ(s0gm;It^VH=Zt?T6mHX}l53-wsXaI}xeZ`FI(U8Y z4D2_nv!o~M6k7>4DGYAY=NoFL6-Qepn>SEy+`a=CFkk}pBqo;iuU9J#Q%wPdT5U*K z=Of+?rG{=j4gO&UKhrF9_d85&AwENDLv^^C?wa_={mLikS3(*cE;a}2mM!_DgeMS_ z2dk>q{!KO891pg}TZ70xuY>7h{;q&!X1Mxo)1XJY47#RaQ z+nvnxyX)&{-$D01pT?>mo!GoWjD94z0N>U{Z^ymBTjM?b^n_APbJRisQ-+&SW+x>% zap+T^tlxkKGc(v=Oe(^SfRx{m^LIpJiLiN58?_VeJ%XN)fH-LK4OEh$o8_5*d2TT$ z!&&w;67V+q1c#R|Lc4`AfT{)`Ys_L|)ds|Z^S_BpZ4pbPpF_GG+f8RYN~`gAQ%M@D z27J8rk}<8u=Cu?3l8qPl0ORZL!tk5A9GIZ@1ieB?^q&G-G(ad`NDmD7@`!BcQs zDFi5BH_6H_ki;LzN z)uMpvq=|DyIi8oebNpgl%pmkQM?@w`?u8W;aNO@*#Cg|0VXL*=0A(cdND(Py6d*uD9=GY> zYJ0KW2A3w;udRd~&t9F6JJ0+Eh({kLn8C2hp}uh{<31Dzgrg7Rdi?ho=v34;7| zafU`t;>(bp;RYsuU&r|d@xL3Y@c*=KPZlFTefCNE=s%8z{T=1`Py9Y21j~PGH(4`q zRjQ9@VG2+}H3qryq=QhowSS*6!lP-zgI~q`9p~t3{2p41 ziFCVF4`5JkU8<*913>J~JcbRy=%yPdP$c)@PTbnR8pHigG3S5M`|iMhs=vd0XHG=! z@%@bjM;^tnjT8K*U+zaS=>K!xe;dTy$~=UxFm_BEJshC|hoVs~dvnMTU9i{fexi>X zxC)ccdaA&f7@**f^ZX@Fa&g_`=Q$L24sW8e%8{8-f%0*VlO;r{X?s2z$1ST)HhDe@ z>8wr$JRimElIQ}i*OS?1@^Sz(ys*2;N67SsLu7J4TjYsm0B;n~M+F3bsd)kVF^mFv zJ+UKkU8aq|RKa(^Y7Wf|w^|MWY3wH@uTUOpU}zO0b{Y4+JRt4xgS*u#ifzU}2LLyw z!~X_wnD)=%h_xqI(@$St`Smv&BFjXofp*(>oruKwhbUjbb1Tj z7@v+ZjIS7;Zi{JiN(n6YGynf%DDS)mgheeZ;kh*bHuf6GJfh!C%z3g%`eyyPHTshB z3uqZRt~{EsA=)ugI>H zy2HnxG(UPnDKx;9lr;KR9WfTdaan~)y<19Ovke-MyQWKrI{zGXasYk-rH47nr9*co z9CFAI+z(@fjEzEL&bzp|dIx{Qd3@zbMBlhS48M=`Sl(+nu+1WWq;1aj4BgY8i9Ouv z*Jpt3&K4K--Fs_^cp|#g6w;@uTWJkPz!sOM)f%cq8G!1y=InUkH*p1>CBkFb6OLDK z{E1c8s+Vq~(>A9mUQ5^oj-9mwYfS;a4r#Gu+!z!1@y?TSTN$*Q-`S zBeqs&Jnyh*YsZ@EgSd7nb0=wIBMvoR;#OVfqe-`sM5HT6qmTte+Nzp(mF$4~7^7u% zU2if*wdH-lo(ibgiFT@^JH$Kxv4^jf_}oeWkHt68vGP}ch|9Q~W^j{wgLeR5dTGIR z)O46qyN;K4e;L1CEqUL5so6(}vcY)%S0^T|she1U*Wa=qKY5JHDF!#KBmeYPqs=c1 zL}Rd#s)dxfZ0`iH=H?+d7F#iDXI+0$B{59w)Cr@K1f)VKl?W6o%89nBp!Em+LudR& zZj||Yyx)tj9qaMmd3(AF8VoulF$)hX&;NEdl8gU_B79TX&Kd&{8|Pbxd*7 z{aCrXx=T85RMtq=(8WxhTQ8gzJndQ&;&4j_`fd*b7q_Pjwc0(zdcO|u9&Zj!UVys< z&~fyKFOSvAy5^&kH;+X0wkFr7F_?`NO|5N@NfnKZC27nzjYb|{>nusMez*KQV_I5n zWmz58DM<3Y@2>l_?=SV-*e!{47RKtUk+4;8h7a<~MRRVc1dIji@i(q`*Pk*IKbnso z^53a69zL8XvxsWB&#t0J6FW1|Yk-RHRC)Q~-PRASGznQ-<;jC*inUzZonnLV4T^kJ zE`{?gZ2t`V&ZLRZ(uG!Z)*Z8ehe(5x!O%=12;wcwOPWxL?z>5y1hd)|4{KbN{ zvgHLLVf%@QuE8HjF8B%;dhd94p7MwXsA_yxjG~kKW`674KYHazh6+`4Rslc4Z-F8c zlgtjU_%B5W|y6`X=O9HHMsEm_9_iM7{Quz+oT#|U-uNUj@$ogvzN@+u$_0=nlj%n2OO7-vK9l`Co>ImhQ-rHvRN~1RbaGa6z{ME3qRo zr*u}Do`Qq{^}`;mA0&cW`F zsCUYE`A|_Htc?6&Uu?2c3nYv!^hyd;eL^+zU~7H9Jh#r-!U4sJiHY=sY^-zbQ7jhr zZnNh>VMfpf=_>zD4p69A8_FUu1)-?rw@}jEI0WXq6zb;w?|8rIdNk6K{UA6T9um$3 z>*KIWcn-{ZlLEi~%>LOUML+gM7M!;J0*42{8GW4UyLC&UE*j%06&42|G6EEx^Ne%#Wf-b^KFOz9X(AGct&geGD1Dxm znz9l$6%;{_9nJEcmZ2EeSN$r;n&qX?RdwxH;rl7x1cp4ci0$6(jjD2<^QOCH$SmS0 z>{LC3ATWnDhkx|hJU~j85fsAeBT)9({XQ5r&h2{S@&Q5v$j#AfCQ(%+VrXtgp{AOI z`fa3PU_0xH_kY{(Fb0AAimI8qFUW(BkQaVFYI7ohKC%SWdg}MkFE$Hky9<|q+d7a8biWo$*5-BH$wHRmtvD_E?7 zmm#XlO|Uko2VeLNW3LAjg77L*EDOVbMDRJvD;z5`VoP8TDpK*(4zYB!)qui?;>&*n z%Lg(cgw)q2z5I~}gF-J0*di}2YgjmLajNW$<|=)bq)`&RiZO8*)m~V?j_2S%S2_(!T-6EGjkYp=di1A8JwPrCNX@urWxj zQ4i#5i9RGpO#L6G+n}uElf~g6j^h1`dN*jKP)SP$e4>M^ua#NR3MHlF!Ixq1*KF9H zee{H=YmgHk%L+H`#a7@av@HD|q%|NP4fa59UPlnG0MP_Rh!h}mv4ImaGCXnJ1?jS@ z<7d=rXj&hRA*d1dPGZgQxLXCql#CpX$aGx+eaAjlIv8a@7@jQTba7)nU8OQx7!hld!0%Wd#as=Tk?6qfC5p%o$q7Y?$otk!Fz;A1fpP3OfzbI%T0mT~QR*Myqp)YncBN8} zyB_39JWi4CU|T1y4`GX=%stXuMJhQ%J|PMpZCFx$ujOqWQ3EK)bHPk?NkH#L#>rpM zDB2Yt@FTLfD1Z`@M}ZzBiEL+Ob8z{>#RJ@~Dj6m9p+YPLmZ)Rk&R8HJ5WfLxuz~qBfx_vqA@GaCi-5XV5Ik@+N&TZ++n7qb216v;+wk@w!}*4-Eyd9nOis# zhfcAft(Y1*|I~&WYd;7vHnf<*<>Zu__#vMSd9;;?!voYi%2Atb+-gAZJA#CUnJf*Ow*ciFm`H2Ur-ntQRZ0DT9-T;M z-!Fzm2K{CGTY@M9Bu2m3NKRH8F(=oZUJSlY1pNT~WK_FmB4gl62NMG9YH(epeg5xJ zG?U`cEK#clY0sA3#=dyhMlKS`mtVJ+4{480rv-4idxm)BA@-H)KKJ!+i@d6^+;ukk zy;=)S(kjXkI~i=QOn<0(g*t7KshT|Yg8b+kSxn-xoPjwD+%tE2G_& z>}6mF1oV6Hg1Bt1^Kd{$nIJs`WQ6#-Y%FUlsjFt4yFn`B#IfrMC z&rYpPXB7%>yT?ZSu*ywxn<@WClh@~EWh9^m>i|D0)5bK)*aMhaL<^m|59msg#MN`? zF&qYH7qk9H6b(3N0;73A(ChK&q7e@|#LM;%Fxa#;pznH1v=(L=th4|yF(SVTS?uBD z;;5HiYZ+Fu0k?8`&g>e#c<ir!Z%s#Z9(lQuvDZe3JdnmNkf)zA!h&a-CKSjt zi9{TbOH>8@`(mDlOQ2{-z%fQ4#y-X%#xLd(Cq8(`?88kf)jaF8Prn-jfxNL#zj1=qRyW{k=lqJaj*;8n4$o#VwT*0!Fo^CdHB=wMGyepef7*q zLO5aI+&I|fZ#q}O_v@Py;+!%Ve-T+=$T^G-!-NpQI7O8^iWC-Yd@p5`HS{Uj-{6(` zx6j;L8e+;(i|uJ7C>o!vP5FB zlK{_L&#Yaa8k{C&v2Esex~J`qqlS#QkxsD5to((@i`{&88R!&)%kcz@v0E%&%% zuVNu)D9XZQ1%*wXjijk61y&z~fG@%jYZWYSfqz{OdYua3i9f}1=j0v0YB5-d##TKd zM#}*Za|re1qaLz5{nY{lhelsPxp>*Dx8onsT>&TKwT>Y>wb+L_^Rz@T<%%1|v^mfu{xkRLC-g=MS_&WsW=TzJ6=%?cSC6IOF5RfsQNMluFs_LcD@igR%z$2$uTb37Ja zG5^kyB;1n*Z8lNPD~NJx?jan2HQZz&*k{fKpDt1+A=-G?X1o^6>-m|GPtun$(Z)B# z`GTk>gaC@1v>OZLMp3!}1C^@h!IpqV%xI zOVCNEV;OAENDz!EXU9v{R^vxaeTy9H5-`q!fctackrp5FYN+qP{Rl}^&JZQC|FcG9tvj&1wpoU1qP zdt=ntHTT+8^=sFvS!>PteS7}d;SLiI9jG&v=9EJ-M`)k^1~m$R)Z*u2bOxK7ieW4H zcdPYfxlSa88Ksrw-4VBD>Y>$i&dMRJAW-5#nd1hv*ej-+N=>%|F|zR?`?A4;bD-U( zO2r0xj7itulC*gj9CB3ZYOVAf6Z0h)W@Os$XPFHG7zX|%{)4?t^H(kF@OfenMzcva zH}=c$Xlt$yr@n}Q%+1%P(^v0iVCaC=aJyfHL*|GF*yZ?tN6<|k=n#}M+BelA`pN2R^1yH#6qBx7#18gpJ%NN4R3f+QIF`h5u9V;+mE zk{Gj5(`(Pw)h<1xVTab)Zj-#&Yp@GepL(4`im8Yv1wAVRe93yyXNEX-e?7C~#((L( zhd%4S6Mm|^Q|d>2Aq#|S>{{GV+-!eydNFP=ZZr@xM#70;9SW332NCuxG2B{Ls%J7z zK`5$qL5+W%=G#-r4++zP4U?MrbR+^Dk})3Fzz>D7GMOegu~qE`yvtyIsA~o zoGaB1J@#z{XeDpjZzgpL!MZh84K{#(J-GGe%4T`8%-&hPF}k16gm8*v&Ld3<00qex zcDciT@`2Xdwj8BVwP=A+P5>2S)5z3OyFiKr=$I4?tvh$piLtoXZwa{$hHBf|%x1S5 z8o0A3@zh7++0X9$0M?ofktexFDiM_#D{;1^Srv=`G@PwHnHJ@Pg-orQ^;z-gqJye; zDU&7Xmb+}VI7p;qIg@|{#ZF9Bl-C>z%Sl_V)4uJPs3<8vSxKIoWh8XYC7qB>nQ+MXmXOgY#2nG5t8U9*H8mJjS zp4$Tgbciu@UN%{;JrSwpwER6b|HeN^7CDShy+NOEBIt!P>8Zlt>JV+9t?tG5XGzw6 z@!P_^=L)JH$+>K?9?9Ji7|v&bIiU|~A%3L>K4Ze@8>#5?pAgHiWE7~Spr_f6?97tfJG#gPxoJ#W}qpAhAxl;=sfES?W}c)?NV+pC2(@hz5HpgMZDH< zFrz{h)p0kYXC;;=JvEPWDV|S< zpRNrl%_^EAdhb!XXIjEkL3gmCmb;(IvyN{%&Bon}JGw5{Q90CM&eI95s$##nF4U0& ziWSE3qj7yRj{qpKHv4%O>*X@*Pn^rQ_8{+zi6EZPAa8I2SwYYXf#oq3f0it*xsA4r}d9FtJT8ApMOz zlNaJ>$TkVd06+I+$3nP=4!;MKl9e&Q1~*m)f$`JSNB-theHbc2YjEr*)`(EBc_9Q& zo`e=BI`Qp}JoGPqa^h2U(MdQ_+mi2JTX@;qMl5^w0Wp>h+tl2P+eW6xuWlyy$N7wp zrcp2yqgsd5s4HlVzrGc_+0g^JnPe!FHWj}YrHjZ1=#o`)V$*+5K!Pm^hTIeZn88yN ze7SDOL5vQ~Rn={QC?%u=EwT^kLvA;~(`SOZOzhNlFsN)tK?tA0fncb=4bNEu0O0<2 zAqn&LX2o&a6=!l-gaOtDtICXi(G)2{c(8y63V&jUXG|QI)e+Wyku;+wjnYGXeC#vt z#2*O~pSD#Td5 zu&hGdh%G1<%LSrJr2AVvj%a5!dnu=%Mo^g2gT019(#Htf{b9cTpzpwJSk11QT`$jt zlGFILIgXaTWz5s)EGM^li(YeCirTyD61&_Rzxk`T-d#f1hJEMbfND2@tgAkh%H_|1 zck7CdfrxjYz|Wp0MFPx%k$rof;T?aTBFj8{mCP2LX`0EQv>_;dbCLuScauBMcs?_D zZ$bO*F)NqvC7b0AZv(v(YEv#<-vKUe!~%Vdf~~B@Oz&q(>Pecb;n}X!NA+93f-T)J zxn}6l>l>r8} zsR4fWMXy@(Eqc$0%ClvPi*j-mSr_wr5E=Lt-AKfNKp*gSXsN4!74SW=->~`(lS9c` z-H2TXSmmENSzbMG7!+}F&SOH5quR8qNu_dF!@ULd0#V%nk6(nNG3VR8k;cd`fZW(% zos>#6Pot=??Ur-tfT0E2jLnm#Fvx2r(C+ONO|Zv)C&N3>iUTT6@JX44WHRc>aa)>f zyW+-bS9k5S?}-EOJ#$zH{X2!MKKVWR<@#+~Y(Is*^#}}$Nurf&kSpmIr^_ZaTTQ>s zZIsYYMkx2D&pZ!b`nJO&| zX(=z-PDydq0Vy3{_yadj*+ImQ$Mrl4wauB}t2KQ604P!A@?J(OXHqzlm!NlSdK2eW z{dw|NM@k_o)ZG-J=Vf0xTW2kG{+c@>cmehGF0HsZ zxpAsiT)mv9i?>cn2SD~xeRY_EYypC{^)_I>xW`F60ESRk58asAJjuG(^`uz*grMVI z<0Off&7K*8@z*v_Q%yCN4r#%}diW%&{yj_I-Gp;9(qOr8L6QF{r;^2P*+sR~JqsLqPXLIi*EFDNMvqZNgZqZ8<;adw!}^UkGH z`_v{+6KLhsVHjOxBSOG_(3fGx1MsSokxc>Vujp=)F?Vm58sg@g|f3}cN|Dmj4F5qPQ*O&Yqe;07Fv9}tK0TTm%zwLV| z>)}VrcfgsNkNShBRg(g^`uzKp^}oisTEEBfcD{$${&R?(@&9^hs^bqR_|(aVACVwz z-vy!neg@V)$l_)ydnYs+2s1lVB2g|CAX!T$ac}q^8RK6%)kXMC1%Bu8j$OHPX=-_Q z-v+?nOQ4UR%40-IV+NN!er<1ui4WoGTE*1a zyu4)7$CIh_RL-er9K`w%;zs3F;3|&ZsG($*IdN?aWWVmCa1%O^!{#<#H&& zWsgtW+e|k2EcL8ZK8uA?+_o%lh<>8}m!iRjD^7PR1+Xp5?vd=*YrRI39lQeF-YE|F62qHsyKt7az2ZhFQ(E zRK7Ihc4I%lPMCwh!x7HF<4IpDH;^O>WKmbGugwwv-UTdL2FB!UoOMR7MA3lrN?+$s zk+Dl zYxuQOnn@#UPDrr|cB~R{rT{MP8 zXJ@DyJ%u(rn06ZGKl@LhwcY|oY@qe6W(hjkRt~F4p?Xj~UgxB8M8#i_IUe@Wmk73a zvL4*UKoll#d{>$vcoqr(%%g$P#23m1M=cn68M@KY$1_@RluG7aTKJyP#_`m#0jMN? zdyv&NX1_~e1rH{n2Pgef1YcHMX_7KOEN0Kq!rO?6)iFvnbUh!X?sOwnJ)nRpw% zfTP-xmf@H9Qlq53(;ZjrSNaOKl%RZZMa-Xim*X|KHQH*n%RSkEzj;G7)OPtTnx&+F zOWLt~^f}>=%DLb-bKu-hO7%|W?jY$26dZ8~(k=$I0cKRTqF~~_hW)PkQ2|m%yyzlYGR3@Q3t3lbve8B$0L zfjAh>eBec(ajx05J7ZWGK#YR@?A`d5wMvLYnNnP2JTw} zcCC)eQ6e<(?kB2279;Ly4LCi@>`rFMLbF8i1TU9(oZa{xHRVSwBNfxrN539X;o;WK z3S^wTROsWv$Hj#H{5(8w4EGvwnOP9>KO)&~kymhDA%u-RMk;Cc<7v&06sH7u?Oi*Y zD_e6Shr09vC@!km;)5?==46$3+Hf-WS8#g{brZDV;9C*NIKCdR zkXCbijdfO-iX$Z!$O~^wTNKlUGgkd2f`;xWS3w*Ak|oVNaU&2Hm0P8A;G4lK$OI}z z;tA(Z9 zG@A8ejr?ce16tdioz;|s{a|CRbzzFpD3&66Hg|G5Lj`_cJPQ~GmY(iPQ11DqG3pbm zmo6tLdDzqrOp5nI%8NNB>m8-H7tvqQn0<7Pq@gP$nd#85ZYY(0Nr^#&vu=iuLRe%B za5qH(_v+wSyZEQ+;9JzF_h*_UE<4sB{R5e79a>rnKOMy23nzW02n(-04@EfrSoVE$ zJ4r`Sq;7O-O9}xdY?~*%++md$Xm7@*(n?R3^+s-m>=gLpn zG)({4KhuV6GrKAu18ldP!C05Q?ic0BpFsM-3^QpmbQ&Hpi$`oWSiP}Vn;ldz06_)k zv)r`-EQXO6+y+S=T(ou8ekv2Pzbm5PbE~3xBcs2WJd>(3J>{i>H!?|y`K5?cSXrE6 zXCm!}&2LB%d%s2$uF{nSaANNFYkN@R}bnad4;%XbHjo0G6{hfmz!njWI zM_&wMK-SH+{+nc8g+E#Mck4=po&<%jgn=-Bc z%G@zOXP!9-k*O7nRfS%$0fO6^;{7O+MgTWFPc8;DA1sdrymqZeh#mMjA3`_*g_~oH z1GEy7ck7*P#vA#4ti7k2QB9$PB!&!6lQXGe)+|S~{{I;=NPP5PcYNcrLh1lo5_N>vBfW?<{Z%fIBK*uhb7>Vcz=< zwj@tWz}_AZl)GDe2Xi`oB_x!HfY2Dgi(Y5TU-1p2 z)KJ6l?vkNc{u>gC_!`E1Ig_V$LVkXVe(u{^xn6*GY44m^`T>o(g_aIor3_ttU4-At z2-8XQ?#~mAacf@=z|PN=c*NJ~rZIDR479=bfYP2@?BG!d_VVbBI=$OEj3ajufT6&N z-1Y+PwZ4I$(?a_UWT#R%QWAbLoupRqp@qPUv^JD;-fd>c6v^Cr z`7k(c0GMGd*vCvHBvm}5Pg|ts){it-OP8!*uT7sqUu%SC(G95qS}{KVSKtlz8@Yjq zGbo{$srlP#kC!f;+#}$LDKODijGs~&`u-QcYVf{ff3o+ZV(|{&LL~GWzFzKJ_U3i8 zq5NAlh50Yr_kY2_nHibb|GS3j+pLNFPo5cH(O|hN_l#=6u|=9nYIZ@D2_ms8xltfV zC$)O^{^}bIPNj@pnlJ%r$%_5)nUP2_LaOljaDQ=masgo^M|?YZq)*zJI+!8LlgnAj zLSfgyL)u$Hyl(5aGk?Wzcin1Rb1>ZDTGi=(w|+TNdgZS0<%0}}OQYCz7no^E9{YU1 zKXdSM{=FJ2l|yAfnhSEoHCr;8q^8L+Hd1Pkb6d7}?~_QCXRs472%Sr1A$7b?Fx^l3 zb&mcN$YyO8HR{auZK@%My`NAc50-JazGP!Q7 z#16-_;tIGBurme3tAkt_bmTaEUeEWYGv~ZobGl6#{SCVOb>d~7rq~i1z6+OS9VO{e z8ew$>(BGyWYrn?QZDH?2`C;m?=$d)?g>LOAEr=n;*rvM=+jnLPi2Cj*%yJW!g2QvxpgIO*tdk zt;s3m1St^aZ#-=xE}D5TRO6h4x%KvrYuR)}IxZ_TI##Jri)I6KUjllLEr*@pT_um#iM zdJPeGE6R5?osEoqGSXD}9^MD_d%j#z((=|w4uZ;)+y(V-YnZX*l&SXGwyZ^FZCJCh zqJ${-o#MViky+W1R!0&ytDAEjSu~(QXLzDNIf()?;8a=Hup~Spd{e+!>>Hes%uWhC z^_JSjiB-zb#&MwixrME3%84{bl&PSiJUGgsm4DIcMhv{u7*7;yVhmOYR}iXiB|X3l z6vG)uY7AnhymGmAzGCWfP3xJ=>1by%+%F+`A5B1%t@Y%Kbk=>`B zT_XWpBMrJ|{@C)er+!QvrS0fmdR@BMuKVdSL*Wn-5nh>Y@G9 z&wcJ@WnlMIGe(8xOjr)LjGy{6yB34%8ncZYlshQi6o#HioqUx#5vz^l2eV*Q7ror; z2Zm~9;2(b6B zo=YsUprX&BEvv&t$T+_R5oGqWV|tiEVl0bk$xV&fQdK-N2E zWOY+K$aigeTqq)tc+F8wBXLYw5iVThf2tDHn00m2qT+4`hiamS$a)a@8(!7|=o+VX z!6WGBSQ9FZ_SM3QU`SNzPPPccmA0QbL$;vBe?8tWN+}#XHy{$rd+(o@EB%3mr&voH zqKH{@bWv)=jB)36pXyz4gEOV`_%XT@?hA9o@@5Tf{o z$QhY(3WfSV;F${P0wA-t%nZGNMt-NH5LYW%8~MT09mKPg^<8>Ub$ZAT~@HaO>Xon2KL6 zzJ!D|zuk;w)ET7x%$n~A>aL%5FMA0g<7Y)oHr-qI;6<$V)yryz!wvAI2Mvu0B(GIV z8{9Ar)-TX-+kL6LeD$aV{vo0evNn*F$3ph;zSFat@4YZjVmOJ0k0hAdU)9q!*`a(+ zQ-<=^rA1EQgkRZmIsr}yc+%x~z$|sF>2J_mEc6rgLYXBVJduA{5@B^6nh7CJ4`pdZqD3&x6ZT#AxeZ05m8?Z=bCP_e%?5*@ug;#=-AOpoy#~oWG@K~Q_5|zuulNb^CN?Cv z>-O!I6(%;iBydkA*-SdU+>uR5uvs|ul6BId#KQp!1Mmkr+; za^s%=P#f)q_~Tp<(>W1Xb-r9q>nrddM6CPuZ2rs9r)GW=j?Ohi=2PvlDu#bIas zpI&Bm#{cPMW@r3I(QVi2Jq~II1;WnEntIa*iUPvL#r7XLgq!9>!dVN_KWu}2RlS=8 z&|LkYa6gr0HF_R1vjfjQA|faz0+fIT-p^OuJRH=qbS)%HplJUbdq#MAA>8-7>!-7n-2^p4&(n3VycPDS| z61A1F&y!ZbJVNM|Lg*JBa$QUiDPnI$-*MZK;m)|CG?b|qgoMV&~3R&lPk+)QKt^H$}q7cQZq;F zylo7(cB@L|c#&n&ufvlx3gUOI33V*CXbISio>m+{L|ylZKu%s0E31G)hP?mB$+l>E zt#-!Qf=38?3CrvrC514Hdyeu^oox=q&Ixt+u4qScw_`CBf~UO z+>=24sPOJOB7Q{$EhUe)zXT^;%*U*-Y6Xi|@bJpuR>J6q8%-Cqy|)M4Y;WlX14}p`=ihoJEnR7!C#5hf)dCk$dJ!p${=1XohB@ zyC6Z#fGIqqvLF(O-C46PCR4*^b04#j7(s`di`+*tu~ z&zzIAeibh(YuCQG3#h`?ti!K#l>@a$2(k5$9?+8dElMN$(jIGvPO9cr)#|BI3LNvj zyPD}l6KoYgvd>U=;~G%3yn&#JozBfDB&5|7J3Ml!7jMD9Cp%VKJWP>G%x%-hqOdKF4ErFb)(G|`P}+Yp)%37*3g zh{`rNuMBW%+>0(vUY6cB_v~6j;$T#D)QrZItew=L3Hmt2^qu)FYmZw~!x3lSl3w%xI zt6(ufyT$V2_hcm)<6W5{h%`@3U98o?iX~fhG{c{-j!fyE@Mvv7jUb6n6D?0@iyug0 zTiK#$JG=RSXbfxfY?2b|%Rodb_Tjpgk}KraXa@zGqVxcRdEm4~abtVRlsFe^J?Rzm;B zl3L(f;MJe1xOX?e!ARmISFZ?ojL18vS)P6U(6*fUv9j7L@>vCh{mP9u+5`79kPYsA zscc)GFPf`FlT>x>eUf~|uMr&6hzyra!>?@}GVj4Zhjg9|Ja`Dm#I%c))Xu*&k}d&Y z(Qy#)^WY)?myTLN?TyJu>leEauuaN6`r$O5`-h**_hY-nfs&qIR*TFa{wC`rRb41W zj=jv|*Aj2EzDMC#3!~P&ot&+UUH+_xJ?nacYzXBOI^8;Vi?Lu^Eb+5k;hP9C638Zg zI@&C!z7!Zne3{!rrUxd>5ULEH2QtsGVM?j-{`G`*_UDazn}3nKRMD#nU9py(vx(AE zwlQQ*^w}WJhvn&K^nZIBodvOe#zyai81PAlIPhs?ZS`2HNB;ygoa2vbsf(B8d&*Kg zN)Ud1(Qst;2;hApRIT#i|G$;o>`aW`=oAGwAw@d}Q!`sSb1Qoz+ke<8-&q0Yx2p{A zKk|tG;HdnoA7cM+J_-vV`!_=NJC6WmW@TplPZG*zhEOaH2lB7051Lm?5F7Z)2sP5D zL()$D{iH#VeZzgkmBhi2EU|OLppU1w2s#B1nF90SS;;w_9_(B#*nHYq&D+F!x*|e z4d4tmvRHZ53p=1Nu;_w%kMz`y>1YyXYs?-2CKJz=tJqB=$Kuz`q0Z_)M}yUp|YSbmHt3CO?KuLWQu zL#U=JA4G`@8AoPlR}Pf09tx; zN4fNCz@dwECVgJDXR*wF!;YBZ z&tshJ!VA~G)-sL9LKFFfKz&DQ5cH0ypyyHr3|LwlSCu9F zAMw9HDivw@&P}TGY9mzOk|3=gEaCf8)>RqEL~CU6%JM79F%6@EP137nRQ_mIc>|-7 zj1a~@lt1NqcPnC-QY(9-0$!b>XE`R&M1cPkDU6}!W~(2^pqJtwjRh7$7 zC51I-VViN9$(2adK_=NRI6@h1Ud>agI~Ri44R_JwX)~@mDx7μt}gE+SQtvbCnf zb$0d#<5AF%jo}YJ77s6>iiayzDq~>CzKt*XLX=0TdPCgPT8Gqp1sFjL1kwa@>1b^u(L#P?lzOk!Xm)fYT??LPsmrexGGY2x@RRr+ znpKso4P28WNMnkI# zrLUMJdGi&a+0?q!Cc7SWv6@j1R?1AqZv~LdF^00+V>(zaXfc65c$)IWvv%(Ve<|*E z*28}$es;nA2CTxNw>Vii_Hu&=_;SZ4AmHEiUg6*E#XuCps4p`}bH4_+X^Oy$4$MwC)Xp}Yc|DXPKdnAs_Q!hhsbMx?95*ib(lB*l=kk7mXQo>e zU@BtWu<~NI@`qm+_Tv5h>UeRwdt*?Lc$B2-Q*)7K1@OOI&F_TnyxMF>J@2k-xwb-} zF-|Mn=$E^}aD?tujq5qCd+0Rtixh({R)kKTt@cBbX_MP=rC@ln8DkWmANBYiPGdMW-&($TtCs}|B7(Qu zPW{Mz28<%wzz6E0P4C*w6f+whC15BK;tPr`-A+F*+#1v9*HKFStn#j>T}j_Z17%8@ z5(zEtg7G!>LP7*Xjk>P(%yKIiU1{GR!e_O9ELxD>`ktWliE3?`&X1p~4h>V|mRVK% z)XlR8_5P|%*x-|!j;(~xYE9+q3hUd(K%aJfcd-3)W!)X39rYOZq&5i-1u!+Dh-Qmo z+@rvLu6wqJ3r=@u6j^pM_`-O;T2~$DWzuMtDifA%uw^D~OLP^kVr=8Zkb=U~+f|u3 zruGN0R<)x2x7S=d>LUz%{Rvi23qK8mM{9YLhpA=ljMh7T3bAOpqTzA~>?x?+vOXPv za)kM=*)C(^SUKDBc9;6sm}m#zKJ;yz&gr)$1%KgzVBRXGJpwQ6yDg^zf zuyOzBv2oucHghZVZe)FKwFf1bZ8=JF3Wn`Hvk!Gu>{MCHyq3L<1+vMAHFm4U%u4J7 zVrvt{Yq?%OdFj0)k6-CR40rvM#5@xqxF}MlPS)+TzQWS`eouEKBiIVT2Z(H*gh`OA zc&(62QM%sDdnGnGoJ|SCWYe$zoM+Pb^JZ<9?sN)zJdO#CM1u!kelzsd^qA2hB!OEk~Sq zxJ*BzmY3%GzzVyI0ZY@)Y35H6RNIqjwOGtUYeR=2V{XeK9h}CHwtl0G@vtN=v~+$7 zDst+WGU$`-Mpa%RRB4@@U~_{D{EW;ggJo=wx@|b z*O(F?iz&Jp=f4ZDeoqV79=zwzK7Iq#sV@6i9*54PlfEtN%g~%&;+vBw=n_No%=n)|gOK2ep zCXgB}kv#++&}z;MUxw*L-Wv4Ux?Jn`YICJozNC7Xcf+zcv&{}<3KWn^YyvzI07du( zR18qW3?Av*I8w0+d<5e47`L%8WYMR6HTd~`J-+;4hE3VqN|9)AdU$~&v;Hl@VwL=c z95pSnXpLKX>S%vzoBSa?%tys%i+FZN-@{xAfgcUxP#Vs59YY*qD~hTi=_J<{^T!oz zf}hv5u3t`fn1(PP7;^OSWeyBLhw30Rk z&i(^+s=0L*0!F-?dp_@VQs{Lj|32Gv5&@G4&2#c zeN&~W<}Koedo~x3&7_JKDu+~gViJ`!*(2_zq4uZ{hO!}a`xNc&*2YAn-H8p61Aqga zOeaY?rFPXx3~&q9&wfh!gHrc9r4KdI&YXg~!Z^KfBJBtk)8q=FOI?DF3_2|}&i)8> za(EB^wb(_O*dvB!Spj&Q)^1X3SglP+pMX*RUH-|*tuFmGVlUT5dy78OwQ;iIl4ub* zJY(3{a@#a#$9XG8$Y=_w^3EU;DT3V7)8XX3u+Sy0D8M8I5h0R>P^|P!EjK|LeP&9z zR0Hc;|2g}rSaGadhhLVMb}NmE8g|3)dXjIWG5frqLXa#}6vd{Gu98UW(K{ol4E8le z=#FoNtTb!f)U9?^g3$|%?{De;|M_yUrz-V9qog7ngDQMi33B|?8%qiQKdrGW931}% zxVX@@`F3qId|VpzIb<$u_P?b|+o>^6n-Ywf+nYbyyO$n<(9O3nCzL6wnm6=*=717x(D6K}myfdwBHH4*a$sAsQeMdwQ(vhRXNzaV5068rSvka87q#Egt8#l5)i*>u zxE|1+Vi~lXDu&qd-qNe_XN*(mh#dx%0~(+t?TXa~efreaEZP6k*v+;eUSPkMX@tRsv^K79{_HvBsL=+E5(@oRFt#mbEzg7fA^8fEq=)7wbfLDF4;hixfBWNsgd%O?@ zjn6(Xm@cqzR~#EBy6lfkC0xSLb3v|eMwb%NUIp&#m7!m9qKE<=W{s_(oulqgPUpB- zcS8K%LUy#zD8C)-;EFJtN}UDq0s$p;u->S@eJ*ghO3S%b^YY4hfsvuamCDc`V2`<2 zqj1YS?G}^*#0fDp!Kt^BmSA0S$^?ga!dN(|b2VsXChKR!m{#xpK7)TNH2;X4BQn00 z0>cHmS;A!-VW};HEft0+;rw`D5}jdIgr{o6UyB~k*NbH@AU9w5GaJ|qJPL4iRqO`h zKMvC;0E=BRzOM>hG7bz5l(3PCpTVyt+m9E)QH1~Aj)u@11v8!jFtU5eC3#9S_aP_U?ngyRH9vzfg3kwss7AuP zJG2F`&ACNmzRd3SPG?-|PD)Nmj|$stWGIs>>jPci}eW)gR7k4gispIkqxKiNEYX+Ax!x z33uJ+)E25d4H;@gRV*4<4}UVpP0Ef*7^|VY(Un z!a@C*q$0Df*a1op&b_x(w!g6{AY~bJ!J&S&ZwHgs*|(z%`ED~Np=-i9&62@tSP$p> zVag)Z>_3|-JJtC>H-3OaB$F9kez4)b9ZC%I{wz*r(h{W)W<6ptI7B#`t6{XLJ-&(Y;4f04KB$SrS* zh2Q4y?fQ3UO;3s19LE2Q9_JWE2z(dD^R)eksrveuK7(ia(EmG|U z0KKf~y-`KJ=_)nK{g(ee;k}4jj>DGX+nm-^IzQy)6sp-kL3pB0Xl}bt9p?)Ywn-5O z@P&|=gCo2FN9+Z@{kD7E7a@1WL9!su4nVeuPofl`OG^ucpQ_^u_lP{9yY1Mj;eRfN zVw`Y#FHXj~rp?^bph`eMO9o&N#Qi1T1d=05HH=840V%CO0#c|c%w@lh+~Ksa%dN?#1yv;Dra3V((x45aD{%z1Ij>a28 zKea`0*a;%EYoLzI!0yklBmB=Uz+(OQMm12aFBYjM!>uq(8lo+>_I()!m3vxf!vmPV z&Ilc;nqjOjRYkyv*cB53oUxEbH}$63>S9u3+f$FOZ)j@xhLuRVG6(&fQ*Z_S2~#fG zTWzTLl;;gFl>OWk%PDBBu&D|=yRS~6hu)#IPSLS4XDB9cu?0nY>O>jEg(B`ING%m3k$d^{hIEKm#z}Y)y7q$nU$vm;^QgiGD<+mnUacIrVm{0jYSLdLbC!ZGE(<$tW=1AYm#BSK1g5wxH(!-W`oRP@HckX4w)E0cR(MuRQ?;uf71(XVQ@6L{pkjLKGE7@c zJ#;E3k~C#!*Ss2-!%3X7$0GTpAB}EqIe{8%8In3UFcvV};jXTCGWWN7;GV2!&Kkms z2SanL#kh1>!-dEzps0C#H05Lq<6W}-nK7?JjO;J~crX&ta1zKgHC)PPXuZ|!pC+PX z^WpeL`oNuJ?j7oZJm^2@Me~1b$o_3GbmUNtg@88?;qfPE2LGhMtPGX9W3<92pW5cM z;y0b)wTSl$2(X&I?uj0CHLku^XqU>$VkE2L|9w3UDOY;0;dt&dvq74F;vx=K!}xe1 zTJ#14@Z=ZRT=J6+d@IJmge8KNK;wrtxw=Uz6Qi6?My3W9j|il%GBMqWiMuKk@A-DO z>Vzma<`o{JCI!cH(y2-+P~cmDwpP-SQ0HekBjU@`ce#Y1+7H$DXYPlgyZ35VVdQg; zX7F{3yT z<#+Q@LR>B`gtc>Z$4@|{n9>q295@*ryKif8G25yeEL0Z{HmUD8gKy1S$A>$NHQXz! z5+pCJV(5}g1dK{mV1~H)Nk`EpqX{t(xcDeXhxjCgce$#FqD?Y}T_MeH-WTI8ktc5f zTI0=UAFT~SUzG^s8R8^2Xe0c8h36A^j|cyK z_V0y(BCj-7gg#pTYon}H@p#NS#)HODiWu{D(r2(sa0me}!@R%Yg<7kSBW1JXX~m6s zGI`Je1H#xIur(7G^M3@AQGizDUK0Yth-rtAEj%M904e{)-otd1hr# zNa4sy0tv|Xh4jqYH1?{^A<>hMj50Vv|GkU$U$tQES15bYp&SU#Mb}hOicOq2%0CdM40~ zXlM0tClJBK_BEp57vh5{{9b{6r^_V71Z+D=Z8rzJBhD0RiXDk)8QftiN=JPNI@*^e z7kQzQ?Bhnklk=3m|0blR)MMuXzV+dkkm$^64fCW9H>!&z+LcC@iIgykI#5QsOJ&z| z0tpGC*>%T0JyeRypGTrbc|K!J+aY55KWx2IbYM}pEF7C1+qP}nw(X9wW7}p2opfxg zla6h(W81gCbH_O6-v7V*Y1bJ0VXv_s)?77bRdJJfaIKr|ZA~}m#9uOya+93yM-uK^ z8E^uzDo`b9&`_zy8&m!N66QXTdTm(1_NKR(vu*3?eCY_x9$)NwT5+3jHKJZTbF?k>Jbu1;6Hf>G%J*8FT$# z!IQ8Sj#l5TiP?C#Q)ba9s(zr4P!O{~0)|sJaLf^I+na zl3Pdw%s43snakrSbSgw!SSEFpFFmc+-nz7_W(V$Qu7tp(;I^TL1I*Rjl!!ZtEGVjT zSN*j)JtrPqDsnWq6^G(#Mi|7nQ?qI zo|08&D-(U5BXoIl!nf-A5%?bHU1CtR*QDl9uHB_ zT&D5br(L&eFSmO~69wrmn;kG;YSi~6gc0>7OdX%|flG!f0+EoAJXcCajsE%u&_ULZqI`F?Fmd?L z>wjoWPM-gR-UR1jVQ)=2f#3uqDY_GCAJYOroYdXG|NqP5V&VCp<>7GsSCjkyLyEF; zaIyc_Ok8X1IRq6r0Hfuyc0{=j7W+4%oM>w^(YRrcebRjC&6%bP z(_Ru4!y_otP4Sj}JE(Y>$mz8RrU{CA3;>n*Rz$66c5+8AJ)hT_k)1qYWdw+Wgj0|T z9BeIP=6`~$1H5Vzgv%>0++3)M*0%wU{9qQNLM{Z5Ow@Zo`Xo zda@k}Bw2||DC6_-HK)Bro4ib^(FI?~MYfgpd&JsKGo;IX1td@lvAEpUQ?;u#^4oUq z9<6b@g+{}`VRsUW;igL2s&NUs4)p2mbe33=Ea2wTh~kKi7iizW>|r1Ct4foH5%07= zA!h^LwKKkI3Z0P9*OoJ9_Vq&Z_UR|N2b&T?o^VKxzjto=Vt$t%gx?9kR-9Yq$0--I%h34HE6d z!mHH=H-(J# zBA}(l!7VT(k@@KFR4c`g^-`TSkHY#V6C=V*4WvcG!pBl4A^e@b=09WKu=I0=NTC#g zs(mk$-iT`mNqCvMwG5T8k)r$fuD^2;cI|cUph;IbyV2nJrw5#=-E!x#%YjHFcjHY% z&WL?m>=uWz=wkglG91ir%ItvqYQf*Z5>{G?v8UV2;siBg$! zU(_2`v_JApmjze?N5T9^5ftU+Bt`Urt+0>Y6`7D=n$)e7YFICFYyLJL0=RG1|B@I| z7u;HHFG@_GL`kIG^->%cipR5{@@P^8&500KD-JfQ%nj0x!jzKwk$$c6L3YJM`gJI5 ziNO6Pjrm;P=}#?KQSjEo)wR`;MO~Ne0XhXbF2B z^0|qOEl^W@>*oSD<23g+`h*luD$ZL-_?4(XA4gbVNV6EhVHS9-j1*E51ld#c4NfVe z_+0AC5rKNn5R57G)}}GXwYEm-^+wg^f$2K=Ct=sd13!}1A8~T@RzZv9GgHpj@!dls zi39L9YaxOanAqiE4ZLXNXR|6D;MX6;^J03-so|t54k*R;@2KobeNSbNB=Os+?!Rsf z+ijhC{?crS>9vY7L)!KDV8}c4^oray!{!#plU?OHRI;{2fVPo9?d`09>7QNuhrBR3 z%OMx`Tt@DfLjbkGQ%(*X2+0XGH2TlB!IZ@L&AZ(>scp%jEv5T>TAWGkKp8m^|_4(E$2oYmORFuFa{$1s`Z(2=_a0z{JA6w#ao!hO{5VQS_JLB9t z;rG8qoK7(piENYuLAsywl=pj)IJz-x4dz6H!ay?bX(PbKxww)r^sNR}?%Cp5_iUi* z+vJ?L3*z6ZEI>tWzqH1uffbqUjBiG*<1M;SfF7s_b6FNy&t@WLDyFo`yOz0g7t`4% z_C1k}cIfk3NKJr^ef+s)QTb1;dqxPTwT9C>7zFDXZ}bq&+|w!MW`|d}sR+IEgl|E`4TkTgf^$z=d1?dT64^M;6_<-|+bnWQvkS;FcmLl)c(Xe;nOcj^Jz903|jMa{z zXe62guVH@c8U_ueO-B> z(_w!Fkb|C;#ugUxxlK75y(6BN>VTA+)?ML12?7CGDY-~Al zv>B5MHP^uW>3%oomQ5^F=o%9jNL>$tkJYL0n8Tn@OCZvJ28Va3bvAc)qtK170!ZQBOuAY%&Z|Ak*j{&#EhYQFv zDaT0vNQzk$wf)RWmt>p3=}!?AlCwRb_RFE!jS*0%ZaM$sr$djck9u)DQ}RcMI=rbL zV7acxN~Mpu^N`5p25=EGog{b!R_&3)HVt`ax8`Dz0(pm?pTccJOzn>KK!G_nlndKS zc$f_h!d$G{pgGGVjP#cU4AgvFr)XKOUTR zb*)rr*WWLgpDxhcsFF@3P1)^=y9VVs^PMHEi#870=VO?*hT^bLg`&AAdbuqXE{v~%dDS@ASv=5{uV_4zP~pNdizJrJ8!xsMDG6$jz*6f| zXK2qPOSc9<<5Xur6l72l-RsK^8VWV#mm6Ye{pJkpaYA^@PINGvO~T?qqYo+6jgP^8 z!Itp)G$eEL{Uj+-$)$dptx72)*USLhz5lEFJGj|1L)^Ux)OV7F_fSxl(K=Etw2H*U zilrpU;IzF&MIR|n0Hcn~ci~VSBJQuNBmR~_%{NRS+Q4ck9;5LnT)>9D24d7JzJv37 zAu5@NsN$bsBhhqlwWQE5g!sT4i8>$%T~@ZCZ)+y7i&V;@AF8rgMP@^vCWtMh4Mj^F z*}JBY&Xyj+Mb3*nvppq~A9)Rvb|==kM7#U%h{}#t{Vqx#<~J=?B6e86NaJ+TOj?v~ z%C{gur@sq=#6oaX1nXy`3Mozu6a+*W55rHjJ!@qJVzKJt4NlxK8IfP;AP2vyU0mE5 z#1*%Tq7^V96LSjj;ERJsi|uf*XYyE7Od+G#Jwg<4f*sz|KzmW6Ecs~@vn^4$WZ)s! z@g5{eDhS)XG?z;?Oe0RIK>7%M!`{*5!!0?1%i*EK3R%cx7)V-$oBdGqM~(a>LoB5N z#*N#myVj$OTE=)KO=0W}xz_hbuWmzwe9+d9_kE_bTBGWOWxDeSf|$eBj3cUAO}i)D zrfH+Lk|8W3=bA&$uXb&h=bS~b`TS}vt258|BiKRA@r)|ZBO!zQUn?4t%SM_)`Gf%A z{Tbs+Fr(sg17-m>?{_Apef0cIEwBsu*2>E2DD$Q{3q-WY8{0j%d4hM6SI-~1XtGhe z=k+9_`Q!8MWVIJ-oN1Z~&^N$M_G)^czx_A#SzB_qQ^+J03Ir3_UE>_J-yic$o7&~a zEGF_RLX70Mmn&`Frs)Ove{Qzx33>tr)d_%C=PlJAth4z$Hln*DBx9sFsT`%SjtxI( zPr0+6)-L$`Pnqk5b36t$YC<2~rsB?X5UGQdKAKth4e{tj=-esQq1G0(d?m7)ANiKN z7z@sr6rKgDn~+Lx2L zy>>}s!B&re50e9a6VJ2eA?Ae?&QC06VW>}u&?oCb6ndk+6|P3XQ2*s*hF-mohAqqK z?2Se%2ESN=bz|`uuGq*TQS2L$8iC+;$A{0y+n#m0&a>YPYuho3_s#`24n}1U+tG^5 z*X@l0lJ0Nq*MbJ_1vMQ*bE80Q@WOUmU&hNmIhYUjgF1^cSAfz zvCv33rXlkp!VxQrWLA*^S#swXyqiSq^;pKeLcjJ!#`eetZec}tGUz-yFeG@W;i5nZ zf9aP*Is?+3Eydiw=Fz;2AfzJU7TD|(V~HVOK$FoDP(D7GPfbix0}p|5M1+Njl$L>G z=x`B7=7g#qQld0jN9L$I)qOJ-vc+TgF5+aBTqN_(=C{6I%$!VDu)h!``RNf9@-Yu^ zC1dh`-g2TtFU771xVb?*v}00%jS?G75tLJ<{$a&QE>^nkSY}StWA9P@X93p7Nj7LG zDpYH-vm(r@r-Hv?8TkxMgqFod>il>MXXhhJiL6YZN;!`?MnrgCt?}lI6&nw2Dc<_pfuKvxlKhA^HrV{DRlJ zaW1*%U2HLCTEk+VEb4ddSoYG9-Dh0BPl+|O&5&9c#S;}$*Y`Q8%uH}0uYrb3-^!NY zQh|&fUuw4)4>_+}5Qg4Sn^gzHo}kmp&RNn`8W%1EX?=fh>I1JxPD$*9O=jkB`E1YP zG{&BVCOihwEKR~)2|hw{!*6Xqs^Ct>`U0ZaMC*WtF=fXuc!~|4Xc9HNagJLU1Cssbe?O{U(@+eo!;MlD?L4#C$4BMykCuP@|JDxw$5*$e&T<&mPr z$z;G2ADh*;-$f(6`HjE8Hqb(RIN|%e1%<-JD%;OkuQe~O5o+gqzpiY%rX-KsN)Uar z-ecXL^bTA3cMrIYq22K#r##@A+10@Y@rzVYIX}hYjlH}&^T4$BGiU#)eC$8%@8Sp# z3HzWoGrgO59v$s6zFqRhh6!1(bbl*M22}u-*S8_Ec9d&=t8i*=Job(bOkN-*#k&^o zVAPVRs=-!|KGA_0`4`*QPJ9kATXq(GOMIp!OzvmKT1&n z)JC!`4mJu$^~c=0;Ff5QMzYj;T>=q!r>vrgx2hVl_vo6Ny>CpNIHcz_cUhPvF~9Y* zX#&V3iW0J=ieOREb7GXL))zulvXga^;{HIIRl0;SNjpfA)Vfjp>jG(=svWp6Qg-@} zu}o91_jRdY%JdjM$j8ByF{FC2#o9^&Vk8Q$rCthIf9jjf)>wIL{ptmfqgk%7g_a9n z*iu-uu)k~Gni6KL99KR-@k;m7OZ-B=#kMLci?( zj&(x$TdJEPU3q;a*Tv)_M^0=AjW@g6@Y(bPNsauETV{lg1^a2y#y)@bB6Pj&OdIEw z;c1NDO^w+>_;d)ebiQ1K4)^*tB`(2h0=kEm2b3Ac_7`7&m%V)ETSws^$M~s+Va1w9 zd2*B{xO0A}vPOUB=+LxPL|Iqf{d5koWc9rt+&;xf!EI#)tT|7h5x22L ze>2C^@AiAq$GqhIyIRe=C8*M66=yb2bAD)L3788cs9M6NYZ!7BOaJzBWey5zw^5}e zQIMPyupH?k8L!&Dd&ymtoc3ruCWUfClofgrs#lg^|LP1(U9hNt*cM3jjm-vuNC?DB#r@06OUHf^X=q$ePfwUj zh^L)Pr2fr+59N0E)5mrfSL4#eX>-Th`I<)gX>K>LiB3Ldi$Ge|GAt~kherj4DQRgK zm>HbS$rYHD6_=Eig^?dDN^oEf`HqaBbc1-j1JlsF`_YT~8$VD|5nyp4D+hY{A@%SA ze>GwRh9UM1jE)ZsjZYvLTUh>mVJfZ$XA<5Rfi#CxHij5kTLU53rTJ}tu|Xhg`BxEW zeW|Slu|>lLfk#Hh`skelC0!DRPK-)I6z(4x#kc6p~fG%i-f$ zyO*fsDUg@io|~n zFWLj#?YKN3pa3XcBJ9lYjZ=7I9L)^qwWnKPb}YZ}D3bM^Q^R{N?0w)@E@EI<(&1O? zo6@6Dm@wy;EGH{VeRB(2gA4R(CTKw5uRstA8E;7{E-IhEq_`6yae$0YYQ6VGl2MYF zj%>d-6mWNhNJLiw#r`0;7TV{@<_9tWczrtWN@%IaNz%HdU`LXhul0E^XYc~?g#!L^Y{I|26}a3eE}^wl10WdfQRET0Q9EXz7nX*{K6+2SI*ce?WOy)Oy*mJbK=EW{e(AA( z4Rd_fXJd>&RoI`wydJIIa>Zo507IXzVKAWe%HnawYe=pq=71X;r zgT>1MpymS1ZnYl2Mg<@t|Tj2#h6hPneX7R2Emq0%Y>?}TsxZl4j z9QMw4u9wZelKZyfzU)4j#K40bh0&f5A@$IDh-20YAIoh~{j|bAT#hF%rmnd!f|!x0 z#)gdY|K2j6sIom4Z!6HbNUEh~$cmL=bzR#q=j+C6~J8_K`z*NYrAxO65EG zP6PttWi4KoDf%?KofR2E8Zb${X92UNvNQT#@PAJ&_}=}MueVOTDhA!)>Y&gC3KPlq z`6Ob@J@ZAyZBr7R_&#Qr#G*vpW)$2tGiEdWA|fG%_@i5-b_F}HPKSSd=ok@A;p0o2 zbdIK+Rqg#k5cxB7o%m0d6h|~L^qxhtegFeV(u~~@Yi6TMMeA7;h_-{;u+Oyq8lRu@ zKQ|A}fkpFwxl?SANj`{S?r}Vti=_|w*?O}me9`eOw^RsM?#)}fM&^C|we+0D9sItB z*^kO9b{VEqR7C#m0`o1w2|@@m;&-A6s@u)8=CJO@nh(7?pZJ9QU?|Rr-?-Pf6zwu# z$~pkcFaAnsuwi>ylvFh~JR;LxVAHfXQLjHY0uM_rx0;?dgbk zSTVXSdiZj2UJZMxpkEUI8c1ujA>%plW+=I$s1?g*OYtzBmtdHM~{gF-2Jklf}SE;6ylJWZ{ zDOjRu4(Vhw!hyLb?e`Ad_dS-y)_V@>-QoU{)B8EXjl`%?^E9G*i<>CN5@tB>jhUfi zF>O9qyRfuR?UGgG%G%-0N5Y;p2Kz+a`R`&zyF+3ZPFvAvEzX73$|AA9h_Lbzn# zjVSG-twKgwbCu1~3p`oONXQjuW!>{??cv-U9D5Y9#zn8|tVn%&BZPm5tPQCR%c&IT zNZ~tMFp8Z(X{TVrkW0emXD>(reJM~di2(*#t$6ou-QTGd?jIQsh#{D-qhjP)7pey? zjztyV(Vs?+U4o{MmHC#5muivgL_Q>y!fqz5$uoGa*Z6yk0~HEtC%dK|KFQKo?kmV% zS9$ZuHcGfBRK39nuyP3PX4SWOt^q}qwgWuG7Y}LzTHmM(#_bBU|B;N&-+u3vZXw&tf*4_4g7Pu6Uby*KV_JuN6#qZ<)bA|iP|AqmxB=sObp&V4^UprjC^GdyZ79*g%t*v%_Tugf*$ zE01U5ZV-&rtDlcPt;c<8gTZO)m}q4}#vTIx&|NKle0x3zObnpvM+l@C=6@#XffX2{ zpYb-bZ<9eNybi#3sahoPS|e2Ji;cQRJu$iUeyB@T`|Ob;yagd`^Ap#lr#u`Yx_V}C zdRP&GnrqQ8?SgFA(xTT{6&&v^u()I7JuiwNp0F5vq|?_qpjPj-hj=sDAY5(!Dl`-U z3IFCoC zA(zFgD$6svv6Zzok&pQqQoPANkX(|K_ij<7F%NRZxu@x&fB3kDXu zC+{(U^2zYfFU93IlSmWcj^=SqLbL)xzSKsLD8+gK6?dnK7)S0JCBX-1CVj#fGW;G@Drjjm z;$A_pm-w3yBWRu*3Io;~cxE+Th>TMaNXS3IQnkyA0W4Hj1RPeUCRhE0$GAlD&c>-8 zI22=Tv64-4(ZVHbQd4tz-Qzt3`FDJ6*Pd`rwdr?n6NcUoBA$&>A>=guws7P$Y~0`!M_UVt)4fa?nP!zGpoCYA-MtY#Hha3mfdy(SL5X#11CN~MO@ z&pwf^nJWdPC{`J0PwaZNj#?~>)?3WG1u3jcl$qhozU|Sm?)jyVg^Xqg8o$0rdVi|R z3Gi=-w=?^7gk*Xw^tH>v&=n{o@bO51o86L(BgN5AsCier4BWxgvv22!>HWjJWKm7J z2>U~|9P#(f36%O#B$skyUdM6?E;f?7dU>>?vOEjoNhL%h?T*Mv=>m^s&$Rl}l#I*Q z6hie^#t-WPIs0@k$dstvFq84lN{3Blk@j-u!P8h|w^jZ}^8Bpn0<*8|MX28aZ+LL^ z7@1`AyUR>yl5=_OTlog@x86~a0J70QjoNd8I=FM>B}aPEq#$AcID|%9ewT7YtFRo0 z-1G+{@bJu*0@r8-2jxFsOWuB~=|@={=#oQ=Em-e|F=tC(VTm++C)7+5HgSB7m9a3{ z>dgK}hf}r1@)yuz)yYH{yhx=0Sc^ya={k|xWb3y36Z!M1mD&KZJeD=N35sCIqo6s3 zE;vHol&TKHESq8uPe$Px)4c$(EVEvO}u)5>Muf5k7SYO~8f;md3 z!{lg`#?0%Cp0($UZ@7s4J!1vBr*ibFAS(@nDJY{&7%fg{u zs+AW&fg<_Y5V}r(Nf3QzRjhpcEsN^GJq5Eae(Mnrip(WbL5rI_q9BU$hBLS?xb#@qtB0i~kz7K{r$N@PH z<&>W6C}OHgdl8H`jb*d>=XA$(!2y?kY_p8=)yKmq-vbGHoiv876zH7n#3waSXfFSc zce>ag8_g0B=Yz7%#*OU<3xlC8HVEnC-Km5>pH_6DupFA`z0YeXY#~#H_2dyR@xO0G zWaYYMLz(0oBb#YedYN&tQfBfw2q&g%M+{TqTv@G z31StpKa*U0G%IUVo_QT%h-3X5@_DS1<4V<>}>(4s(q6n+W zh~w*Ni8!{*!7I#mK?wPr#V4W?CEOMr0xMWjwCK0_3qiqE01Cde#}o&G^^rYiNyNH? zjmk_N9`=w~g^4~5Qp?m)%T(=$@!_sNN5?ggTmAF8+byqaA$_WP3$7*sc}03E&Wvo| zIt965sBVFHJ~oS8MCtcA42tHf4AO2Qc(-PX#v;dnu%#ytx5p!&L<<6Vpa-=GnBJ3Y z>-}g=UI(kpP+yG|F+|TN8P6&9%`8~@xs_>7T9uXR&s*}2GKUZ;OGjdJ%*0zmuS7wB zD5>dbR{$Rr(qV2FpK!WqQDj)8#({{-rxNi%kA-XFt@Myp7GJqa+$A~ z=3+wY>{VflhG5?kU88gDDjEly!ahP4{41%^2P^Iv6-@WMA!z2@I`@&|Q zGpcDdrnpz;%ADUG4dk6Y|0X04>o7H#hcdMleWDJ3?ywihzIaUhxz^#~O1+-|8Q9}G z7GRfDNhYjBS{aHNcUmIIR_CJzW>;bPhR|B->DeZkQoB%3fk7+iGkM*KzZ{+6{?TX% zQr##OpVC5&TVrHXM0jz%6$pek7CZDu100(b-lg`*Y-8uk1j@xb+;A)fFekd$Y69gc zhZf@ci$HAL4~{hIbvStJnglB`i!pRI-|OEo7!BWjDxcd4iM(OEuNK^ZjF}$MsnxFA z3O5{@wf+*sY`rdv7h0j91L=0=_09XO_CHvsf=^Vk1t6_@IozRe@n->o zfvF2w{A5ee<-2P6NP?ExO-Gomfe`<-cd(Ko#Ntq;;h_UdP) zmAt)9q1fCJLi3q;%qF!e@`XXRtu&Q@3-h^)T1FPoR>Cb74P|Sf@nvyNM`nBYO7I=2 zKffp!3g%0Go-KJshryy!5xEu=+aYVA{X;cgOheEpD44K=+y{1B&9j|haVUE4V+z3! z4(DzC%#~=0FopoTNl!j&d`y8%;{eoNxDc#fkcd2QrQCiJ9RL*^q1@b#!R z^O@5_f*OCSZ&?J4#svM;X3WDxAu=}6qCR#dM)b(%6DXs3Bx4#OC>D=k(qiZY8x@gd zejN>Z?N2vSe^$x15)p8%{z&S|0f~-(d`Wi&-Pz}rgtr@^zWOz904YeuCRe~mCK##_ zp5?tni21u0l&CFpb_PC804jTyb}Wwzn9}ro+=sOpT*OfHN^@p){FDJ~rn1 z8Q$csaJ7fXuz9f}1Vf8n`Id*#S1t#}d@MMy-VXSio+!g(|;d>8y zZcWzf^%2le3v=S$qLgwks*pKiZF^?zUC&%utngb zPjN}0XItkqwv}ruk0rq%5h-97+~0VMj|_F9WVhJhQ+5ZOb8mnHwO`5m;}&~Z`^QI1 z5jHOUMU``*CiKs0D+Patr!(T5?1sNfa{|*`F`igah0H1h=nbNB3%`Wt?2jW{)IFwSm@ZiirSirK zFgQv?C?hj+j1hLycygDtqFyJZFxsxT#j=$&Kh|%@s&jj9v<6R$lXu7XFFNE(Y(8H4 z3u11Hg3Z42iejAgbzLzn8KothqOPWkjRy{L;j@t&Cq?4;pqG)7{dnKHD!)~vi8Gb~ z^oQPCtdnCTb&iIE-j>sfOU>PX7{J9UaqVz75jPoQZ|fv95;EP|@p+43xrK-?oly8B zMKkP`a8X7_50(^m#YxVKO`}h7177)xJZs1xc>;(n)`b|diGxv0oVir*#H(NGxG^2t zvXz_ib-S(yQXJlvJ?H6-F6E-*{0Eo5m0@aGg0 z6C|Et>R-5%>DkPF6Y%{GzLoazh5~mZ-Fn&%*8kFy+xN$~Ebst@$5a)^2ieN9ZW8uN z**Mz~V4omH?HTqDHCvtj#BM07g=>aMMN5CZRLaIYpf#Z$h>jJCY?s2*(!dMIR$T6Y z{7deSkxy#m?<9o;&{EF{ zkpooI%Yqhk46_8TkhSm6+lxZIA}!_1t*v+97Xo}h#0K2y1m@l(u+9>J4v@$ME7mH@ z6Aj+pJocQjL!P^JB6SVvB-l5Ev!GqlU2Bgmaf}AWy`HalNu&_4h3T&`c+2kM5xNan ze}dHm=aV+73G^(XJD(787u~i6-2+b<%RW4CyEt6u_{ZlJ9a*+G@ZsomhV(Ux9+KO? zf`bpxf(d2Iwp$oZz1}B4#-^t;41W59E2yVSEBZG=;=fZ_e|wS{9ntaTf}?tw91+4j zo+d!@i>{y3M;=>OM?S)sxi<8WcL^+CgI7^JLeX8*^RFB~r6j3FJC8KJ9NCy(?`P1i76x}IZ=wV0tD`b?xp-*Y^a^>eSZqdvEJ+x=u% zir3v_fW?Bl{jAn>mu~Q!MYlZei#1{=sTX4gDG`FcPV0i}-AY z?cImlb}6k2X8Z^ZoaBkgT|!W5!zDW6ze5t{=vK>DKbX?0ZpyS$(!mVk_qo^C*c^Ci z!uqumz7%P67u5LWD-9nWmB<`aaL>`EIhe+FSH$(&*Dzt3arropSBkD!R?P=w0U`Xv9*@#l_R69~tN`Ji~f7rqzk0C~s{q?~;~YA=(8 zOMBJ&)1C?%UK^Qryj{>3Y#_IB@b~`j0BuI~Hhm*Iyjo>Nwq#*;A{L4^ju7!4Iv8%s zVs2Z%I=xy8&?l7~X-j=I<&~DK>D-~1XilnO#s?Vx`J#09;naCQ4U%^Vz97i z2bR9$tDi~F$PcYV{?UJI(X`Azc(a6gl(Kfa(@fR&V3?(t zo%XktGJEhAcN~o341vHNPvOzlIBzVgR(sSDG^`~8raf;}f|W2^2MfIH zJ`h;|4`k$vtNaOj$l%xif}?TJ!6u}`tFPiAQx6u65B}7}Ta;bmA@xY{F2R)tb^Jw+ z)ezG)T#%eujGav0qPJbyY0Ns#%3EJO)Oy-rXfOs}tn~n^Sy{6EsYAo9u$QsQSJE~b zs}Gk%vKNMd_Oo3oLX$=Ho4r}VZDo8<3xXXp0Qc9g%buhhn2_`J5l1#gfBu&-+d9VmE2J-{dgGoC7Ik z`#f5&+WWlFNF%jum7dR-C*(8a$82vO{$9PqW79FUlf7jii9~s~jK%z{v|CF%R(zoX z@Nl}hXb^T}{%r1t0;}irImJnTznY7(&5DVvBLo_0%_tq+oW^EbHy@o}da7Q+mD@6T{lCPR(*b0}tcOt9v2-+bX<#U03$9 zWi(dQ2ebp<4{kkUie`^ACrN%gQvSPSbglVIi!(NQ4ZO;sd`avq?F3i1i#VkhP!vdP zZheN9_GeO*RN+YW(ClM_8_QJ)M+G8-@kOEP&v$Y`_}Ehj-AP7omb*)x-`|oLj`RMs zD-npiSu=~|8{kqY37%xbwv?PeUi`T}Z6GZX;%YB6rRbp|v!AoPt+1RY$xh339L3d% z%OiDkYu*veWro&G`QU5qw;{c^2hMRRMcPcBci;5hqY#{$M3?WmnJ%*q4lHl)sfr97 zF-C_k>7c)_VODBpI(cZ6Hsta_OspO&LQncKeWT6Y3kbUpwK~Eyj*!pyv+)#)EN<`( z_<`SU3R@h0(LOBg_igEJy+Vzg?WtC2iumSEF!x!Ygf$c08(m6DKPz1b1V~dO!kCs~ z^Nxzta&90fy>&j9&KIgZ7>tK#--mdXh|iKt;uN#|8`Q6u)|L`?LSwA5x<8Qe&MQTd z{F%Sq(WUpS&ObmE9ydeJ0*;vb(UF*1e=zS&-7HDCrfrX?gn}jRRH0Xz<|)b@5<@&) zN}bWBQrHsRocVxenDxHE39$NfPW-0s+?}{*$3k%zyqY-I&v)5R*9NS})7b76%1Pmk974MiH3SKWM zHJ5XjK{X8QO-jy*M#i}NJIaGh`d-^Kng2=f)o8F}ysdRjP{ux%T0$N^coWPeUBbvW zRbIm0o0W#B9MlKD&C8g3EHJECLdE)KL5zEGzMtx)kBfB>HQ0PR#kDD|CqkYsn|q>5 zA?*3E9xcOpdwJF)3j}FHk`vq${z*NT6fTi4|5%Kw_{F?m!Dw)}bYJ45*;q;|73WP# zp|hlOVdAl^xWD4bq@|ue&wV`U^9qI<|Kc>1Pzt97O1guxJ%Anq!a;7%Ui-qw{NpF4jUda+0k7Gb$Z~ z#3kNtf|^*nDbgClFGz#)<#L6bxx1-_{@m-qL5n;@D^$FV)`Mo^h#$GfJ8gUtQR2krZ^7oe!&x$KzSKBnj zPL0k(S4vkG{=n8LR?AcvF~r1=+V>O-eY&A=vS`Zltdqeks`7e5l(old?N5nmnbWwnD@EH~YDRsW2>a*=?+oBi%}@D6S-S6+qZULM=uMCU%fW~)&Bb~e zUsL%Ox>^+ipZ+q*@G$E137RRP#z}S9&COMrm&QoKKK_Om&>Z99x~&seUSpD=SWQ49 z375!9v)*!jX&i0Z;FwAjBBQB)tq}K0&{>zjuLqo?lu0BAs#o!k?09IsoASD81u>;Sh}ks* zRKe7B?-4N74sjiwm)Sj!;#+LAhb0!mwyx`=ERkh6FB?-2;BK|#HUlb_T8yNWMEiNf zQvVCM`40pXk5`No8BLQ^%anho(`%2Ck*&=4_k`=NoU={Sy&{sLF*$uhu$e9yIDt z6A~;_#{lrvx!>2S{iJXP5=X(Xs`|X7@=D^u2|3f?*R9i$OC+_{ zV6$i_imH*(t?A**MY5^TiK$s^i8j>|OyC)gU|GrUCqAL>M=&Ng2HL?J=y6H^DI)~~ zr(71}H?aIEBV&>DEM16!mop_Y4yHiMVE>s;q?>Ll2DRL)I71K?3;?RACSaQhOMUC` zBnG7*fc2&EyWxN<#y1p-P@(PzvSItg>)cUxzOvmu#&w2Xhv$k}=(wk|&2FPR%(;>D ze=~4tC${h&E~^pKRIPYUknQE$mA-zbe#Pa)$}@u5tWgUu_XR+2L=sA7b0G&Z`8E^r zp{pXxgOj(2WDL$rEj-`B$NvIBK)%1W z`(n-7bM%WV@%rc~%}=H<@Pu8tPe{w6wRQMHpW7`YIdifh501xXdqNL%0g4EE1j$-a z+L10~1K^)9KGUHCgE^*T4@%2@MKtm+8KdYpFPwvYHEV@ueu^gx?H~J-`{K&Oe6kd{jfn*5lS^Rxo4>~6t zJTJ3p63jnN?&^?RJ~X^nBP7XmVxfz4>(E_Fi>oBXRJ>bJimifTO-=ek^BH0GkkpK( z#WI`t$;GQY;9RUEOCw|vh(thNBJsfhObrGM>W&VVehkC^7%F5xtWd1G)? zx?C4IK^?yK>^|P9lIno!f(AN&u-DSEWN0ptR_f|a8i<3wcf*}CQ8*v38e~l zs8$Ur1)Kfm6EtBPi*mD;GG1e*XXyoBdhW$be*G?HJ1bRL@`Ev1aCFP`-0LejDKU70 z8wZQ&%(t_boA7rWzuTzyCpN15E7*kHpF9!uXCqAI8AK9)~o{owU) zy>`4PI0~)W>agKypNt_7T|Gvg+>&wlq+<+BxiWcBsB7R6%jazIYzE4v;g^0r<+yA9T z+!a>a6I+TevSs)@9^(v^@N_<3DJIs4n^bu}G2W?C$rOa~!d$?d7UmPlFM7ZFAlz4g zaH~s-EcgZF6w2Buv>*R5t<2R48mtFHg1in5(#wi}{pB3tIl0Yw*yi0Dq4BQ)i4BI{BT8U_S==2C46LEuI z!qgqPEfZd}p(9ruDwMHTW%wxp8>k%8u%w^V`6pc|ml?myq>n5S!uNT_ABJk<>+}-F z+?}yjrBpdOThRxK@5Pn|_XZ9m@SO)hjB_>h+ zYM?g5}lJN#`a=dD<|di;NxL8R{O}MmZ08^i4h!(c8>G zt4lBG2yYA*1o2-O50dDV+z}Oj5{6v0($~BN{fn5#(RVy%Yna9DS@~!F7)2!~&ft{@ zO8Y$fNIcuKx)s#HO60nHuLCsx4;M|>Q z_%qYU&b=Lf){%FmHEYptWTHA~|NJPpX=F$s-Y{~cJyrj*a1?3!r70G7! zVl)$^3z>0Ux&KpH+3UF7KM$Fdis;aBCBG4w6(wS?s?;7y3f{SAoiVnIyL-lVl^=3X z>*>o>BVQ(g&y;2(-~kzb)8cbXXZfmYb$=9=VR=?1csa~M?7C(R`PcJkRYu&OZHThUX^saCd^a8K;tesAhw#fp60 za+2c;#tA4uQ^|GU(KjO9x-bTTqlx7yxh*uZyj1hn7bb9{_dE=L`sSxCUvQzw{YpxQ z0kyKRbE}ZE9caD?!Be!$CZDFU2ih9>$#6!}Ce*--h`INOEywvmrg#s%pUQ{AR7UkG zvj`-D*R;r5`q)XSbQu%<%P2oMuWuu=pca>eyFNskSQ4DjnUQxJfPZUj%T7zASHSQFJL4+a_}a*S=^|hh7S9@*bUMIdHfNLk zoI|Fs25i`u!Vo7wqDRE8HB9w_I~ZiI9Z{T~Vc_j%tX}J)`VPD#ySwDihDe)=jk$6R z=WNT&Z++=8G|MQIG`r&4+3FXSjNNb{r|xHH{NR`-E6d@vWuUMfCPC4;F*JEBOv1=u z6MD{v0UDEk{VJfw#EHYgNnPsmsO^cj>ulRGLJDkO@C3z1>>zhz06d5NWSi%GgrM)g zfF(uleWJLgAH6Y|*bJ|Z1(K7fv@e?{%55)oZ4m{i%rePJ#4?(`fzm8-WxtP5ucT!4 zV$bI zLw@?HP`k=I$g_W5P!-aa?-LYGNO<2|z=9K2HJUI8PHN*~_1r2lMkDYTvX)L2VM)o& z9tyDnxv$!kIzabifCN2D+;Ab$i7A@EDMA%3vU}kb6s+hXf+-@99nHIB6@g`U>g(iq zW6-L9p<}-@*?mfRJ25?KmNOdL@a^~>RyDgCq8*VBO($aZE^C%TEL28A)NmoZFqP33tCr!ip z+ZkLU*bp;bg(-xBYjHFY!NypfKgCQLyUhB70ITmG@4cygycmRxrGvUxYTDK3=@9Gnq1W9DS zE~6K(rwKRb@USNGNQ;rI?(#&PoRCmbBxDWRh!C}W0hdC`8uTfmKnM_OIKEPpt`hQp zO~V4&A`ozzej$3OsO4VTw{YW|-%8L;m)A|kKP6-sg!tU4ncg>`%cuR5V;Ctr##WKP!ZyUK5>m6^4E(vMF{yo3!he1hrxZ9V_Z z@J?o?S@CG%T8?|!-(V#kN?%fcg9}z>{NbCax4nAl*pHF@Wa$)(Hc|LVz1kI_jfb|d zMschjmT^>oq`fpw>)0*VbACmuiA&?x^o%E;kTLb|6F-Ekx_J?IvdFrE%WENtyh-*# zNcs$pzg|~lYxy+bj1qV*5t-{bBzs2+fd^lv5d>}^^XBG6)u<8C6Z)Bdmww_R7YK&g zin7R4hK`N;FEyG%wr&M`=EBl$*T&8K8eej|JT^~)6DbdFV0LZkHQvcb)-;~LyCuO} zV?mY?;F|$l4Tu4(E9-8t{bYa3s19}{q1oTn?+{XDcP><~VR+EwJKkqhJ*~uD@B5uu z+|QSMvHr>IQPGEgAcgyXK@084W~nA}D81rHo?Z%u{=;R(V}dm&?hntI0F-(KcPqsx z%!lj4f}OhXlj1(p(ix3X{%UL=p|7=L(#j*mel<#J_nYu3jorXS-E@-2D-|HfdPj8yYxC zqBRt_2yitlz;|d(^~vX^vV)_V!>x_(NJ)+sQpvgNI$1MHF!41f>sHo=+Wm?Xgqm~L z52xP4a!Qc$X=puxCL4}V&@s!v+izAM>*2DjCsipC8i;OEk|1jw2-PJYD@4bbItsK4wB)kL` zOaY0fHf4f_;R}G{;)He0jWPSIyL)41CibNDvcFG#T_p=HyRr6E>C^D*8%FD$c3~O` zHQgBFpuCr`5RfcQ$3(D0~S+$ zy(c(1p-WBMW`NK*roMHUo2=woG-?x%i7}xCwwf1xN1_?-=G?9F9GgVY?;wAz6rod4 zm?b-c%-An~(!PpHqNb8QS|FtMw2&~RCh%h*Vg1L%;N1{8#lt<(Xl?gCWuJE}s$h_< z;Q&yhHpAQ_>(huYLm<>2uJ!~*KFd(zv)B9b1my=c)J2?mCY;*dpUwoz6m@i-JyKQU z#cV>HEdU-^r^W#GujQk)pZOu2)D^)^8cq*XV+}bl?WH6?vD( z&uMDyc6p>K<+J_|^I@IZ4%v_ zP;X;@R-t6ia(+g;X@)BHH^k-a%QU6xS?!-&Ht*?e zI|J2?XC6;fWy@}a^%NkG2HdUl&~LlVA;qkNo5H)yZdD`#g?rl`<9P$ngHy;t6(H## z{5Ub$JzWL5;W0R}iTy7hzp^d3%%mf(zgW(H0i{UAF>t2)i$CcNe(xDpB^)w|XEH2j z>?fe`gv=Na(y^@a<8#YwCuMg*M!k9sct+Od<-42;ReRyD_7#Ur$udt$vEgblq@fLK?%jm!amb>Sd-QPkt3wEk2^#AYxhSYO+Jakgkold3+Z z85$A^elPFWdx#Y6`k)HlY~hu1U}hXrpO1qhUhM*R>rv?)2(HHzpQpacrHmQ`gS#_& zNmCJFx>5_zTaJ&0Idjh&VwE&!i9H>$0@MKcC-=X_FRW_f^2eL?!*hVRpM0Bt-9F#< zynpSn$sh4&WIPczLRW6ggBGeUauaUpgTkh6ik0DGY<=|x03mNAuLArPk} zcNE=sXLy)@gtQb39p$`ibO*iEe`53poJ924JleCCn!DBlF zvu1(Res>JU+BK|0gpcQc$O)IIAtnqh1_2-ETUC!VNo2whN|ok`PB!+4pKcm3S{2ps z$4xY3qUacKu!LPw&uMb3eb~(v&#@*;k3}}5|5I(_pFhppQkQOvEyLv z>2I@1S$k~1!?=n0gbaOZ$Z#4V4SIC)=#0vCAgicq@e)jkpdBWEh6#+E=OYuu*~?^o z_nnMKAs)d<9BQ_&FD=!k89aE58J)WE7C?~;3rbi|N!@!O0r62u{fKWG+}n`xp~zRK zwJER=QBC6RysqiF*++-t4Tz}NEqR6NLn{p52Y7m*6t}!O*ccmJg#WyNTk=|P0Z2sx ziIb(|p+wsDF{{~U6(t-TX$9)W&I>Ckk;9D9rgC_&s|Ct zx+v~h)O?+R1K9N{%v9?erZEcAE9s&gC?O~)$}eN-1+8j-lDX>$L)n>E7_oMXEWqHn z*26F5^>Z(wyr(b-J|1T>OR}t=yBx#=ITsaIVu= zC~|&ZSbJtNo_zDpcEFLA^bUZ%rWpB=Az#1sKaQryar7ks+;yEXw#QMI(|^%5#k|p5 znhB#BEEP$A;dQ5*{rdHFO_U)}lxkin9ozwG96-J@pK_*K8lMZ6*dP#Lg3?$eC#=4Z zIEkFHu+NI+wH{^^DDQoO1|CkOYH^dKkT7Lxd17i{OAp=4SJr(gbzZ}Y$%PPSDfFES zBNUbDXv~VRsRc77dap}Mky!dm>kJ)k(OxMivue|SlS=bvM%Fnto|!4#eqv&B6c(3Y z+Q-Lm{K7r{mOZ-wd((z{G0Gg&khT0TgzjZ%{ml+r0= zW|3ao2;+pZ9`U#E9SVb0XiDS3@mJ=1!U056Pfc|hWxiY=d@HshbHqUEU?t+h#vlB? z_)2!xr=BscLrnR7a@C7JHal$*_M8U}0(Z<{%Nd%g>^N=(zkq;a@P_~HRyOloMkDlp z{|bF9g44<};8QVMZaR~eK_^_uhF})-rcdWBH=&1(VE!$1A1TI7 zs_P|+0}Tz@9Z1;)_?>#CzOslNfTpHi8kM%!5k;toNj zn&z~EpFuo{9O%8cfOw`8-K4E4W4aPZN%jzHEJ%JysKvksX@R7N4B;8`MOzX|vOWA$ z*qvl@Y>vpb172YGjRCUV&w@p-(0^wejivO*jizuU1m$ zfpYO{$xc2bLnQ$fB_?!awmUNBZsxykB_BW0ot@^9=LlZyjb|=_ zSg;AnK!5PBwPnws{yi^vE1KCpUu^4<;YvDRDVNq*_V$dsQm@;TQSqaHA{PJcl?cbr zoiMI?gPr>A5|NFS?53c)MH=PXax7o8V^F3SX45$`aOb!qkV*SFQr53zBgu=eC!nvX z!)oa(M9xklBhB;cs%R^XTWt!9w?`l0QJsUfJJI?QNKv}BRIMZ+R=_y?jPQ$R>COcqBqyQxDNN?*IhrhX-P&$pjBuD~(D(w&L8 zFM;zW((ey32kvA3(Q%1C(;&tUf5Icl_7Cw9dt2+0$AH@a(sbin4XD!k!QS=G%RgW( zqKgVVh4&R9>bGSBGk!ss_?TF^Xs~_1|2}YWgXhiWaPb3s#vsUl+_gkPCa@9hGvL20 z=E&4sH?k-_Hsk#K!7XO*KOX|*v5SjY#hh`fQ#F;y<4#=hLOc=BIP?{QzeQK z3N5ajBD=;ND=fI6`u0S4H~~(9fmoM~s-r%X2QeQs+<_qGFhu|@rVDX#X{B~H=t1{E zut#2pZ&8MSq>ksRMUrLk;iA-Q&rzB!@J!}z$|#eP-4arZ7C@qsg3`{3lq~G?6n+|H zeXQCCZ^(q=57VL$8>dKBo!NUX1MqzV@Kw6w9psUls zhz7?E|I`aYJqjg=*`UVMXK|gO)#wW{8fi+_R;C@Bed30ZKZQ70i;6 zW4Y3JAg`*Gs@+AwpqR7uCw!lK6Ceh@I@5U~@THm%w=(>oLGaav2=L^FzySC{ zXY4h9U%+p{=gWSpWEm6vn=ZUL(rWty55;7OQlGgT5^4A=Fly!6-MsC?$P*u=+3 z2+3Z)AJ?nFXRY5kkxBu`EU#{Vb5mzPKLq7*TiA;xFfa-S5k`85$yKHfy$TE4>CB25 zgCxh{2DTie*0b`ga9^Ip#y0~7m?Q>MpV*Fn!JO$6{&#)FJ0&gc$)vo36Obm48kf&_ z;e&>aCweKV=L1)}%@OWsSEni#_IyFeon&&cw<%i+&^s#gp8Z>Og}YAjTTR^m*!!FGbv3>{?Kp3O3*=M!nj+Sc!>zCH`ePi*X&A7KkPqHJCIyD2_- z>l@!I*dUu)7vQoUg^zauf>yc{8PvziM=qOagr*4cS~4sk0l z70LU)BoW$OZumg}S>geIIcO=!&IM3`cezL>>!+I%O%`D$u_enzpc}>$DK35j5M6s) zPgTzY#0aCtPIy#)fZnq=Tj8ZUaXt!ZM!{RB_RbJ3}43Tj2%a)K5~N-sgC1LBWXIp7{g}Oa!h> zbB)VGKgw{IjV2#bBFRiLXMs#iEU$STW~^x%&y18s&w-gSlt2=O+A)zrAVkgGGSNqw zP<1VTI^d|DY?oT_<6j~nJAmy+pWfUlEeQWn_#TbIzwxdpkOQ56A0+NH6Q&%TJJ~a8 zOm*e;qTG7E3#l)jLNwtuKUCgAwZ{oSIuxB6orUbRW)$+snW@?+$2;jY#RpYzRz@l7 z9fWg>Ex$G7j|>4(F8SbW{yE@-Uck}Om2O^1^wIBUBL`%4P}558|DBu`vQ0pIH0+$n zz2}bMzJ*;=39x5>8I~`xXZc+Xi~RQ?7Q&O;r{qjNNC}z4{9Gr3AxF-ihtQ z7uIF!KX>Z?2BmtP6a6?boLpJ0dCpYVb?wH&eF_r_H(^9_LOn|BqHGTyB&<#h=Dnos zhWzI8ww|Xj;;J12-4ez&R)Xt1r%8YzYB;7rIYCrq-bDJ7~*Iw;MJ3AD5%Yb>FlCl;r z8*eZ;QCuT`ByEhUKn7Z%quD?>sXn8TA+Ss7W-nm~Q-FuApvi@sQ3CY{4YFh|IB+IU znAQmKT{8NEKVva-G8ePHf#=1r8ztdtE`IZFy7ciu)*a+AAeGpcP!>y+SsjeMo~{w1 zul?i6RR5e9<#QrkNC0P>fs={i1z97lfN35U*fghqEb3^v-l-K=p1^@m8ls$Q32JU9 zryZUD>PQzh<4GACI!lMqw%D`}l`F&;8R_X@@|cWIl!pQ3%ndfFT&x-DI*GU39AV{R zU1=+hNOK!uj~=9Dv&%#As)dd*uz>H3?=P7p(W{0(le}}E7HPX!%=D?6Nqvg< zmG!ELSSXu*dqbl<+mdrmQWu2@I|E3S&$ils!&pbv6@@hJB&RsM#ugc2dP>R7X;<$J ztGGarc1{jBPuXEV3Sah=j@;O;e>l$UQd5hR?Un(QS?{MHd_N^lC_gcG8rrD&y-fsk zEg+b&Z0gI5esacp={7*~Qp)|_P;N1*u5wNaLwElJ7HdKgTSUX4FFN64ZI=GnM(90YE~9ESe86+%neqh!oP!qR** zq??Z#d+8k+-e&aIDmk$x6d>l#zFEwF5-w5l@>bLicA}o}werzqgu=P6zU%axnaR4R zr5B!?ToyI)+j4voscKwDPxrj?-`=vN_rxlJniJ%Ncy<)vlGJEFwVW`LKKdju6mLLe zxbOFeF7e+5izzZfLiY!P0O`F-sH#WdQRqRglB9bmAB{45ZiG9?u7^!ew^$s1aDqTr zsyh_q&!FqjdL%mS`hdA!zz|S6AEos;VGV=l(z=Ww{*R3>zjt8`nneuw;HoF(Oxff> zO2Z27uG%AX<^NC(BQiNsHwvppRNo_)n@L`v0wI$HQjEI;#RL#B%AGMwQ?A$5 zW7%K7U-Kowg~W4426iWqWI43_blYAnatYuR_$z>1H&SmKY~+kAodkQq+sO+A6$}da ziBlQ6IY<@w?{EW{xMb%;zAdL%ojM)|KTHE4fsWN*qj8RcA|1J^t6@%mPs!Whl~v=F zbgdu3VMcJBX~A^xWUaY{$%Ut0B4jYbXd27CNKSx(MAahxYnIw~A5CE=o#Qdjcz59u zN`J(nZ3J~sI<@7OpfKA9MWvpqThqDoQZg?QHwm$?d7e-!5FDF!?dS$Pqj#kEYUc>+ zF*o{hEOWZK5PKpw74^Awy%4f|GjJ6Zb5-8=Gh_QZ zeO7|VmL1)^)2nw91e71lX7*kbGu}O@`2TCllC|;Gwsu}G?peqb2milO5=|&>1jTTC zfIqn=wbWo<>;PMTM~Mh~A=(rbTeydXK{)cB`Ssn{^Vg~0SDUu^TNd`eUOlISi%#rIjn zuWUYtz6P=g$efI_35zt{7Hj0r-bXhBQ~;?2R>)OU>NU-OF)sQrJN)Hn8ivGbqe))+ zHhyY&ONLM7-QJ<)I&Wi*0jfecYfm7A9Ehlh$TIsQZx)miTawAz^$UG`msMs@-pA!c%)C;A%6 z9})$BaS3^@hCqtr0+(bx9$B45#vm0#HY<^MF{RcP2B^MV0ai~DW-6J%u!|?5Adah< zubmkYOMXQxNT7riDi}Jr(?#!hrMnl|2j1bKPtJDkOD4cWuAUr0cs3`go^}F1qrbk!@9dn`@WTK1@C1pPLbIiBU3C5i0~)`jXZ;5ri*ooJ#OeT0s6>Oy3knJ zCm~bRCQTY1ACo1^A~Q^9zTUB9fp!+Ud%P2A#(Kp-kzK9aVTLiN#-XDP?;*i0{{?h^ z)`|y&esSt@xe5>jw%%_m;{##2qPso_RtYnF;<;97`tn zD?#5sPxsS90_|mliSJr+)lbB>B`W`-$Hl7|0M&Im_uj&uW`9aGAxrKh$$$%E{fRwY zo6GPd)0e~Q&p+?|SdX))o0N7Tp2R+X_ySw@y;6dTJNC@G$sN4*s$GWpiAodB9F&c5 z8TXOnD^UNSqJXyWo?>4})T{ruHA8$t!3RS`R0x_Cc#Bp3Lbb1wQ7c{2C2oc{2qPMGn3MnsV(NoAH) zk4)1-dL6)}94QMdw3y|G{Cfv+xl!M-#{BP9m4 zhW3m@*vN-%?%)<4@Pwn&)l`Zp%9CPa`fZPyJY$TLFu@Jm%{t%{t@?(43v(JMgGB0`U)G@U zAQ#g)aS*f(lJebBkZ}1YYwe^#GF1(xO1rle#skAjV9=I^h1D}KmWXCA`VH6i{u9NV z(M)Kax8v8!*mkitskF9@e|H;1SO83D)&Zm|Cv$#L&s|Y}*{KxKN@$xmr6pDC4Gfp7 z7KUK?I7m~5x~?C8XfwU6Rqg`#N!J;-K)Q#aUG^)CuH)$YDsb<0KBs!{a%x zJ?-3lE>5u^QSx0?3+5#pl2@N=zfd^xD}@4<)d@j`4Nl`=n&zgjqH$1Zlx=3Zpa%e; zG41;Z@H&M8fl=lO&&LE3heuIe%)8>vNtrpK`1fVW>C`WOY0VUO^27Ejf>^&P!4cd* z6g-D@+tTkG682Ey>T&0yz+_SU{p}jv^LADRE8yAihf9XZW&VWt7Xshrt~$tdvFP*` z&2heGovbS=7Bt)-sB{(&Wtwy(IYfqY&a9 zVLZO0DBc-=4UMp{)JXEd$lq~qU9vp#S@&89s<@M^W2GshY0F-p72Ck|(|6O&?(*)U zEJ|lbKYwwo@b7#ip`Yavl6;B&jHlY7^{DH-F=z~e>CyI;Oc&`pdr^_g1p%FZ=T#Ib`k15i1d8bYrL8L3kqo47 z1MEdIlCI^ckcbz>^Uhhox4J!vZoOMEmK~ z=GVJ_D*mR|j;|r0n{zuixtD*^(Pz|Eh<4~&yT%zjgjjq5nycmFwB6HLd!~?P@9?3e zP@HBwV?COCxR|SVuV@e5EL64@nSONI$gt#B`CXclJlrp>?;{h05s$z z48k(LQ1;vKc!Ukm@#sMQ3_`!+e3w7+Pvyoo@M?b+$@~O8ESW34Esd(^JhFik;QDo% ztaR_3aw%P?RA2{BLN)b#T=jcoqGLSpSv*F5tN~~kPN3id*ttyF%FCbXNz3NZJe3l4 zanqiCS~FWp&6lNG@qeg)cY{@({!TAFVf5zIO$FjAO-ppD&r)FuZtlYcl1=4x@p&@N zgm)jQG0&_dRAl%m%0;T(ShaYchx zIr+6D<;?xKak)$YLR^-fg$z<@TKH<|X*mo;E=GQvnn4gzjnqVCE?ld-n5R(3USpi9 z+k^D@_>uhZNY~kaVqfMa)(YxVrd1V{3IqszD@1}dDSjB-TekuqYgVWm(|SXk(G1*x z1>D_i04ys9WV!^b!mw)9(s$>jnWVF-a5wc|1?5Lz4vv3MIFqnjg0*Ftp zdvuRr`>MWhE|74m{4EiyNpl)jLK1(OO*1K-@{lcwrw^eSg%m= z{dVy4EG}f&ihXs22&aC!aY(<5NnEF!sPTNBg66_g$q{-BqL&g zrhdd#W=6t)_;v5%4S91QZFzoLQh7w(jlu(1kTyhgV&IZ7%A78zcZ^$f%p&u(J*vXT z@&%L(szP*bFk+|gblc-#lt1{S5w=MZ%8{gq4E3i&Vr=H z`*3%&3!1kUWvTxknfAnRZAGZ1gDTz1?|$}p*zbe5s>seck7+or@@{iY!=e;NS{_qz zRE(Q{(E58A23CIZU58}9uqgin<8H_=5)E_|EnEQh{TTpDnP#pk>fl_P#2&qrE_k1D>0V=zeGl2$y3nu*F`sn62BeR6vR9 zRNx|&6}mU^ddGE|Y120`qKIyf9+uF`^HRWn(vY3F1_Km5JP zAU_k1ooNZ};7E^oFG(6Y6N;C4Mfgj-Fmqf#Jja%Ow#-3kLPlAUX{=w3|uN9yuPK0D?*S` zVy=s<5O|PsLR#d^3{qSIguil_GxN}Yz01`4f9Z8;>fUGp`3cBNU`|$OMKmP2B%D?7 zvp`mi-_j||Od#&G63z5H63>@nUE%Hvi$012NuBoWy43qa$WE+qg|CJl zj9!-J2qLUd!wXMW{UeO~*qNOlxs(_CF9 zhlQg$e7kp&*nIaP2fLhn1+|WrK*4w^;xhr&rth>&vu-167X--G(zR6}_m4h3m;5YS z&;L5cajg3siW9xCfn8QfuH6HM)VcMz`nEL2*&SAkPUjFKg=aJ^?a^WqBBB1SVv zriJum0gh2O#URlpq>FY(Rx_Ch+Cr?NnH#la>Ef=&`O3~2`P1X7A1f|@=sL~ox;hjD z>JYdhb}!u^ijLU5GmCn14e5ZhDDL!cIm}ib!ofZbmDL`VO>4=`*^``^A6X#L?AcXWyT0Fme)_g{2zrsosK8><&q@Gu zWcmcFa2w(9O?~Bqb$AlEZDaPfC%Yt-FoHM@Lp2C^6uJg~Uy1OZP!m{`F`0U4e1B3# zWz8yj$(*aP9zCKSFkUxBokI(}HSnmbfCJwd!pIR=k6J|N$EP5FyZ7+w6h1>N;z{G) zTn_{mpoYQFf?+jXq&l%H52($GrmLzW zD1zt1sBWC_wyn{BJ`tV><1TP@$;N3p6uED?3)6?J1!a4x30qlO0ZHX)O0aZ}d+zX~6O@2toGk&6nd|NMWoAG&O$bu30vTC|N^RR#5pH*c z0S%h6b0@fnUzmCnIglC=1EpBp~p=u1V|g6vsqJwm>5$pK!y1^&ujK7M|_DCc$6Dmk`%=1l!z zLhWMyrrTD!%UI_v{2062Z`p0TW<3K`BZ+aUuR!DZ)%XR*G`q2Z53<3v-X~NjTbq*P z^AweB9EbCN{jQ4&T|LiwGE**0-!;Q zJ(^|+)lOUcME^|F?%~&$&?VA~<4@vJwWK?1QG(4N0n0==mLOm?AKM?r;>bmjZ<} zOtf`0QsL9(As?xX(;m3kR*h<&dtO~nOH4kva^QSrRq&3NVQ=D$mCI>4j&Zt@@i{-1XMJvBWcczPCPGs{%I^QU&NQ&BMK& z8dWiWP^nBAx9Hd88Hp&G3+vpBQ=Wc02&|+vpB!pWw~$gD&pQGeWM*6cLs{EAb&U_K zw~GCqt(>TuYLnlK5zFuE#Q*e?x95BMo`DV<_y+9AMr~Uiw*B%w+0(NJpdPkKOeHIc z4fk@=cUla#ln2Az7Pcy-%qs@M+AZ)U&+l9+pR~%4DOMycowPrtid2 zt_w;>;vbf`R0Yk)+UBxs9a{M4Sg>NKfv=jMh7{7hr{9(-kj@O>p zBCrcI6y-ylmLEb~A~gpp)^N$3<@-u;_u|P}YW&gxhz-K7%pTE0tI<0pg-lH6lpZvH z|50fXy#&P~21)=|$=oH?6*7UzYD#C-Srbi|=3@rzmf3g>Yy?T7H{h?=>XDz`Ibaf( zp23oO3e7&$R%OM%0_=0pViC#Si|Y@5QI-dEuo6NnX^s~|a&jEz%Qs|cXs+BJWt?Z? zenQdJVED;^Y#2FF^e8seAMp7G?fM!)7%OFKUFv(XtcXK zcTL1qjAg$qs7I2c$%hmO0D3@$zfV!}fE?&o#DQ!ysA>sS1|)!Vr`}nIU{`I&2{LOGhehdZ^R#x0#|HR zAgnQKa|6gD_NPZuYMU<6@$VG%jumDPf92SmVYyw$$ADU_177(5+3x5@-JAC?+EO+1FM6Yd^S5T`Tk$*EeG$**8pmzP@)W= zR+*AGo3hJ7b&H`!Xsm7uiw`KjEX)g;nLM$lJG#TO&A+zXue7OnVY_W7o0O4te|O2B z6!_r3zwU;A8EmY2AiI-x$y_guJU;XcG7+CgFPF&Qyd0dL_WPdNb#R$6HS$in@a?{c zUHb(h{fTHtdDI#cB6)~PXTMH07IBDJgrC&cZgSLETA((3Z&s4s0PC%k{e(9As4M51 zo%z#qrOqOi$W>7LE~7PiU8yK9f2RXYJX&0NcR5s0@`h)(RkO5By9Wcl{@a!G&e#uy zd~(wYsR`?xJkB}aL65E2w~pp^Fo@BamXvS_7SIcism)2mXAS?qh?40p>xW4$f6j2s zmf~a?#K-yt6TzS87_ECm$$hh9pNuQ0j~qSM_L*YCHKYZ%PH=BG_L9^rf9b?f^Qn(a z?l`ufIEPxzOHy{MK4|2`_}ddBqPg8g6=+aU%%MhKj!+CyUyP1q8(y!ld``i!sv)y# zDz)?*uN|r^Tt)M{ry$?X3&{8RGKvBbA8LOYw0*oGcaO{RuztX}8#4evpc5|l_Z!LV z))CqYDW`b?%Nqp`>uB}4e)waMztiIS|b*waWQf%PPVF_HMm9T8_N$wW$cbGT0g%M`qFZJ=ED)tZ zrUJUF(vkye@E30t4bviwuBGAtuB0CK=xLVGvG)0`lFhEG;E?UXe-0yddTg4gmm;m} zWS2vAM8$Hh9JyzNf8W8oz|^aEvCl#cPPmAA(r7|D#gPfKg4YO~P=|)pH-T(hyVWA~ zG!u0nm-S`4YzOx++Dj#ICJ!52j&^y0#RNRCMjkJR(3e`B;(APCMLW#{PH6W^w0nb} zJNKZfg7+@n57zRte^Lp}G{u4%?`CjRs>U*IMnA%n0jO3Y64>S`n9+H{7>@>E9M#j9 z?oV_3z=75epRGT2TpeOF7PZH_>K>0E82gG$)Un$slQ@R(VcW%mlLbPPuM*6)HKus_wJ>JeYf4ecGfCuS6E{d3Rp~ z83?JQ51rIG8 zt-;(K!_pQQ4p_fCQoBClmMFwy42dx87=VBG(A~<__>1;7mN-3LxMkJ zCJJS4WOHf$?mRR1&aC(Ew^-2ZV|&-BQ&m7lq@YYEWMXFo6t}Yl(J|38asy;!mF#Q` zZJ8M9gzc)(Y$^Z!^c~u2vD*Au-!phF}_I8f{r$t0rMOA_pASxuMA_f4e(E=n?l~w-yQ~}z) z>o=nX$f>;h|M0vA{z;b=QxQ_pR1jlg__GE86Tk)N=w$JS_J6dIzbga$E$uzk)X~o7 zF9HCiIS6FW&A{O5>Pm0s>;$5>b2Ov3xBg3?in)aoz}3#t3h;ma=?Jt2{?!;~Ta)*8 zg3N*cD)47Z05TTFKwBr^pCoa+e>rX5Tlt>!ZU_BG*n1;De`;F)D;(ei1pXI|xuMfv zxiSh0G5{Mx3tJG-*3j1YJrHCFa&`h3{AGLp2AWX(OCS&+;_T@7heP(?F311S{9C%P z-TTUPtUbLAUH^Y~#|&+qojm^0oBv+6v7N1xg%il>UloA>QwwY0AN5Xu_RPZeFPp58 zoTRvzvI?Ed`{3Eq$=bbl$Ce)C2Kp=dPdy<~8Eyb4BRhbJixt55KBQu{CL(q=Ht(vP z;QzEw)Z)EQAUj8QhX0vrD_c8PThITsnp)VJnEvUyiL-w_gQ~5CgELT4^#5YtP4Iu) z%zz*OBLL_C0J<5QGyI|YYf}E0nf{pHTj1?!Z)XoMHMDjDdRv$R-#_3zoeW)o0Fa|I z(A)E$j{ipROdJ3c3uDmxkiQ=k_`j-4+M3z{xc+5+SMqPy|7}0zUx$?H{e+s>*;=~; zOn|2F403;Vp!Z>*{Qu{S{STM8v$eIHp$(AozZ?3$QHC}a*6#lu_dg-(z&}zc{~yT~ zPU04BKobQEkg@r{y817>B*^f6=!I;}tby-4@|Q{V&pEPwAK3Rx$KubO1)yVMW&a=F z`z#t;*#e!M0PO!t1HSj*fAqdL{*PJ!gRHEqjJ$sw&Hs$cUqNEF#&#wawq^ikHg z0Sv-_BMtzA$lr()z##fJ;sP*;{ReR{0vN>qMoa((iN6sGfI;$a^v);!H+tuj`5V3S z$^L(h-udMIM(=#`|3RGZdde`=MF5CN}Y~O$9>mUAiv37scy(ioKm-}73{XgKlILCj$ zcO_1L7ypBRF8`Fu^uC3lzXRU6K<19Xzw5KTs{^^({UhOBpz}ZA``TRohRpBbZvTMq z_1ymf-?e)D1^@e`DExUM{<;Af|2{hZ_jdk;l|hbnRzP(NllQ+H{t+T;2y(P=(`J8s zzrL8>?eAaz{!RD42+01vdH<0uENtiINyo~`4xnS^VgoR-GjhDIhlR!azjBTL^^E;> zb-thRf8#%I2mlCl0~*6GFWMRN1X-puhm`q<6-<{yk#W(VRATdMNX0=er%!j{;fUsL z5d#GZ{agJq$P4XczHsaMB>CGGYmk2hVOhU!v?W$e-Iyo}ZX5c@`rsjp361Bd(W?ez z$S(PneujN6x7R@uYU^-f( zyDg#OcHu2ecY%T49x!8~4EuzZspkyxL$JrCpzV9RQMG7N@>TR3s}~PUpre0kdhzjW zlqqcyRo(n+?yxeJAgUw@SmPZBgpufpL4)Dbg5Q~gOEYBdsdcSa8w$*Qphaf$)ttQw z&5q|k2M$0->Z{|eD}VL$q@>_I=KN+v81Qj_T2&uHu5yBF^#5 zjeRX0>Bzcp_Mi@zQ>Z8M5wU;V_BXiDuM$8nGj$QraBMW{5XLmzqsI`_1Us@wWYAPt zxVsRK&n1kH5cSZjLh-SL^#oBXV z3gp4J+&?+k;F?qyOhr1y)omj-=Wc5^!4rnN5TuUSKXZQbF&cuYzMpBholcyDUAsM z=R`EKTFCf6E}0t_)7^ikgXbF>e^>aY{ZJX~bISYl^iuYKv4yriHJOA|g+CJj{i6tK z=I)}aqkqVPHe)|mwm7si8Qbpl3(9(L)%{QAsPSKQs1%!;>PJEY7d>~9LVLN;B0O$0 z-pclnkUHOqAKGmE0aH7OEyXV}%ftzDoH@ezIr4_3^Cba!LJ)tNY}1RYG}RhfD&NDv zDD9t9wqL676hA=fd~Uk!#u-lRSfH zy6j_=3UUu)hViSy+mHNa!_-vC>O`fls;_WGR{NY*@qYE*{wfkN6zdL(bFrMe2U9%+ zZ0cD~b0dF7HB${$N=Wrx;=tlwb$<|GOoI`-3IF2Yo_|On7e@$Uw+KAgGC_oqQNq7= zSF+1}a-R4cn+P+?j>^?Mo3hM0e1R_&XeG2GV9kKmnIDLHn>QNyhVMj{Y_VNU&h-s` z(ng`?$W_T-vh&5q2cBeDlcMqQa4+;OMV&=|mScbC&bVyJU@k}`mt3Zg^k;0u_F>0P zCH%5p`z}A_X}wt#KWigKt8IukI84`UVYZ1_H=8|FaIZRZZRULj@OIyZSD@*c20HevCi zyiR}VvwpUs;jgj3h`zl>@qeVcGekkbjYR=|1?I<$0io&bZ|r#$0qRPAaCL<%o{ePAk`N!yi7--4kJayb8T4}5+)v>kBry3d&R2kz(&IW&>! z6Me^b_we@=fcY`r2c!C})XDv77VWCiw~%u3q}yTQ{plTrDC*%vBw{;RN4cPKd}TId}8v zIh|nR&6^QQE>H7^Cr|r9vgYou{!f}snqRtYklWJ@bC@nTWI{7J!+U=IsQRA{5d_MB>P zligO$qccxUr5mCl#^jS^h9#V;&%S9ee{rEF9B`9i;S;y&HMA(XnzjDm!A&lxC98-maGSS|_6(t|?8c z#)2QmW7qHTGi;lFtoT2mE2BeUd@wB5_`K*=1XViWTUnWIjUh^2UIyKRx7?9rw(^b-zn;-@4@B7h=x_?q$PneC6!<&Pztc}5^(1R zH-=Gbt}>M-ypW_wsMOyOj75~xJ#u<7O4l|ecfWW}xH9IV5zh;4B7}eA9?6HC)*ai4 zk7iIK{B#;Ut|&ZADO?6w#qHNbHbD}bG@lF}af{u2rhn}nSvhyVy*yYKkIoB+lPc0v z@-b<93~e57t4f|iIx%QK7Q#c+%39H`bOY;#libN~pVOO-=^-Tu@P>vhZbOD0zmZ}z zO~2VfTo^9%ZB7)8!;^oOwWdW14-GBk#S@PFYD7h{!CKOz^*Rw65-p*l?}t^Z(>g&- zx=vWR{|LSB|t zPi=`{>oaa*YcR|Me3z;Cy%Q;Wok5)mZJ1s>(aE=j4!>txC?GB%y`*`({_aa2dthJqMi}f$sAe=cs)>jjiG_hZ^$`W)S3T zJfu73a8m7X0YZN^&XO%b+DVs!-z`3xq&A%BN|Umq2S5gx7XklB3)imCSwTS_(Uu(L zI#sSfNK!LSwB?EyJuC%1CVbyO|Iu_Gy&Q}c-E(@*lpd=6oMAdNp=M@5%S}XxlZo^b z(Bcb@hRg#JQaRH0L2KmB^7bp5H~QeJ2d0PESA zWyqJjWQo`4-$p<7A$pSKOxj^8K1F*bOrgVR7lujaAi_iDsCew^>It3p-s^$oR%6E$ zF=uyPuz`DTT{4pE)Ly_-wHeOGNtOSU^=EVmdS8F+Mf;b4yhu}U5`A#HESUp`-3gxt zs7F&(-TCB7Be?E`@D`OtiFp+^%5?a4t zGsj~V3`OMC&o|M2A75Wp5}uCq>t@YFgsf};?fxE(adPrlil*)CTg8u|VtxK@wd|Gt z(D{GGZy_@!XrYBD>Mk`Yc(^o<-d&Wa%Se;{RpK@_8!R@``Z<9~;;CH3rt$%+fxZ||1nIp}go7;Sx9$4)pfzsN-5z+)dsu(2nSCAbwHTlcYS*Hl z;0Hfb+aH21eCnxdY(II_NUoHpH6^9dX2}SUKfO2Ra0E!VrI# zHEZa~B6ed7*T`6ATld3#)~nKa`@mdn-=buttvqDCaSk5JqkqMQ7AepY?RL%B3r3^0 zX}7L-C6|z z+pGe_59AfGXX>3FKM{b`lE<3*I^%zL&jg-NKAb31+P^sNGMnK)K+-!-$TKG#qd5s~ zoeoS89%W4E{}@!b;L4nA^&YQ|>9aHje~k}u(%8D~^8&L1w3@vTwJ&&JKR+qXJ@wT6 zir4$)B7?GCEB%@DtZ}u$V9XiEJ_pp<_PPV()iaRB9@!6tL+yybF;KtO0waHJTIxs; zsexh82o@~+Bmtf6fZ5;pTd;uJK;=5r;!=6YF}9Y+XQ`oc&n&%YT7)|Y8fl4C=82n_ zJTF{s@|TJMf!(Y03lD2_dOa4u{*q;L-|+UOa#WBD+GR(WD1(gaVp264^u`caqo()= zv{vY;`O|}no_t;}7l*`YljeW)EJV+}L!t<~P=2U#%50~lZDaSSEiHq4BH@m|My4D`wM?RzS6i`{#`8hnUg)T(JI|KF^7BIo@+zv4}-~^pRbWurafoR!jOJ+7a)+@^Oe%jiAuIXYL+;GA$RQTc zXk0PNWmTiO3_Hr4(b`|uS%j&JI@4Ve zX?hh*z6B6d175)zV3M@F#hZN7Y!HYJQXOB^q{i9DFEok=R!Y&zu}S@$(9;9S3WF1b zZcxLq69E$~@F#z8EiH>F#S?7WTUk~M_BJ{27P%J7?)?JnMcdz~d|s}>mkt&t=fB{= zx0ms)@;u_+E0=R$k70b@Vnu&3d?h(L&6GqX`ie|QCd9FXT~Fv@=nGz4T0g2`(Pw)n zlqrM0pPz^k=O1hOjinVFNii#za^7mGc*HzTF%L>0xyyflZ92{zNcZe`&KbFhCbiI0ib^j6M`l;z4>rP44X+;{wE)e68>qKsNH|+dI_?)&8>cWwS<+ zzoy5xJ+}`IWjy^hPkZ1wp)rH$KyfTLjpD|N4yxc7;33EN?ayW-5)LWu8wl)GwfrkG zH4Q7<{TT#VO2nlC*<3pZ8l-C8@B|v&t~I32!u~!+f-sjOGa|bh(->j)Xt#EK znordsq&25u4WrDD=pk`tWzEG+$T8$?^0p`yUsrWQSiE`E8UuEi~4 zCb16n35nTcI2RRuQ<+%<)q_h;5l!4Mu_}L=g@-_Omv`t%(ngkjx>VGNuS<-f0H z^%HV~Fn1@bR0pq446%^t{hD|TSmzuv9s8al13(oj#ld_-ZX&70ZOIsk!|1c3Q>j+J zNkXp8l+-Jk4fGvvAeC%!`Vxs&<8Gd-H`74$^O z?oq#z(6GW?ex`1WyZsT+&Qv_1KDMNR`8?lf>|hP%EYJ4IBmMj(*Q|ebn(g~f z8kg^kxpb89KF6fRfik^EJUO9qlY=AXJgO0|O8`y~`=;L3(+CYhWu7)lE}UPWrVm>V z9E6|ZK&L7WdYg7ASr%J4tVGLU;je}M*X1ksNNy}likVs~!(p9^0E8H1WoUKlIVdK3eT8#vcFD_~8- z4_e0j!(HWKIBfFmI6KgbWK(U}{Lvl$D@*NV|uC!;a1gcssQI9}<{w&2bXec8GH8pa7 z+VGZZA`}e*i8O!kx016t*6NSnoh%K~*T*JHjReN|UsIwF6mQe)ZlZLw*1`bAOeV&u z_~F+lYwRq&PjpSZ?lV@fxXM#J7D6CBno6{aBh%o{d@bIh23;4e86ZwS9CGqm+l$&iDo{ zYGQZ(VOC}7xHB%HvN08u%)|h4zwaGN!mDZz&cSg2-vU}J-9#L%dN@CCO!7v1HXrW9DG9ezI+6GA;1fT8bt5G?$mT6 zZfGSfLCSv>9@01W4u^dRcGo^e-A$*Q=RkEMXjxD+vb;o7SNg=^7D(=5Vsqo0mT~uH zSB0r?`;;MES;dZAx@|)z==CAo|Eoa2qwt{w_cw-Y#B)+o6xZa2Hyl)rJOyEc@DqCn zOaVn#Gcqy5uz)@mHZ_Mzwl!^DB_DAvOoL_%=dLBJmG+YNjkw0#hqskYw`+B4UNh4 z(93^*?TuQq64Z-8YTP+QuBu6k;|=brx}hRfjuSqDp448^Mfl#Qadv$>1qbGZP$prc z=o^kG<&0`0Kb5Bb&m>KVG>ouX8W#Ju&66G9lZ$o^Ydy+R@nJ&MUIkGYAloG}HK&Y8 zVE|q_%J{h3IG<}B6<|gl`No8iq62s+m*brks z6+553!gX;miw@0RPJAFnATj=IurB{Ws3(*E*8+yGn|FM57}%WB+&vWB47})}tE|G$ z`!9BYa0q4?d}hB}hZZr!oXtx=HwLMZp|29W)Az&G6bw;!Vw-iRAoOGpu_ll^lB0k3 zPyq4I-{ddY^cIx-)Ye~u2E9%;EAV^OAhQjCxCgA=M<(B(n8)Y>pt@|!FSt_(%`xX5 zUZjV#NVT|1UR3Al1>SbJW|6PI7UJ*}d=lK=L=ki4>x1+gS?q9jwtI=u@i5rs$ncU~ za&dIgU+pQa*b>Fzyq~lT=&u)?NZWrs&=mrF%kWDx-+p{Gxnl<}9JLFYohg%vj)P9b zzrowh<;Qe*$-(@P_H7g6R)~|&{3AK9%1Q8w-`U*4jk8*%G~FBAWrFh2ntGMG3BA?W zb9eAGif+*tIR2`1QmkN$OP;CoPJ6`bwP6kYa4|1N*R+;!g4c<)ZpfAx!h?U0ImLz% za4V_?z6>+sKMWi}Y+y@{M; z;Ribz;Gv_OjMDhy^0)Y`j3|HHpHpV~jD;p3tFE(6cVzwxUM*WCi4Yn?8Xjd z#+x-N4{3^o-Fs!k^D4(Xft^$4*_=$s{3KtOCJmvkzpBLFL^8wU3^M|$g0z%v8w6k1 z_*C$_rcTibEE}6q)t{C7JE2|)i=sx%T97KKU3C}18ycRlMesxiHwJ%97Wd)x3DDHI z=xSq{Fq41qB#V_MLkH(XhD~-?aoPwdwOe1AX5gAYj%EO$9(_=t@p}zAq$RS8c_)%@ z2=ACT(h-Hc4*7?M1o^AN89p&Q(P+2NL?&G@vC}ps7A(%aNK#?1E-pQTGtP!;ZC&Fj zHRX|ftow2|yhG_kmWzM-EV?%4%%JXPV}H~EV0JR9__EAw5xhphL;9QnbBQ5U<;9#^ z}=EzJkUZW~EzLUZbDH!vj4DY_z;b8Vi%JalgEiC4kFZWEUF5JkUDG?s$JQH4P z1L96-Of$x?YM{fjB1HxmAgX))RFn-Trs4WMosN!%BOJB+yM2F)>h5s{>lk@5Vn6P5 z7+2z|f-8UI6A~{)Dhl-wIb=xK3tJ$Gq)k|WCNXQKvN~!=-gy`r99gXYm*1pCv-qmr z!o@tg@e*r;*=9e}z){z7n}QMr^*lX&k|Shx@WPYvI(!*NVA?bvC{Vn51=?!}tZ!q4 zK2(gju$~|1WmJFYke(Ehr+@1n)A0$2+%r2ICMIr`k#X;vuLT=uD)D!^@Dcct2O2;j zF)dAVHKiRH>iw;=(J|i@Vk)sfldm$n(*kCY^YInvSX=>J7L7*YKC(eFtaZ!SQF-~P z%wph?p8r{TkkCDI%k5h+-Pba3C(WJiq=`w?mg2o3t(Skoc48d~nN9n6ZbxHQ!yt>+ zl#n~Cjq)*xX)$p-1Nr!Xq@;dQtOj-e62dOr=JRQ z?8O{a*TYOZ?r7}o>gujD!=YDIsFj9GRt{>ihFxi-GnIIw z?AvpDbUeM$H;f54$-Jzk7=!s@zo`JcD1{;QWa{ijukOdb`y79oQJjt4g-6J~lG6KO zcC*0Jbve#<>X^II2RqZo4Z|SF2<{N9aFcJ6R;R+AImbuY)HhchRZvI|{j7iW z#tOHc_*Dy4>}U`=6|d(+3*~5vj(mJE5iulN710RsK`StdDkjvZZ}-*sWdgspz~?O-U@%Lq9MvW9Fg1kGx^R`&Y1f~J^0HBFlk-oyx`e+ z(TdI2VThbhB$D40m;G}i@|1VoIBL(e>?PVr64hWWTF~{OG;a#B#hTUo@m| z0=i8$Bs@Ssjt?h`c&R1SK;Db`WEY-8Y#Ebc08CYKlEz&d=q%-pvk?4`I2eDSdp8*= zl@mCb1)v*hvVIylbNt4}--*TU^&1aLRfzmCE{K-pol0; zEi+q+?Mt!;pGd&)oTQgkhRuu@ubP5#cKamPBQh5tz);Adch@#tY{ZroJ@IR{ZR~ek z-D=sVPa|MJLxK6uUeNs0;^%+;_0~S@^2~hWUq%c^I%O%&5J}cmtb7f7uJy=WzESlp zE4$rg=gRxo3+1%Am`CR+?e|mOB$EQ4G6=}E`FgOx(}lu!UQHX4np6s<1b^Doi1{KV zjr*?=-DV{+?-0*U&CXnEpi}e8H2U6R$ZtfdU~Jc^9UE=RAHl0C2!wxi{{+KiUtWL> z$9IS30&g_N#WvNZA3#g-V)fxpoO6kVEzfC)Q!Luf4ec@HbxXLA~jx^$uYYn?S z#qUP6c*gkV_>lGrrs;p~aZA)=m01#})o-1>=|_fb10#Ik6-1Cr?v1*elx7&tzd$CG z%UNQb&G^RDJv#2l98O6Tmq16DHUpWhP%151s7huapbZgp-VF+lO9{lmj$MDqihUJ7 zF*3+)6^sqpv|H@tf?3a()`p4x=Hi%TA(Cv)CqyAL$ zc8He=|3%37Dtjt@l6*?ic+R z2PLL0jL!M|XDawwZG=hT-~yh$NwnyV+GaTF%&#qt{5F2* zO?LMdG!jPx$rq3{n=rJa%5(UyN#KGd^Q+pO_c1wx;je#&l_G*rwsShBR^vJNrNi7( z*r(brD}Av${3Wd>*1i*NOKe2W_Ya?=-?X2tL@y*hyv*I8gtUKjs~iYj{?fDR4Pnff z#Fxme{M!08Aj8>P%=l;NOJA|A*r;{PTPIUYE@u&@8AgO5P0bD*59{m3TPx2p z5V?*b;Nh+R$fQKXcT2;!{~{4vFRvpC__$FsJgh^{YBka@OAn*3dU&{ijyN*%;Qvdk z>M;&62aNaY`U#soIMy8u$H}^N=$4C&X5aavBaVN*d#a#v^m7J|sc`RON~G476ASZt z<(Y9z6j9Y@jF|wqOQM`~>`y~W#@Pj(y|{%~zFxg(amy<>LqtoOiG0p3z(Zoj1NP2M z7!}TAozFe{p9G2fe5BfT#!m8_$-!fnYM+WXyw^oc06)lY_BgLdF4wFBQsvF%E6HTL z6TyEUEj-Dvxz+vl(Org+D}2a$Ns}eqsBEC8I6Du*U4SovpnTUOxm~T7vrQNRDF;`bM`5F)FXcbg8$i>?dQE$6HhwApJ9(FY@?z*(s3D{ z&BaLb>#t<#*dKBHgt070y09k@n}tpK3+2xiCAY#a^J>H}RAaL7Cs2Pa zlzc<{Wb>VuhVFxpNKnI6_yQY_>n=|`RHK%bY^qG>P7;{x#UE<}u6c{`21AQ5XbTS* z*dBh$=4|ZqD2g=x=pjSD>Vrsa6HvrPmV4C;ER z4n8)oA|F{Bxg2L~b&4k4v0_qSx^eVQ-0P0nT{PL4B347VnUDb-^5q(SEeJs%uU_7i z@tPpkxY?d=pO%BX*QV^0!o zlf~5e-np`Lqu0kcoDJLC_9^b^C8-yPk(^n5gGJ6u$ZCfI$#3o%+om`|ar!HK0neI`? z@tuINcpqe8O-9HR(Yt)EU-#RKSmCHOo8++8GBHMc@t5;p^Q~dp1Ro?lh3~S8WqjBdc7SoFGvKfn7N621_FxYRm96WfC~k z1rO1q!oV)EA^lb88>GcIZ_)0wdEZrcD2X?c5re*|wTh-a;fQJW#s^i<2zzc3Qe+1` z^1blB=;D<|^d(&bp2~ls0$h}~_o*>RfP((ReF(BaP2)g{O6q5?w2Ux~uRI&2tOd1q zV(|mfN^(h?dYrub!FcEAg_}r122D6vaT4f-7F&OyqeLz zzC0Sy5XBLh`B3KdI|hA?LaD7&2w3Q?ugfGyWpT+FSP1VMI9+ zVhShNKV>$+R9h-N8=44d&|HHosE+^zvy1FRW~kZ0C(>Q2e)Z)iceqJZtO-}CC21s6 z9w#%e9P@{_XAOU68iCF3BvFhR(rdo`j8?|{yYwpgGt}hL46z>bW2pyU@Pf+X(5HqQ zYFEgP#n=FzTCmWQXUJf;xxscQgiW5YNoIYwXA+Wx^-AqTPDnZZ(w_om1zmQw4BOMZ z=nMf9(Z#4W!8_NJXNFzLa2iC*bq8v$^A($~j11W1xzm4wJ9%Tr|v1 zu))ode>TLRK=69Tuk80S(2UCXF3dBDBU1`ryh1E3gUr=WC~@m^ZC7R~#btUzWFM>H z_a9m~!NJrpdl5`W(FxETXtV0qp>TttZDk??KL&q+7jV6SmQ1HXZ&RMG{uK1%>lIga z2sPP*STuiEM5kdaIjmt;R$JGuvvv<8mgDJ*0hZub?9Kjouxyqq^9dLR_H%TW!z9PW zj3Ek<-x|%Hc=&cdgGTEQ51Xi722wK?PV(i;4GrtwW~rHa-!S9P8F8)5TXZ;drzB;s zO#<2;Ic)*v{!!;{UR0zr!ZM=LS$1pFpVY|P-jsi8d(RMEb{kvqmNEmDa8EGrg3(T9 zr1~kU+=CR7C_hIx?V%@V@wf8iR>T0SCVDTiBH*Itd&tXl&0Ic?oyio|2aN2DvE4$& zr&Vk^KfQ6maGLS{ygvKkaA{?d9w!WxvEhYJ0qcoApWsD8tGTWs*IYJyw4b;tQ~Sy- z@uq)C0zu$8R>OOKm%DJJZZmpV5g74$a<U3TzU*FGbv`ql!e+cS~uF zGyP({;r3wJ&>@ZJpSHkWo(I524L1BK_-TJfJf8PN7d4rSuBDeqpk-u!6zak}2IcWqTGW0c+43m!~=KItCOvzs%A*T-^G^T5ezJL(_j2`b(b| zJdU}}rFZl-MW=MXEQNA{!4Uxs2f3XF)$xuvT9lZRHL z@B~Kjh*2C#Qtb@wy=ED>cVf=v4nBPWV7XyhLZpT&ku9}S2Q`+_6_#hFi|4W{=px%> z-h^ztjo+|7WnwN7%KCCxhu(iNimlF!wM}&HOn;;)c1k&I)hv6+S1&M~qKu%prs-%z zM$3Qo83<~XonK$-rWG>UN)ap0cE$2XsZ;QB(bgmXm?KxeQ1fk20HQ+i)y6d*4GOgt z@3Uq^Rk5&2687G}o`CYKU|2mnHTTRtH)ea{ys^SsCUM9^ei~1&TvUGnXhQwk+{C&; zpM{0(RN7x-!EOvSww?B8FiJMAj)vO&=a?48O}T7W;7zj-S5kuPMN-025e-(O!!4e&()=@C`Kt?MGH0q*&Aermcl8@>9m! zCCdi7Q9{eJgo3A|2TX*JI0rWIm`&(Q%{i(Jo=yBQ^=h|D^RHV`ObaQUU_r?OMN*M| zv$wDN`umt~*9)?6qacqlu*ny4M2er(%2j&NXC(+(n6mr?`y_uNRffFqlLwZc3oiC7 zgb1;m+1b}q1>WQ)V0zg$;h>Qi`-N?-Xp-i)j_i-F^fH_AB}Qf+m^6wVzcwj7!T~6O zm<$Iqj0n*j6EnS1+puLDU!gZ8hK=J+6PEpv6f2jeSotEHx@n?wdCHjQ3nl;%`qiCxmG!w$EAZ%WYV#QLAIJ+&jozM<|OjgLew(Rc`)E6vKZLO#9 z0IY>BUL=2ld?X*IU{;O^X#+L0+|e3uBaS9`?~2Ilfe;+>q#8k-S43HUPyp{?6ecw+ z&&))1n{FWCZJU4;c`Na?6_4_?a@ui3_NNb~Bt8utN1r!dU27nOWKmmF0lRG9OGbM` z<^-=46%yq1U*6s{0v)nz-`~5<&!|88GCK&A$18sUT-`MFesRd;@>txoHayPxOzw@S z)9cPM`ZJBEl6J&;)xo=yntbxlKghMt55KV&I+=s)iG!WJ^3Yid%!f>|qs3ZhJvG(z zJ7_w%og^ncE4`K>rpsTCk(L^u_Y3sN1xmVfr%ue*Dmi2ZW0Vzbzhf*iQVyqtj0zsIwtt$-I0zn5pc-3ZCw57G) zfht_bA~U&yK)L`_DEMilPgBRgN7BY^dae<#W87#{RC?e|59X?dDf1hRi4yU@@ppfN zm(Us?z-PmLmzBV8w)rhwR|?-E3gjBbNlcvJ?_yAYJ`#gp3Q=DIbwlmVWA@j8Z$qX2 z8t6~QNK-j7I!&Umz|oMODUdLqpWnbt}2{H8M^uqcwB_#@K_=fQ=#Lj=0vcg zRnb@!jgE|L9hH`qiqUYu_t1tZXUcyEQ5tkB9n2Auq4aXI+N=fNC?A;XYBJaY<`I2U z&FVH3DetW;txqhD31xep^%-oEqG*Mclav74&7*mUrkG1tI}3@O^VcS<{qI7k!b#oE z$Q&6@$2+ywFX8uzES)4^ZoRf@ghNky21O~ub9CzW+1$5lizP#;EFi3$Ut)iq`{43g zam)+DOb8+9MBb>GUpP=ZPY|@8VjHH~Z?b(0%_mmiR0p4ExBB{fXncP*UfY*9^H1*} z(zQO(s3x@|SV=T;!dta7%bwJRjI)b>U5lFfxcTBooXM2yD_WK)d*$_9^EE1#GW2j_ zmlqLS=)&>7B$2XBDe9W~)|-Eqp;LL}!Vs8;i}kZ7=_geja+I_JB@nLiMQX?+q*Q9z zqPo44LX5NUC-)g5;`k}m=>; zj$txpivuzTj|elE{8vZu%NHEBRr$V|)A3TWID0kNB)8`h>I@pRLg05w*%*s^edq1e zMCXB&<207AjkG*)`2x}knxp0+kn58TP43!Deg{nsO|%kuJD-olFCiJ{;pY9EV%E77 zp*<}r>O1K5F-N~PhJ8uc5d0UiT24li4yw_Gp04-Kw7i)^VN#hzUC#DSvFwfmzq6)p z!8nDF-(u$=WRt2jcx1XGZ%@ZhIu%#*9JUu9Z-H$2jdlj`vk;!R&B6n&uA&R`S2aTAyixt>T`JM)ZMQ)~jM9+)ks6 zT6tM;62bs{GkecIp8z?@4N5POu4c>X#`r3-&PPkLNo3Mk);a#O!G{fGdW(#SBqFEj zwRK7EsqFoD*Ne{~L0-z)DFJ4c^vEX;W@_yl4s$NmE15>)Bx>%u`nB6=N8@m87KD9m zwbgI~5}!76BXcyL#HmuK(<*$1=LoG2MVAD%z$_r&0^MRg=wUR=8aJfE?XBRT+-ARj z;3AC0)vfmv&q?8*Iof9dPW=rH^vtt!PT0-z`9@LM+LPKrbzpwhRRYDB>w6&^m(^jC zi`!1nm@w8MR-=6yb?^f;uAo#9qCB@ws5^QFpD<*~f!eC#bp-?Sugvt27!`v)s6n$!WN1w6Vt(&EhM zex3rAHq`_S&itg;zGIIAa-#iV;IQ8>n11g$Ub|t&1nWR0a>)=kx~nQg0}V1G9V`gU zw2kb5Kt;86%d+L{Fk5eq=I@!T`Z2^=V^|=cUw&}<8@2e)lX8;gHkSyFpbS<{@!x;l z*+-*imLgV#Sdot-8rJ9W$(@+`v#3g0@*!=YIDRAz)GAhpjXWigt^YVOew($P7x|B) zBjo>@bn*v5*R0Kl8wQb=KgukmSzT3Czj3pUBCyLf;nLnnK2*JfHH=fgs`E;vEJ)b*Q17iajX*=reQ}X^3O$BuDgu<5I&B*JZO*zNZ$CZds32SwzIB zLF?orUyU*G;^@kVGE?58@|EdBE8d=~mr^s+>!UMC3h}((TWg0gI!^H1LBBqhz%C1s@m#55bE9>_hZffDR0SV8kxul4 zx@$a3qQ@LLoBNj7h*RstMi4?tYruqO$iLN6_Pu{6i?i@zcHJuDFMUo<#t@zp_Ke>UY*uxX_)cS(3MBnGv2G~kNHXKA*- z^@$>ds{S2iNX?aA-XN_acV#}X60TP=c;%}6Ay75@$cZmv=D#<$3(JS9Cz=et2eO83j5{V+y`$bdg(ps88U zmkSA^hkwWM`#APJ0=eR$9K%I^_{@=)umDgm*Zr68A|T9Sxo_}1NnC5aKz(NY!qPt1 z)_pL&8?j3gp?}0DYV8`;j(Rl>O3Jt`(1MwSM6nu;M}6?+N4slSkPW=)!Goqpd!yvy zw){F{*U-Dv60r;E&+C~^RO{x$-ZkovvTb~bg=tFed}}|B>XbZ~;6jE|&(oI|V7nuG zDNx$+uI$u8L2x(U_irrFyW6*yyQhmTT)O(jc*BdDS#ykGqguMAG5*)6Lq*g{c$;a|Hw$S+pEU4Nfl5;;Yxll+1=L2sW!oh&Nf4H@#(^NHvEn1_n zeMo)1=|TRuA~%2U+Qyds<5jZe<^kb!6B4e#l4O3btSJsS%I;Lu_NQdj-sNZFl56e4 z;*|**>2CJ}x1UxjN9sz2L&ow2qhU*ZD=H#lp5xy$wv)wwyngI)ApPR0EF5Z$$UI(3 z5L*uDQ03D4mq`MUe|)cVjn>Kh6pFRzqS$ETU2C&#ve!+v@1i&l8E>=is+=*~dOy@Z z_iz8+TRUH~{pJ$V67(i{5HAx(7j^1BZ+A@0+cHFB>1M}lA(&8!;TV1VNvY@HNOmZ= zixi<|L6@LGCGMyhx+YL~J&c{U+SH}-VhI__t|eVb+_(??c`omUhclJMxgfmz%CUV` z@rP5^0@pDS!SHWV;DE=>?Ybn~A)=()9+jOoCR~dad0GMuG0e;Tc!%%&%7ie3A!kl* zx(V=gW3!ec)JhC_2AA#Hv|>E3Mx55`RlXBL8&y+FSOEr7q_dp^Jle6IkQZUtHS3}{tUo==JcWiph(JZ%jF zX!dwi*cOH2y`~8KF{`&rV3&tyrJp3Z9Sg zcM5_X;HWnlj<^YuR@F%$wNtSx^k|}K&%zokLZD>Ok8M=ijl>)^r#w5oa>`+qJKGKo z!)U-3l2%eAci?BBJ(4zYH6f;;#XtQ5j6mnqv{2!V0gZZh5_M6@OAk@RRiByc-N0?? z?+K1V8n5eQV+H5O{1cbtiU#sGP5Hst7}0f*a7MP}v4_7L$~~EPO6YPrycjUiIFN8z z)&JPM_lRY5Qwkf1V~t^~Dd8)3pE5LomSw<|ymj>Er{&m0WrcS<2I86j$j6#h5Z6{I zZO)CE+TMcy0B>N54m?$}fKAb8Br(TD3y9=ua)v~>tLor4|27>*rb1u7l2X6Be^9KY zu~zypJ2xn1it%?`QTOTl&R^!F$TqM4AgV9%aIYiTDLX}P*YSw;cI!qE{u_}$!G8e`iSZ}enE8_X>EBJF$;V~DifhDvHYn{-NeW0e zewIv{jmBkP1thm#!SxLCnKRAtQd^}J6kat?l($02wqciy>~9CvrDqdiT@B}|L@?0# z2$~+gVZYp?h3T1X`&~equ8xUZDQ>P}O@Eejiy9JFJ{aXEePzU5cl5W(WYcxz#GO(%g_F;SN79@!nVCkeBA{ zT{kkX1MPpfc5XX~s(KMjF~uT(SkC`d{G`qE^UrdydX$XM4S}8jS3|)*VY!%rS6kKI z-iLc-J^%43@Lgy(7B*x{jU)u%1d7!@|B&alzGLYo6`d=gxf-Kj4jbi8`wa zz380_43wP;+1h-Fd`+YkI=MFc4(sNYh}D1T#Jj1ot)=dwNT^BLc>>u_(Lk?`(_MGFB6#)kYIpex0rKtTo2oz%O?438ZAMdc){M&G~q@#lH%?# z)r|6PAWw(#N2yE^oyR8JqN)T*Pz`j;kb+uNGR;{C{bHdYCKys<%6>}UzE|P=!-(Zz)K24Cok#`@A5y*yzbIAi{`gL8 zeM?HvaI&259dCLQC1l{w^Kw%YKYx3-^E+|*lKvfg`A`zUt%gfW{2Hlj!bK1N^ZvZZ z+kS*+s%*5yaMhYLc>0qU738v^_zbo;{&4`=u1~Zo=gav4DhTb{AnQo(Mpw%=aDW95+%Aisr$YFh(olpltu;Yby z$3Wsq#7}*dpGUhc8k{_;hAP8+oic8&p&Q@Z4Eut=d16q4R@NCR!->?(MznSpGnouh zmA}>h`Oyp87w%;wi;9XZ(lY(4Fjo>j7^iAk&{B6kgK+{h`}zNCy`22%#eZkqiO>5L z)7I*X-*@eVL-VgvSG>ZR*hN4@vY^q}<){n1?(wK$ihpq=eQtMp@stDSKXn;sTmnV4}2?)*mmDk~RNA9zq*7Z|WaD4N1+< zeunPQqr15J-P!0ii5d-3x~~WEFq23I$~NMHBld9squT(hi{rC&@9ee-8A<2h)$Hep zO$j`r3zxkpR<@@_kn5YK6~804pq$1%aUU^0m1)Q*YKl{%A3u>&lm1XW33Xk529JZh zUHPV>@$S4M!R{&suCHZLL?_nj{A{_Cvt~7q3AEM8ASqji$xwkAbY+;$u$aiA? z!+^*GgvAxsaNr@SWMcW05dY37O!pVtc^Fo_e6#$_wUU>OH451Y|9dJoUVhCw^Tr_| z0jvqj+eBKQ@?}keWUJ?;;W`yR_A&7D1qNWvT7>2I>{gSIPNwK)0^tKAcOP|LeoPo6 z4z6VovjWa$R35HPo2w4t@W*Uu+^e*)upoKfrjZE`et%jVIi=JUyx_uO1dCx@*Sgb{ zy^Lb6y0#Y73m=8S&dhx+E`!j8U<*ASw<;WGqs&TCP}>{PjC$C3CjUo}SNVK22?UU! zE$23Ew$e?NB{AeAcyL6dp=*9ul`*e~a!QRcs`C}KqLQ<{p9nvR`NIeG`3Ec(T=p&n z25`_Li70c}N$B?P093o4YT<#U(I9OAV+A`pTRLSCzCQo7u5e>PvVkpZnqWSfY74Jm zTZtaXDcgVLAA{0wb$pr6tSh%lK>+XdT`_<7$rfS(0s>yCr?NhCf5s1oG!*yOM>27l zA79dr4B0T0EBO<}g7c#Oxjk|YZ|S;D%)_Z;9Vhk~FGRL1$G#L~d-Gd+m6pa=+Pu~w zi6VJglnGE9YWJ8gNco^1+QFuZjc>m2uKx^6xd-7#U)e6bJwnfZt&-X4!u*#%3c8K| zS&8<}3BThbzKrZ3wWO;>C@9`}KkjuofF*oeQO@4kx|nq(1D1g33peUla}rwD zEvdD%cq;!|wLj_GiPUBh2Po41#A9x-a0i8LL*$I&hT7@wM3o5Soo{|v?a;r~ z+HZiPsn)@K$IRA^*UG-BgadFt42hK_z_)Y*LDO4bC_PDgr76ws^4?alWPgs)c%&Qu zp8R>*358N(AAAevu)Yc#{bEa%XOqI58(u>DtC*-%+h_LEk->a*3sI;kNlp z`f28jf2+JkOO2Z>qi7Q$_8uqyjWv=|qUZsFWIbr8y&apxOVInwpaW>NA+Hg~h``L5 z_~(&=(@#tNb=En)YhXO}Vr!?~i_rDjp^m;lWWd*gDr}qAX19vRL?e!(#B0YdmTS#R zjSq43qK20)r;pZLfUcw#uRYr%n@1ok>i<$V;)!u6fHyol5?@)493%mC^Xj_z|QofTyy)c7>wVCOA_#)UAJP*;*rv}7`V zwEsFHU8@8(HG|XJ7pAp?pf;>!>ja96^0&r!jm;om+32MR@Ay(vV=VfSZIS! zqWggR`JCTwYcI>J2Uad0wp?RmYh!hMWVp~xbgG0ZQ~1*1x0z+J%s#nzn`}gpMljRq zV3xTCG6UcnQCG5*Xn~;KcCXQ{gxs)mIh0y13v(^NN_cdy;xg(8{p~~dov@}qJ;2BM zCT)R$g8xmO-hOPmTzGUPC-W=VK@x&*Zt?2+*1dP+p5oULC)D41KHK_P?CXi{Wc^k< z3s=49O~H&i1M~W9vONZH0x+ucdEZ1b;(B~~Eec@ASR-feyN|}wtr2JTR%1A@bJisNdDr@oF*W;+2OyC!6R^rJdtaIuqQsbjeTaP-gT2HK`!EU2zx7pH;Ngf3m z6@6sFuZO~n@Ta0BQHa}m1QSM8yRSyB#si16JzQFJy8(ZRjaf%`p&g;9;5bBh# zzMFItM;D%r+CpIedKm8TaJ2VUHN9YL0u2d`@=O?zU&sK@N8u`Ew*H10rb z^D&QcAId6hhD@gThO7U4lX3PzqG(Dhi{_r1s|; zdmj$sBUAW}LP3v|$4HKZNngG-Ujs*8W;8wRKW^uQu2MFiU;1M(ljEFitF^CNJb>@S zutk1loQ?Rqw>~;fVsTVw7MWy!rhQ>bzPGtRWmZu}8P}kT5GJ4Zz106g79SAnp7Y$z zfPMJMsS$fv6ip^i5A2)}N^EV9!zPBvQ%1WvZ;BE$zEzqGvj}kgXbH|TtB0z?!R8iY z@!EmGs~)3U>T=Q!!g&-7wj>by{;*TffV!9G3icaw0YC`x{>3EsMa5!n>Un0lH5zY$ zqRC>ec1PCh;X-=~UD9Rd6al4K4)-_>Qw0KeNL=D=^HY!yF;wcYZWd|ey=oN6YrN{3 zOwJI~Mq(QaWXDX(In`xCHSKYV4b2O;60Yr09Q;d?xJg^lJ!d*Xd_@K~rs%aO%;Vv1 zc;0|`E9x4>s0k+i-}?j|^Tagy+*5KN6R7G8&qN@zcsB4!?L$v3`09t$KGu{BWu#pqCMIj$ z;v-6g8g8T13>4`m8}JWWbv3gh#mv`gGV z-C0qHxtExSWzw-^H*mue5Uai!H;AhLns1~KzP69mcYK4Xeg|u$b|rTIy3%aD*U8)Q ze&{;AQ9iwb@z=U$hc!B<7mc{|bXA>zt0e+4MINX9wY=OY58U7OCc&pD_QXfAm!8bQ zN|lPbA|FHld2G|t`dHMOT~?G88f$d9hk#n|rJV27v`dDf+j`}>a=Y|MRJS^SIeylo zZqX>z&OaZ;KnF*H5lCW?JmOQ^th!&d-$unB*aBu@y~iUQH?*1p-(P+<+j*@jnFc|7 z9v}&F^(1kl08xSw6Yr*M%ta?q;IE_YD_jM>pZv5M-V?)xAAyXS6`l!+qJ*Bi%$VOS z;xsjy zU%FdesuHAH9fC|~5FbChx( zSQRx#KO{1D{Yuncn-8yQfhDTY}KLcBBeiu9co+T`|UXOqBnzq5md{Zt(cWSQs z&_zjB8%J*vAC9QAUl=%KPkIHU_l{a@#&gKOEm32+)Ci8J#etzt?(ArS@a%P z)P%wHx{LM}4zsAx@I!&p=pRjg|6H?@w~FeH$&#Dc5x|DuJ5g#tWaB04)gN92k_WJJ z6XV5Kjwz~WmTdRCsQH$L1}`Gz2L$>)fR=xQ0Cq)v(cT6^tGuk1zpS+Ulq03ue)|(j z`Y6e}$tgMCVO`9j5LKXc9kU~FrC`L1w;=yQ z`=_qlk$7}rPiLw6d{~t`_eO(AA3-l>yuc;7%$0G+dT(?=9x%rc34&@Hdb2Njydh((gId-%+8jskUl>B~O*TqxGy#33OllyM6xAB6V%AaIGxj1GKLdYEC8-SKB z^Db1MP4l?J)@10xOnE3Paf3a*Y8k`Ta0HhX9`dtlzv(vNaAc;p=sOfq8&(DJ=dUf< z@!>8_SZegt^Ln4?FSbD#vvek7;ys4-7{2Hq8K2c3GX~j3H-vs@c}}skLU`Q@H-tRt zvO`683l_HiqaUU&YLsVsT@2A+j)1NPxp!kq#flG;tcA=gU?;c}hTW$OzF9V#W6a^_ zjDUQ!7Ai~QRsM%XXWB8IL=spYhm#9ppvNZS?DUP&FdOD|;!(qGrc4${XSc$>Fdg9C za3OWoU@A0A7=@?Jcih7ZFO$oE%T+vA87-x76heM3li=jZ#M;>Ud3G@h0)%1nWV4NC zd99g}>hnLCs&xgr(Syjr>m28xJvnyuRV#Lpo887cP#j+;@OQ$5rmlRrbr=f)NB`x+ z4j)DwA5O}Xs^+p`Nce6_VGad+r0&J;^v$|Rbiv+N@zwtO(V7t%!U`_ zp|KWbNM&V>rsSx>Jy9u`xO_O7P7R9s?C%t!1*KYCI zpFW$~%rc{=4Z8HcxX@Z@Rj*FqDO~krcsDmybM`?MZk=#~Y)>qEu4ZYlLqpY2tvK>a z>dWxmA6UE_u1;KaYeX9>f~(830+rdabjoT{0C~^nIx$DEA7!nr zNQbM4`&9Ca;q^@Nz^gxNfanav%r?nuejqF+?c~F*qn2=`(M1ZPyi7ViPs|J|!IP=Z z{E) zQN|6#`A-xw4D5;=&`+pQ$}|~y`9~Uo?}e?(SB;5nRXBS5pEx~-h1AmMQzsZX0(hW9 z*C&_(6k_cV^%b>sK7Sbb)!*<+)<^c#djm!Qs;qm3qH3vhHrjk`hC>t#52tPkw zgPXcZ=~2ElGHAPx7ZrWdZU~&xb<5NM$Jile}JBFG#5B-bue`zroxj6p?Hx zm=V{G+9l)5pw#!lw)uR$FC_F+e3k8OyvnL+1_i}qb?;F4dV+&T;-I!llL-+`;@5~P zyx4aC*+)qj;B`Ra=Oc2WOwgtp=1$RVS2ddnTT2z0d`f{`%HjRCeoQM6*}WQBcKkt_ zZv?I!gLK9TZTxsUbk$&&(mjT;+8Txz%)7QcW8Gp|KY=PV(M|M`Loej@IUfwB^ZOvn z=A02+#A_#4VuCMrEp?p9;U51u(3}3q=Rd@wyacT)P_w_+@b+%T@?L=9!K>-jYiC}f zzSU)b1P=iwUG2V;-CFiSOd6&A6Xhk3 zY~O7D@eu7@n1-By$Hv1QIA=)=FS_bsX2zN3SFa5*zL9-0WB8ImUcfj?CzO3yWklg) z5S`=?sG+hh3ZL2Os+yL0&rF_Ypn5*;1T`xK#Y_E^+H70>jX~+bH={j;AQ~TN-Co2Z z>9$^OWb9EBjjr8A7^i8n$>CqAYLM8v<5N1Av=!^>Nz6Q=y zC9Fj0*~(0k{O{0jrH1u$avUGo;5aVHVPhr zb%b^K0grj6TQO<` z8{|X%D42Mf_kvC6^*mW1AcISyo;k-%a!Y{|iYf4&-P;sW#pD6-ezxi%#c-NYBI@39>yd zxJ{99R0pXKn+wc6vSsnaF_=+mMqLW9X#QfHy|QSWvLQ=y#Dz=)Jnr7DAhgzJEI(bf z3U|Y1$2$>(Hp8*uoF~u;5Vm+NMF;b#vLdxa%lkixk#Dj(4&5MBr@8)pM-BGk32IPL-}_2Xuc%_bV=3p@S```AL`-oN?p3K3{WXAol45 zOi+W{yeM`)3jR_D=njHAevc2dn+Q=Z|FD>yZ_E)7CuMzzK0B+tj*c*n)0lik40ejM zIq34|=KMC@QzV0=RrrnWe>}RgU^^?o{F`t`pGyJ?!LU)dUz5|_3*z*I(R_WB=GO+^ z5ChnQ_HyB1lal!p$KR|W)5AJF&-P$Tfw+DXu(#SreVB+X0KxZSQsk5R4^r28oz}vg zq%A5;Ie3K90aLcTFRh!uuDc(yQI*%bO{iHdvubr4p`sPeJ0TlC2PEm-2Y75+q1m0T z;#*Wk$}mXn4fok8BW)XDwCN8^GRvi*LsP{Akn9)e4R&fTi_fBcQhco@!kV?-aUj# zHn?ve!;7dJ?vS8AQ7y!!Hr7{s35KS%4;?+fYCgd>0Oasi68_)O>-ks7P$M3nFy`Y5 z%_PE@=yaL>?;AKHbG{;N!?)~g1SII?6xytQSvordR7<2hz0Eo z&JX7zV31Bb-m7(W;wa6uI$%Zp?ZPcYXQ$B0orMaWv-Pu1!hXewC&>C3=*?j=o2Ert zGLQMr0L5&)*?(d#VwXli-sD1oh2im*C7cxq$bI{m>50)R_uR69CR7%rvV}2y@Oz7$ zIp^4@J~x$f54|g|J;^y!NZHZ30(2tTU$u$SLGr9$-BFRDakjJ(+>l0^V>JixPCAW@ z&6IPHO0W8%8h)nh1K68)$wM*WIvC)w{mBfNfS;TdWuq>n0mA;1Sn>&ohY-4o_r*V= zy~s+I^5sG}MUu=doN7?TM5#%{u%xjwTPNIWj72z>U$_c=&*4&FDtz@MFOh>>BD?%J zW)Q&&tCaggf&moiIIM$Tjw2qLVe`(@J(Zs?MEK!s2$}Cg=yz}Mnl=+RXx*>elLgZjf z>S`dpJ?Kn%FtgIW*632wzK8I1O4ld-dl6Ka*iyq8_L3NeEH9P~D)eF>Lw??3qD9b` zLbh&{NRIv!zyA6#mOZMYixD;;s9@smI8cM z>!pi;R;PKSw=b;@I}Ne^XivT?z zGp{E!tga@?1m27j?-vxhwQ^cbK*}|TtcDvtA)jYy$;7ZCFeDf;EL~?>BfG!eeWC|7 z75=Vdh97SC7?JH^o0)wL??{H9gtXT_Z(>0C>)^ju_-`J!ybMGI>7>j?Znlm; z|E}@K7?pjh6n91!lEl5_AM^)*pZEy5WluSBO;rzfnU^G7((aii?x;W(Q@*Q=hKE>H zDNi>Z6@@n!*PWKbA^+e2fV_rNc(=<;*29sRALoV)lmr!2lMV#>oG96NGxpIb(!(+& z)2SE`Zs~1zj5r^G5od<+Ha2<=y_9-dSg6&Gik9Fmu&{D*49F^ap-{HM}qRT%Y({3}()t+}|IgVaabJ0cGu^NA+>rz0XPb zxF0r z{wZ(ubC~LhZ%yIVF_YcwzU~te=YNfPa1=xZtqLsu5|@j41xTyA#gBo5+FYkWNC8JQ z$tR}bEYm1@Cf>{0t4gr9S5FPam6F2KnYOYdRwG2 z^w~icTZ?$^d#l|)MZ2x;pUGIG^NaTQc$yICL$I^LaVf!t_X!x5mse&_n~)V zXj{?j5XwDHfYvPm`J0vqmgRTTIr^%Y8X2kVB!2XdJiXFa-^0S2#K)qJ@V^Q{l&eqa zl|Ge@lmt0+YWE%UQT6;VrAqAEwhxZKDu`+_9%sb6+AP)hi1Nj8f$iu{R`| z>h5&IGUTXSXSFVubE-F52tcII^7RYE&yby0xzrMDfP_Qzi)KHF!JUs#uE#|BWN~E2XDe>P^sOuC;Ocf;QWp5&CH3hK7OMe(s-L1+hyVjq#U3v>)z4_3 zrRz^J5k4?_s-~Ney}~2AXkOu2%KF~A3s~bq61ktsaX0t3ZY`~sIP@1gS~KToN=@#E zng$f-G}3waAFgnGpV*Xto|ok^n=iji(UU4}RsointOevU%-?^E-x!KE%xOxPiriax zr~A2zJ)NcI2$nRoSPkjj*M*oL7uE;jAzot=@3{%k{W4w+d_U&)BgsUc~REyg$4rY%WV)5eXE;InDy5)oOvFJ6@h z`~aSqV@G+ixFS5yE9{|Bb+#~{;Xh97Q6+H)pRDp<+w&H_OL!h`?Y%;S6bZeZ{b+l< z(p@m?_dQJ!^%ivB=6i$E$L7_N-6=SecL|)<^Qne^MFPUqLFL2esr46xhp$ z1*)ctarUhyWb#VeX*P`zyZY}G^Nha9YM?*tQiCGjd#E3(C>}FrhQ7ApRSM?cl+XRNq2-SpMlOC z3-a^09~K4|xo7k{Ka&o7hDZ8=*0UC)VkD?OEtc)jtW_SGKl{r7^-;+o6RUD0U6gnvW@)+plLUs~5ocG9=I&9GG&GvW%<*e{DnmX^F5g~1XL zp>lpri{-2|#}LAiYSUI+xL6{(!U2w?QD{l=-MPukDwMu?7sg0i2sPx<7KVKuYWz9B zj5@ee_g)0mjVFf$lyW4g&z>{V<>yG9>qv`pgTyOV4>s}Y&@-ZhC^dYU!EUpA(qt;I zvxwO2LQB#sXQA3s*cW6JDMRQ{TOEPFFJ0n!$=MxLO{)BAQ!U= z;<^pwO8LN_6}zOZ-exmqiRe5{ z{dKnGf_0}Nx`c~Vc$R4{d4^$(39Q@_m{=;&&e3%=p6C^KGKmvvqWp!O5p(B4)%@Oo zP4ngt!<#am4meHVR`9b<8L`Kw#878AUh2tKmfDY$kajVn3C zx*=K_HiMS@g;dnP$=Q=nU+ghC5^I_?j(YGZGg+He-Sb5B8zO$)M}VBP5fJ{w(ZK8} zqbB~?U)mX>Z2Q4oA_ireh<7jKJiAsq&EGpvOqy%Fu>Akn~xG(QL$`4OeMEVf z;I-cv-(gU5&$&wefBi3-5+8VFJJgde+Hdkuzn5dnFQYME(V6*X`&YqKh%bd8qJ=YT zN4KpPhn+idWomrGQg@S}eh8m_Uh24y$#z~$&ppNSZmbsjs}cFMHe0)$HVaNoAwstz zrtB2hb8I;Z{FvauW+@{)&_dgu!?@5}EL@?PA&B80kh)hW{i$+yaquYVi9 zGAtf8P@Bs#h^cIQ<+AP%yS~r+sMgBz6Udti6E&C>+5rd*>UGI>v!+C76PGPF$0;?C zEwIkK3K>4Z(sF0c-kn?7j#HW*sM%h;L9SF8?!nt`ty1r) z2)EBC_x5Bg9pv_V#-Q$VcqM(|pW()r=e9oo zp1W?2U;$B7YuLI75+F`Y#e`d39jipsOze#{wYF$cw6(!a#GA6+<1+>rCpQ=myEG6{ zg^L``wHDp*A2YfZHBcj#=)V!=pvSGjIXPMXN22|{Y=zcP0p&~&%z;Du ztqBA33j5!T^M7X+s4!Sa|4HuumC3{~f{EaqT>p0w+V7JlmLYN7IApf+S&7e-ft0S z&+z!I*~a7U<7-Zqq+Iq#9ajU_Sbh%?@w%cJG8+?9h?FK!Zl*@&<~wk7^d-BRAHv;o zHbShDw4%NsysWgelq49b?fi3d{R2>B#wQ>L&^KHe;3={Az?S|ty_WVXawW)u5c1rY zzBL$=3nUd7J_5U*eV`qP&LDtE!(jwXK`MIFg#*LV3<7$(r9WhEr+-O5HHH5*vSVcO zhI?B7`zNc=%-rh22)3OyC=)~`$Uz21Ca4U@%(VzSNbL_8BM3Im78c0W3^2BUbr5-X zX?FL3maL{SAc_b7-q*-oQdbxE{kxB(uC9=J8YTf*eIWq?r1dB0Le?1$Ajlq2;Q3(@ z1416_`MJ$^9R_S-kh6=iyQz__X?YKKwtdji&CJY9S;QGZTj2V#TIf~-H`W=t0iZJg$5UFsb2a}Q+>4?yo-oDrp&JwQ z7j55m83;OEOdt`{O?`68bZ^S?b*Z1HPde`hR>QLh*GH`NBcm(GPneJ2Y)4@`fFFjM z8al{w7$y-k(HOGXhr@}{$qo#Z-@D|~7gW~V2mF5+#w#nwZ_e;Npz7kAb{Y`DYWCjF z%u5B{kwlNbHX3=aQW}_ScXZ2_O};E<#cW_pNG(1%D49hqAxUkOfwtso%i$?{BfY_D;TWh8-Zr?Jtb>3phgdrLI_Y5 z!z9NI_Y|4?`ewEKrcF;NPEAcJWKVbk(jR~gY#rVI;4|5W-%T$FAJM5A<0D(^b7#OQ zU7rdjgAf`9JhbUOfbnGLq76Ohc@-TrRTFS6|0-GX>X}os<^Aser1iny2_k0)OujjG zddlGF1_c-~1q8nnV%+o~e8b=P0+-(dkPT8cval?V8Bu#(N0&}C`cV?butkDW41?4~+n1b!_w)8>T;t&Nv$~c}PfUei8p}W~X-%;O* z4UH~fT2tS)q z>Fb%`d%x!0vi8cz(G>Q>&iKxM<{Jr3Tol?D9!r1Ov#POYa@+9xRsMS$Rq69NF)oV+*+4b{<({LZa=lu`%*@OMv@x^-&LNo_y71Pe1g27pD(a&={-NbIRp=;bpSA^DvLa)#U2=jFF8%c)ZdPFnK z&-zUw4&f)h8*MBFwrajD;i+<6I>SL60zML3E7^HKh6n=ET!%-;ezEd%OxPr!&vtH7IpdC=)){-} z7oGcYLz;J~8_Ii}uDM$=;D*NHo6Sm#@<~4(x=G=GPb{qB_-tMwvn(`#h{Zxag>z%x z_6qV=r9s05ly<3QtN#k|F$^14=N`@one(RETgfii(Lbi4`lkG>kLfYFmH5w@YllvC zP6Cl&t3u;>*tufLs+ApNtJfyB+uw z^FZfgo32E0Yh?|(_(9xIQCK{12fov&HH3EnW^?h}iB9AqwZ8&{xC_!RMP8-tJ(Abb z??{X#(R7uf(|01AVnxbmQO`UVpU&tH+m09N6$NFC_7~{I#BgR1{253HJQS@6Mcc3$ zVuo004!a)QaZX{rUSG0rKtX|`@8_?6s66`1vc&1Rpo|29g?}TI@JKuj*3l4eiractX7P6JR!P{nKf!AR3O_ zvbv&-emFeL#8Uoy(yNZVDe7FY16s~Gj`5`KWuf3>16o=4%W_LCsFkm3tdNBiS3@Ha0)}a*;q4gcR zUffKJW#u*M5#_XmnHNH`uP8DoVIdMD&3c&kM|RGO>M+;YIo!mvl?NL;OgAQOvB|VN zR(?`^45yCNQ3+eOBhRii_$Kh)3N4c;apt{qVFPo8c{Pm0=|ZWUV@{X1LF_PAAR6{N zEIwl7!6LfuT!ud*s5O~;HL?bB`Q9QEVC6nE z88vK$g4>a3ur_9x4x8zOPKygWMStQ&_1+q#;5^R%p3N>lUso_i~!93Q79G#dt z=+m>fuj}+w1tD_2yuMS~)*{a8#`WKRS&a}2z+HLPR1*iRXO~kH135mxRpOIF&xB|dtf5joO)DGV;2<= z(W&}}&$x79FEG4VBKXutUt}vhPr;7@A6>%+0^uQmjq6i#WXIl0YBDA=y%Ng_s__F- z#H|Xot@})hOuB~Hm#>S?;D7#_!ji#~DxpyU$_#v$!aHjn9V_G3CT@0|km&E#V%S%m zQdyViue5GHKSv6t3sc(N+?ndDe*dIA7c-g{5fTt}@x+$Z_M}A+GA;6RZxW5$&duxk zvFppDd6Uw#ovC)4>H_}+{PENFmtYv~4=TqAY-8>gVkfZf&T#Qbdw*hoM#$bCw!_4L zssZ@kj7EaFTT$wPF-bN=YPf!V@n!>7Q_%ilSNuR^Ke`yDRl#;3=u_Br30>(z4 zE^BQdAsL61SZa_-B`{(lL#SCV%izu~V$xHJAY-@WEKD*`ULd5VPZuhp*@SF$lpUC|9Z{p3VRUL*%Twl2wgw>+}c{#*o(mgAJ?9TE45>Fib;E9wHtnwUaM|GCn!V znWuX`C>EDu-hYx~-_k#h^SELe#i7-5O@$;&@9w6r;I+aJ6Cp4u1KJ7mTjkOYONbm! z8=BxL_0}3Pe{~hJ{y2Wy;V0XX^T+7x+oMr6grfkgZ)U4OP8Po@9+t#FhOVcJ-1KP8zD zI~`L&OF>Qb7K@MdTL{w^)rPPmA&G`?6*eow`d1l+9p59bwm!jFnpbLD)n7{7HXiPb zCDZ*nUen2}mb!%|*TI^;2gD$NJomT457wN}z%C-*a_BlrU1%wZ<2KcfuB2 z(h;g0O?!soh|kh(u$^Sp>eE4=c~maz2cy>6&&EG;Vq>c9(~jq6ud(n6kA!+N5NdU@7~-Tt z)Y}rt!owDw6kgEAxU#DW`I4Qs`aMwrHGftbW57`?-_(1EBh`!P3#&A->96rz(6!$b z42Upe_w12oI6QgWm#~QeO+RgDvWV!{2@pbHvUmPls1diAm5UBVS}iqpo>E8cs&_)? zQsq-zUZKa(OOULN6s1PpEMKoyi{_J0Wx8-*4fUc*-ulup-fyyrRSkLCfF#|od4J+# zo{@OZjkPDA7y5~iZ4+1mZ^7Iqjv-H|g$_TFDjE|*;PB|+tQ}Rz)rA`ai)47s^0r4p zYSK9C!|I73s-&j(?|)*uG^`Fm&_6sD%*s{#`Sa1WKlR}EgQ!aP0$<%l zKn7$Vsql)O*LWQ(5}(L+UsjAiZt)j!)8^L&dt_4!T;1fyp9cC7e-l8glAwPx$nT1| zEBwSRcW#tSozl1ajR9w}F__ebXAXVt)3*v?Lme1QOe`||4#zzrU63tBQ-5-vUMv=} zo7}VgCT=Z1uvm@R^Xl1p5J=bPr~jG>Cyv)_d=GLcWno789;pU#GOlC@ve@Z9E!L z+(*F&4&3`k##ByZg^(-)&3{zE4A+EMsCM%S2pb%T>Q7>2<||9{GvMy?D41-$FDo}> zf{z1|#jmT?dlvsH0~w#HSL3COQIV#&H9C2Bda3_zDu}di>~;A{#~LO%VhdxCff>C*2(> zkr02K$X=rQEwC`}1gM)`cajN>dS*zJPs$(mgmcdumHg%dF>vfqAtA7r0AtMbpk@D! z8Al7?9?5uhRa%(sZG33IVin2$$Qf(cRTyjOvZ;q1O|IvRKfqpbQ?I*f?I9TZnj8{j zyOQ8lolUug>wo3GCRrr*8NEafkMns`uf5pl2Lmn2hv{#vLWpj1mq9yD?tnV$to9;V z$;Fv%L}N;!j34bEi3PVAd~-rmD#TtC%0nqUN`U*f%WwDr*R!RX9d$gbwq9Y3D|xI3 zu6pej#Mp$`?B4wbl@rCT`47L6>7r^<=UXWAqlH6fet);@>wJCV)VT>|=d}CiLDz!_ zlU<54Oa~A9`}v8KOnjf>l!pAk|IgdK;l4~X*l-}^8TDC{(V!3Gmp%;CcuwL&N~?B& z$iSJ_d8;^Fe{OLOq6Nb|@+B9XV%9EIB_-rQ#`$#wKKnkeG<_6dY!P9UpJJ-%t9DGS zfA7`tczNQZqVjYPnp4-k}${+YNZfA`&i zq|zuV&oM6zCw_~f@;qLV?9B~7_hcq?bq%RsuUd=>{5p9v8A;`r8qrTPKr5<9ZEGD z%in!m5MM75UZCQ28)?Ig^1nS_$5%j7_b9uy(MqsnLHJNx5YfmHB~h-YuhrY{OqlH4 zr)Ja9`6WKhF0Uz&+^YSY5rj{N65~-up1PK87dW~z_DIQ%0wdFh=SdLCdrpEn`W|5L zm4EUvusCke2R=QDmg zhuH!bGkPc{0|VQ^sVH=K8{{v!+(+e z=Ld%zVKfX2c5v)?ydIYP7S6}J68ZBt9URR0?v}#cT)`3Pf|LWRz-zdNWb-n&a)0y| zK8kxI%1M~*FO7va&{r|W^i3>(u-)Cc;l$7PJuaK~;h(7L1}Wm8INl&1dkQ*D{0d%W z4=}=G?~+$&QT2L)(vr^Z5$3D{kbhw^AB&ph)UrH>ocMYG((t2-3BjG)BU&c?D3NM% zI4{-(eo8Ne?B{6sHwX0=Wdr|t8=#*mlCG|)jSb3-$m~~Z-6YJ&ExOz1M`Uy|C}0+K znreEb@9_vn?LuqHU~gL_$%d9EI9(5J`C5gztvFL|c&Tx~jiIl`vPKxxsDG_eKR6La zu{#=jVTvky(jy9|=ncEVi${PHQ9M zNB_#e@ueU&Q$&6xt848uD&p9+M#856hx0;2=8xnAtQUO?mu%d+TYaRCz&R`P`b=?$ zMEOuT9P#TqZ)A6L{@2htPk#-{j;mPC?K^EGZiHk5WfF?%^&dX4H)3t9icENk&27H! zgZUvnJu2>|rDl?LM~!g`{L!b~Cc79qD$g;K8?ye{LKHcbs}@EwkL~zQ51+CX4x=1} z1j60NMhlhU-kbix%AG_g?r86F? z)>il}OHo|3E%|*OwOCq0g+8|oJi7+8)PrY+ZdUYFa`zJo$0)Cku?&nAA{djDFn_AW z_i(0>1kxldNToD=WmN|>%;%^6u6x{vo|a$pMY_FV>L)PCs1O*KIS>3n6yefTw4O4w z<>)j(7mrFx_-t1{zkj_!a9C9iFMnyXPG2Vr=SIf>KK|Z)=k}}RiO_es4WhEx6h7}ZP%zEfNi1;3j)YdRkDZLn(PN>gy&C@&=TibxgZphU;x zr|fj&aLg+|D|b{Nbg*%)rOO)A7c;42O5H_E?5w zc^vk_j!v&|T~JWQUV16+7joQp{bQ`$gSpz30L#eX6%D?M>XG7OU(dc^@uZpwCspP! z(QgT{FfJc>*MHQ|wSsgO8*u*Y+f(R}N4Q6{b|f&B7i{=;*`~#h2}6xsXbL04-cY1kMZ6k!Hh3fkzmx44s9RLg!v7`Y;BD#>!8S&H*#UGz+Nx7H+qNE`p1`e}>wQ%z9Sd&>^K~3ql(L}97q+em zUCJq%iGNA*dH)Lk5*2;%T##&rU4luo<-H*cyyhvZwO{~XL3Y@sk8GGL$T&ROoDX4s zUOxl>;>!peHQ_S@qK)o`)qqE&c&9o*4+Fy|{35yELq9ZVA}ur%zTKD2%jI{nH{JZ6 z$|qHUs$ZN%kd#?6I6`Bd_Ub+_N{Q$lv5%f8(0@W4k=Swgb+Uq0L2K@!4mpv zK}zM7lg&g!G_FHDqbgxxae#r98yN}mdecbB!r1Tj+48qNE)3IvA3N2RxVg1Ih5?_f zKs%ROzzkg`^)ov1{dUSM9hUD%()2~{K_0r1!&x18EssiRiT>%|tI^6IfAyT_aip7O zG=I}$WPT|AKy6Z?7*oE&#!~i?ZTSHFI_c497MMTx2b&g~&8OkFuczodRQ)36;%_`> zsz2vzr}*$F9|O{D?NOeKRWdOaX2TYS1TxD`+sagUU0;!tS`&R*toCdwdWhzZ2`xgO zPATyxbGN;TbiQ2RJ=DpmKh5z(%4|IKM}IthH^MAjQ@GRDr)3N@nzjI2+z z!OBt`M4iPwm7=B%Nh1cY;--=l7`9(;!ewA>`qz>1++MHg4((_K*J>%BXubisd`U&M zjpI{dI8{K)6lCfTPQ5Xy!wMk?GLkfs@qIy zWMAGwM-hsJF%IDHJn|$bI<>-55vgrkgr!034reBofmavfj-bu~pWulCE?}@~1+39I z>UL~`4I+z-?Fus5$dNT}5*+jK8PWYLgizc)TRDkWHUrM?^58%(=xlbpj(@*1V`5$8 z7?H&ZN9oy5>o|dse=J2Q#S1LlQtoO0iQ2qj+aD#b)WgLu&QngOMUgr@GM*4bwO0`2 z`@Iqs$z*6ERPX2<4~~{8o+ZnUGJ^4DBE^nv-i3VKD453NJ%3lgDV5Y1`o7${B17kuhod zZw|cur`iA$&UjGaA}4XA^)|>3`{>0Z@ZQa3#Er zdM0e-Qb3`{Ij{AZAU5)5@6`D-GTzTpo9kT=OcWKxa<>b>@Qt4RpoJI51BRbWT^(edLbZgDkLN^^dJ9m8Nl zGGJucG@2Cc=%2X>lz*R6s@G_X{Qi`l;HWTW6p2=5Tdz=NC(|?)y-k}M0aKTl9D9mk zCX;3V6~%cDZ5k|e5Vv|LAY zlnmT4TE~V0vPFtNV{2P_e$+$f676Q}PSy2dTC<)*SAy9`=ZJKd(Oq)&9Mi`v5^niv z%TDmbx)~R<=zmKq-7EER9?27zr_eMb zQBq_VtgeF$8Y4nU6}q;kB>^xaXEG>xns9MR#dP;7P1KV8GpfcXo(($4dWW3V2u~(Vpd8vRdE#MlQPXT31s2`1>)R1zaldlU&&s_SpVrn=J%YgfhfzJYU_;hmd;47r#GJ5j8|CXWGC{1H)wJ}^_yrM-E)5b^HnjA&kcAm z)7P)!?hHx2-7Z4_YIbreF)Ylq&+dzx^94xKJdE>L#H8iRgre^-wGj@*nFsr zTgNeL4{h_^EZdWzrowZjLUxurK98((N`G}^l`)r<_A9}B@)67&CljhxV&L-lOrR@@ z=0H1C$NO0dq1)ZCmzH=F2Ok{eX&LO2NR5Ga(v3j@swvUOW&OB(4@FnD%tfxeD)t8( zH<>Tik_~6-)(K8r^X|<`)15nT5pqYV@AzQ$m_e%7yjT25g%bXR-7fp+X^>&n<$tce z{SQhOdRfk!mn)7v%(k0C%Lr*_hLAqha?#tjdA{`zktRA-avMdDGI~zXCl6k|#r53A zOGw&>u*Ikjx3cVUBX3{WRKyLQALyN3`_GgTJ4m#Hm%HvnOWmYA8d${(zFG)AW_Dzx zWTBkE{7T?^{IVIT_1T(SX0{0NM}M984{gtNd4GA_9Ril$d;Mn!A-ME~5p3RIyirK0 z9$II^9WmNbPJNFr3yhvMz4SR+e>y(Mx{K70Ly*>;x@8#Kz*u$5B$Vx&u@x9H=3wB) z+DB0315KT1yQ$o=Dp%AHX_hQWy%qvPFo+&4nb2_p{qvpzuouMzv$CRMPd$9stxeC zYTk;3qFJcE9RIc+@=Qt;LBNUtKUa{qrWX-89OI-F64K~_nM$|zJfyd}_>#zxXBRA# z!I#!%^zK`*5Uk2r%TeYDs((ZPit>0&SL>q~Uf5&>%-JHfDFV7b3UHI0+#|9NoQJdS zk{0yxA^ZO2vbC^cA1XwtvxS@He|>Ygd!TCj?%)Cip<89UQ)}lgHX5M%^UhYLfEscj4?S4<)28OxatAR}k4!1zuCtd}I*U7(WWd9ONWL|)$VfR znPiQPRPr@uSDt%!rGI2;^w9A!mEt2A*Rv83VE#hVScO5db8>h|lNT;qL<+jY4w6;x zrXTLdcp{P}*utrZ7EyH(auZfvheAMEKo>Brvnf%{UpHZS@tBryG9t zq5zvi=l+zYgp9X{mm?q3gada(4Do7(?i{|EJNpb`ZnYbh<+{Myg0L*X7Rz_}0g<*d z#M-={+Nz&-x__sKLG)|9RcSBz(&jwj3>DXu(5YRUOISW%-~l>B(XZlLOR)SVFuL=P zvM=|I4sXx+m-NFzp7gy%myc9p0lQ5TlIv)Cb+UPzIXzrfUr0FLg^iY_*S?i29&^Ck7DkAI#-IYkuJFcsDFf%%z-K$Xq%IC-sKZ87V@q{ z{dbfy{q$wGPwbYNvrD?&x|EFIe72k;(_l(lwarIJC(TNckBn`fB!sfUp#VO z9%uy%vs%uaSz$b@?|s#|t5#0x*Gv4p%CQH4w10QOXOmhXHHfehc@)Wtz3(-lY<0aJtz1{mO=~kCsx3y=Y&DzWfSqcf zCVw_FLiLHeP+^c~!IB}%HQ9_ZGoAR{=9p+y0yAACdUtL=8PmdQU zr}5Yc6PV!I&@WDe$VBd2S%p+gs9yE<3*XfVFIgo+0^F4DzUle~Fg?W4S+Qx=*4Z=T zXIQfS*7y_?%?8m}{>x(Z*zh_gXLsX#$$!7Qo#5r70~&1md72UP>v3N_E>S~L1atnd z#(+n2o7A4tvS8i0zqSL4#&-6#eRK77`It39WHU9ZR$ckY%USTaJG>6t>zp!EVx`qd z&v5Cdy8NFBzex!>h=hWLWD&#cn&%-Fla|ocUIOD9iz0lt;loS^Lk-h5=9^M3qJL;s zE7DRh)u%j#DhrFRor%c!do`NQIC;cSnrV4k6(Gnz6MgCvAy7eCbq)JmKNZyDkva+} zS;u%v#c|KkHfmKOQlTpJdMU#A9T@-&C2Gi(mWXhEc*W9c{EB7cmsSW#VnLggF^G}v zcT_jNo~!!!bI}E1wLc7sKL?1kB7YLQt|l&K6jDbsr1dR}5l`+;|6*)2D?HZ6OT#$1 z-Dnh`#p8wiprHO_frZfX)xw#BanuIV`Tw|c?4IcWcU|R7V*B}*#MDr|kxGWHj1YYz zB0g;om4=>OR3vhjNZJXggP2oJL)vH)JHj=J=Q61(s72MkzYZ7wq?fmSL4RTT3M?5b zX7$y6UYimesfv_h(0bnH-?cCbPJG;5zOv|p^TF{1r&7sHi`?j-jk_BA=c0J$DETbX zbHScj{=kA32{Hijezdr3{3gyjeKT!#o#4eLimmOfIc3Bs9Tm0ANgZ&ny)LYNF`ggp z%ouD~17l&m>M`h(RicCBDSt(BrfG;yIXB^_B-tcUO}~s#d9M{!qB^=UlizK?@VF;( zW|u}xb4R4YD)7Y7u9fUF7r2s{ei<{$91&j23rpXfL>NeNYH&@kMlB4m!zUR$09W!@+|Kn!yLe&?6C#o=3G7M(S{0%#DJ6-vvLRWfImUOi}j9BmED0py8c~CHQ#l0}iEkkk8Zd0O%a=Z?>&vthT zupkhP$4X$gm`Qc6BcGV%@@-*>?6sxN*%zwuPjDPWnle|>$ptV9{ElE|T zO|Y`ZJ5{`?1{Rb+ACI~geQastW^jqpOPfZ@_Sqki!)pq;T{q-cyhI z=@!)U++?3PrrY_g;p>H5b8uv6Af#6lI^r__s{`dTuYU*Y@beb2!$~Z^(g`w=zzn79 zh~i2@ANA=JlylIQP!{~aQ`ZkhIN5|E!_O!fHoO$5D!6z_?H(U>R=bG#UTZ%+UxOI= zn_)-4=7x~9w-XuLjk1ayRWaTE>KOByw9_6RCPU9#&N9-3|IK90)a~7JmoB8cvz^ zO{&J-`w(5%x)hEX=Ohc zT$LBV+myH>SA;DI2Fk?ue*3@sIGZgH8gu8x(a<=sDlmrvwgCwgjVD z$3X&eeQmQA?e^ETRL|b z3b)2dG^#AWc9QgAj7;Clr?@qSs87|U8RdN5bgs##G5c`r;See!8op>S^KsUYt$&GD zG2;eOl^t$rfXQm6G)F7&i5tW}_i<^2Nt_lVPL4dm_2=6d>%|NQYn5tW3(H4@61s2q zb4u}gicv}HR`cm^+SxUTs0I2W7|~eQg2~6p$6r)85&JwM)0)0{n)L9lmecYDOO5cT zJ^sA6gYM?JoYvlCCH{rcG7cwD)_>|;o4V&KC`eJ6DRvM8{Gt>Pg_LNt%}&gCOWSaT`SL=J zVvI2ghY+-aw>M{XxcCD_x~oV|%`%DCSs?>fVfRM4TD;ZjTdNpZ3_*oSc5 z%s#Vx0Q5KzkbuI7pktQ0RQuZC*rmD06Hdu0p>K{Ea&8laNq(GcZX%stWlC-T9}y zw=zB+kF0ej{z2sfAk<>Gd4FR+!>GCCFBH`RkQl=TCBgh%cAxB`E&l9<=eL>h|Nf_9 zKlB$-{`yFwmc?!=WZKU5z3S5+yxtSjH>3%gaU7wgrk;eOh=Pdc^_fWqd1q3;O(=0i zbVv7R@$u)4D^^pd28rS)t{vV~G-i+yl>20zMsEdOKyDh>u-f8HMFP%qF?+J<`b!Wn#yllBixD>$OJpT>60`+b{jwci+2LAzPE^b5fYdDgx= zDK$u)<9hb0OawL&M4dIyn9EF9*X{90y`<7rwJxu;-4jXrgN{wI`^VI?EM+eQ>lDpb zBK1sPx(`I*3$^ayRDV+)__pFW3BR6_fBDI^&@R!fKYdow>55MjYZmc@ASL|!>*ex8 z%O`?%fHQY7DN^4?Q_7;5drkQ$lryUvpk8#(>vvO>KQv@Dy)agUfaEkd?RahMBr>Ha zkPq_S&&e}XKfQ)6KESnSy+w$ZpOsZ_1EG#0vv1$prKRTIz?zVL{`yz{IbI6$d zT{Jnu5InG1onKQ!VkmjO&8pSvY|wA{`hMlfkn>zmSP>~38MihASpC3SxbRaXYEiVu zdYxIcTejc}0kcwS`j=Y&Bz0bEndT#HGo>m&siqVgJ%93tHH}~2@VT@7v{hX5Qyl}Q ztQC2Y%X7Q4iLI9IEiZ#A3>8j=SOJd&{eA(J^w6mW-V}*Hj7M<;JUo`P(gWAa*Aum)i}KUYG>T#@ zDcST)EbJybYt8ndo;8s}F*SC86&=t*b#ruC1!Ls=DzthEc0zL4nyVjS#l*Ho<}pD80YTjQW_p9vW&O5NEZO^Ykha23V&3w{@~;s7uS6K>HC{;X;iNyMijk1RMb#P zpVp^(p>mG;y;T9@t$0IqH~%5(njz*nU+gMFS~_3ZCb1qDq`Bk=sKnRCpV4~4vjaFg zB}9mI^qO%NnV3vgsQ4$;6LKS_dRP7-UP7u`L)~!KQzu~gRP*}b-t93aUd=+XOMfaU zLLYkat3C8wvNu=H{SoS$`yUjoc&7Q%j(%$<0(mkD{oRloLFX5+1Bt%#xHt*^pN=$` zb!!&^RVzvqP=%lIX&~?m)uy97Oj|n!)g&dPB;6ADzIs6TRR5jkZA3e$2N6^yQZR>s{^QO3?H`8o-NDQSs2xEHmw1Ngx3r6@cDkcC9 z2!t3|TGfz>-7=s`fsWH&X7f_)kxA_dte^YZYBzLYrVhU6ow6`1u%!CrSARogyw#Uc zPD@b~1z0Ek$h1A$&o`rUxu3uKwW)q-rgq|bOn5}*Lm4f}1bUu7hD7jeclsL%M+GXM z@!3-RM8f>jPgalUxQ%Of0`xvNY2Pn}q&-Ia>7>KejM`adkwx6M-byaZhtIczE75P= z^!IFb6dc7Lo0F6)yBo`rG=G%!5?>hPxtY>da0MW5k)Nz#5+bj|(Jr!FaJQ&IrAu`& zO(ZOI7UxY4B)x8>q$~afZk=WA76#nfT-$vQ+ROq=QC9dZ#*ig-rFLKsA|jb^d2wyg zTQ0Y8`kUZU0afWIoZtJ;_DqJ-Q6=VGVyLN7r}^M3(nz>+y+9TMP=A{PP8}5Z5`A@v zE_u9QwiwbGCD9ZuA|BA7+9FufWWbk8!i?-+GX1s)q+;hEm-Fjoz^wO~?Rq23SU^_} z1Zdp&*wVdqTamDg4>fcPZL&_*Kc=YS{_AF{Wb`lSzIUO6=5_d8k2^dQ+{f zFnT2#4oVAU!uE+ljS*RN1?+ zb+=uhF}=aB!fmuFeC&GqVHq;)1AW)Wp_#YWnNCio123o;8h_NM-E?^b3zK~h!9awy zl^gGvaZM%D$0M+Q_|?)tJ3&HM8Y^zYhHqN(swXAoft99X5Jqme||R)a(>8#x+)YNPr^TqjF4|T<8D3BTITWA^hq)s z7|-u=Z~l@6f`7Z%vVjKHoXqzH-gG{PjS6yoQU2uK_y&n}A++RGy3ZN&@oZaF5Sy57 z%?_cp;9xl&*NX9N@epvxtLQLA_7lt%>E(S&*Yp@I1#SP^wk5G4IDs*WhsLXqJFw3@ z&mvZafs+1w)c|);6*c^3=dsp;qns7N?$BX_eSviXVShtzFom2TU^1B(-5DW>jO{4# zW+Z(7UM?*j@4+uGK)5{WmzrWz(Hi1KC?joMC;zQ#pk3)W4%QJ7nKH^%Ze2ieXqZ9; z>08WntMcb5@x=ghD@ujxdWL4DEX1>+gXLwSair9VW0?*@!IzpX-1d<=nH+K~v8ob!vcm z^cNIAIPMQU3s=R4%xG)*C%7Gih^WKa3oGjr(t98J;QjRKN^g-0$gV_xaTlA01tIvh zD<`Ac7xsI0CKst#uM_*1?|drhtbIffpVB&}CVw}*N|?rvOiqB)9e zlZep8<+0_Lb9#5%<9VLLW)2jMKDQIOKVgZ_-7`qk&i^@XzYYhn@Qqa03E*#dYRH(D zZnpCFqxA_Dki?Y8aZ0swFe#$0I7L+7vwtbR)k)z&co6u{ijO3^W|*Umv`1^w323`; zWYBkJ9jbTn@EEU!HgAl7o5n9p0*$R2@=Ax%U1&#+nXth&kI9icS@a-j2&5K~U6AT5 z0}A&ce}`+?Q)O8xEPyHlhGQj)%f%*dWs=^TX?AF<^Px1FU;ElBcu|k>HjD>winiB&s zsA|1HSep`VWyu*hVPsr#`M*?%GJirdN^Zt`Fddti1|n_G`A;qB!VurVnxB9bga>5r zbc-+zBlOSKQ}^!Hr0u(V74YkrZ9PW3;fxj>cO8`A?-U1!v>FtHzRS$b;H5NG`)a$j;c<5i%R?%pj`c2>1w`lcIzV`LZVeL1uS~Xpuka*86jDNk5Sf15Y z#bYZ$*(`wWGLg*uP}&y@$zVH1P!ziiWUdAqG0rhqTjxvpel7coEkuWIJ)sX)FkrRaj-drXh4eSsn>?oMV}h{ z@`3a%EO;m#)_=5Y-?c(at(zxP*9|-3F^G zpmIPXcrn0ZkA!bT&MqxBhD~{f4-Sw-_W+sqinr}^QC92nlmIxL)x!PCD)6%l; zO!bk^lRMb8RM%tR`2ub(*WC~04=TdG-MY$iA8Kkyf3`Rg(HRM`FIe36$c6u?v*a&) zzQbnb41X9wX*~iRF_l>Ou`b6-(mjnmVEdTUod^^Z^Fij;(e9k$8uqYbda^y&L&_IG za&E)RM2VnR+XT2!B!V_n{WH_V)G61#C~5pFN)xlRi64~Yf}T50nf=lMnDZ|%f@`vs z#JtK+k!UsbXg>qbe0omUb=j9J(eP#e8Kj;Q=YL#Q8pT*E=$#cINhN^_Hd>vIA=&*Q zlue7#;R;gqn%5Ot#rN6Vr7vFMyg}p@%j`u)jInZVby>Odj~C;Ia8ta)@C4gL3^yZ6 z`uDU57wpzRwJ-L@l0@P6AfL$b@y5A`87rsYFp?$-;5h}eeu(Y*CGt&up`&1guMUtK zOnO8 ziZ9B&8=KP~U(QE^a+P?8jVzqR-p?d${JYlUnr_4LV)`eWtEln2PY1Lyq3^R5s()Lk z(;r39JzY1~fkGX{%)CN)E{{)M4`~f^OVR_GP)`F({!Ad}qZ1~0Gg!cxIidth91i9Q zZUBnbawe&(yGa~DIq~9Eyx*^F8!*X9o*kRo(=HI&e{X4tI;&kUocEPd3V|Z^@4gLx zSirNh5(PK~?vc60NzOf&PEyw%Kt7`-+4Oi9dPsBLqXy6BE|!xi?F6 zX&LMWT-2rx)h_sqh(0of4lWS{4z#vl7nJ3+$Q<+cI7%sSFAJiNvht%3u*jytMBA(% z!=1Uh=YxYtYBbK^6nA&6yzuVeSnONu4(tfUZ89$AhzuVa+yX*7nOMg?Fn?>;sS1ym zQONwr%GLDYSjF|<%7G#!Le7Em%~G^_jNWOh)tM!izLtwyBOSb1GK&wA;mmw4;Oj&g znk45k6w9787ll@SgBrViePFug2TxOtQ}L+n5;DYH%FB-Q)?z;ybWs85fS z75QU}abbo+z*B$frC5Y37=Nq%L%%E7`P0Mdh>ZrQj=c2q<}lg=H3oyMl*%!F=fQ-+}G^x>N8LJ zGlmg8Rm{YpW^lb-hJQ)0$=%`~Eta0Jx8Z5fqwFNfMM;O*sQ=~!F-&4C>N6on$KiiY zeHuMkEO}KZ+)wkUZeoaTf@>Z${=-U;)B3`%AF^`=+XA_YAOdZ zR^^;EB#1Oy%6RyB2l3|PE#m&qYz{+7;Cz=2vvJj$1@07&OMm$_Lt3pDNQ_{CZBvUc zkkEjSzUz0d=_gFVKy!q7G%e$ef7p?h13V08$^5-=qp)heT7`rWgoYHwv4pfPr4&;2 zK+1LDi!>Op$PQUnVuWO5vQ~#A3s+ifzV8N78a{mQHV$i7M&07B3zJnymZATd%5<{z z`lyS!sK`i`Fn=JWv0sKReav|BU3^jt^1T#rhKL;5$un41_3@Sbue>-DSMoKm3M??d zFqfXZ%Y5C3%#c~}ul5eaScYLVV|~ozgpDf&8;%agxQKG;s7c-E8HT#}uc{;+y+Y^w zBv`&>%3%lNa#5@TJ2gzkwvvfyaq@)|St}?Q*M3C+>VIl_#Ra4^m|^q&i_NmMN2N49 zDC}#{@TV4AGn8tBYhPkN7Je-S6v(ppa4>C%Mt`lK2OdUG$64sH9oAJ%980Rg?(diWnI^8 zj1zWj+eXK>?R0E)tP|Vr*v5&|vCWQcb?l^r{_?!yT+c$BaIE)AN` zBChC-sy;+I`ujd*YQxLH0VFv+bvPdU(s}LDT|K~giW)D>O`v=ud9|2N`1V9x$Mhu} zGjT}Aoq=u?tI}p#D&x1PDuy217#C=N2tm6XiLLaAg^8pb7@hdLf9^SrxZ{_yvWMBX zP?NPTzqaH1fLT?{zyum;vursX-G%n${Y9+V9G->2yh5wq(&nq(bn_C##;FBpuuT?> zML{;_i1@>xSGvisS}&tKvoR-} z?z$~uzs?D#@goaSm4MOLTa&O~Y@nN$7N}VyauyWZj3py}sDf@US#_CabyXsFhKh(d z#X~)w{WM70$y>frkZ^KMK)qFp@nzdf1`mK{I4|81fs}%o3kWp6Z;zrsCCYWgOE;Uw zbbha(neeG_mg_CJEWrtv5ylj~{8aE0ub9~hI%SouJL2IgI9EFm>n+sUQcTR8(y_@= zre~gb*}(jn`m2=?qB{{IGVYzir5^E&_5Lts#JK%QaOGK%qPOynJ|AhCmDK?O^vI-8 zX8&C{2grx&JrCznNhpTSGFDw9KNFHRpFo|+b9_y4QLetQhq@N*!)%-+VskXf#7EZa zh%-eilmur z6CB}kf<<`i9z8!qs^6rZN#%jRZ9E7=HjGHE5x6~^9Q`Yrndnp*BXE(u;UjC-U@=bQ zn{D}XV#lw{&W~jXzZ9}qc4THnCf0n=k}wLN%~h*e(e|3P65Gb+ZED+OJX?XHd! zt0frSIDzOp=G$QJ^+UUN-@C)ftsF0J=*gOgRRCe8Ip&4WpZW2Q%Kf7D*9u_~rj_4G zM?hHZs}oGqkuFi;EYHJ+9X*mo(bgl0yu#@if+(!SsQ75>AHG|2`c@P|{v1Bb|n?{B|{0m{qss{P%!@u;7 zgW;bp*fzqbiGjQRQr-VU;_QBtR~KTko&g*Q;mo6n)E%d=8o zPvH+(XF?!iWf`T5xsM-4^9^LBz~OX4!)@hbBt zrU5gSH_m_ZE>H_OA*Y47#^%s|O$sNoNo!RzQh7s=+**rxl}}($IRGo~JNOL0T+el8 z0^UcjQ;r?mL}Ts3{Prw+($ilq)oY+v$(H$9Z~zJ;=J6{Agpjb&U*etW;=H_jJ0ArX zIshs3;&TjwUsu%XU%sk3lKj-+m!TH>GFrUrG-bVZ-U9f#8t4S%9!)UWotHn%T zX8$AxJsW}OmC;~Jc6jiiU~8OSXmEJVA(FB`ViaFvg7#eV^WW(Eia2W5M52K|;khV^ zxQ#YVUSeY^&zI!=Laf&8XQ(a9`0^bIyqzID5`vy^ezsuk_!zuVKEhKwJ;BUFPG2GA zMjlxp8E0b`?ZF#i9+ZXPC+`pi%n8@epD6T}kcCZWKYybx*0KW&8(~>RO}=LWX~>;W z6~5?Zm}f$Dl^fCD;iCN2W8(te$atvR67n03xFua-^Hvhx^K+dZG^;W$is*&ohCio} zBV0tq+|FiYG)!!leMvjqcfE|RpF^NNSLb!sdyfy57W+*I2jlT59l3RKfStnZ{DjEz zU7h^#MquOt+@J!A%S45)J>j?T((MN!%^YPzsatl6)_Xbz1`D;gb@()}AVsN7HIjj9 zB5;rO7$n~TyX}Ho^>axgMtKibEAl!=jrm~)2Wantk%0%}*+I(F`WITmZWCAsTsEo> ze>LQH^0Omu!Y`BRTn+Zv3hH}#2?U8@vDHA8)=k?hq#e2n&raI6h1yPcKC#i)TE)J9 zfBK?g-ALEg(yPam>Y)cL@}$S=8RvC}cZIl#l@m*yusu3F4#wC9LUD}gC8zQ4({{4UNXLCGNc^N|>wFxKGFEd})BYrL%cfi}X&L@6)2) zN}1jT%}IiMc@wf9J#kIuKw`d+bdk@7*~lJPBi`plRK+Mk|%?cK&TT#** zmIhky0Zgu$JN3XVEA(75N6n+wsk#Kdp&dH z*{m;x?rq)DtMD7ppge4x4R-qDzts=bw@e*RKadU1j4FCp^4mzGNrpy=S}Ase;F{?v zHZ1T|1(YTqWZ}XZZBHIgJ#>?ROy?=p-CZpjq_f~q5LyOxe}nlIbox?I_q_)j?m`X; ziVXq>_=0jajrnGYka$ai7Ss&qa!(9@LtQsZhTn5Olsw-wl!mR1qpJLxAX%Crb4fvY z8+4${)=E`q6gQl(A)V;qppRn{kEeY%ty0Zy$35`k&+winc$)n7--%KM&r@h(n(19# zqi1I)8Pf+m*{fL1vxbmC8(G!@c%uSz{nkl`qplAPg-lwP@uZ|8Zbxl&y_u3Nm^2Q@Ry-DAGbj>>#=msf`0^ff)|VT(D>Z3W-#d1H`w5{x!RDyp`jmoyKV zcy+Yo5aed^e~vWhfSU}~@-)bMA!wknBlGZnXe(gOM&DEV5Y#G@C4AVW>A^9vigZ#( zG@RH{=iKYsck=AB`!XD@ zo(tXI&HnJkkW6uDi0UWBFpSSSP8QcM&1HMbVk0cEy#*{Z1#ogwWqr`}>1$(+9{T!7 z#=GW=)ekGSr$Dngr$H;1iw%OdaBVvv7Bxm1kshH^u<)0i^G!6LXe4x@{5<3KvJZmC2Ob=G;{@pFs9&9b!&??Wm_1hkT^F}N z!xQdiZt4aD>TB|pC6bS)m-9?JKUCDy`a~B(zSSZ12uTj$a^+>*$t^1$YQuLCmPPm% z$zl4DQ$lQnCsf#o(4Sf1^>s4LCi0-WrVi(`c^Orvzhi?WBTG7~v*-ij(H*ZyD@ar= zR9UyS!$hxr^GUdC{^s^vPAVsvAAL3k!r@RyoJCr^BHP`{NfBHCn%mbf`R(4_OjGwz zCatB8bB|b_!jg^_s@T+fnbEZaG5}mJXglVQ{gM`AFQ`X3nSb58+H=Kv(WOcI|Ch)v zfSZT&AEjK3*1uZtFLIyKxc}6N> z{p3<1KOt-DQU;*%AB*k31L@g-WJm}emh`#SPo-a>{QtUf{CDuI2$1xTFK6p#;PU^t zsq}ri2~+{n{^7a*aWhJfssh-y=GT2D{0x-bM~dE>+yF@VCp&K|T{EEM(_&?5{nZLE z`wYRF9?$^5XqE2(JpRM8wMujY0RQ1XXMmBe-3?$)_vrxOv{v^4K>v7fB!2l^oJxDO1CmBR!9S7yGnx8H01^}=Hz!Ye-z1sv7$-%*yE>Z=c0Z!@b ze8=Z*@n5bx8SyNwb~x{?si-(xN#h>VWRQxZK7`e^k;|4Y7FETg?(v@va)9VkE>8N9 z>4FDU?|;mPfUK*U?JS|egAQOc-?h_#)AA~h5cQ_aCqp>w3XP&`TCPpdpoyu>CnhQi z35=qTscQ9bQ%1GH1P0(rj}$I!|Lh(cAv;b>R%12Reqh5%O1wRF`%L)pop z%>XX9c2FN)c`r8YVD5Jo#VTbU6i`iQpCOi^tkq-tH6Dc%*z$S+V>euC$Y}vx&;lM^ z100N*y9jn40uF&4DP5r40AepBP7Vwno&F523Y-c!yrNj$EVBC&NhpgXP((p=s((v# zfUX}J8ZJL50XiR5l}5|+nJg9L!-8S+wKuc3GyyAICj(3!w!9CD1j{P$o2)0St#G4i zJ|Z|8oH@r5Xjvwp*7(bz7>%-hyNe5olnsXZ4wWu~-VS+F-wPNDML>{8XPVL7?df(AUOfDBz(lP`VO$vF89K-gp>y8V!+ToG)2Mg@{?fZ zJF`FqVk*;WCxS5ZmjfW}dNC-vog7fGn}t;hA}HW3!h$jF=$%1aG_dOOp?aj&ZG6Zr z!dP( zmc_3QEP#6@8np|Zq%cUJSH>7cU8Wo?Nvjx2xkTy*#9A|KGM0!M{`r>({=+%Pa_r6G z%6#l|CCw8)!=gNE;nTjQ-bi6+A^N&UOjL}=xrxaol$o7hu$#0{sC$*4G_8RS`L0`Mn^IszxBpgIOAY=1g#G!3se(^eoH0LO49Nei;xt=*zs z`08ckIr}_tj#i>U)gcyoAP=XU72059z3cO;_C#?p52eIO(mCe{|O%L<z-$;-zZ4!F#S`a|B4+GOtZ2=M1lXRU`_Kz&&ZmlDqw%yUd9u@&FQy17U7m>W4m!D zHQq*+dPCrg$C#Cx=AomLdkv9KQ(qRDXj!Y;uB#|Z0*L+`yM(S%+5X!ZrrEph* zQoDNq5H>VmxMrlJ9N7yj6X$Dnx+|OwUN}C2EKT`%$wRG#{gPb(OeSr;gkB6v5~o~V zPy<{I7&d!AO(L`dlC}$iZRk<6=}%%+xd!^mIw=)m_Q413!iVY^r)6VI3Mo1rv(_2b z)JfL6A8CmTP4dzPYU{(|g*@b63$j)f(djh$9V_rsKP^NXU>+ zctq$g@;V9=gZOJdZ7q^FS9=N%OFJDHNFiR*9#gKH#Bb)q7nA1%RQr)+B~YeUE?H-C zp<0vZ%3AeABLX|<aA7SH!gJb;@%<3F&vpWwd(e+5=ad`3*DvbXigd zxC!ktGv2t66kL$5;9EVBTt(685p2Q`kdJtrsKnGAmZvm{*MjM1h@AO^m2PQFt(Sdn z*mlTan(YxcBcl^lp&~hKf1)4Bd_9HxtM5n>W9*Mo)w!2EwoEp{RRvx}xjjB}fy3M% z)3Q$7otp3j16-RRf$QF!6fx@BT&KLWNr@h_*b+P(`e5V~rh+_kyc3&&y-iVd;MTFL zha4P=f;`ELjK=oIH#?A4K zE}}KaI@F-rA2pENEzeSf+H~8sMLE;O)^A5ME<2i=k&xs|JCiK?27fuzUPC-Vf4SQ9 z2qN>iCb{#FW-7M1_i1~Fx{pZxle|Jare==2ZZCF6l9T6q1O>i&A3l9NwszePIC8tG z5KUTESw7s_v3BW9Vf);_11}Enyc^&T`xXyObgYQ3-=FRrhi2kSn21b+;GVv<6Amyb zrCC1Mg&IAMmnCPVKiu!J`41U@P|D6z>ok+APFIsxhcpcMu|St&mED4&(O{Du*$j%m zHEuS^w=RqUrr8pA-aSuGJy)rDh9A$5&(I`3%#}6bV^oMyg;g}NK#fo#GTB8qlYw%Q zQp|&wJ1r$6e+qpUdXWbB;2@e`@Hj0`d}E};2P{P{E1GfXjz)w)??_M!dyVTG2%|+M zyy^qPjfame%y!7r{rV{UI2`QkVBX!u3_T1QyaNEUjqmB}g@-1hKMK`XS3|;Lz94bm zM$`Sp9RFHMN-F&7^N{Jo^~w92Hyirm{?)P8G5OZ63NiRLQ1f|!sAS1S7%O*N#7K`< ze3l&Wg=SXCIce!@Vui1&zmXtgUh2$5@U6s4rLP)Mn$+R?t$~+*H?vTRP?}I`@~xbg zW^TIMOY_^;uBwUX+lJ1!i=&3z)cM=WPA1DkyRTIfUcBMAz*7B`2^XDhk*7+11E$~Y z`tP=eTWKDLt+%bWPuZg&gv7e7ZXwT?3QAQ6vR|Z$&tek$5z^_Xr*4uI{+nT=baoO4 z6Vl{K&jtL@5Y)%>-YU#x6EWl2qrkKtaW;G+$KOM){)(>dk#Ab@($wyxw`I$Y$hkz^ z;t-f}pz)^%;LydQ8Ed~K$-p47ljeQ!9)&8-sf!@`009EJ;Gt?{%EWQ+3hxii3263u z(bex2i%hCQLSFCleNqX3tQy+Q)Sn`2%+QJ4sK?i5S;?BmB9h8Ys#L~$BxSziPBF0w z^1bgqk9hou@o$XS|2Y&a;p(D3$j-*a&O>)J29ZWT@Ph$9jm#SB?z~_(`S}8@#2z$@F=1*vRp?3NNi>ZVEeB zc)P7#kScB7@$eQv`m|3#hq$IM5h2k0{bvgS_la%=DOD#D0Hy zyalKr6(F39@HkJL4nB{mSDlchz`5oOT)CQb`rI7tT%hOQn6Y&TAtmhK0~{Pg_phMf zfkh+n(I5le!?&>N-))`K66>e=&m$wBozlu;t!|0tcGyq~z5cv62uX1`az{LdDF(*t zczZ5|xgam%l(EzQIQ&WKrJ70NGD`rL;a?Wu<#~T_8XlY>k^ScWZtm|^XFUqmN-O6D z)%}IFh(0@4&_Kyj7zn8r6bn`nrg22ckq>jvVrLh|-%^;bnZeglV*XT};RU|=H-{d9UN8=*P-H;p0fz|)TEQbw+ zsNv#^54RcZw=$Bq+kxGVV9P`Xr^W#!4>s`AKc;UN!fgUO>qqx-Oy=%VBXwu#NI;Vq zro>zG6!{n3<8O5|k4a?)kj!$UUMFNNig}r5+C*{3H*6hy!dZWfhzFcHFOTYgFm01zg!u z4c|V#{>j{F+5GLm^Mn9t*?YIT`Udp<+5sk5YSh#JwyM*`;GY&ysqA0l0XOi)LmYP( zWVxdWg`UVl<-&{>OAvA0@RX=N2;~VBx(YY5nzGn6&waw~GiTOJXr=8Ak=ugU5Kq!1 zSiI4yPD~J$?OBo{jn!9s^rF`c*-R+J2FZO7%s&$+B{U!{b^R_ZXpsDbO$RK-eODfa zaL!Vy_zQN1S0{t=(}@zhimd$HfwMg0{7_zs(N_$-B*QcM>~w?zyXFGJ%-5_Ou7H0a z&yNht7hc71?Lr}O?PgV;bQ{QUarh&zTS_05r#f8UMO`nI=E!x9+ z82`Li)A_Lx-;BEL&{KUv&jsvPxqdg(F`aqlTV@cS-~MLIK#NiueFzvZDInD*QryE1 zJf0mnefjMIuY)*}lScd}8Q$iF<*zeWs3f8yxz`d^wP_t^hqgI()jhms?k4xn$Jqu`dC#lFhxMsY{As5 z5?(w{bw)3F%&jp*?V>R0Hre1exqCG2r(YniDcd)N@W(~k&$h#^TnGpuoWL~X3gG0i zX6K@JtyK9DH*OQ&2>`DiI}&^(zla_=!J84b1il3nU2I{)8?2v%HqjyU!XFrl&zHjL z@b84+cYSyi{Jv0w-DEd4c<2+{vBU53_vm{(*NO{euWIT06A)~FkG3)NoBLbnt74Fb zL$JoX$M>-F;_HgBM>J{1SE~o$6RM(Vkj%7kO$+#Ik4vR>7ZPwSQ0>CgMTPlkyzEZT z*SZyU8{4yfNa()g)Uou~leFj%;iEY|2>m8#CL{mv7i0|@#f58T<(FhHpIM?zQ;H8X zZXlaso8zq^)i}`dS@@GJ)k!uA!O|R78Y0l?*4wRnzG?_pdIHV4GyL^M5mb0P5Fi*~ zc)owSART#hVyi8=Y{pN8K*CiX?i+!9Kjp7TgPqHpLf3f0?;+mo<7BxiK?er)Cl`+6 zCGsV2ZPwP7vS&*b6h-_V8dc#qC9lI-i=1E7FyPRd1yV~SqjF}L$J~xY|EZnz>XuQ< z@`W$WR8TWj_tOK~)*qamxD(cYBg9N{gSkU5;^Tz4r zam*O%X42K67WuBMr&xvRWyu(PrDZ`+Y9T+lvn%X18sv~v9B6Z1Nr z*91$5F|!#c&{O=N`j*}G2%9P|wKJHXz4JKw-+-5P@%!yg>^P?@ti7Wl5pOvPS`YpY ze~o?*4Y@RDjLL#hW+GKz2-I0(H&phMzuDeaA2)>If~l|ib{UZbwhu27)LPtjuWwsE z*zooQ`|E&XD2Bm^i{_Iz{%N>jiC6K25wZDsiyc zzyghE>PqicyL*AsKd#)Qn@9-f)2_M|nH{hnK5zrd95N5Q``r?d<7Dd}hCXJC4FtOVN$GXMl4)zp{JVVsvq+N^w$7d~M$KrM zY%8ACGHJ0=csYO~ymlk7u;N^wku6mE5Q=p6P9re-ttT;cMc zV04|eXyk7x9#ktP7!J+i3J&|$2L`lO?PG2E(*!;IxpqOFy;tEg!LN2yVO7HRiFyS>xW)s(t=0#@BC3rqqb|zEbK0?lhh% zassrK&YR=$<2UF`T0c-f{dVi943+QnzboL7JRH2Oe#d|kNO(>bc2-UnP7d~T`ZECD z{{t1z02vTG9O=EY00L}I0JEgE%Xe22cAo!R&1K`}NS;Hd1^OlQIR=wp3}3xr608qE zVWd)qnf+*WyZGf^HVmn|C#^2u$MAjy8x`(0*1tRQdfOHMWXutW! zYN?~Ax7W0!7X4TAmmAn60w2{JnN|!GPlkENj`YU74yj?p!c~x&?>zcAbVlC6AE86P z|L+Co;bckwatR;-@^G>m0GQRRz0FBJO#rhNi5@EnJIOz!s-vST2@eMk2@8oTfLX@D z!toRF{)@y(^!UYiMI|}JMYy=d#YM%~M0t5RBt+OGxHvgjxj7|RL^uRV{=Y8Bf}e^0 zt;Vyl@FtVy(E=&ct?dk@FvE_0A7j&JZqU}9JBRhM-5Pk}l0DEnS=i;C4t#-ruL^nK60>lhe8rN)#;iKYxzHadlx8lVai zz2s1VS)v?taVfJ(3v_Y8JW%{q4VDT`-GP#rRjLD}QE__Fjn1(gY~!*#N?4`?X>(e; z$t}@{Y)3K@`i3**JuB=${j-PzzfaO-WK`jo9YmIJV_TAk{Xy2yPrT?g5m@dk$aiCG zoC8q=D`=p7KE7*I)z6vS3kW@7rSbPkmo8)c6Lc-$go|Du6UabctmDuf?CcrKxb+;| zP=8*c!<-uj%t!4~Ds3J1PoF;#pR^edN$rc0d$gM`6am_@%b-hmA1V&azOlOgda}D4 z;!3t+@dj)fAB3HvLOHE-)|J}^2V1aw*~UN``xH=VzCcXevbVaeR_o$70T06G;;>LN z1>WsIw81e2P8j3rgI5_F>U+e$Z)+Hu-T6Z5qc8JWVb_|97DnWe`^UBM?CnK(6nQOY zx1|xiR&MGK|Fwr)2Ol4lEzH@=wRUSe1zSNVkMG@pg(2jQ#Aj^3f8AkH=)}qbpN_2A zO9Kj8UiAvrqpL^ad#<`%bQZ;zL)w*|_Bj~;xdex8YtM~viNpuzOja}hGBJXeiD6;~ z)|?-wkNG7uSub=6eU-qt*i&|+%%+A}oB0yfVDD&+p%q(O#5gbFg*-P#pchg-f`>0N z`o~He`U;4}tr%<19Tcob7pW~rMiqk&RtJ=@;WTNBKqogRzR?{7vU*)qaQ`?4ZYw;a zJUa$0tT&lvMp%=TMrKeo)DD3=6JIp-W$3POt+|@KNS6$%2*XR*P?_vl?U(59vDjwl zfSE(sil1PYRaHPXIHgyW-fMu!E;UoTkVb~hCXEDb71)oE9JoxUBYn3 z&P2)xi7t^TlEoHeoahxl+6H@?0^M0?k`(v~k(E)OHlJ!%0kXoFG|&{IysTEIB8Itx6-oI^63qW3-$*Z=N9Vj5Qw1p}wU+YSlZ zU?#s+?eJ@ZWA|z}ebI+V?_+E0=RsBClgRa&8b5>(79mvf^N)<{LG-ulvV8W2l8@5= zi*5P}uVn;Y7qr}awo|qf8zNdJ5RHq$PSbxzBJ3vsbsfe=W`2o@U==Dopk?=*1%9NZ zUyTuBqE{k~flZH@pP^d;HUxZ&y26~GPg`a;4gt@FmCqn+aF4FOUyZ&F+~XWdj@reb zr>~vw0z0GCD9}^sGZZhOiPJ!=#z-ac!zvi1*nK#k!C0znM@SBcmml(~cybBO=*%=`{h=C5yK>78 zF11_}V87%w_H4oFfp-nGn1$B`3y0bUtbs|vZIiBwG%sljYRh@rEC_`9EidnLV4oq(fHpSu;yadyi2?)Lg$ zXS3TzV`R{px82bUM7QD_F9@ofW@c}fIY@4YO&g|~Blj-vIBU>UPl$YV%Gqa*4unEz zyOnU>xLt3h(C}Q!DAz`@lN2BaQH#*VWZc+W!CXxEAgAWu=(n$(V_KY$;@`f^WLz7N zDC#!ux8=ga09-j9g&FJa{QOU#*C!~I304UMg=B@Bz)E5&JlrcKExaAD0sa6MuvVIcYf zVDu6l0yt~G(suvF-AYtD=Vdz@%^)|;m3izZS6sSSO~1ZSr8c(|V!j&J+V79y$EU&LcA%1QhsjK(WAX&5V%tnfSokLHp!S1OTEP<`8Wd ztq94Br+VAl3^8(k;5LPK{C?-ylW+}du|H!SFx0a|(K(;yWJ$5xMgRB&mq~6Fm;bXO zwDRYe*x}(xnwl5yVUn6Z?_v7qgXb_kD<~p8%kv~H%i;0GJgGp_f%vjKwMa8}f$oR1 ws>aZ2wV9+acuIh31s$=pRu$joU-0!KpW*cJdjKIKFAEC?4}g+VLP-+vKQ&1Wr2qf` delta 89973 zcmZs>Lv$w4wuKwpwko!5+qUhB^(U#=wry8z+qP{xug-nvzT0`dxp!l?)*f??HNWv1 z#)mVSIxZ4m*2FnXYQU1JoWdp}QrAuG?Ht$O)8y+ztD>NFxz||r6>*2@pGrZ+1Th(a z?-glpGg!C?;t^~7{r2md=dqMJ%NV`-eX^Hw6@M0}Wr(zeiLkEl-%-GGn3G#`Ed9Sg32rVK*i zeF<<+UX3&C*6l|T4g1hA;iytP;aAj?n5Nw#@Whlbjp@6AFBF`H&B9}gmvp60+vg)B z5&RJBN2jqTEc zVxJfAu7*UJF~G`Um>(;cg@}CSYwKPI>EG_L7^YN1=SW%%opVS^39Kg~lb|(n zk`BTG&o+KBAb|ldB_gnr0HjRVqbRPH`%Ogdr0)G=+7#}OOZw7qMb>*Gyiq8Zr3pPH z=c1#cALgysfy|83j-)m-K57#%Y=2}3eOVn4KO}S@*S=-a;B{*LTt0ZhK2)UUME=vd z9p6q@?<0RNa@}71*Jm0J*Pmv5daPm|1r8oF!(hzpO@F&Mn;F?9M&dy?wz69BqzVRt zqk%HBaHaMM!cqZ}wI)(F*ip7#G#oL{WjWydJ>u5ZWX;qy&6td8VF~i-(J+2Zq z^zPZ!jDM>fioG9%aFEU11^3A1{EjOkO zf7)_Us2WHVt_Q|djBV+eQ-wOD{JP#}l1*#&-Al^j1PW10Vd6bQMRPlO(+@-K>*=5p z^+rLe3&L27Fvmdv%&5|DhtFVvU1f+T-RqmCS`fnKI}Y|y^=FOtg%6JmcFCw|LWY_Vizs*Smr!f4h7N}>+^Q;w)Ev_%R|yYcOq1oQysU>t^saYZR(OgKDQEGOI1X_m2#*{iQVq6bxv+F2h6s<6 zX~tlyjX#y*#3&AN<*C-+syCaQZH0v*jj81j)N+}s!+7+xw3yweD{4jrB3=&~X@!ub z#*z8A6`Gu8Nra}hBR@Xq%4H=7HS&h6U@?GAFM=Z4s&SF})XoR@DuVW;fUD%o5<(%_ zZzMV)U43vE0SLgmraNEa!5I;mPiA}dKClq!A#YLo$EcK8VJW@hrrMPI!2PA6d(3x# z^&pEF@jdOYyHSST2O%~d^&TT%T*r2lFgu#0!B(u7GY6tSbR>ZT#2?s>R9${+_q%Wi`*)V(cGR!!IZC8RsRVnJd@{8b8nDF zOK2pq?iXgU60|zbG*W&pdzAPn?Gj3L~Eh6oP9FYL+$ z-e$?%hM6HzG$_Xc;fsciU%pN3+1f>vDS;Wm{QULrmO1RrNYw76xD^LH@=$haSF5F* zMR|UPRT3wZ8)C*qiB!E%LB9GDp(KgO0W1$wjap0A<9cew! z#1srPQ=p_ALu^-RDz`h3;Mluc{TDKtR!yMW@a#U^j@^W1xUGHQ3LJ*u2=)A=3V3?0 z_-;RO>ioX&JrQn@`HsdU4+#x|ONdHnc<|}5RtuvJbPDf+k4Kd|AWMKSniXSghN$Cy zW`YlxB1^_BS0PI^5lMfYS;0CWcK-zUa0&?_B2G6fGPV$@-k8>qC?r_F(N)PPf2vzO z#o^&%RhBa_ZE#zI`&m^`hLRv*UCj)*HarO=Dqs0|xX;<&Ti6qbmX*{ER?;4qZx3dIqpVBBY7N-!d10eUR{z`uvndg zxJ;bs*y8tUTq>DH*?JRyS_o(EHZNWy2JT* zv9*qfu5xHJ1}e|^_udgmq35Pq5yf zEuxZ*9(_PJ<{IyuI_w23N_1^wT(S@yy{1chiP-7j>M3%#BdatTf#xeU7J+Aqg9aQ zDtxisJ0A3+=2NpuFE2`va`j}s4}F%F_OEv_B8+;V)wYTgoJgB#6L*5P0pz+MN*X8! zf?&YyT*^cXly0cTI;uF_VZdAV?YHLM)6ef4lyNO&(rnl!nvxR)ON2*9OeVkMF%3ua zpfG~K1rdk9UyJbaz&5}c#(}Qb`hG6!bGA}9_h z3<*T<4i)*^*}$m2^88`cHm@KLGOpLi{Cifxd#To@qtIsEKa4vP{v?w_JmGRX-xn_& z29hW1*h+a1S~OLv0ETRv+J4+`aQE@9gAF+uiqyqy{m_BUobF+3Z8U@V)Wner+ta=S zRCq9f@QoDr9@D3vkid8)Iq!I51_RU?dn|vl+Sjrgk@8Wo-`y ztS?l-iG+qsV@Ul{?v3c87vI5d74i)O5c{|h8^Q}2!Wj|Awcz0cNHfR#(s{HX!Q zPis$`ccom>e385j`j&urTTNnnRbj(uA~Q|F2m3oxC8>xx z;QHVzmP253=hF#LXgI>EtW=($ds4?QcTWM*=ip<$~em0|anS~;6iP5gyV^Jy8M zVf*^Io!!vrd&}NooYwE=s_#mb_v)G2?N<|o?Uj)7P-qF@!lQ3*Ki5qQdn5cKw(w-Q zBll+_`b|{EGIwG1F9|3AK7gP!d@sPD`yql7k>vp?`90yDxWK@a}mGY#-tIf5(PBI($P{8t42IkB&nM5yf0@xMQks`R9|eO zv-5u?bxpx|wOGRr}5Zf;Xrw39<5V#2s zUW4}G4(wFFG6 zG@@)kofB5*Sl`h-#+C*FU)w>r4hlEHew#zcpQAa)>4j;uT?h{Sez%zi;^^tAM=NQ4 ztR!+ZEpc)>ld;YsgpqG?* zg>#R`Tyg^ZnZ}E)TqE3Row^!ALJYN6zuP9jv*j2ZP{#a5jie~Y%ryfL zynLGWT6I>ti`m$?T>Vf@{beb0v<;AHTQ43Rg*y!skRXV|!#)BaO}B!eZ4XPp5wsg1 zAAw?D^1#O(y_e?v5)&E3c66FWAy?4sF=g&_sg_mzkD6X)^PMS*;LXWd0~KNJ%tcUMq?pIUZCs%{+y`v`uDYuW+rJF-#xzlz$?= zZ4AXs6#PSMmsOE^J{YYs@K?=X*uVx=gJMv`3JS40sd9(uUm6 zjm_K4w@01eqy0Fy@2=P_tHVNLKq40*2g+Kv1feBd`{L?!V>a z*ErMDN$+*Mg3!>%!gQB?tUSSNf8cT{k&0x?rFB`FaAOpEx4$VPg(gjn&=6rM?$e6s zkrv+Q5Yr!ZG$GMS$a@N62h}QC_d@tUeZ~UPxFKO0m&6k6ceUEejL7J)QN}_eG$cfaBN5OBIkAci=od$3{M=v!_o_^`X#X+)#Dm zz3=3O+O4hUU!Zu%5vKNhlLJIvlqfea6gqY1g`D`co4M7GP?o^ z$4f%|F$MjugcpA|X;MfmSe)Z$*z0NUw%H{uW=7q)@lP_~)697Nf?gXluwdJ(;07hp za44f5v;%F+L8(olp6njd-fl||rv6OthZ3+OdtE9|GIbfl! z9ERwE0wQe;zpNf#Pd|T~y2Ge>YPC0v19hd&gLmMD5(MXw#`gE%BIs+nBJ}y~uM6S( zBXpnW3L;4Lkc_lshoUvCXI-XpeLoy@+Ll7~9X(|gxAramo!5yasO>%2N{-_@NWuQp z_=`|P_~kPpc$~EYSd;RfLXT=qec)Zxp>9nm`f?#5q!UuqdqZ1CC3ux7i*A^jkgS|z zYmwm%g$>>IuMLjTe46kc0E^#iiP0TTCh807hl}23_XvW{1%;ajwhXM^6p6q`V^VId z#Z7y~=MFcpX8hcn$}~8-%Mg$Ao=6f1tJRa04g zDLo#ThHg{2e7+r~5!XA@P?wBbaAcoIX~~5DA>!mdJbQe7H6s=lFtRyTil7TqrBO~w z!13hH?%G0?9C(1xlVgZSLE#mBWb=ITakFYJtD_U0G$_<(WR<1R0 zJFk{O>%>!26Zn7$y=07!C0sar2g-Bc)9^wk0W0DLyaAa8o!0QnR#%p`B`Ev#)S9f* zE+t~uwrtEWMBn~JAYOfS&~2a&aFvnNo$dhFArKHfqB=KG3grzx!7mkCae6^_yc12i zpP!-Nxs`0)&f}Y|p=U!Esqd@l!ze=b2oSMGdD9}@!{=(+VTRncw4zM4Qa<`bNcM{B zk1Ht!Sj8|fc#`#P#0!KupNYn%1m7ZSf|w>meW2wGDpQ9k;05Q@%=l;Hm-I6Bu~9~k zEO8GW@yZB=$Wes~izxrtsH$QEX;J1)@p`{F8d(EhGWp=5VV%iAp&(x6wKf~H{U%xe zAf;STge9c^oCc1t&g`}OO~eE=A|i;Fu*kASICgp2^i?OJuz=Hw)yg_2s2f(25j~0c z!tn$73lz^Ju`MYTgp27vArC*%AvqkI<^Mt+7u)}ZJT8t#Z`Q$O%6^xd=r_JQj5#xVP%C5oqWhT7*Zp2STi)~g0ClE zd5~TCjFNF{Zye%cXCZoun}pHK7L<8?%!=7nk@56*jSwPP?98MC)xzD zt-MI)BH@GD`4UD-Wq!O7Ypnjgf7$6ILo<=c8XiZ~UVMc!>6=aeKHVA~` z;ZrG0B~Nl6WY;r9mk2Rd+Z>dCd(Kl5Z8#&rz*AH~VEZVr;Pl}`|Fu?SVoOz#@EQ!B5u~>67X_etlJxp6bzfOz4O)5 zP;y?$BdtCW54czO{&+ev+$35Wx^Ve8vM~oD!IDW`2qU@lQS#FOBfU`*=zLYYl0m?3 zoQUeed9Pwn7YV4=wG4w}TS;LyHU74Z=~(jsgCY9_wWXgu@fNmZ}bo27BlJE!VL)$8Mea5v>)>eWPZoI+%5jK&p(h1!GD z-G~6e?v1{oC>dVKSpmi(%0&T?n*Vrs(N{KOOo#OwVdVLvZyk|V*>9p*qCFx9c5NYi z=kY+K{5q;I<{+JT+Kg_Da{-Mh9OtVSX-s&2!{l8riUbOyq*={hEWG$Pq_Thw+80UG zlVIso!K7XFcFY0E1dfi}W!E0N9d*s7B|j>Y!d;$0Zbpbobs+L8s>9rtqgt`F%y*My z$~NU>av9o1tfu|Uap;Rl5hvcEpgP*}{S9HimzEw(Ey7#vaD7KQog4Ma75C*O5xp?+ zKnQ`N8Wx1It3T(?A$@v7ilYFEtBNaq+X^wg)%>xCikl02y)@#FA+4XI$nJBS2oxBE z!$!9)3vJ#58MvFT{C$>aH57*#;y*_?3G790?=Wr^;FR35OCUQ^#1{UN{5R`EkvNw? zQKd65Zw>qxkt-VMpPk$_i2mMND;Iu|sp{8}KAX)Q_DT*96a1LIdJKTf^M~iE(aDj0 zy1HkOLX7Z)r_S?Pu|BQCb1k1{tgH=0;r(lqumh}8CW6t4Y{-M(K??2d=b3I_NssTR zXB4v-m32(B$PBm-4&$FffXnjg{)$;i=1{4_a6W(80}d=I~o znvDC>pf_1!^B4dlC#XVOveiudrPk&2Wq2Vj{1#j-37e(n#?fYA1DpbcT={B@ zsZ@0@(QTj(?^_R|3@Vrs%xu6@2jv_YsUIe(47Xe?Kom0+Um!W6M za}^5%dFF6Fy$GcqUgmG_BBR-|W(U13@Ln2>sl&zsq%Z)H96SoyI|@lhE<*sG5Bumn z3vA_LtcO&ca;&H^KRlCKSkRd7tI@r7xcK;}f8Xz5W-S;)CbK1#18pGr0k}UN8&w~q^8V+2ioHQp z<*e~iqK*KpG36FSi3!ZZJydz2~ReuA_6_jw2lFDpZe z6+HZ<)j~&=2k9|}%7q1K{%Q?hGJ~AO*O$ukM@Ox(8=SY!c!mrU-tP(XjjHv(K7N7y zcE12UT-C8OTGi|n$-JhS2b&YjFUp9?e?P+&u--Qv7WQ*FmdsVgmKX=m;7gw|TR8i}s=a(eR@&7)=G- zGu;0i8XURbJKW#gTdF-d>pgYUXphl7^WsJ|Tp(PiebARy3_RP>X$+)@3o9N9(~})j z#2$s)9=_a1>yD|krBrW@5|TQO>0ck}yvgT`5gsWxhhI_7a;WTkztz}V+qSgB{Pu#y zt-LbbSwus`@pP8SJWwK;vU?Mds0sl5WH8;^oKmOxEc#nW5()bxHjn6m`>93h8BB;R zmRB?*|IPJ>{%E zsD*4H_IX9M@151>g)Tr-E#x*4LA-+y(okVFF$Kl|CZ^T(<*IJg-20-@}b zGnzz4dmP5W-n|@;ZKR_HBhs41f1QCOvvc;bbeKqb9akDQjhvip?~gA4iKx*)ke8NF zHzbgsvs4+vToMc!F7J75HTrZZN7&ET4bhI-{c(Kj-4GJ@?J`b?-umLihlO9$ zL2%mi16~7JIAK!*`OUqXPY)iq_j06McRoiC{_STBpm9%99A_7=57EA!>dIht5U`?awkHwe_6LCexXR1!P%^-2&_08}s2YE3SpN&-iIoY3?)&VuG zo)9=srhsld1uFnMd3}io3H1YNd=~+^JjjvP!S58rAe{YjS{8Vwfx$3led5WBw=#SF zip<#a@1NZCnV93XIbNO&3yFu%`7DEs2btgh9g-=o47n!Z0nH_$$b=PK6{>qWr6fq# z53}5EZe2ZRopu{~?rj?1)9Tzx*HRsU7M@f4N*jO+3Vo69`w6}GA^p}t+ZpS@U;QV2 z`Nlj4&MBX_9C;R=)*lZe*RTaF#27JsHGE^fVe_aftPUmu%ihQ&E&{&r&W!h6Z~o=) z?kr~|fo&?x=d-|w<2(5_q!;Kx{(tB3HB9!8eshD>OV~_bqeceX?h_Wmp6QX=hr0`( za{x>3`(!EqKV22pNb>J?9oy((BnUdYJcP6XYWzd>V_Z!Dp+^8D;Q|MqOf3>5?kvAu`om81WwZ33-r)e=R zt3#m1z1_hXj25>u&Vu+CuY{yj(i?M@`}?1KM=6Wig~QEzh=hp_)fdi|FwjWAXZ!UF zP4QcW_P1&IC?WP=`dY^z^MzXIql$YRN}5>p87EQ-R)Hxm#26({1?yA$*6T~y^Szh5 z8nx~p{_X1IeB;0qE5r)h+vQ#6HzE2Py|x1PBk~=-ozISy9?6>$Plg|3X^ziGs?Jit zT&$mnz&rfcAtv5eh~Fd6``itHvt4rP)mMAsKONIRKI<#A@yGEQZz`v7qNU7S2fp| z|E=*C!0m8`Vd|~;t=7%=*DZiKe@Hdr(}0hRCa{#vESTW{@_~nwfFc!ehZhQ~Pl^t} z7|B8Wl=+2ct3a4cX@qN|2b00f&z1LTXb*W6Ey=If8>X*G0KAE4vctRA^4+;l9D%~h z>q~Vn6uKa&=BIcP`XoHZN}Ijw-p%T8(|cJ+sIqe)vDNZ0&`xUn4Hy&MU7?Lu{B)QV zMtMhII6r;YT)r?VRBgjIsIW}Fp~q$n`hmyMW9B_)*`D9{6s-6J-5uCeN{z<@Mg?X{ z6$%9ZSIsanbNx>>1IX5tYTV#N=rdZ$$)!NVahaKe>uU1K> z{F3(ce7Jxl%A2~oI8TopLI>jq*@cWeMGHUO8n_r3m~k-65mP2DrZjVT#XHhUz%Wxi zv{EkP8Of1&Sh%ne|A{>xzv$ z?+s8Ot1-TKlcMNloKjWU7P7L0PqQ^;o_-Ao5Q5pT`C_IkpNj@Ex6z{N9a27??5y*8 zEmSvyn>-FMmR36^!o@?k+hJd1H+_%ie#=Fhm~^=l2FqU%_)kh>6HfbBZ(KcB zgb8&FV@!Xd8mTOig(Q9m{-Jfr^d7pT%Foj1N=73h$@_t;pvfvp|EY?I~Vj~ z_%cktOm%0;qjRTYVhUUp${aY@)fkcJXEt#(55wbZ^EyWS^+&WEWg`;Ytv)KI14ObHpR~?Zg{?HD{n8k*bjX`X26GK zz!$LQ10qPlCaP0KfTSI@)04DH0vD!_PmrX@K~iO-M#p^8%S3^5l+Er8a`$NAXP-YR zuk3UXcd2*zwLV`icC}v!dBje0!y;wFMX?~>T7aYp+`lfmjMb5Xmf-Hy_n`QIG*=>T^>hC#lj?kc%-Q+@A~>l&}Ts>XpGrVxo5;=n3uJ z1pNDnp|+rVz&){WjNZK#@9QP`!}Wz~*C=(58)lB0;-U4Kx0t%R&?zqE`t3{}90{ys zA~v}9SP%+Y+c^>8e?S`!A0z2Q{_HZaQiH=+DeEF9$||rZ*c;xZK&0>zc-2%};ZzSG zd&A2+7>`oK1riN~7~OO$lvmQ)%LSgy0t{#K<*H$knGk>pvWI9w^8yS@)2{|wXXA={ za<9VN&mq0c45MlgaDKb}{ffduFu01>poLCxTW9ESwB}@DW7XEe^FfeLIKIn_KN0CY zpcgffo)u`dEJ4YpZfFP)#2w`d{067)JqhqiQF-PSmTGu-3VwGf$WMiY^ud=c1jxdC z0YM513EyHkvUWOMd};WYjlaS^5fxO{9HF*Qeyr78F4Nm36f7=G9E7f`Ln)FU0H*FI ziwvb;a2i@JdOUInK5TAyb+?LWfah5WgU4-V^c`K0OlO+FS%Z8~=a0t=RBkGCBo%`? z6h*hJYa2w1tN2Pdt5XFzh-cx!0o<}dP$3Lh;6l4=4@9mGrDs>>3=3$1x4ujqiAi?% z!B2$xJt^l4&qAAZl2&nk=alGX#(qWdC9^Eis$7aKthrW)d<2>iMM%u^W;s|shjEMF zphB8x$y(ayuRA=2TmfIbwiMZ{k`u6=l`1LbKdJI!z!=i=;qfrZ-gP5r1WoV`qs9cmk9m!tW+Q0k6X5FB_|g|q_FcV63nMwg)f6-{1Q$st zVo!%tON{93ry%`xXMGSU>1`gw{d4IFtq<7~a`jFJl;pdXR*HSo4Gdj8>vXgwUDdJW zN|ul)Uchb|lsv*p?!mh=U|TE2eQ*03AIVF)E=&nQ3TRr_w5n)|G3kYDMML(e9SK~B zhFw#Eay<1*8CYT3^{!`doN!4V2Zk#zo0=vOLl2~IEylby0E4n5J^dWzwI5+V)`fqw>RH|weKw;Z*p)=6w{XI$; zRje~Vs!QUsN+}^j(;rT7)*^P+qu$Q+pWeZWqCWdC*QU==nd$97=DMiJOA2eCRF9_E z8mGR{9M3y!m~hNG~RK=_>EZ|QUgwRcKpU;;q_?QSXE*&QX-it8> zuP4_p5?T_Oi1ZW4ME}n0aExI2EBO<}2u1gUJjsi|KQLT8l+H39fLKs?)HIiXS-!$1 z##{C4FJvItl(1Jm0> z&#&Q|oi1oBNI$pcNwQ3CRTl0e$@8txZDTt5$j#o$kM-E8Mc~qdx7!s+UarND+m@BI zhDe3QBf;rj8v18eCr#%YT662qXlqK-YT&0px`EfuVvPnyscD~{U+?7UR-@s&{c6j2 zAvOvloaCshfM|q;drYip(pUT7?r>EpS0K6^5kMj~rI~CJI%{K2YX*^p(UU>J#H}=$ zF*QuPgu#oWnIg8_iy0++P>S99^vsnxNgd{A%K=(MprXjUI`)TWpK#-c;<$Wg6FD&p zw`K*47y=t+Yc*_vye$6=FJE0D^H>+C$-Rk@L^xIyAmmo#LR8n-^tHaLVXinUioTqH z;piQ}cB;f3GOXGnT^`YR~@b6CU$<)&O@Ww|s)EI12gq z=Y{PTkQm30w{)^_)BVHOt!*@K&^24aqD|!swm=Ro5B9IBpN~w-_H-9XnkBGC zHm7QmP<4wbBhN9R%)MkfJZIMOm+>Z$l#9_7ewiedbC*wWQ%BNLEs(6Y%-z(>&YN~r zR&akeuRPcaKqs?#)!T1=*Z&wjZ23K$h=WJ~kjKiBq)M1M84{`_3(Z$QzeB^cd%uvv zMVHhbFR4N)Cn`nJVU~R#FOE~A4XgWK0xfbzg~he#5(>mq41Dp%PrEueT}IF})!zQ9 zYo+&L)`4n1^%1O$*}7As8XDa_xuqUaZ@asZV`;yMGr8Mms^77YsNpkgnPMFfoOQSW zLL7$)c#8C(5H7g=`0U(onHH{#DEQKbWGAI!uiiSdEyD-Vkp$YUW=%|Hrz{opHdjIQ zYp9zo7`-4|<1@z(K&@}3ZI-LT1V*LB0Odn7M5vvQ4@CoRWx^biTXG}?tMAu!&z0bNz!9kYv14_^CYpk zSMzf)hhv%wL|I43SdUJW+;kCG@yD#`>8{ThB=O`vwWTJU67P#n5|l|{Ap`ZkBMq20 z;xUl%MxDq{=4@92;kvAD)?WPQfo_SJ7J||ae`Q6zO#UiMX;C%f@M$<_^tChsE}42< zONS8hjs`VJmsr4!vgf!UCSUZ0MFd}Sd<=#ec)pC&FOuU(21}#73rpiw3Zf{w81b&# zC>CXpW4r>>;PN&wLDC~ggBj8nPq#nNWBl;$aLQgS#aYh2fw5rDL_h`65YJ=F_=BtE zwP1DeDWPD^FzDfx4z%K-^24S929&x$vM9?GL!BfhlbdGbb@<_qw;KI2ze8R1p}db# z!3MJ7iP6r74V6g2RdK0leI`yZ%3meqxrz^m&~J5Qxd?;vz(BSRjK#GBWwf>FVz6~7 z4}gEl&XKKU+d?4 zuw3Qi++&r2Q%okf)NO?~rr)|(gJis5g%P-;kdVjOe=D`T;H6n2HxjyCGNjfp9h6zo z@oe}V$_t2YPkrFdTHwzClQunqFh-$WcG2z?VdJXGhv?}ePVJN7w2|fYLazD>qPrzS zkPwcLga-X8aX?TAR!HBX8xVLvJo9+U8Q3SAz%0FoiWc4*5Ej7l98=t9$H|nfYi5cf z=F7t|N&Xzil<|^EiCmc3npCGtZ7(p7ALk7_6TEVw>S8=ECq8oOJF`&D(OD&bL=SlSKtl%7 z-7rcS=lDk0yuUjto&G5JSM*SQQ};FZyG~l4mG^4^_3p{^eQW*1bXjW8qgztnM&)rl zw({R~2xaaS5TJs9YCVXqV?6sb)qHr#^kdda;qfG{BnV2^DPsW#*s_bPETA8$++**G z&ql8zYB_2(W&UqlqGE4b1aMaxTTut!F*yYmVz#GbW`eDK@(cA4fqh~D!bP#PkGRWO z6OoN_Jq72p|8L|be^+8> z?ogKJf>;aUOOVSK*VC6@!~xT>W-Ry@wi^(O2Zs=We$80PCx@F24$-Kd%G5QC0!~+K zeCBXakMRQla7@0mUrL8C#6?t^KulbWo0671* z087kC3QN4>0HmoVc8tcYU--UTMsxZOrU(s|#gHceiz;N1W?l9PYVseU*q}9^Imiti zoa&x9uZF6GKuF0MlHl^Zg;7=KVIoV;k?3c-EBGDj@T_Zn8)y>|x(OOCw=6rG?_z=? zMMJR^1N@@62uCri!mr?mb>{U>L8Q(Vpx4b{NSt{T+Mui{F%W?fVCz}Bhrb6)>BF-8 zXhvaxj?+RAoIkXJTNwsnkNQMyYUjC7NW@+wMSh3=(3|d`F+{5#axo%r>=gu-`8+( z%%Swj#h8C#EWiO0G6uO{Y{|FM&#@4l^P<9H=H(ubFlBI*DKQJyDNNvl?SHWWmVf$xv4MY%&BpN`$8Jd{0FD;G zX5sk%@oW~B|I(s>WNod)gJxvET!VaxiUtu>FsKC2jjGrN6Q1OI)i&x2Uw_IdFa|Md zUUS~>r!#R5kE_uR&opA-eapu;SCO&nCKq>{>C`&|(1C)04awUN6^e0uTm^Z6jb`=POOZkjq`mV=ZnONz&mB7Ngb zbpX=38~%wa*Xqff40Lh$ZbqYU8H63f7y=M`w=>>vV7Zg#C8^)e9Z{FjDEfzrzfz|CqzxV znDC^VE7^t7z8ZJryxZ>R2pBn*)EJaKIN4IGLs()9sESn41c*x_kSV!tJ8DO>5sIj3GFCEa6OFlAdv(R;~9_XBBC^UhQF z)yj6RTSP0yW#BJ0%4xkgd2(zJYTQ7p&v+EQZ?zIJ)Jog{+S-2`DNq>w90BE6XX{x*`hP)r0{j zM3KAn3gotWOGJ2R{$cM^Rj?gkIw~LQYlW2|-|%cs?mx~%>@4VRj5WadZ_AQk?Ou(n zj(|KChnY$hkK;z!NFtR(;@4aVjTB}a?+FJ|Ec9$!6CM`LbGF0!$HRKV!69Am_j5os zYKJDVDJS0e9Xjs3Q_X$0I*GiR)L@sG7(;+mc5%zJx+NLeIOxVMLC3PHKEK{Io)<0-1QW-Pz=gP}QO;UxYnity<}@{1iw zV?^jgu!Egh@*$1v_B++x;3pUplNk`r#)(cRR@Hc4+x6NROKYM>-y)TWxDBMjD0tCn zDf)fqiK_TF5p4rEEq= zxs)Ox{8mcAcbatU>Y^!;nDEhJecv)PzVj}Gi@!40h&%lV(f!9)bBHFsfdRmt4&f0i z$euse<(ZN)I#0(}YYXG$`pfy06qxwINeYN=7?jZzJHDeO8Q8mspxKFW$%(UZK?51( zM2MX+Qvaa2Hbuo_X)yM7TEYq~RpZ1u=L&XYwk2Gz0BJ!d2(FbOWc zAvZYPK|U4TGs_fC(1!@5b{9}uZvw=CC2Fx|(eyZ!QRCLfw1rlm)s`JPOIn)kufwqT zn|;Ig9adCF+raC_8GrM>1JlD7jwZn(2x)VXq4s^5Hq{Bkap6~fhV|iDpTu$)RH-8n zp_exk-X{$|q5}Mh_uw2S{3L|I94Vb;ZXCF@=4=^m4XN0^YJH+pI0E3%V98BCnibQ2Wo*Yrf@y}@dSfnwa5Uk0bN-6{ z6Lxi=&SH#<@UPju=`g^{GnAe{M+XF0343JS#@o}SHP6E_M92gY25H3IR8%31)OC|& z3ugsXUq_tLmcn$~Dn&B)^rAW8p@VZ~&%{|<;DPzY8TyI1An>Yy(%Dog)Hb62G{y?z zD>65u(5-opwc4?PFfY-(CJ?Fa)wNktT~xw~S(7g4SLQaOza@b95UQyD1|Y{vWvWXi zarWnIv|d^CVhcH_A2_rt7Q%fE(MZt(7Z2o`D9U((6ALj&AgA384pr|Dqpz^ddMR6| zS5wmRCJh~x!`PgZmqx@Q(9MpIG~Y%yl2duw`$=Q07LMIcY0>}}fr#^B znIA!EY*X{@`I`5lfpAbj8bq!r2qCz$v=z$jgt5nd+-WP$NRivx%(zq zJA~k3vXT@`D`XOOyYpReb)c#Rv|CQc(SwrWggCNoMsG6Q0DINYeliG-jv7Et#R2cR z&)!_AJBYXD3jsT*DFtiE`ZJSaf<1{q z>6hRi6=O1@tWv8AeM$>rsjS%}9bfW6N}qsN7fwEqAD9Pbf@X!$#RtsDr=*`@F{e;= z+uwNow5x5q0IwwsMYHzX`|9QWP&3jCcbswd>k@Fm&I{&`K%?EEEIi9F9(Cd5+yY+8 z5GiCX)M}buXuhIPDE3GbNJY>AUOQAJfktf3wTs-s4;hFAM)7PvQ4wuLz3nHGqp|4c zIM6zJlr}p5J5}j&Cw|o>XE`C*DL^_!H7|o}G{DxT9+u2sKe=kvX<$!MP(tPQlb{6^ z`xS5m3x=JPZTJeE4eP0Sp1&3R>{&H(2>1Fsa7(&i}TaIhHrc943N?Kf6&J{Fp-yZe~bRQ1k040If?o<6815rk{cj6X%$Q z1U%KK&Lq5NMPwZmBgF$A+njPTeq>!k0tO&mS+~G_2>KKp#+jW@sf1$PZY8=Kd>vIs_ZYld2}c7-Z2e-^t9B99R$M1?CV!Kv9#HYmNKNu?0~5 zGgb#9(VjBa1M-HFQ@oFd3u^MibqZE)l9iGfPM~HexEur%GGj=gbX*^zYxZ|MbH*Gl zJi?WDr7=g3k5T_)|4Ie^RL>s4iH1#Qng)nH0veB4!wBFQkO?ulGsb%*KCZ<@B&?3m(-1$K<4l7E(cc4-X$ zdjYrvT-19A5*N-41q&6Wn?$ni(O~J9{)6E`J1_bF!`53yMb<3aqCny9*0{U7yEX2O z(|F_V6z=Zs+PJ&BJ2cR^ySqKUz283PzWer%su3A0M~zi0bF9pa8FNO%bL!O)gx2y4 zuB?CV)*i5)eB2tSh0TSJyg@DSELW^{_cO_uVH$i`aJui61_iWllK-b9yVazBXR9}X2E&+6uphm zSm>!pgf?m5Vxc|(t*h5(JrBM-+dv*j2LeB0u?5{U3|G>Xwc@NbsGyoO-B{Tl<`BV{ z3DY2BqDN$8!VGYBur5BXez0pH79BwmzC%z@S$M+*ncX}&IwSnvG&Hde9slf}ia5?< z-dmtXo?ZHhCRC=I(>r^j`r#g2F3z(r0T_Z&8|$B7{^t8Q`HFnoGQ?19&`aA5CO5J= zeRB*R@zEV6FGu+j-{kE(c#ra0L{~Px#29G(wYaGBVnGxTZ-5kAjA-fbEkY9H4&&M6 zk<0O@v$bO_9O7vi-jv$Yy-DD1P{oRm7#Z*+#{3)jDzor@^{}FZX8UAK^rH>`XTx@* z9pf0wR5JGLvRr8{36>0G=U&QI5YWFTSoA(AMKOiDJzy7xpbL8km2Fi2=|z%f*$SI+ z`>{p|4FqR7+Q3RqK&>0HxJIS{Gy;4^4D^Z9chJmruMj2EE?7SG;;=Pe!AfER>J111 z;83$3(DsKj^U5xL$nzt=mlLdI2{p*07YN#Bpyfq=n-MW z8(QAgyl+-Y00X_;@M9dnCs8N>vL&DmZD{oEVH-(onkb+FmDVd$u_O;J?Jh)DU#BpK zOzX6Ll`XwID3@Se%A6Pi+ddUFAB|yi_tQMYa5YiXr)^|~Yti-)^ocd=>NS1+poE7+ zt(HoYZ}8Us8}OSqSoHu&r{Z z^{Pz<2*hfYr;NjvmX>xXoi#o8+WRBEgA{+qDSGQ4GIqSF-CZxy^mEqq_co7a-Of%7 z8lyz?27{Fc;)F~T6BE-0vfxuIZBs%=3Gg4b74$b5?;on?>xz|}BB5`OHl5oXjOC{9 z?yrXTz;T!R>2SYa>9rF~BtaTtVGDd~_!@+Q^A&-%ge)>*hV>;x?h}P|V&GcOVmB8`058ZdVo}JSN$WGpHxvI(tS5PNs`@;@8T+Xr5Xzm!)ZYuu_(z~dB zWzJ1;Q-Zw^_xl-DZuBNH)%}ul(je8LMW*)?`R85}oWiMs>Ie;F9$zbW_(@(&yl%VY zl=u2zE}=$(m-BE0(R97%B#?0wCh2Gix;2(AK@k5WD~Iq+^>u3tsJ+DN zD-t&U%FY=|kR`wLOzq9@1fV%36fHXnE*;EjW6htDT?>9;_8D4Zer3Zw3@9~+%@-uR zN8IvpP}b!drH^BFg|j<3{@P(8WIsE=sJ%HMkULpUj>M7X)u6w zjReRuFstZ@Wf>~wybv#gD&qHAIOA-w3I^-r_s6zb9L8nf@gl( z_DJHdipb4=$5&{qp4p%aY3k9v0~RN#wMPt*9n2~*^6yiDE17_F-djPh#>(YPC|IZ*-ilaZ7nkj9l}cl8`uIqZ>-ew zM+)LW8f{3uM-wEoAs99IXp%$LmmK1E`**U|xFv_~kaTH{KZMTG3u=2rPi<93oxILr z{_hxn0@O`YH!CBg%S{v15tdlsv~X1J!nGciE2+qAmRTDeiq&=0$`vhJWYuV#G{g6u zKsc8qm#{GqYZBIzqoK4z&wx%n7*vWFAKie~&67EhUf9%BQAD~Z?2Rh=z=JNFc2<-& zR&Kvn1P`eB#*&Yb=GuM~*38!*<{Mu?Uzw!ic+~@!OJnt>>83*6PnraD83+yJ_*&zN ze)5-{auJf!TIay|JX1m)qDxfq87+dNszLG^935OQL&V!Mxj^aN3t+!^Wjev5-=>t_ z#~uy!sbbqhr|6IE9TcNp())X9W4=#VBs(Q!Z84~j-;Zz7c_@`TL>{e zr&CeQVPnkLhWP8g7HG1?BtM`E#_ri0ID8j+aOt|QKax!Ng{FGfuSO5EXT3HJQw`R{ zMI}^{4HeY`kj$5VCIF$_cd-~85S+$m#bv|dSy}vxDbIpUh}c`2k!z}*ajZ0?ko3BE z1+r;IjP!vBD?QcvrzbEFU@-k-#8jaX=0)LKtOQ>CK52fVgz*y|JT2Slgpp`~D1zb> z#YF*B8oz#T3vabEd-{|5ZSmQQ5K&FWT>jhj-(cC@?${z!hCpUq3&txbI4CTC<`>Ib zD&#HrdFaF6chvJ9%8kPUOdcW;MYI(l>M6B?`0|HBgZ>gja+tj$Vq}rXaaRa#t81(+ zJbUo!U&uJy_(jghe)a^O$-FTuoR3SRV(vW zv^h4tsd!d~x`A=xP1}j)o4MUo!E;#sPdpi}Rj|3o5t9`>H2V0A-wQG~U~X}#OR#W? zYx+}%A?rOlQP3uOXg7Ub<3_rl5d)Nemdf{4(d#dc;;=cm z638+WZMjWu=6MQH#i%rs8Mm1$%jX5u!ZG_-KO)XGmJ8;OP(`35!7cgiUpe@H0u<}2 zP1O&9&BzDaf5DEQl!rv96Y@YF7yX?j7N{6R-G5$9TU87UiePHK2qIA#g8yrY1LNRI zKx$L?Cjgl;Uk6GH%9@~p@9C0bjjS3Z~+)^^HU>e<=I!0`9FU4<}W|~_Lqz0KQ4~{Z&%j; z_&NXWZ*>4)T*qN!{)Zd?f1{Bcob3P0gJ0u-|7RUmcc(Bd#UkHNbV+xL|GrxG&pIsA zP^q4*BfT;C@wy}aju@E;6!{6H8Zp`r(P!fyNmJ;#JguCF#H< zHbZs47UseEiaT<_MFZ31>B1fkXzkgkoe-ij@48m~8k6DrI@z58Ex#b_G`|d_VYgSz z;>_tj$qnv|@l%)n0j@yijyPAL7$)s&6ClV5v}(}YUtUW?`J=HXZji4`-r6gw59CVe zt$r7Y%9K{`5|bJJfX*tX0^B;~=Tjj)m|dNEJ9Z%2w0|Fi_oCada{WON(v4KLDq+ZK z<9dZfWrtRZFC}4UvX+eT`}7Lf5_LNh_2zv9MIqqz5)pPRM&mS9W^0LZ=I3glTpkIt zwwSGAifo;5Vh2Q>_xaF87a#w*K%9y^-st#4>GuTs*%Fh+LCWtJN4eo2SxaNrd<#NUX-kO}RoO<)j#N;u(oD+Y{?-t$0sGDWq`t!5fQRTh<%F{u8oZ!9w>KCV=8C`u8dk)PDMq)&Y^HC#NZ zWU;rRl4XQ7$vTw4pg^hvqNf(`u@W}_2seo+OFtp2@YI>FIi;kactt8=u~nd)(0s1J z=*X|k{(+o>ybLu`$#+KlE&Zb9=Qj7|6G=F=m;AdIx;b)4Gxh252bx3m&yCTYv{kQ)snN!25ogzD737)KC?F z7_vF!n+QbQG=)Lmw^r;_1qKq~qS-q5WpUvdKTmM{7C&aXegZ<@JuTj7J!nhFW!zJ4 z`+(D$hCu1EX_u#k&uCj6C5tqwgoE+$@Lc0{!=EQ}4`PF7M$!U1hkGVvPX;CBpCphNeJ zOp2w@D1YvrvRx}W-nSqsV`IF@Gnlt;@sO{`$6_e$DVzS@$&iaID-i<+MDGo` z|2vVWijiuvj2~Q&@chThj}}*;&5X4&&=)Ei-0HheFPw0=TA$aJ z9*gujNFgsb0@$NE!y+mbQL1)0J-W&kffehM2;{)`OWiS43tclr3O$!!2Mhj1d52Zs ztY)s@Nga#wkoQv!0?d4GD#(S1k@y-?;@fM8W_9-|RDGx7S{cJAv5-ClaOid87Lgti zMr=U7-qi?Ps~98aCN%B%f(@8HOiOHgCi+%FW=RHS(tY0~SAYZ-{d=IsaPv%2ibitj03UC-X+m;Q=#yd^JRuSV>B_3z7e1>8ZJ>+?gFJEVs^i;OU9tth_0LieYE zQE2$(p1}ZFjgHJr>spkJL=#|UP15uB*_;*!5*#PQ1lL~#%TFWd2hud!sfVM3Jla-A z_#r1Xpt*k3-0^@*|3kW`=WT{b$F$ThK9`0$w=gJ+JDI{_@(bKlX*cWFixE(k$kI%n z##Evj4>N#{OI9+fDdGmbWqo^vT)6DukG5aXgC5EZg^Qp{oJQ;@Wf`SB8 zj(Rh??4PMMWW5c-6mc5r!WzNrGZqku?wy2eV^z`BZkGW3J^R}2l8^oA@LhX5$ss+w z6VJIy-P4F*NN_<@lvCK~)Zg~aVg+$W zqxg#UV-&5Kt)@Mi5kBY|LM9UlA@F%l~41Y%Kqa^|7%eASc^4-x@<$!K6q*fYKncasM9# zVfKFu_MPi$C#(&ndFSZ+HUCMn+GI3Op~cXy>sVEFFpu@Hf9HDqfvXQ-DWX<298)zvghSKKi{pSXS<2_jrNdM&?}G^8 zLhof^h`{zXjG~F>2$joA`YySY3y4x*dJ@q#0>(if%~_CI3%S6~$h=w(rUpOlTLzfa%%BVJMV3|0i=EjICljpwF z0i_@VxBeDB2(kAVz|v=eK~+Rak?+xa%<07? zhf@Pc{IsN2d|8BMHfSA<{m`gIz+hs*E-Q>847f4I(NSWXyJS=0B^HFmi6C&CnTW!i zdr(71Ad7WiWS|-ldJW*O^g^(?IIq~rfXZN0Y?=YgU`&#t4wA|Ch=E{Qx$U9y`G8w` z&7uOcVf1EfViJzp3V0$6sQ`3~ED?Fbnt|x=bzHxSx!4zGiu_e;U3I|(loOd*)|1nz zYbJl<6-wDL!JwMY#|3yD#Y5wP%Nd2La`j`vxZw{dQ3j22!P>GQvq>Jyk)fI80#%Mz zzdql_;0WSWYBwLO4yZajd4zXI7Oi^jGNpD1K>dnZD4*M zRv-k4<_vL9tol_9L5#Gin4jj)OXdK5$n-xte#1QvI;=EE-V8ppOg`J1j&n-hjGOXT zE?1+oX?G`o(tpzBbj$_$Zoz!M0Hu8N6;^jJ?$i?ZJkkP5l%h}#2*Fjvij>YHc5bKP zp7Ue%ITOoXU68+=Tq&|ld7r+5+Sz>6)XpGRMQ6i=2(Sv_j;e&-xSVZ!GA{RTB{EFLVpQM1XqNmg%2XV3_TMzgG=M;rz$#V}$hYMKyuHGU^i(15q?_FY10 z-G|4+Aj(6RZhn2v1T1zcBt?ZBj2jd04a{~6mp3oHtR>0R!Me(nb4W{73F&0(^m7m8 z0_fi<5nYuf^(W&89V1>3Kp11l*P6L-7C+DFa`rY~#fQcELMx`0N10=qKJng(YY44?%JaLHCz5CCKvfa9o<5{>!B2EamRkhU(>t2!*c7)x{2r!}{Hw zN{pW8kev!^jg09+oiiWQ$(Or%*}`KNWqq5*^z1L;(>=M)%m;oiAdjy*hqmo1rP*Se zqU24+Zv{)V$3*|aML^K#1?hA1N(2Aeo-U0_NRh(nq%prXN}as-bIM}z6xdHy{hLLH zIa#yu`3~{gJt3h!dZ95(p&fRj<5;1cD4~`%eTeufFy@z7p|K1KYE;MAb1&wL%rYlmSZ|0!O5Ickz06LC+v&Us`*71!-W+2>z(h|4mZ_HShh{yfgk;YSK`pzZ1KnB-KRjei zRGObPb{$3}dykP(7w(^!fb-OOZ$Vi~@p4VqfOLT?C>O4Qe%mHG$B`^}llLA@1P^T{ zPor8w)F5I7U^H6s6B=0yo{So}3`CSwdM1;GcT5WS_clt@TN5mmAgR>9A(s?LMw}Nc zenav|9)cTk;8CoNFK&`*myD%WZT}+Yx+bp`)~}?7EvA@M5u0Lj_w8B_aqCa5Xg zTY_@QCDaf23$Ih!`yaM~9OC^3msPry5=(cB<&yz^W8#*fUEuA>G-@|+w_$#M1gW0} z0N~I3Av4YRp?~@w|B)tm@xO!oPDio4uOq^ewWs&&C>=mhg9mRphrH`MQ^t`T94aac z6Nxh9GU61PMi7k)5u8${0%XF*F=O2pDU_)J$o9oS$5Me05%GA06`BfEon!vP&7JkV zWdfGsnP&})a3bD57UDlCv?*gtJ6^W$8h}Ls+%r;S8Y1Aa{caRpNIe!JRDG;62*A#$ zC^eJJ<ZyFE?%zrnZ096?P8B~04(1gr$oRbcxVMD^gmW)Sh@5ZMwkl9-7PQQh+TfOM`- z_1FBt&uep|8kZHFU}7Q}{2u7uY37U+3_$!=pOAnX%u0W*A>*SEbKD ze$4n~&sVvJ#QN+-p+6yieXFmLvC{El?9hzr@5G*K#7jdwCFPAVg~GuXhm|jgUfcG{ zGv`SuyQ;jov4Uc)DLLU+6hrhfyA0-HU>ZB}C``rMb4Ps1y@wKg$?$Dd#jlmEO;bJV zsXZ+H(aWpqajT~CMO@wS7cU@7HRer;_56}~eRfuMqeH7M-ty_>nG+23kt4kZdo=pE zx;k7T$5EH%teXBc2y?Zd}REux_9#>k>qdt5^B9`~!evpVC-N=4cj;wa;NTij$_ z@_D;Nli6uoG9_1!FInoQsS5*V>XGsiehm(dJno#G3Ztp+?~J|%_YmNo!rCuH^ZVf8 zXdO0VAmIWhF8HG;6CS#_A}OV))%K(!H4mSQ+!i>^SQsdhxA1# zCM05uL9@=@5Gu+%1|FI6rd3j|4UTpQP|p9B{$j;upQ_(z%I~TEw7F5u9!+~w>WXu0 zjs3ndlJq8BwJ*`+KnvU)bG^~|paaHn^~DO@lSrDa?OQZ%FdQs4C7oLdRPH-LKCex1 z@S5HzMg6^!dS&|3if-T!Ngmea>;?tJH+A2CdL>4$O|PEnp>E=y?38t6bk_JGs+uNh z?%2)Bq}5fXUM@4$PK>Et8qJq8x+q&UjT_1cWm#VN_W@AFv;_nQ{jstq{JPODz^?U+ zV^LRo5>iY3)cH2re}UsGoY_jnWwRRLPZyr@doTXG^HlnQ9A&&{6`H|_eIsAia*AUs z1$#r90_XYkZF+j!cTpq8xrM*F(YRi5eiWB1Ge;3@?4Bv(xLxB)^R8(=y+@cRusYo? znK!M%2#Xf2Vrsxs7xl>!iYHKJV;wFWfM(b;Gv~LKh#_ zT)1t=&gua|Y8G5uMp4&dvv-lh8O`R-->%xa5Z`N(@lG0E{CcQQ-zvLFOM?Ba&kfhe zOZV<--VRYinOCZi=G$ewjVXbt?a5QBl{oA1jl6Z>Fvog-?RnxdV%zy=C*E3@SBueF zIiStn+vCf~0D!@qY)4yPBEpCX{;fUlKl(#}zgA%6>0}iXeLh>u&(kD1{P5)@M2L=o z{I~g^>lp_v7SS08|BOL&_|rE#E6W_QF{GwMMXzXO55pU{DlKpOgb8M7WIEL)&QklW|^&MAYM0G(@$L)p+N!{U=>%J0*^GhWPH5$)W!;SyMD z0vDU~i0|zK@3f0=KYPfRPYd=_t1EeZkio)>p40rvbawi?$nqVV!>g;u*%g>d z%IUP#`Fl+t8DgWbe}7))Rec^NFhskia@Jh*$5yha^^lS-GK$7~AVWa-**wN;K!UkY zbYK&((xLhMyq&rQQH}ja8K(M(oiS*U(CWOiYtE2QoRS6DM37D(;eICD6O<&sZfHb+ z2W165I3Ctn3Aa6%jD6AI%(z+C*)gQVJ^sk#@z2M$6z*2yYL}jHB)W4AzDQb4Kw>%z zQR6<7<(Z1#_1#)(*_(nAs9P4{dCPjw`L1jhG_Soe={OzsXRCYX3YSxDLYcF+KGa8iUf8+e_&lig4Q%?|A?E#;CZ4RR=;?b|gF# z0x2DxjG}BRW~12k`fwQyqf%;yzH9E1SN!X}^I6kQNCDCNDCoU|kL=?i2s18Pf$p=E!YyhGEo~6p_y!7N_x(v#~aDqBZ5J4X(R4d8O zbL_T;-I@J*adW&@cIDjbzTLRt;m7rW!cqzJ^@<~yX90a(YiyO! z@A0P8qR#--NK`qr#F0p;DJ8wU>ZgM95Gu^FzID;qZ`v_aceA=ao{cE5a^-goq7y+B zEc-wzb^nnXP*S>ZoP9iCSIp1s?aSgjURXa`R-sLoN)7T4i6A_!`A0(+&L7{f*w7Yi zevLz?OQH_K>|+P!-_3z9vkd-C0QVY}MJB(Og%(VR&0;kfs5wU>71xINo=Tl=+Wjl= zz2-K#@^aD8%`V8=TD#u_{F7Er`BVc0y&C{jWfice5D?7r|DN}Z0+0CAwp%23xa%L3 zaKHBY$gM9V5xig5yq{)O(cMuXhJVe3@M~WI?3^WEi+)$tGjmyP_Hl{QaYQ#%i*RuN zDE#J_Dl$OhU6Gw9bP+4AJkf(SbChLjk8Da(KRNrL4dW74!>V`q6?W+yvb|9-Vr3U7 z5cXP&<3T7F|1N28%u;hlR&#n!2^>!}{fsBWVx(}m`zbx1uW1HbeY%>~hAnHi#la_; zWN~11Pks_(L8s;bDnt%qvOvoJ1|3@n+XZ&z(od?;ApbD4!di~>e1bJ~H{|=@Cc%GF z2@(!*w7v>^YT_~CG6UK` z6|QS(IE>kS?KneyFS>p_srh?4=;iD#j z=bG*@9g&{Q)h@#6G>1)eyGgs%;G?e$V$GBO@yI}gz7GFt8(#EWdr<+irTB|JRa+ee z8Ta^*-M54;s%$jKDU%&90`)vmbRYBXYtFOIE_U76l>_bt zMa;mDK-hGpndKocX*E4H#F|8ZbM8w@G(ns7g$RXeuSUNA^4!@u61H#*!Pq!b;#T0$ z0L(1x|9a%kleMsYLdb#JAK5?03P(&`FF9PPF(QeQm&3BiAQOE@UkmJrG&SEBz4}vo zxOhJ1yCNFoa=U94AmQ?>i z+#r(We-uY6N`#N{W?+-r9`KO}IopsRC3pYlCQ<%fgX16bA6ScxgZ-bo{CY)jH+Q5$ zaDWjJ&sr_1b-e&=jUB=N%fI4IF|>ieNSHyB1F$oFC95cYyUp%b2F$01U0Hm^k zGH>u+*PgCYLHN!ZZ^A6u!#8B^jsQbJD?cx5+KH6XXW46tu4IT6%5_MlaEnjn z@qS%Q7%pV#oBxKTNQM%=!h*9h32vZCGADZBZM}VrRP$cKI(TLu zl@;TN1{y|jc{oI>nEZyetaRm10;~$p7U3Vjpz`QufNmOEs#=9;%%}nd$%fEpQ?lr5 z6hf;$qxdFFWb`v=$UQJ>!ISt;r@a`eQ8yu9({9ACe2b-Zgm|fweoEhv7=P9?L%SeN z1`6ysVS=Azk;6pc#3_xEJ2*~reu3b*?tj5!Np0f-PSLBQEbjyH^gPh!nSlyms-O;` z2o7Juo@MzPoZBhqVPQ+~pxE(XaHpxDoP$M?k_YjUblb{KH3N_R$qt99yfrWz^g$&i zC?SFaXs|0H&}?nUB)rJ}{^u(Axup;oOiGp~!s4fN(c+46#GfVaxpgL`!{`S9@3lGp z)VfZ1B8XHqvqf7HSnMQ+MPLLKQ{wzambm#P04-TGKHdvTmO&x)BkBpuT|yOnu(n=B zyR{lS`I4`ZlS{n~;$o+q}Njh3HBOE57bE zk9v}>8iS5>{Vrc6H7+c*uSA?b(%2DV4ufs<>kY~l*(c{h>O28ZwSBtHy7#&d1CqOM z|3%U;qwOxl4f|z`4tVpnTwKN6ezjMuBXRug6!Q;{9$m5B6Cl&x@I=jygN%#hx!>DQ z&eU1Q6|s#UY*>y~<+W&92ibvwg(Xf>g>mfHN$Z#Xn);4&j7><-^ircWq8&2o!Qa2n zO@U7BY;ennY!3owGsMO|X-(Kwpno!oD|EtsQepFz zL7EbVL&h46!k}#qwKezHNUg9>;Q$sxcvll7!4+U^Plu3hpjBQ7gI;BW8dT2OC?T1C z_$mbUhFOeKg#yRhYd*1fEfkr8<~-}zL1Vz9pfsvQg~86p82sZsF4QZ%RnPROz{_kb z=c2TnxaV_OgXTic3W&cYWqKx6l;3n*QM3H&LS|Agr#4o<9aIW!LSP^U2XAHY0qEC>u-XVgWrZ_sL-PcHKXd77W9Ll+xN zYE=7|O+Ip(cX9ZsEZFa5)yt_3JurcA4hZ4lY5Q8@ciA$1Lf9OGE-d5Qza?&6s?9uC zRt5{-%(4f;>C4T457cvXxF(=##LqN2c^!^XumDr+TQ$8fHv@Oyi{ zaKsZqPmqIw&7@P}{Z`rucTwL)X{p`JD7All#S9|ial`b&f%+Sp&2=QVp8rCM0E?W9 z)s6P+Z8@*FS)}s27F7*0NP^zJqQUb4MVt6lCIPDe0q20 zpnb|suadCF{bxF?MW?Kunkf$tf0w}OI}0$d3{^GTTb~}@w5%kH+J!W0*BG17Bm{(t4FSjuXqq`V}XvArhtD@k3n>7C$PBS^C%ossu4w$S<^y zmqL8pknO3wz_?gp;+N}gXksm1?yP-l`9nU@vn&=1M?W{m)4&- zOYNqO8_;3CO5=372kar~{@{hJliYsknEcx%!y)wUHa?Y{;ly&4rfB2js0%XMxwb(q z$@7V6xN30ld$-U&ZbCR5UjPFrSW&6p;CYCSJr*ya6nS88jP13TN}qNgf=xdY18_Ko z_Bo{4?c^`~`8tqkpMIl_w2b9o4gI6FXr%St(2g;C%$47O9pD_vbG> z6?PXE_Nx^^DjH+mH_GKsu5>u=txDH2r1!3~i%!90bJ56wY!H|JG*w>}#P_ny&LOAX zev6bo;yarWiD5m4eESot!?wRG$Uha#p0fmzZLYryH2(oAu)qhjqN;S(dnZZ!ocC8!rRFE)&QT-RZoi}Kh*5|& zgNQx*?o3{a`l||m4FilYL9jShvglf1Q)_5W;v{*g|)fulg?;^O!pjFW}sKe@JxT5C3Vttj3()myt40e>ofs>SI*!?~TC z8xaYEkHchQ`(TfwNrqLT6khj@E+48YjMr7oFExNO8l>^BFP^D9(!|F*ND0S-k8wjM z^{6u~#fCAU zogt*Cg&RQ}%7i_Gzr$$})0WLB^fQ*BM~+PT4ma3>M8P z*GMQ5+OXA-MdcoXg95~*k==)eucf7s^r;n{iEiO0ra&}Pv#{CVH*yaYSppH;`mq;L3BFEc(5BGL}ZC41B!+gUpi=|dy!4JzbJs^y9SMpnPR{^Rkcn=)dC zpIbn$%5=TAq`Ca#F(*3ull9c+M|PKXW|zF3oX7lot>*^6w;XYwYC%_;Gb3h5`4!JM zNtb}|i|Cp@Xn<3D*r?DQ+1W+#1(8!XgFb`kBi-B8NB>Pp%xwZ;|1?l=`pOm+ITWOJ ziIHkcj5*0x{2KnYM@!iarA-6)2^DA@XW#@;&m`vccHAGr*^HLLUYlrsm0KMq`snm* z=aOm0 zecU27K81Qxemr5c{RE!xTs3C{1HVzc-&lP*xx3Z)mR=p3dFFYxK6Sv_GSC_TKYW-0 zOS_9ZZqC8xvqttfIrM^A1PoIzGk-Q;Zg1@>Tm@2bxbgJ|!U}1QDLHn{ zx_r3beas(|5KJkkOOEeKv6a#10BEkrrqN_(V*w3Ke||@T4IqJykS*;o%M=U~(+9uu zz$*G63&p~d`qh1h>{Xcz=;0E2A@X$yBX_TBHV<8+p+B%H09gqD`3YK{ZJx_xtT~DM zoxT8M5eifc{t_s{5Rkid%~UYb8r?TfF&L1~d z&KStHXzq=-PK8-qjw3rKu6$CGvWE7DTuW65%VImrkqKXBRa@(v8)vuJtEatV+V5vRlP=c5I=L* zklrg~hIzMWM$Kv7=1sCl{UznyvP)E_)?S;iwC$?r>~!qlCgE*ECn!ld(IcN?*5!F<2!&pU!22(&d|7^ z)J{n}_qJ%-ik{*DV<5bXaud;Ll{{MKrfr=kL;l{Gw!K0wR(S`m}Ko=KE-F(q)D zUz(8C*seG=iqXLMPf_)6TYqNz3FLwCbVh?7YpspQpF633AKG5c!pj(}juGz!QOv(? zZrp%8aiv|Yj)(yFrssoM3T&0r0VDBF-#k?BTO-m)9(Nw4%@4bMrv)s0(-Aqm2+5Bvz5R0hhDmY+_Hz4oclOM3&N!3xAbKWwrcD3j+cXXk3vIW zho$#jacQEL!h1fP*rM{=gy?aErEz5H`&Q7S{)tow*K$bf#ps32r{BeBUiG~*)VjVt z-(xr7N269&=KF&4WwNBb`%9N70fkJZ=S%ZDmR;=vvQ2_oncxPh!mucL*x=g&!XvLn zAM}2uJY*7GlM^uUEUMz(TIBvqq>KreUJ^;5|LWxmOjK4=;S}_CzWW9XdqYxS6M%j% z72MD2l=a3YEwZ*88^wf~e-56md^`nhPk%`!&l|?FGWFS{=(C>+4H+(vpJgy|Rp?w2 zO)ukC!hH6aQ>`{Nl}X!S};(gVe6; z4mpdRleYABYU`Btcd0dwR<};hr(-Bs?e4Y&LmHeLs;i>8#~HLiEy`A-?K^aWXTdps>PVK(KJJ zak3}aV^IPdT1-?kwU^k#we8?Ass667lee^sZp&|95U{mq+qpJxT@d(-LSJ}{9yh;c zUR=L-27nIga2)D+p1-SNaM$L;cGi@2GAs6NAc{>-^b7!ElT@0T+3So<^Ra51nIUSJ zn3!vcV-q5HK%<0`A6$M)5D_8yq8WoKGJ$qd@_+(0Q&U?|MnL0*cys65=g|$$Kw|;^ zk*fT7z7rrc1>L^+ovfi7e@33y5gJ&V8vx4PC84XlZd^aowS7Mp42nuVRgM*!paDXw zBLk}&lPjyJ2F7Nvv8J&`AR}w-o!{s|RUceHjB^F?s{ilF9`#@z)BZ_>mZ+nH8h4xzStWJo2i<`)Bf{H`ofV zJJZLss`lDS`-=N}_2R_b)WVss=9^wNc2rKC~v)q^>oU3<;-tmIehcq<}fU^ zPZ}DZCZF&u9)uo-ypG?tUZdYklwTdAtu~+@-sfuH9L+$F(pI=Wh93nYD3)A=%*;TB zyXSl_`JV_oFQYySFndb#=;?sud9ts9yEhuKEm>imWkp%szCl?4gS|cDJ-?ni0RY|E z83^OSqY?*1+b262hy*0B=Zq(8PcOtCfT`Y9K+daupc-O3Lz8dbS;aG*Es2>Q(k0wPE?|1IoVp7U#?K9{Q(i!Y7ewv8%{Du;&p2 z>=SeoBJ~}ruAA}C#N2((hik;M;8wdx#HUb`YY-*@BBoF~P^@E(?yFzX${V1|vi|)W zOSk1KZ_2y3642%H_8#f8UGug3cq8HbbNroQW1H|wH*@~$H&73|BR++NmVq)RKAR#l zo1m9EL~xW_f~VbZ4$n|t`Vps_vHQ9muYy~iUBh4fIi|a}fI0Akf-!;JHhjh1F=LvZ?${3|2aO}FhT&^RLWPrK)A zy}doi(T|oD&IG#BWtFr0i3zauxMqWg6r09=)O$?2m~BJ>y4EP_S~e%?ar$k@(+e(Je1K& zhfNcZLQP&bg9hdt`+4knhcp5%X1|oR6vA|b{x!upPLWXhaL>})C}Yw*!j=@gGzve$ z!PQA{phmVUPnRO$D7mrnP`Djql9khlXC=3tv0%q}hf%@RKVXA^$*3UeB~Zis0RC3A zcDT?G&!b(b(L&`$4FUHzCX$?Cez_;im9-kM^bC3NFW|RrElV;ntsq(*ITu1G5p%3> zm!vG5Tuor2@yN#f(MrW4mgZAm=+r@ZyBk*eXZj~P8wi?7u3vZF&ER-Mc>E=nMhdgi z)^LCYJ3#6=-2S5R6p4`=LY}>r8suuwz#Sg5NtJ-ZKT ztVxPmu4nR#+9O?|J|$C^P<93}y9|%O@O2*qLTW;DDVfn}Ly$qY;opu`k#t#>PDF0< zgUzk|qNDCA`;U(cW}S8@9AZj&7z^TdBZZ8T!a16=9)IDQBTDw$lP9*jYmu$~=Fet7 z-d})*kiyn4|INB}tQQ3NgY@VUJwi~Sf{O~64z)0AjDtyL(8R@@=PwpLIQ@1390SZH zt9CzfA8reDCJGo>69)$6pVG!_;?V=T}sYzWl+sZs6BC; zj4`(pnTQp{S`kX^?1BzD1M`LhwAazSOKLrdw2kf1W|$ zSQC1q(PM3?3F^xQu&^)`SgV~R&u=m}PRk|@&&RLeV70>dCj$DNVRtfxad$+O#xq&! z24K(P@?AzAZ2y?40(chDo@X zP4oH`np!gEja1~>jRZNwWM;dGnxvwFr8g<0&if)^{Hdgc><P7KNB1Ti5BiJ#K z<+iTyH;IPmH=>1%j<`}zFtZ!u@hlqH3x+^x?ZFcx&VAo$e8#RW=t5DgM1&a0SHouN zuN`B3W_vS5(Ri>Uus6RIz0TWMaEHV-dexN{S^aM90ld^_IZYC-hTWjyPtc1{kBdy_ zONNnTM4sTQLIcj`a`9bp(&27W3}P-N=}@HB(_$_1j4ruX4X>+Imf+2+8cQj*uWZ|h z{FY^t1?b(Xy@l%~hWc!|vj$P|5$L56RvgvXX)O1-86)ls5cM&k<&<4(i}bz{1r}Bh z5B3UBw%t+50|YJ^;9@H|W?%Za_Ri;NcnIB?!AT)(5NBRpRV% zIg55#VJfA;q6CIa2HphxB{@|AeKYr*UXv?I8cL0r8UfsD;3 zGk!?jW-f~oOWP%9Cniy_R=$(&Qv3}xFP`iQT=x59DYs*imA!v?a(iaB=Bt8$ajdpn z;WPj5oxKdbH}2LAc-q8>m}|QDLy3MNT#!-G@*Wn`bGjiWTi3%>++G$BPhJk+$(y>r z1UzXqYDsn5#ru;GZXk>oxhI5U&EZx%vL_4mD||8KRpDe%2uq{m86jo(<*BRW{?v!Z z`z%ii=`!yp5x;+Rw4=&=!cxEf$x^N6exo7^U7APU%qG-fplLijcDUzr+#Dw;w0L_~ z`R8c)1IgUllO3Jp_={yZ3$CIU;XW3$nDAz`-5K@wEe<<%&yGBG)o#f8SX1238CLLW zz6WL@RBOaWUoi!uuL$%|`SSMd{vZ2x^wlAartDhNYD%SXe#>O^!xfcTKbW2y?djx)BS`i65Ih8OBL2K&f^u@bS z|wxrdM!CmvFpllcsk{Z;{f0<8$AAPIkFcx@ED?j~Dd$_GV;gi6!(!9-M9 z!!xHRqhx*S^PZH~xEoV08p*uy)`tkZV};P)wZDJtB}Ou6KKyVV`Bh$clv20?vW`Ef zj%tJ=F>N~ee#|3&{fXhVcX;*8Y-|r1VW1BTTyZNh+}O1=lUe%pHsZoisb5o)SUkRroDCgP zL|A`VAs@a-)E8rF(oME+J=(A1VWBaSx(5DOHM%Y1G-Mk@6&sJs%A42?d6%%HM!7}G z%mYyk(Rk(I`xzZbh9pPx^}*^<}zA4AVVES*nhesQX^3}OaD%_cy3U=Dq)87laYjk9b=n09~C zspx-0fc9AjUTn2d#mN&O3(Si|c%*}GGvF$xq=;-yj&_?WQzRm-9wXj%!;cw~h8Y#P zuV?sZc7R?6&W7$aJ!i%M-FC(}9hO)ookPUzvhZ0|>!kFh1qRbF43^n526aE1h1kgj%C z4Hz}+zVDih5%ELd16ABC)SfQC-EGbw604I>m9n2xc*Ln%a*sZ|fUdIj5Fgy`K_P-L z^?jSKkh0c(KsEa4(ImD9I^w`|?o^;TfTA9qfioQporQ))=M1~{9DjjO)o_0*mo?_% z#>v9?@c|1Oi&bijf=QKLo#XeHW92K{@(TswIRKnjN0t$P^0F0vLqIFTC|JxS>#2<6 zR6>f*Ot@mZ^Byd-?qQ^->~Znv<>eDP-M#k%>y75F8Dh@fyih&Q{>JAh?%xiAUTRJ7 zzRqd_zuA7od_(VxJ8zQ;%!_|AgCI44u+Ne`ble;Ft%rUzQ`4JIt}ur0UWjN`U6hF#fqVXy!Poj#{c8%t7_uY zu|e&uxu~$UEubyHvmsty0ZYlOjbpp`F-*KKz`cf}A^;}8_$_qi8(M!@A&Q1;bqYQn zt&>kD73vDoWI&~at?eeOt&BlV&{v66ZW1$vKsPk1L6^;D37iZhM zUTLE5tYQ;+1S%3MB*WLOJ1xD_Yg`rICMoafR#Ttg|f#5xyIh z>3n_QZgy|cax&JQay~eR4`new4^6_XB>oL&{}m`Hae5Pm4KQ{eDbSJj6F(f z$XqZ*Ro4wnsGP>J03%3J}34%HvKoIzHkOg4B~o z8~ZvE_D%(#Pr!dpRHz(Yoc37E2_B#roW>Pc5`UpN3vK@%7$-W;7&ln@u6WL!IoaYf zRu$W4WdiY<5bCVCebeU+ZVhNLe<5yL@Wg(8Qkr|}sr{Lt|I<|#Wur#s6WM9QTD{?@ z3ywn$sH63D7uLIHAdMrc9~y_o=>z9L-Fh>ugjtCbVU&L+hG7GEh}@GTOtvFtf5V+n z0gs{TRhZ?4%AiwR4X^KVeaF6edeO8fPcRJ9GMVfX4+%wHg#6@BRYOAiSD6=HwwUxf zECGXMtERr8oeP!dU{|z@_HZ#qS+~WnRcJ7qgWwHX5@2X8FjMot56gS<`Mg~nlcr6Z z(z6h~_K$yvBkjWkpv$PTotJk^JfgR?DTjZ9IGtfYrehK)Uf(q#Y};W+OSSZ>31f68 zl_?9)2?=NtJiKBnbsnpPpq4ZOQHico`u(oX2w#~PEoBw4^Xs|fEkvAs8%@%AnA(K( zF|YzTRkXX|A1+$HbupQD}^!?9M}O{AzzCCtFh3O?`iAiOTcbYQ{>wrI6GY z&3ylSudcD$6+AEWrh5Jpl6b11K_l)At1mykq!5EqPD7aO2YiGklrZl%dGnwOZV$sR zD7LC{2`98D9KquZf-NA(Tgj9p#sta)#IkvQe5n)CaG#5XWwpZaO|tioKk7bG0tCuq z?)iVWaXhEa4#>u9^cy6c9<}>!^({+=lP`5_4O)U+J6aZaB)!6w59U9=?8F6jhekzy zV0y4U6#EcmgCMO4#iMoA#PMS$^6S*C+sRA?x~`j|W^f!Dq2IxF+LBj&==CIQ#gdQX{f*fCGQj?p(7xVgaq@C5wDk6`Jdilk6#-!&N>c zr=JgD)WKGJ-wX>cX`0wGEG3qX66%o z`is#k>GAK(&-kcr5JIhV2Ph+K{QAc{-sMl>z^>~4iKWzi4vlQ7}~;>@~OTOg2> zvT~{Bt(S|3E#j5(paqjV1J=it*jj&}&{SwI$pP%Dt`N-bQ0&3YC>RR;56NsXCUZJw zQyw`+HZ@bmLENRi-8Cc+8};VKA9{|&8!BDKpt|)Wi;)Vo&m4Fsj}AZv#XJK3AZ-T1 z!*)W-j~nI6F1#EL>T1>86{Cf>jyuJO?I2qYS@_LaqaAoxL{6Bb)JVqh75snaWBq~6 zVESFo{+l=6aQF0*LTf8;mkiUTsm@sgk}_xa&w+3s>YA6_^tp8k+wSfe;S}djgklVq zw>p9X_3%YvVN%T*!T{gA2tnm{+NE#ZqTbk*4z*tCuMCK=)O#0DMkO0v2+_*NOeLq- z%z6qx_-U01ewT{buU(w;r?h_#QZb~i&h}Rxthih>X%+=&d3No)gE^M+_S-(~L*#_T zeoqHVV7Y4+HKnGZ`krg&_A;Haz-Se31=U)|}?Ak0!GDG|)(-aXVL zQ};n2)a-VvCUX%9@HG~Ky%?SmHMwtkd+JE(Y>H2_j8~7&`wGe-hC9#$R$~JcR6d2m>Z0_H(9Cn{qn>J3yHzM zk=KxI&N0)e?Jp@eR$+36ez(+bWn2P{e!f8*>m6_{gnnf)Ns&Sb;8KA*vsG~ zn~w^AF7&^yTzW+DU|~}3Zqz4Os0BB6jxfct=S!Sz)J@4xZyFn3*9<_?q=M~*N0O;g z9%Lphm8*ZFkM!RTUE+=C%Uj@OR9mrs8R2mnuC`yy%04*QuSd6Hj>W1YoB%94%}D5A zP&9uldUe9?*a|okIS)1gHKM#Qm8bP61r^tGZE%&tnME8nj|N1z$;ZV{L(6hef%QdR zjRv6Oz(n&rZyi*S4nf_B*gHzK$9{va#t@@Kb5?&&bgEcLmlzz*Vr)qU^3_+{B$;)S z2yK5O7@N2FI{L$bRpEB2LE_fy4&m38HqFj!5!3+iK_CV9WE^1L`Zmpx(5g{9lzIwN z#CDlA#VU-CD|gD!+nU4ih=)C0k=hNBkTzMu1<2s0C2=K^VXh(;L(!3d1D6pkT{oM-|%nNVWx5 zr_K5B8L9+D%BbY3J|L5{v*`%)jlUkLHTpueN{V0UP_lhn76eM8C>88oo)iGY852=UPQ zg}RqcHP4CaPT0JlWNdYTrlE|>=^jMkYHEA!mzHt+W?zY^c=MDYQc=l)T(Vc48<+E{tX9JGfz>(Fyh3)5mQjf&754^C_J!_m0jJjf_+_w zHrz(SVNLi~|5R(FcmKxA8W;eEY$4tgz>|Dt0~!DqUb}$97lVH{Uan z8x)B}Pr0Rl0*eFPaW8n__piDkki{LRj_V4Fjr9%53@|JHZ4KJ9k~DvdKpMO`MDEH- z%U_#3m9>LKYMdwhggvRfVv7j9Ph%Vg_KJ=y3t`M6#xd8N(JC2L#{Q~}{hvr15owv= zv^6ac?3yOqCz6YHk7_(iQwd*{vZ~%%l|;NgSHXtK z+FD%YHeV=H;~JvGHhzDC%jThIuTEuQ%@W7sa@-W>_$_`mdx_`jY914oy^{1m@`2Rk zli`K}m~c;~z|RE?KX;#ms&Mc*<+*!k_!$JTBR4t4ANNxBfCxwySOOOR8^>mG#GI`Q ze|JXd;lVGGeAD+sRg{d;x8hs1zd`89p5l!l4F8L>8EH4=*x<+GN_?-(J+_83f;Uxo45D zz7*o{7T^l)Y@vv|@%KUb4==X6xY)nM>UtXPab|eSExS6o8m#q{ly8gSaNSQ@1@_ko zji>D$>Inn7GW>tjEOs7WO>a3M3Pas@CQUve=VZiKn` zEk084sh)(a`k&4%T)U`O$k4yRUnHs=uWM9lm@-(8K6i&qqv#b$!3$KTlVOEeUhqzx zbvPhitq*A$M2LGcxurEn5WbGDcSAMD5*>cbDK?6PUsZoI^kbZnSTb}1v4bmPOx0@S z3CmzG$9^M08*hor&Wt&sDt`1AX)t=S;nC+VR7U#s0 z#mgx$Pn@WxOMUuA+0wDrTMR@dZyLzG5b$(TX&Z*z%gjNkrs2a~I{T*rNDi-!}(L7Y`5&2+@Dkx#??S8!?lYc$39Tl3_w}qQWP; zE4ge1mD_AC%`)&zp++(Q(2u?-Fa*7Z?J|VWQD>vqmeyo+c9onUGCeKBE7F!>6 zVbp){w{z3YlJP!qR*8r^<;y>lX^1okWJ*TFyUaw?*n)Tx8`4ZLtn2CVt;vu9hKL&8 zKa}JmNNBn5rqj{Ua73c_?%KAgZy#r{ej$HPMjpif9>SBnEa%Q2#zo?zOhus?q<{(y ze_;q0LRKFj)DpE8E$xyo_>PvXerJ^sayI zQC;7_sD1OJArg`nSy_+1`5N$n#%}@6=e~kVd7uFlQnQjYH#557!QMOF&Gz}uP&3H| z+I-d7-DYsZoR6&%&NSuZ5i0ft4FU zD1jfWZSzOTwg9;=>ph=iKw8o}6*YgqgqJJiv2Fn3Nb|bO1(NMov(^WdUy3XTSw2iZ ze-RwGPZ77iifHhUu1*#xeHLUHxS^HV~;?dlpPPPDfLj{cXRl!(O z931kwAuS1olU;Vrll}E81QhGEI$_WiNIvF+_9f$DOUjf^RyCg?`hv={6Tw+02BDwVYrQ>Y-vlS*VeM7O`mj)(7XboMNoEbhcXU2}hjrk|kB{*^>` zgSe)E8MXRI8}OrY`AFhXdeojwXj%CuuaaoPQV%)$WgkqUt@=kh0eZ5Hqf{#r>`wJw zbATDen+p9rkH804KeHHf3|%P!OH!a+f;1k_VeRmxioC`NN9QY?!+OQ%Zj~;P;~Dh| z=Ygc&_KuoJCF169OQnC#muKde9{RS+Q);b&Tyrb%?ZYo>w4~-SNNSZLO)%p{2k>kb`WsT46HCPN+e5GN z&acUqSK6fkGudA;_Ih(ixm1K9J&_D0M zMY3Qsbr3GLuVQ~X*w7z?AU7fU~2q$=&-GVtesRzFfCA`5 z)^Geg4S%$mT-@G1F6(JtUm}HL_77Z%K@LC-Vz=>&9(mFc)GtK;GB$Y#3aJEvk;J|& z)jGh>v0XNEgE0Ja2!BfmY(=OS7~|%8KU3$qA#sV}N!fpRu~o*k5f%26WKcFy1Fm!g z_XHurrD9ipm^=d}>r&GMGSa`CrD9=MKXnApdd-wChR(3#FO=um$wBnQ(PF!R^{E6p zFNljd#IH;fW@ntp2ShQNmhrpy!}Z0zo-}p;cp4Xl-skzc3nM$ft_Asse>2WD9A7e~ zvj~WaaT9-5W#-JPH0-2pXTSv4JcGyV;YKW|A>lD;L;XNg1io4F@gz$Skpw4rrNvboJ}okT=UMn1>~zpO2f z*el|GqZI%6CGd7Y_j)*0`Un{PiMdP>-J~WbCbcX=?s11kj&ap1*m~nL;`g;QZpw6c zzGIdvq^K0Ep7_!G>DHh%j-}yXNTvQxBaU+pB8pCC@gdzHuZDtF!(khrCWbNj4HvN& z!E=B4*Ae@Y7ctkvOFI23u-;L9gxcDHqfhKVTs^{x<4*JW;VQq~TJaCb8Bw%!d|^7V z$q$?o^Tb`jkM4&GXdK9}8j~APdKmD04n4Oo(@#a03Yd`eVv5pn7Iu{H&`%r}M=*g+ zU>`)zj!c}HJ`yX=4k2;gHJS<8vJVrkvTuL4UCsQ`xyz`FT_wDg#)i=mjOiQX5?Rp3mu<=f!{iI#W3$?7;}SXQ z)1Xrhu+K7iFxxbAbH{+pTQnoK-Fm8qCeIa{d!K7ED`H>@p$eZXKggFTZQz%D0H}Yj zjK!zb5Zz*S*zLFWV{hL;Wx^~>$8yXp)#;B>2AAi}AibXUjt7JuvCXKoMS#J{HosHp zEjI2}W8ezR84Z))dLs$z8lzM$U8uUgv=|{~@;jW#C8jZZWS!GOt zTyjP|u0TXf#gcl`+7{COCOue7nF@uu194)Z4L%rmCNcAsiEdz^ApZ!w>WQ#2Cf2u}L+6A~ z)2-Ahf;BL@dNU3#n)(GSv&l?qU+ML%a+=*vTNH<+@TJ)WS}9YQmFUu#89C2SrtK|o ztr(}b0ii}~D9A||UCMvMcUBzejMKU+a=|nIgY)^mMS3(_I@IN-^tkbh$6su zK-WVT!HfegUV{ zwc}}k3Ns5S+r&wQaqCaj+*mpF#k^!?Sapj}8h#g2brXO2t%!}`VnWxZ6B^VSR8=y~ z8spe4el7(9uh%Sj+a-I?k}W+BzO}CFQCEg~u+h^T^8Dp3q4iUbi5Y&|qh54p%N?R5 z78UfBeP2)H&{Re2l(xRfP7bqj)`;4*jz1t|Om* zBLB|7!L)xBkIJZjZi#7BV_ErpQ-NqfdACr-5FZo;C$i3yo&4g}*d<&XAXT&v*{~ZY zW`G*!tae0E`KY0Bz;{79erl3VF-Xu zF!?3_twh6}NPi1cI|ih~pZ3Tw%_nKvz}4L+&KG~K(=D8;pA<)KX3fZ<7)rSg%x;oiALy!_G((dBviq04n(^ml;v-R7++eDp=0 zxtId$H_D9oFOi3JXAIoR3FuAwF2D-yb8^1g!G|OtBYqb+6%NbKAk{revvLQ`XU9xT z$^g~iHaq`sQHWH7(N)^4ND-up!_}ap`e%PKeT(oSiDdgM*EBF(W_COY5q|^E5uqQ# zcE;9bB9Re`&BmFgY$k9^|O5KOSj+!3%Cfl$kH?Mqa9J z$a_+eb^u~NF>rkrtR-k>9=-_`BxcW|_7<~TC?XvYJnWK9RFO-_yE_%d!JEKZAbx+b zB@KzH97p!pJ^fAN7JjX;{SnN&FN7B(e>u9z`=m5)?sJTK))qPp{bb>ftX20*O3bIM zLnJQN%@cR2rJmLq(Ym7EiS2rCe+5MiFIx<_jZ9%#y+POs)nXM%si?7}STE5cT)rNt zph{P(K=H)`<{=&mYi8hgjra=lAL)NTs$4eUfOj1lG2jppqfNl7;=YooN7gQ4w|Uh! z7*midtHbGdHlZP|R_HHTnTaGk@GV<;9=!~#Xez}ye`&#aTO0o>x@R~s?nF3>^`^ma ztYv-a@(aLkD$+7y)@$ZV|Jhdl0O zY@fFFoekxPE3pO}z9xO{ToQjatIdHNWxzEtWjqor%0Ni zrX_)7P3Es19##l$fSXHZ= zD+A>NOry65s;mQLV1<7TU4C(3rWV=kT&6*k4n5~EYW6@hxF*NR@-chUodg-l^Rtnv=DPR832C%%Vsc!P2GfOqP^XLdEtMO)wf*1ftc_huv$PU zXgu5W8bJ{SN}F=x@vPXEs-@l}QBJu~o?}RKU9h(3!RR0bQ;myCOSOde24`ZP6X7ij z)(5mav_5-Rd8cjhOlM}FTc9f&l3Ynr<>zg{aRFOTjwDcFj1&@;$+N{#B`n%sZE z_K--8$KIHCToix(1w&V_3-@Fx1eJaKTqR)l!)aCGTIwdL?O9X-jfxFe+m~Q7?M@WL zUm3}-Q8%t+wMdv_H)sijk;Q%bW%8w@IA_rGkV(BUJmp2I{rr)?mi)jJe0s-6tTvG# z;$*J&BkJl*T-7g-K17rO+#*Dof0K7xs{Q28ZP;Z0jZ}YD1WuF-vER#|Oj<>MX%J8Q zMdGwjjAFq7W}HEV1Sfp)zmx8LDcoN>+D6Cwj)I zd-X>H5pJgn+{O;5A9CoGVCEno`CE7ygUgOjXv*#Ltqs-Be3RLifMvR2m)f$cgBgy6 zTWR7u<8*&#mHsEq*Fc@`@6?Uu!mCW z@xfqLOi#m_;e^|3z&}MLj>Q_R-~5DjQ%@gFaVUSXHJY8fmXbWv`iQp1AFw5a;%3NJ z=Ik(R-g$pNA(n)Ir?zx$>9~aafTw+C51xntwbOY{Ns}wR$!2b zJ3>vreB>cEZEVAI0%sq$mA2Qi2~llH-;@5+kmC!%{&$Z6i!7mt!CJ``huKa}(7cSn z9XNkt;^14O9!lZo1(b!9c!Gz-P9B&1TL*Lo@x;4yOdJDjHUx*A6#R2NcpS200r2Xp zsJwVjY8%?3xZt(8w)BD4<0Yi3GSTld4_4Y6y8+@u_ituQ(B&*+GU|H9h%^qFV&`ac zWGz2{M#3VK9+eR3H=B3$TE!b00{2<5K8AmYFIKl`22Z2wXK+}%=dR}hARE+JDvP&D z`~vqn-b9WIM(2D|Y&8MHm0)Mh;t)H2dtS8OE74=T`n}|BIOnsIuI27e@C1`7uD9v^ z=q7$RlM1bXO6%W3i6k>q885WDXLfLRBdl^PDJhH;{7_C9RqITd$W!>N=t}6J%l&`z zWLQxe*P9`Fd*lNMM_6u=;<+7ljn(9d1|GEY&#q*Ce`=89sZ?P@9!q1`HQD!_-&Pa*%$y zgv8fsP^_IVEieZ`c2zVGiVJn~Tq+PSehY0-SLhuH7vN$5Oe`RCBegdNfI&pJ>d^_xp@c}dt(vbjC|J?rGk%iBD&bYsaE@*aLpB%4;sbd2Wf z4U--4j~>UDs6;-7$vdB>C5eACjG&>AsgFq_xl%MCtZxcYL&dpK1c5+KJi4%UY?S8_LdoLWR=)ZK zwijm|eb7>9nIsJ|L?nMv#I+OVYRbH%P-xt2EIPxOQ!X9iR0_=Pw=CVe#0?wHw~|%) zJBV19wlr8p2~>>QnePh270jA=~lLsf(d zQ%1VJqe@Dew3Ct8 zpQN#vO-Hc&J$kG@KkiKP5$OkcLrXUvLzF^fg+;3Wm~N*(8L6G@QB5!k#0+x&v`ipI z|M3xA*0R?+f>A;yoY0k81e zUNc;r?Qg3EpjaeXLKR+LfP{=Y_b@eGPuFIZg zA#gls^OKm1$;N50z%n4f0(=e_Z5^B?PS;T)>8}fYCqjQ2Ny|=Gptz^6J>dHMF4Ld76UWC^?pHA? z%#gctKWSA;6Z_t?gczji?vnq&XYf9jW8xYeR#v)!Sd5@?-NyA%s9TyyCf}%iJlmp7 zi76E?xq^S=p3GGk_79F`c#K<^2i|KJw!I=1e%!eVwSydI+gj}aTqxBOi=7(mXlYAc z8B7d2E+U4BMfq?rF4MS@A~z-plbc7G%xk8O@Dbt)J9+JHSC#pn@uR#3#yn!3LE9%1 zIQSAWPnEWa=XISf)%m;@?L5B`%JQ;3H(uL=7^Q#9^(xBdT_%kRnCElK3dsbp>JGxB znY@U_&bx}^O&@UAf-3NzYag2-`8%J@xCN;B)0w1uhAHs884SrZ>MkOx^NcaijFDVF zOfw~2^STpU+usvl8&ju@gr=nC+H`7erFOop3b zr7cGH1l>rtXy0ocvLV_&Z_C`@u1?ageJy`mJl6xBl1hAxoMU>0mtfoR$=VN2#ePBj znPvt7!MY?^=~>|VO|nqyXD-0{$!fz7Tv5&8k(H`XcX&xE1*Z~s${1%S7R@EWpKazl z=EX_nDV|LiMf%{2Fqqu)M^#OFUY366aR@4LH7>c-D9*)WUI-@(T#4kdd z^_W9+i>g(@iyLt`O+FXfxVpw%#Bx4@hAo@<`e1>z=;B_}qZ~iY>jD;|_As6y)Aq^E z4#YH!NX5OL8xOY?>h;X;=`f%*LSl|mChlshqcj-CnlH$UMNlSkn+1^0? zfzt)m$Us%Av~=GFU1ra#iz|)bl4mhr;pXqUGwFV6`Q=eESgvFosxFmsoXIyoE^RZQ~Y;z!BDEJLR#n~|?d%R7!xUB(>~d5X;#W*C^Qi#Mb@Rbc8b zKgtkCPYdILedwZqY8%St-W?`$le(5^bZA}f2A0JWoWv8DF z%Z@x%^FxBbB8ZYkOVlr>C8f?-{dVM+ULK8sk)yOUaSO=@8|!~HC;L5UGu`#b9|0!X z;q<~6nWs3fSa`l$R!5dU?C@4lSHAY(U^`AQ$tgY_VO)hglQcDylBHYO7um&NEuOjT z7ecd=MNTabes^Kb0?t`M!>X~FD0Q$XEi&5(-+uM?;~ma7x)|`52O${R9q9(^((AEk z=ZbN4V9wv67EpindZ8HTQ>7wEuEAZ(5-?`=dg2>PtE`}W7#T;~(*xr-07jEKP|4b6 z(J|Q^Hm&H3o0py-`}xDv;m=~qjJSv+2w$VM-$rT2WD4M(hKu)rZ?hePOzQfRv5CH6 zGik>5PXOwQ!p9pa)rvavRuOp#cPKK z4?d+amw(LkNy#`3Dl?ulvhIE2eHQfl39|d(j}|&;?ynjPsADtgG##*qy1lJ87%grQ z;;k(1N?8<{221Uf@ZTFx1(#Mdvau)7>o3dBCKh5N-(;dtj$$mAsr0%Ws;gMnqzbj4 zCI=kvknevMUnT}#VcnqTq*%eZC17-qs2;&63GD6LWFEnwsbn7v;FPX93@3fhs?l9X z>Rf(%{DAL;<3@sW8Yo6>1RdAuEA9z+xmrw1YP|h6MEyVnuY>wQ6(D1?g34 zn~L#yE3}>`7L#nrEOr%i1xqoHuRj{ zL*IYp{(k|nEl$!TUbugzo$pUIfoeJCTNNm-eU&XrPrLA!r1uLIvZ%eCm{=J*!TQrJ z(Bxa-Rr(S!e^imcuj*eXQN#k8)$c=dRk@f^t{zNAH$Pe(iW8A=o4gO+NU0C-H8Wxf z^+uOr%++mT_^=vA(tz-}V9Fn;SuQ|b@z{TZYBOLet)LyZeyt{|zdH}RqF7_tngNqa zE+|M1MflzrO8CGk4_W>Xp&;MlRp&Bq-)Hc&!Scre&jfeS1=sUHy5xk*_lyWe8#cBN z28GP)q{#;!vo}noazrQe3&FZF!+*FBDgo%~57jinLTV&w4n{~^eORWulO$tnTyuYo zG$FtNVB02+u0&9`XOmWf0NbCh_{PZ9v@N#1QF{%SSIWMCzh$PR;ni0y4SY4fLA{7= zJGaBuJB#Zpc1JXoI#el6?J#t>dN;Zu2Q*5LeMmJg9&@U%W@H(DMk66o&;&E1;~#~# zB8U}(z+{~=VnR)uz>wN2A@Yt4`tyHpyA1kxp&5VA5G=jOd%8m~tT3*E1(44o+H2Kf z8c9y3IT{Xr~|$48+I>o2~sYF0G|PPijN>?Y0$kmV=r0(543Cy^%sQNBf`>?5ybc<6x{NBYmk3e7oipG z`xUeRlH3h(xWXazWaGI!<6~~@P&qLU@${_f8bAR{qI=bZkkUsbdeD#8wu4g2%%ay_ zNMuImHl5^$6v@3OoNvLhMGZo|Ihd(DR9 zy4Eucm?(BI)2eWnb^uYw6y<-+VV51z@yacZc5bAa1&8Sem5Tu&cZ4qrxKfqD z?W7p&0doS$p$myj^wZQq1`5GUUNwl-{BM*tx(DtnyQ9vjf$K>tC$%Mv*0h()&ze*;}caRb&=*1 zfZWeN_ztb@?n1kG(*pFK4@Pm{R@{t|1PkA=13BQxnSJn=nN@m_pR{rr&u4eBeo3cI zp!Q!x}rvosEWDb1q^>yUh{88tCbIT-tY^0w$PsLwpN@Y>P-mq!d&NI#z%aCR>Z`c zn}w7{ZNFTkS19Qq?q9(E#}ru%j9L_aG&GeIolx)ff=pIwrV*vOY3EP*$qUdoF6GKMaFNb9)z{mw-&lvTk(_e>CP zO0h+MgxPAQJMCiVg^(@IomGK)OzZaO9`M6}c7xGvTCyW#I3X6LlcYK&WTa8a!nNq~ z44_ETi3GiEeipJGiL(3GQF3FI?oRXf%fWwdCANn$mxR)a!PBZY4p{LJRDzA~ zJ0^FnB^ol@O$GGg#IV>k*m3G9RJ^2F8u&w!deF+TTC0$F>0YXq__ms96_ z#TbyGHx;+F%(y7)2-&Gqjvr5`fx<;yd=1mP3b9O|##&fRy*y=hDPo=nsiq^U!&zx& zWd?us$>qBT?&!HUA%>CRZ}as%`Mn8qTJjAXkY7fR{Y$ZdCYBKh!&H;^ia;f z!K1Vyjb$d)4q3GmTa2ooKJ|w?H*B8xE`WGhC&22&_4WFVY1@n2AhewEJ+*(d%X&WPyQB@aaptaie*Jq#|+r2|lly;zxb2Y03d+kA$xQx!SJL!Yg@?Kzj1X|R=FRlZ;P%Y_s&FXnx8XtM^= z+j|b~g;$$UHcbT5uz1@PYCc&j^^o%3E*$8AJziXauwF4E1I}TW$v}yv zHRO&WsKFqltXVgictp;Bi$G4D54awMIrG_pP6D|~pn1KGVb4}y`t+(JBqKzzT6suPIY|0Frd zq|FZlwHb-Na_3oE0nE!}7$|3}kEC>eHQxBO#d{_6gaPRF&=v2_2|H)^+M-4>^+K(p zHD0OSQ_GrO{m6j-`i>oeAeQXHvol665M|bTs^ZgIVCQ*SPCFw{+B8C730$xuiaF}( z+c!G07G6bAxLX6-zdNOXSrhK;HHdC8vIK`}D~Kx|^{0k{4hIqxH6U`fPgfa#i|6qe zn6u({NvcedMFc83taXW%r!`-B&}n1_dVbP@%(z>TusgeuwMM8DE8zV1|6Vk1*et2+ zP5SfmNgXgGP%b_9U|0+W6=C(BO0AW|$0uL9yHSJj<$Ar@Tll?dF`nL&ndPx3)<*iU zs9`P29LU;wJW;(WbflHo2xcpPe|H=Bl>D=egT$xapr&E4_QVnOE2Z<`B~R;OVx&Zs z0YpBDP9t<5>pcD-Pylw#^rVaSRw6m-m8oUk?UC&8t=T?)OYm9y49RB9sTvnH)LBrj z9rk7J&MT+d3GTg28<<}MW}8%O5e9(U$>H7S7R05I_Eqm^ik}mLpIkEwWtZ@x0$kOt zc-O9%AQlQ0e?54no~EC>Kw|;m+Djt^>AE2w;SI1dFkyeElr2X=8rlLz;+Epl4+6wZ zYJVf$sRLxhMlX%`wTL;6rpeeY#iENAM@_}R_1ZU#sSM@_{K&=G?a;^@V*s{-+F}bX zA_Z;E-w=W5IamHeU@t%P~kte^3HJEIYD*;{W?cy8HPe2jB;oQ@kO_ zijIodh%paXdZ>G;M!#YG+jCuoyJ@9LFlor5NIB;b`I#T#+&1;@ejDZ7O zU=TR#MnE-;($@UFaHFtlzFLIZ(Ksr-f5Al0G;WU{~HFA9~jl{d2qnSs8G?D@)33rB0bzq{am|LDOo^UnX*Rf&<}hCVe}s|%PV zACVcfE3|5Wq!3#cjaLisC&J4`PU0vV+q@EMON7xD?r$%b2^b8fsLBzp6i4_4f23=; z8MP~g1u=!LY|&^%x_rfo4CWuD9hbycMp&chWxMU~jvLJ|T3XLML0ATBZKBE~;2@y= z+`vhVbXiK{tg!EZE8iOc^}&o9^LW!h+hi(sZR=MqHv?ytZKrRD(Af4HXfTQtDOa?hws-$!w)vJy4&YR_w!2T?!T1Yr92t{$-`FG8>%JwHHHwn+P8B58XLj7PK! z2Z9e;v_mBq;*V$1{B|j3kAlAHQ7a$CUK4#I{$aP)ogU{uI9k-FoXCIa_V$hFFWVy!Z z(@~>RnT0KpFpqT5%BxoCtY^FHK#XKX_VmpnnMvk;$v=2e=%YF|WdvWkz!#_#GCiXq zkq_k}k7Tq~e<+fef2N;#_Lv(P4<>g@Q0K6Aee4Sz=7^?}d&hsP0F2ITV08_kny$p; z>X-edtI8)0H^@dwMx(a&2IAkISS7i^nYk&?OaSHis}z=zpwGm@=yxh} zi6aT(@gjtz%E3d&SjLd)E$ToV2GiB(97%B@=$&UMh+tSKf2)j6jc$iAiLK68m+)0) zuJ2ob-Po=<~F0bL)Bm67=$YAPa( z(AuyA=ocnm87iK^a*4MF9zo+@91j019O@#%hPUuo==6@i!)mQH5%`&^@w7w)n01U~HN`&l39-A@iolA{xFT|3?#cfDSUcrW zL4?XGkd|nK5reB&5|t=o)X(CM2Fd?sJ^GqUEmZi*`v}o%7JHTBNUzSPH)^;c=SN6w zd84){cshbDUzR{p$JkILGpo8|bk3H^R=fAg#@4wne~)tkI@!#(vYeGPR_o6R|jp}upJv@h2y^lnBh*hC-V^`o>= zDGSP7R1+ZB-iBcVhjj9>G#`Wn-Vb=Xnqrfkk2n0kO+pN3udf3gCoi%*0{vGZu(>`&6T)dm@tGL?msRj z(!it!dDcsa2(O3ey``isL;aX1npU8m=IrDiYQlGE0|qidZX*__IihenIh(A@3ON6r ze`PY5%tt|4SC-!_!he;qIU^>|;l23;7QiJ57V+bZLSuLZdVLGGo>C0%_ulK_J*xeQ zVR!NO4z16A2Y>l2?&5jVpqHchWf#x+1iB`6bcRF_P&kAci0wc2jYd*O%m@;EV7W>d z9d-LO6n&L}F_@f}y*M~8u8)(iciBmaf2wIaRR)|vzHHt1Ld$|4kEOM_%Uv9;1CkZc z)$_<7DNf^h1nl5U*{y$pjnxQ~nzG3ZyFnWHNB=Rki<5rG0e`>!+*S2SGdYRBA2tjs zDZ@(UC0obo8b3soC8Q@!@OjqdxAo2;=YitA>rEhUi^=mlyz*$BU3<)oZ+m%a7w z580O=tY)fLZL3d(+2D?8DiQ_Bf7Xv4om;27!Z4|!uNIW6;}!hwn!bA<->Q%j7ry@j z=ZsK8xAhvF5DOMms@*N_GN*0YEujcX$E2M%MEc z13nL=;H2+q9wDdncGRDno*^~4Dz77%(BufT*u;nR3WE(Q&*=l zI_bjEgGk;0Ru^~O9J47=#TpMS`8j6I+fr_&p+4j9qha~V%~uu1LnKn{>;#R?6oF1h*w|u|sVdL=H$q2pN;v`jRBc9E zN=ZQn$O<+#^S7)w^cDRtj;A#Gl#+?s#!kB7oz97s!bU5}vGE)rA)mWBF7#pfu|b7e zr$-ySdbLXWs;ms7galo}In?lj*Ni(4w3Wc%Yo_(lH$KX%f8UFAZA)z<}yabMjvFgDY7qyqF2b&)Ew5659qrAH6)8s5hKCt@1j#+-Q2rn49=- zB=SFOsKs2nM=R_^6Sni!V`^*ylOx zTk}j6<2UC`f7ES{CuCE7IZ7@c9PEa-(RbS}$%QN$s=r0tnHFOF`kWLxi5Bi8Pl#%}bRqw?v+gW6Xq#d(db zf$2>4PI2}Decgqy_^mJBps&3VhHV-nFU|e72RAUe62RqZRpE{cjXLz7tUA~GBDzc6 zDBlPXfBg@EnDPfzQgZ59q2ag(H@GCotRs4Hd(B6)cW~I`erK5&5YH8FL@A?Q&tG!9 z5$sf0>SdP$V1UWVJIoReE`oFJG{dCt1}wzu8DaAKL~=%($VTSP^V@x@hVw2%kpey3 z2%xWkHBD}y9hv>bi`O`zqkuL0P(`tD~zBD#`oExAFq_)I+?hXAll>gr%R2s7y)w4_SN zJWF`mx23UQq!(nFr?Je6#qxV*EnC`d&AB2BFhQyHE1`mcA+U|_o)YjXG8#{vL4sO>uRDU zHU?0?y|%z}L~%L@a0aNsc!tlYpX~)}>9E9>O6Y+&%Q@}dT_YMt!42jLQ=L z=5g53HI7TYIj`z5<^#qz^X3!mI{EI+^&v*x3qaE(Q`&44X`LUzQEgWQP3$Djf0*k% z`&bR5a-IgdK~gZlSg^5YAr*vxR*1qf(y})7XA{Upnl2UIzuod_R;;#XIFu+^!~-1i zPOmm8iWoq^7+Y=3sxjt${lh+%bd!Xcsqgkgzq@aw`ZnE$u#e_9TW#G$}A z@j<6gPLGcicCO7&xR{_)ps}E*OIhUS zTcekmj!~O%!)FbP3yH>Bf1bExv!^ z@x`pI@qMET{7K(cnnKw7S4r!X;BGS*& z(eYRkDm+ZIfAtejf8L8!7d&-r_$AwSPW?LM*Y>uR=clCYckU8#hYaUQ_c2hPwz&vt zS!doV0D50Ym`$@glqg62<5k-{IhAjpkxjl4EQ64UJk81v*no@v6`{c`3nQso*UFoW zSVB;PX7R%H;%n$ciG&Aru|gh727yT%q8Xt zdLV3(2$NNn+J$0Pr8QxKLpnU559!uI&D1coJ~_*BYp~5Fc|q-EGxjS^S1=i=I*S~{ z`HrOvDU(6J{F%N1%`%HKF9ypU>58Pr1%r@f72aFe-@hn&*e|CjvYHw4v%%p5(}{yp}R6A0@Zl<6*7BGlQSmS%*|{af_^=s znmR!j-R||0RtT9N27+>Ct!g{qIH&$_&RU{*>#$`s;~Skmuh&) zd%0+><8)9S%oy;eg@@rKn-T>`E!%0ZF=$PHIX`((7pX=ZlHPF)*{>Lh=sq;)Yeml6 zg7PmE=D7y85!_GJd>>C7Hy@07f>vqL`_l2(`>0#-n+6_{mf`cAGQtY3x zr-I2r!gosZnfB>0b*G^0TEdCDo_ec?=d$3I%`R0XIiBKM?r?EoutY-wB;Z{>Y6bfv z#;x`WCK(R8;d+!sbevR7{nYYin)WdVa|qY!f3oVo+u!wwBG4^8^0MK>KZnn9Fa>}p z%;uS%f3M$q(hT`w*{GA+0e8yZofL(3+UfW&$W~Cq3Zh^~mhMT~&XB&X077x#^WGGc zQ#5~~NsakSx3gC*0ssFyucktSRX2>G1k8qwx{~YN*~UVWu3j6hzm}~nVcGqP{-*0N zf5{Fa8EGYTLjr2;z$_fGe6NiZ)Hjd^7Nq5cSB}NicAEM{To=5fEZ8@Hkf@cozBKDE6sj_>UV4KuY-f{+E z(2_AMW7nx3)Q~>mL-7BE<7W$v9RzRue=dkzLT?&gj1Z%yKK;H*75xni8A!TTeCUI5iSyLzDNa`@b4#fUdR{OHw$@2qaDHeFA z*&y*Kgvk(T6?=^WIp7>dXHiCTxkK z7Drum?zlJ@Y@%`|6)O>8uXjNkE6& zdrX>)VoOSY#9L>FTU9vJ+tHcsey-ni_f)1f4 zGTB}{A?KY>#$Lw~fXZs`6hu<$=J64cT_i6Yq6qFJICI;(kJljFZ8 zKw^ue*49YI(TCZWkEgCtHkO|h8%ufBn;eQl5N#2YUOwZ6adEl=p(f*aD3tS zyH}W`c~E>HqrC5>=EW`-0p1||tIrT60Ch0{_L95fV->U=@m6hce^FIl+IyfX#S{g6 zlkyk%QK{n5+@fjNlXZM|HbBIW_Fsj(1OiywF1r<<5qRX#tg_kx&2fKNcRD;ua?r@Z z*8yShazIt*B}dQpzK4ms?pJ2_%_#=1AV_G~8${|`2u35j#Ve_$aEUqvmIZiX@lzp} zVQTM+L-FQJ&CW7Qe^`_)1#3}&HZaKnu^Ii7tfRTBsI#r+KuT6lto_yADF*Rk(1xq8 z=|O6x;B3dvNQ~5+-YVRHU8#sejE>jQ~h$`4jAvK zmNNqxpjtlKkQ#OA4$uhM5AYY$#J-CUIS8-K4$-sUMyV1Je?){US)StnNAuV0=s3&? z-Nn~>>A_RYe?*+ATVbv+((aOtB(2x~jUz~R9mkX;2EcSm&~VP{f-r3po7#91cV9G| zj~Ng_9(B_D!rJkwR^oQLqqnE_=-s1tS5{SXeqjQs_T_1g#MDh7I-P{+s)wWkSQ`_B z1D0ge)*i2efAN$>{5U}>q<0`m1)K$ax+*&W12zvCLHfnP>yQOMB(_Z{AXy1@WS!ER znSMUfl(3+oy{;SGaQ9(4?$2O%@urLkxWmUYcnW{7rZS@7w>wd72l5g_Qf8B(Vk)nR)zqo<_uGCF{US_D< z$g%LcZa|E#IA0$sG)G@@Teqv!kuv%xfdDYQ-=<5NAzL5pI&dj1SA0vc@nSpS)B>Ef zgj&WR;Kv*-!U-V8{(bc7o)sYrVk3X;+17SId0v;LH$SUv!jnpjAY2K} zhb$BO5NBb5+1B%Q7O$-%NGwZRLULC+^p4edE$2jJBaXV7{arNvU7#!iLh0odNdS3) z{GRw@kD8Iykhu@vlI>HqR~vW?;T|VXr)XjSe;)^`G=e!lVC@r+ICZSQ7lC zW3|ZH{~##}BLL1YZ_9j?v-~%B9k3C}>EMx@!QQSw@8>!RRo2>c9F*|16)caUs?%4U9#;fdtL2 zf5qKpi4I)H1bwGSQ^B&kpm?Eh5z8MLDOmG5%(#wTQr+TyL_Y?cX)@lp-cX)tX2X8u zLcDg%xXK$d@UUg;%yXsB7?n02;4%SbmyIG3TSK#{1pBsEbF8@a7yB^-<(zNKy9k1B zA*wYER?UQ|R+`6}KT9!B!s9_h(!tg1e@#^vp)fhCs1w+p!a_zcQ;Q@ZsZJLwS0Luv zG^)#oGiuS8&h@<_88m;q#_%VO0OxCfZf3;Q4?!eR;oz0TmA9L>xLZ$iJC#HrM4=iH22FHR<^}Dn9|K`2 zA_%<+i&R`zUp$2thupTq4-xkYt1kVd9f#wufHsM=GvnBr)gT;Ow^&;Yf43-Fo3}-C zRDB`k5BOU>wL$4nRaq}|xgXc}K2pgfqSCkTiCsb&Rk=SzV0eP^6>6-}{yG?+^Jnz?$s1zoEzS?D}H*vTI4X%net+I<_tG>XUk%MLLc@HDcZ7Oh=3Df7_zPknSO%*sW9X z#zEuwX%IqaH>r0CBg|7zcfib5Nd$a~Ynl$WqkuOZ;GISy8>k(fEG@90_E`Y3=9GfIq(2C3zdOMz_9Y&4$2BeM_R-viw!#Jh_TwL-AC&L|15)Q?x@+*X^-eZ%tXXnJh6%IQrHk%c-Wp0wb?ep=%v; z>~JZD#eEPdRa@IWL2_12?bSx~dFR%f4<_FwGJ&77-VF zAIsgZ_5A*PfA-1^R%7y^$i<%7bl|Mnn0FgR#~IyZMAioztJZHpd9Oq78%iLC2uvMK zH|$2ddE*a{<6wwA!8flS-nAQ9x|-a4mV;Uh3gI+*Nz9?A5smV$G?~I<%tBE02v#pf z2<#hN!l#sodr$+l&y2+D{x3RGhOm^1;MdmiBv2DKe@kc+Dlk{W|BUxaiJgwip-6AU zVXjR5WSmUk`6QYp_6H2kDQ3{jX1}aO1e2Z}`w0p_m87Edr{T18lnK<|((#PiPs+W( zVFnZb4|7zt0pw|k{LrKYO$i9XYAThKdA>6Sl?kR0!EB~`BBIoG2B8<0F9i~#QvT^ zeO22**-IT&`eQxvZ9cN9g{c>1gK87J;<|>4AFxp3p1(Vx=`6@-Bem~ zf5YdDpd&UWC~ku zWnV!0#9#gsBqK)1)B5Fg44Z18xH|u4$yL;j&B?n44$8KW1am|mpr1c7?ult0DYs^$ z%97ulYb)eY*$S+D?2hfKJVIRVheD(DfAeKk0(@VDt{tE*Ks@4EF8@wy(Fya#>( zcy}znkWedKXWAtoIFfzb-mUCBG4+7J6eTuut@*#dZYj z(+LE(0y7B}4*@lkp~VxoD?$lDkpnd~G?yXp3KO@2(+P-A12r`^mm%;96B98uIWP(@ zOl59obZ9alGB7qVHJ8zO3KRu0F*h|ilW`X(f3&(~P#oO0EeZs83oebjySr;}_r_`5 z-QC@TySrO(mjFS7y95go;F52jbI;lPzQ3=!TGp7l#u{@~cU4o6D62AvnAw{ECG9~j z3@nVyya0Ix6?;2l5I2Jg(8AT$*a^VO$jrM3)APa!n_@9Ncy|W90iLvvC83?kl0s(10 zLd5JHJe{m8EM5NQU}IqTo9S<~C?i1D*wn_}-Py(pU<@(?$TBK00u=4tKR_!0wLJ)6 z0<<)?H3!(61Jr<80CiOf6;*(gijumre<}^*M`Bf12M2qn|LR3dRZU%r9w08Fs3rjb zYS06u)K%5~zN!I1AN^a<0~FOh?0@TgIQ|V+kWdp*(^i&XVfwoV01Lnk=;Unmx9orP zM)}bh;D1{C2sL-IxBI66fZEc<#etWJ$=%(Z(Zbc)h0)&0g3-bDpZ?S=t(*bwfA&r` zfRA@4pe^tpVq8IHA9T7{0{@lZ@1X$XtxSO+XW-u;N&9~p?LMgd2>QTX{%>O+M7aFT zY5OmCfHM&IZ)Gfvo&SlIS5}q>*cn@aT!0{Bkm-k`i?NHVGr;H{?BfYEqxx5aK!BL5 zlhfZC3jb|#`oCrVyLD0fkDck+e|q~GyZ`5j8G~G%z5W+B|GsTgdyuo0vy1b;G6DhS zR<^*u-8=t1Gb_+Pn1YC+jHHCB8iV|Y@IVX-_8;tk7+pME{_*~sPefdv7r@QT31H!2 z2QYt#R03osW^ZTr(X})DU;4zYK6rAmck*QVe{^jFvUdl0|G&7o70Ar|e=qZ9t`1D< zAS*{#pp5u`d4E9g|AScoT>#7gpd$e2VQR_rx7(m#0GJ!wIs<*J z%z+qb$FRWvlU)X6ZV%x37yQx5f1CbG z0@VKuD$U1~n%RSFJppDwe{*;yMSGVIK~VqyGiU!%OVZWWR?*lFNd2Fb{->X@ot3TU zzj^+LhbHiEuhfe6PIkt&|6#LombCH!nkiekm|Fge*nibUHqL)czz-V!qu~$kfB&`%VA4_%(~(!D z`+qd^kDCO@)ZWYrWC391-~<>uIT?GxGk*wym4gG|&GMmXGoZ&mN&zr2g6v&BLI4h~ zF1`SBdnfq6r}+`Y^v}Nk!v7%bJOCzp5b%H2Yyc()+mB)WZ-9dZz~o}-1pJrFzc;P? zcWD37BlG|4;=gXQe}C4hE>89~Kus&NkDL5|xhNRBI9YkAx$Q)RIkv{E;=+jgKS#e|47>C{!HS9*|90Y%ed( ztM8W@2rAX02>ERLw$+hRGka(DMR?EHPr(l#SwdtoUxQISC|hAQpt6^g=0rBXP`iwM zA-glNlL(+bc`C-!-S-sBI`fWplSZmn*||{wNSqvA9}36eiXv z?x!7AE)P8Y735&HN2GjY8P4#Oay}-=JWMyDH!N<2ZUWP1bb4h<XY9mw7Xqcvhbtya{;<-H8Ticp7t0>dr4v2fvML;5U#WjJE3v01LtKxRKR1Y}3FTY4mK*G}57eB^y7|9+ z?<=qNn&L7_nS=ICV==1pX4iQWiZ9PIBX+XCvK7|fRbM&m;I$kVAPVqagQ#Z?!|U@P zRzz=dzA3aEMcvTIan2sB)?!wjq&${p@>I$;eC9KrYuIrMCj+`qCnwX%xHXAIm}UFcg~+Pz1Ta{C?=K^WL^7; zf2Nfug_pvkLqvRIeMEO9Y_?H+#Bt=(Twl4wBzQMrKv{xUVGb7RSHqh&Oik$Y6!_$Y zCXu5Y<=+eAMFTx$B<<$7MZ73P4?8g&#woE_kvOM@PwTbhhy8s-OB#vD&UXU{G&jyl z96yza)e&K?(T;ZoXdkXuTId-K0fg3>e<&kf?n3uF$*sqC>-RNW0MNH>s0G~<%`oIeq1HrN*^dE*J=(Fj!!jxJkaO9(Ue}x|8 z{3=U78H31wr5~tc3TSZSp5bkhN)NV2?y?45}CEH%KEG*D{4&!&Ru;fx~%XOb0JpC z@LD!3k;PvQ`h9hQwW$9|39n>Yv6Y%bi1@7s@hrg*bs(7B5Z{>}d$C>ZJ6~zotZ+oP zElSN(X}|8COsd5R^KVp3f4WFD)Tp)w%2f(OJQV!7K&>ZX_xZ#Jh81q^pVQr$0NK(S z47hF$%fb@!k@=BmMG+hFDEr+ki;cUT$v=mmDB-ER&iq|XoY@3JZbeMJ@YiV=Yv$C) zz0hY75)F7Lc`L5@NCxio!Uv}s=(M42>%|55kU!L!R=QQgd>s$3^48cv8Z|ELA-JD zvn29xpnxkKmxUHR*gvUxdW>UIbgBy>(aghUEkZh4Lb-XJaEY@d4xF=x)M=1wEdI6aJ*kdZSM zIJA1K>-N$BCVaiNbx_^YCC2Q<{Caut+s_0a16eLeewPKT8+HTOQzXgk$G4Qe@@w}V zU)}%Ax`;94fBwKg54{}U`PM;qR!K%CSNK<*$SXG1I6d!p$jz{@#e>-h$Ths0iPS($n3D%9Gn793s z1vjW~)Lwx}lVuC#*}Y!g46O}2N#xg}CdP zL0szh*&TadRUUFYU|)c~Ne;;Z(OA9|uCth?oLvNN&bkK^l^4AkBl(d>N0=_NqhAc2 zA1$cFe;EfAB%kOrWg;afTDMm3x1ofg1 z!98bv4_lOhK8bxSSeO2x_1Mv@RDnpD&B4YPd}^iJ8{t$En-Xp&!6^z($;&VJqTQP} zHzHM(9_f8mMY$+c6hGI?#%7rHj|N(D2XUmGe_k>*qXUw)LP3g|jd2)p3@xG4Q!h8o z_Tb?3JnH49kdl&hSVVV zo?#NnVShR8Wj)iN;W>7{t^vB2!E8RkUBOY}d+m&PZy|AifgJ63Mz~7Z7RYYIB5;;` ze{R5m`b>o-jR+UgiBT@byS_|Anj>!gC~JkH@ii;ttYPN+7d_4!&!|Yt?29z(jjSQ) zIeZZLdgJWN6~J(ugjrXjq5XY}7H-xQ{4R8?ZG%xGXk!nOVcg9}*axY3?iEiuut@3a znf0oqYVct4+H|zvH9D@>|7q7HiHutm&-{rEc z1D0HGv+Zm0Kqa&9`TGGc@qtXpI)>36AdHE=^e06q%*f&fVTTCBOT+^U$!E>Q;@??u zhFew*kBa$?7k$m`p&aD*v5G_;ac5WfwhU|t1b?Jzj?*agcizjV@Zc6qMUS(ye|RwS z(B(DcRlYo6@Gu)iGU$A1i#`(+Z;Mf8u{Caela@aSI`i)t7D%CbqjdO^tjKBa<4s?+ zFrrP;qJn7eFwlBb7l+mWWa;gn7*!1z z#q4Y7Mn!;{&-I>dh*^92gqmz%>sM`)70CYW_%1Cc$?|vM5HzOkxiSw6fAX)p>Qg*n zaJfS7?;!~bavq`kurjQawkCL@?L`p8V~^ynXQzPI z+Z8Ur#uS+oTG2wgb!>{%Da_rl&X7k=kwP1F6)iOn7-!4zXV77meO=$iVXciJVfR*>v>sLx8NZn7z-t^e4Dg#>Uwfj@ilKix=vK0?~0&x%E@atLoJf2tP$5Y7mQqWUQ8&082` zNK8h7UFp8b?OK=dLVWnTZc4VxTfs?P+7jVYNXd75Uz&Cq7EEBo2j3u0`)*h|kodct zpH=qSB#Sb8_|S;%^IUrbkv-RU)bIR8bwbA4km%?b#5jGfNBFuR2hxtL61@}*L@(Jt zPCv1ld4ZKGe~f;&e~j6`|Na~vn~8z6V=cG@OEIcqG};-Z11n`te2HQcp78`~*1Fj_ zZ^gH!&j>G>Q^OlYJGX4hp)VR7%QtHi1tD#H`^^<;L?ls(w`F&i-6gHCX6m^8Y(n}N z4;wc67!sFQKU)wN>L+HsTc3!dX?Un zgZKV>s^OL_?KeF(qpy>y48_Vx5$Ed~Yq6E0(y}rUFF6fnQjnl4+GA7>eE(^y zOS*f>e>4Y5hL}qDAijZTGLLMTc$xsx81RUvR03nxu%?b@lZ3}o#-}7QKbQkh{($9`E>aYGMtPC< zuczUDS24(h+F}KQ1Y;zf#*%^Q-6o#^C1p)-e>)7=%^VSVt!-oR#L0VPyefr;aD7zY zzyKbbQb=2RW0*aX)OHqxdANe=IjX`8sUN$^7W0f+MPAjs2LxA36O=-;KbrC6eyw1- zu5g79Cl1|Ib|xdGiJJ37WYmeZU|E*ZqjGQ9<-lckjc9nxeuF5iCiD(7ju?zIOfJtcjXmd&`ylNpeCwXk;3f4iA3?h*DzuDH*6R5KW6r?=C7?2qoSOb|7R zyJ=EejDSpL5lnhk$O>$PxEH6)t!?Ix99=;0J3D(w_kHF(P%Mp6idVTVcOd!gd@TO^ z5E*^{>aOYs1FI+NkEXiZ=cN-F#>?+|GKtWR{w==!+j+8E<@)(C?%U1PeoLibe`wvL zMjA|O_igwPfha@W;*eJ_c-&d+6q$9y@wVlp@ia$AeB%=afQH85>Ndzh+EGCL#M2;R znji8Rfe*8|46H2LE1PcCgwQhOl+=RMlrgmBJC@?h&2tlKNqk)^n`sgwuENH!Vp}?3Gx+fXb2syFEa=@%w^d^tzuT=zRA0R{I(V5Fr=xt!x zU&3l2C+EmM0TmU9Bq_3xp%24((u-u^EH+*`@}H$q?uvYtf3nsE#4`Vkf02ForfNr! zzkcbBPkWevlT%XDetj8lz5Dr5U4Ni|#c)()_*$YvNC)baJGYXGq#9)N4)*z!-B${1 z(M$w}^kLrUt77+fy)~ndBEYK{{kyiu!|6>WxufCDW+U*M63%lw#c^K~2e(BRsq1Pb zT9ZZ!kNfh7y!f5;DaM1Te{XByXQ07d#GLR5@1$X&qR2GPJF&hw`fqdyMv6y$aX{;Q zsLx9~(kO#F%#Ka%OSOhbQ1mb^yd2$CgDd>A%ZmOR(DjRQ)gP2<%?fz`t7$p+b;8U= zxvLYPhn`~NRzaf+mr7Z)s$4&s{9Ccs1sQ`7`M2P#I)t*mE9J`Cf22n>erA1EsV63J zO?-p+vnJ8Z+qF&^Q*-czFor}r3-~y>cX=6TuZ5K-W5%^^?|XAu^w69 z>j)*UlZs(b^0(iSU}4e&;Rm9{dOx<&(ZCn$?tC$`xxcRL@3YgtF3@{Gc>HjlxC`$> zm|T;KUqtR(J&{VXfA(4`$`KUQTNX`=m@LUq6*OYx^1O0M*{2%5k3!nw!2cdM+8Cqo z(qe;mID$DPSkY)yRTPKoCy_T$l>HQYWDTbjj7j4{;OCgfD4F-G}f?scSs zL?eP&48&R<;xe{sD%Og{VBrA)CGAMcHmC&~B# zwH-pW$zbaskMX36-nU*m!8bRrz$x}5^~D6w7bO26R(mLe3pM?!cU^Lo4JrxQR)GpI z=I>yVDg2M5|Rq?3*RjRYVd`7wDkihKpWA;G;WrDPOw|XE9acd>t(V9+?7fF$Gkm zNXq|ce>QC1{Xx`2NHet@SGO06XonjNDzjd`W%s6XHAqyUf+d+m@AaE|$v-U#n85KW z8kbV5PpW}l1-{T#OHtaiNL?2~*jxbkGaf4FK~tcKNY2rCA`{GUTH znJ1ff3~k6{M1|!gQ+VC*Yf6WjJH|S`o=4%?3bVHqj=YulDp#D}sboLF^rwhNT1#F? zf2zX0OzSJpYw2YWxG<;MHZxzl0~8b9>V6i(j1KaZ+#iOx$)eoiM@s}msQ9e)j<_^% z1Qbz`_P&@G!kkhjL>YIQ*GCByT%4vN+BME#zU+$B18TivRZ}geu4o5 z-vs?j*IY83ak|EqYw6PAlPFjcnTEX*G14p_9HgS?tv2dlf@338*xI^u+!cl~d5%a{ z#-Wuakr}rW$&H)84mW8#D9&e#8&lZ%qYS`B4tr)D49TLSc6x4p*X6Ab_pM{zHc;Tn z)FsEpx{ythUlOv`ql>pha%3rxOUIq{k0L)^2*%yJcq@P^welizXu9$UiETW;V%vK2 zog%}>z_oS0l$Rxf??U_tR0U=t+U$%bSf3u-4`NX%rymlFx-{Z2#1hAJr?Ed?B<|)V zS!TIw=UM9uL?Ec`6#obeTHfnJ&=kns7?hd^be|EB{q*Nyyh{mE5j9x2Kbo&bHb8bw zC6;ml-$Wf@O>Q=ky$MIx+qP$2t9a5CQ#zClvFT!`gBYg@p=p(WzN~q0g{0zfVS~Bp z&E_Ry6KpE5VzUxZ>Zde&8^g<8K0JMDo3tf9arxtJR)!E%M4^GnsZ8?JULq96?{EsI z%|^)UaGsiiRWJy#MGP)~@Q=U|3W;#$O1{_0_cAp>wu4R92C~oSVT{q1B1pmX^t9>n z&)xOSajylEbC39R;at|;DG%_tT#}=|ZU2vTmW+8B&^;m>Sw1bJYwTFRd+2Bmq;a7x z(hA+rkX}nwG;;Xkb*P;<*VL7Ef@+zW(Jxf_am6kR1|#+y5-XcJ#_=USMVgZ&mHrW{ ze!H%7^{o}3RGuOMz=$BrCKj*(pXjfg%9aijs!Ls|u3G@s*U1O_Xbq%H|B-V{B0U^j zY%qF-o>Q|`{=?fZg*8C3)ckJhsMKW=>CWsLzE;uxo6ls z436W20NzC(aBMf@BnM@GC%*EOBg}qvQz6@hEM^G))-JR}gV7|+Y;ce*8NQrEpG5%G zFE%P*xz8OZTVpocU=Uc!P#~|g5L1{$Y3DyJ1_UXU)dayNy0}-{B-{7H_#x5p%@o^r z_yyb}jJ?%t_@nAc)EgIYJX;!o7o$&WqmMDpr;j2l8YeLbF?@AoolQ(7EI2R6Cr;9Q{lvd}@<5pwy94x#O@wr18Y|ZFUa5mV zTe9kEfcZ&DJ)e(aG!e-`<(CmBoZ>YaUswOOJ-T0T9JS_8=A%}C_0n(b_8Z7S$p&aD0fVT6<_xkj5NkakQs zJsrD_dXj14a^7&vSV^xhpGwV5S8#DmAEm%PHeqd;BLP7xd8VY=sod?v)%C^o5GFWf z6D=#2(s$|FimDbi^uQ}2H5L`sNqF2s$QqtlhAmRKbc&LF)1B)#4_7Y5GU%FFzS20N zp&Bi3Pql)AerA7mx^Y#Q|h5U~FftEQG z$bdfk+6>e$I*#GnH6u=OEFpPwqBj^V+YSTCP)-jLOrMtAC`X=Z4u4uDu`vq*j9G3G z(lBw_``FHhaP3L|GbrM1NH)6A!TLKbY2#5?0b5js&4=&)yJAKO!KhMmZ7 z7XuH?Z52>QABaJN0#`Og#PpnD8L(^bS*@B#tTglB+e!PLoYIccv4yNa_*=a@bH;H4 z3&$|n2`UT%))mX7eaR>pT5(jxl7Kj0tK<;I-Y2wlk5!Ic~b+ZcLXMl zE-{O>GB?zEudWY@pS^NXO|m^ZU|j}F*P)JocseCWnx4nb7O-C~7|I>U(C$ccNG#E> zafVFRNH8ZaKIiK7i(zJir%+8$unbk{zwHuYQ!~|?+a5BkZQSKd=T7jDwP8_D*!IHS zaZW)WsEbGWS)upmKUz=EY>fzLJOf|Cx0{xp@`WcyVNOz%k+czm`{@gbsjn{O#k z=FadG+=Z*3{bbo;`XXm=xqtq~#`_zOhgYE$AdA~df$#K_0zo`CW%RbY7he>R#LN4AV;m)nq|=jALR9fg%s713D(&gr1KyjhN?-rPp)l5bLUHVy$JE!H6W-xfQ2 zi_p-SB8v*=;5&YTOfF|}G!8J3$#-E_fd)Y_zt~#;o#!e%ex&~Rvh%kj1Qv}c?tW|A z2l`#r-gS=F=yTU?&X|yj2|wQ?MW+=eD3V{h@Lqp>b2lQI0I1-F8hW|yT#4e3G%7fs zA9<(Gj*mu0siPOeD^|{-*7%F^m4{zSP|{0p`cALqk1Wj8hxQsP zt!>v7o(KZmQ7Q}@hF{tf6S1*Y(rUR(hMW}heOuUmsTe8iEwr=5PSa2*?thCU&7RYU z?l|AMDLf;BIi68m))0V-VGkd+dbh>*5B2PMWekboGgh*&L6fFvA0x_{<1-O521;0@ zOQH*j6~pchAB@%w5)wL0?k4~vmh)Gd+r2#1$cKTe<2k~VNax~&Ru-CK*sIb0BS%e> zhPMwdP_k)g<6ViX1=`UYvsbzxItbHkRrFjB&T8EnrtN7uH#y+dhQgd5Lg8XoRzr{0 zJPmJ4rR8nK-_m&9XO7&@R?i)_(L^g`_A}Qy2D+|u=@XwI%XM5h0)@i}{p2_DW^^iC zQ-8F%!Ej`Vy!PVjm~ipOUvYq}e(mw~)xa0sFxz_Ch89Xy?V9s=DYQv0S{Uf-dpa@W z9X$iZN?Zz1i$|bM9RJaghDHq6zDjBMmfP`zVQ9K;_u?_6;NNkS5LIRggaF_7%!#qY z!G(z+lF%yG0~-;GUl3l|U;uXPf}&vt9dY+W_=H-$cjeZC%?ukzs;NU%5u7p zz_Uy-by^`#tOMkrM9s|-c_um#m|=Rdp#}p0XtmBS>BzvxYvT{vt_zmj)OTXH~e!zb0ZU*Cs>vNdncEOWsS{|wU;0y0fd zWN%h$d`W;)oOvFi8_2RfmdtUMZx)?5i1{27HX-!4H;dn+UVr zb=G#HLi;2vTGpBY!(+B}zq9C+2qYAWGb$w639ENEwMp)K4U5fnq$XT*>|giKp(Uq3 zVopX;hLD?{pv>!G_#&A%+y8bn$@qPuH4C`ef?@;nHavuni{0{NP;?jyy0+KaK8}hu zIxG_kGk6v?S9)_1WSkHab6u-Nprp$Pf+^t_m&*uC7kPhnk~c31BqKED;YO;Lhm`8U zBWNw>ZJ5NRG&~|9U4wl4!z_9A^y;sosX(fi$V!X%m@^zPZ-r;F+BQj5YMwwSXX-ze zE3E+k@~d|w`2WP<`LrEwp{S*!WFA)uZq^4g zJb!48v|`&ElP9L^yb0`xA*bU`$XC-A8sRZ5!dJ-`*N7&xQMnj0XrDXby4uN8`$5a5 zobuinEF09kFc)4U@Gplhb*^|2xgXZBC-D{-jl33t;;;R#>l4V^wG1-n1GtoD&m=E- zawj4RG1LGyQ5Yx5jrhAwb=YbZ+7o*>e%Uvs4{F2n#fSYKxG8uj%h2-1`ap2V&%_Hc zoyTHCQ%6R?ak|5BmTBAhK-kQjT5I07(avDeR(w4B+bWf2Js%R_YJJT)jIJ5T_Z*uV71c^=#mBWT)C@XH{spR&zXQhfW1 zYwGv-+G=m?IRJ$N(eX-Eu?g^xeS-4&FW0-QjvYub+j>wW$SFclAw6?rS{omM*0A-p zva~p>5v;EgHp0C?>jaoV_A!-qe(xak4!_~5(=O>Pxc6uNDRc*P;uqLT#S(wb?@ z?v~?Td79iCGQ#zFbYWT}*XtwvzvM2Mf>J|~k^NdnBf@Pk3s>C>v_WgH(Pz#i!E#rK zcENs?9gAYPFK_h2osHRjD@&F@R>M`?%sqP?Wg$t!QZeCvpV3UmExNJ~u6g~&F&vRZ zZ;m!6v|vLQhDYaF3mz`>35;(q1fGMzKP=}MXR7CIaf)5`v{2@+52LV5tiLdHxyqIx za}c{=5fw^Q1!SNDs+!+6bCkjbu&(qJG4M_64D0<1?d`+D3$*iSk<-e7_{8C*#pG*m zZDqEn0CNog)pyjd1xP2|y?=j*@+~Wf)} z#mtNQ9Veb8zorZ22GI=0%*J5?u=--5rX127HgE5nWPa3wq3HXHXD#N;X!cW+i{oPA zQ7UbV5b&YI?=ATsM~amuUE1a+3rVY@YNUvaeVudD?CuaGhT=DzVE_|Nvzt*WLHRY@4YC-zwDyM8pdfi3(s9UVfnOa z=@IA}s7vI>&lTeIhKGbw`%C{B~ zrF_uFRaNd|GH+)hHB)W$&#xt zd9b;!DU!EcbI_)U^*u)RA;5^Mx5$*Elhi?l`RCjMwtaa=_>h+UM@I@>VoHn7&;wldv4Mu3^A6Aq~r@*U?fU5z9 zF@A=+Sd7L4*}Sa}A%p3AMrCETV6rK^FV7WMa5!~NpOWlS_JV9o}uob$`w>7 zwbb_=7j!UsEi!LV-(R3d@3|3{O$#NkamcZH6F@jZpuT>Rayv*2=6vIL8Ht8!r>1F{p5QB_#wrwZ{h=%g;eWf+rE(sWJQQ;AlP^zO1Y$owcBbuDGibGe#EkF zGfIW#NSm7@NHn2fY(+)fhywlqg346ivTwskTmjyh`rZOA*^$TWWyMgQdQ;$suLJ|I zKUk>*(T^&fXE)*F)xH*kE9W4}r*046N8e8ZxkL7kQwRANPjO231fIr+rjSCzF9!sN zxw?oiOdk}^yIyBUqI6#Nyw)TVeCeOIc%2a`q~f_dt?D>R-wVAthHFnXXP7gBTd6s^ z(O6}S=c4Ler!A*&1LGv|(iEL9|2zt?q}XRsMHEe}*lr}CTOB{7n!V%<(0Uf|%Lbar zyrI3YtDnLR2fq_yGg3+Q{J8Nl#@e5rX`R%7O$iJGGs1|+a}k%UBuR^CV3l??5QY3u z>6+~yY=jD2Rjp?$=V*q}+|UW499$H~r~x=z5+TlTMpCVV*# z%IrYd!Tf9+?t{47KjE|7x0EqR;*{5RJB!^~q@g^iPUpxhy@81hc5i$q{scsA?sW%$ z6JqcUCh|)yT<8?lYT8DXfArV`BLg$Y$08oqF7K$|G;xQCN-qbPbu-a|BGmwDS#%%4 zN^nXj#HjS$u#RG_*#+erBCjl+F6=t|J?3&eZGGx7M*(`t5ofrTl0WSB(`E$ste-A| zP@8Wt1=*oN!<2nc)Gqk+lN|o^kf<}Um~BI6W9i1^KXdm<7Z=WUPkF%ukKesOVO~@X zISXhCZxDG1BvgiHA?(d%>)+ufwyh(n-}-M+71rcJ^U?7LZ+{+ERdX4C6=2~+Cn^ZH z1rDFixymGb>S}sHchT#d{e2ES{b+P|_m50d3wb*aRZ96G*YX(%F>C}bg@-wpcF^gq zEm~UumFdzmsm&e^9E@84MvT6;Uyf*}H1Lid{pL$pHrf;?anl?qHNHMw`*YJt$)cmd zSSqX#EG*c^q#h4#6(X9TF``2OiRhp{%>;@F-u+=q}76OJ^%@ZBjylz+naSN_Kk2HgvH9Vj^r|=+*8aM?Ry0 zulvxV zL%WvkX=vZZh4tnLOs5{td?Ul~EHx`*heEf%^AXddwHtssugRWqjOt_HmSpsk>H8r~ z8(O!WXCdi;+oYx3iAZXNWFT7N83~Jzy#Ofu!^`P7~tS@HW_arL60O0)M+<QV(56Hb!qfwSakfZ_o?gF z5j2K~D2<^B3h8WDaNfKo%RVh%Q5s4HezDLGpf_pGI;_(QX8-J79~P``&nG}7%={qa zpNwmwCQz0G;tzo7wzvv^lEn!*>1k;dP|>5ROy6*x{(UOsU~KS58@c!MGF~Xu8 z{w>7OqffKar`BGyy;qjRs`Ax>vU#-Z@F7zCb5Jx9Ql^v9SMSdhipCHqMx(4)AjGNu zkQ2{-TqHN0CnjJ0k+~j2rZB{rPaa)C&9e-2{znfX@I9Xd+^gD`@j_xLhE*7^J@(`L z!eKIE%=W|sRrfyCc^hp$_vI`$7Mlkew0lD$E*0_dxmzRmI4LMxCKin{>d)Qp=JipQ z8M(8)mB0=nQW=Qivi2n!3ZqRK`{Z`hoeF7seCMb-JnWWcyT5@aEoM5bw63vbda5_T z+6RMbU|HNl1A4KuRO-aCvmJ8sr3%zk5gzD_K!y_YoD(Ak5=R#+q@HbFXGTu9xSm!L z?xhS*G^ecNCna$I$(cPz)UZ39cSml>l6r8%Kgnw|Ce!9$ zUfxHV_VyR+Oo<3NU-i#uD>oBM6MvPO_$)FtfpCc84k-jGRMiwDZ<#fObHtxu8+i!% z!a|cQtt?sRDCDRQ48fWbhK2X~;5y$dpXACV1G}D?e@-OnF*8+nIN$ChCeX=giYt{` z#Nh5?n3eMDk;9?F8lROF@BP{85~XF9;mYjnnp$6eUpam|tCoLraZ@875t3EpFZ`7C}w+v?v;x5 z&{(_zc>gM!!Bp-4fB@MYWpL=MAAih{3_k4^y);u#C-p)rbc-&MZp#OEVc~m;8)I8vjbLxy~GDOc|u*4^>Ye21lVzn z!;z5omefOfzG^iqT`Of%iXbyn_t=83wVYEzK0J7@Mt9H_3D$4v$-bDki`ia(dn~QM z%$I2QZykm^mD4frO0uhB1YOkF^<-^low?spfg?6|1IMz5a-hP&jN4xpEd3@cc~XAR zrlP!OT6%`Ru@-g&z|}yQ^XnMR1Xx$}*O6$U=y1hC^TJm9D2dooG$Xf!j~V>Br5BQ# z){tW;g22wbW8;H zs#&f4Snn#u?2&n**WlcQT`I7*Y@Xm-3hCypgVuu2DjGz9GUj&LmvZK7LEasS7lx-m>ZHZV|knB?_v-GPBNbCxIp| zPA@gSD21e7aO-0YJ`pKLPzh;>+1RT ztUEzH%I+r_q3U4q?eToB!b8dG!Z(}_De|{rEypSyrDJ%$9g8tBgCE?$boovI=ew=} zDJ7x!5aL2iYQ8$H3=ay{O2OA_dhHX>5N9jgK+H6F5*q z3;N4S>cdjBU8zfqRnHmo&Oq%gA|AM~LTTU>U=V?gt&Xb)`V2USfKtrY({moTJiN^wNYci1o86QKyog~E#>cPC4Y062YkltS zI-BryvQv@mWnYMie)k^U5yyNE^&sM4RVSiX1EwG3F@&$wdS&K!UlLunQ-)TKUCG1k zhQ`@NcB}^kMKWjm7Jpu@03~|um0@~V;X#w}cm5%vN(oTW=S{08w833>DusUT3uX*5 zAF$HTXiUxm(-z0$E&2+#QD3J->#Pe4HJ#Hb6Fd61grGF|9dV-^U1pj_@(KFOQZ77q zjT0>3yzphU6ijmQL_fuiF^FX;i(QytJe#rO7UxBm|C}dsR2Q|G$j+#mtqc><#~aPZ zCX&69Q-$f9#I}gMBhn4FgysfSZW`wp!3aGxZZ^JgbFx?)rRQtIVZQLGJPi z|LW^1lF4lBk$3BQU*zKQs zHN|F`$bjat{% z6z$kP#-ElT1gt4@Er1Q1Ze3zeWhr};zP|geaW`f6b_~Hm547V=H+0Wp-q_WatXfsP z6BHW>3<>hclf}=dAQE^;3T`7digi2!@73Q!9Nbkz(EsVs1lp)ZiE^vSmT<3>ZLHU(atZucIrIC1_v z5vU)M+Zj`Al7Tu(9@}C+<$qJ;FD1b)PJN~qn2dGgYx~=VtrM1K+%CYQ8LEAQen?8& zBR9Td>k(@pyDpcSCE_!1bZ^lB6doNf!|h6JEt>J-Bb5w_?^m}z+lwD~eAFlFM7*|~ zTNaA~YlURQ$i3QBpG8n7UsAG^l$z8zI}4hNKnR+zqwu9}VU%AOnURqwWePSL?l~vr zvpeXH<(ee$?Up)RFZVB}K1sstDzfKe5D= zbLe{Z&G4}nHL~coZw2ukg^NxgrvyHv67fviDde?(W1LzngP&75g7)#7n^)CO_{I5T zp3bN;EExSdK@7DMiS#spMi*pb{UJi0aLNs))Lae*XJ_iysokSCtb= z#tz6szZrG1F{DDC#-7di5;bu(uqEmkh37D*E|WI*Y^Z#yhx^2VR8P|8Fc_}$-5d5s z?4v<8EsBLEQ&-DU+!OB^uFMLKifZyQ(46%(RUp4OK!3(W*25f~x$)}2A4rJMaPXar zE76n47PL7Q74<%M z`;s2&a6>B5uo_JV(rBK<)SKEvFn`TI?lFw>gxalJ`0nKniRt$ls@6P8M|v6d4Wbb6 zpPxo~gK&U**{zEr`;-3Eo$@Ek3w6sGp9JSIVS~((D!~OigBF%Q%MaqSzK>v zU<_5CbWp*O9s++zp z&)+0mLvm8mbe6S3C$o;P>BG^2*9f7X<&jGUu3~CZg7V+o;A5aEXoC2=o*hvb#BbZa z&=ye1*Kg=qebk~`YnF<+rphHz6Q#oiUR9+t{s>-JTUDZZum}C~MlVfe)oB?B7iKKD z^#A?xt51m%2&D}fG3_kh6m`+*XL9P|5GdhxojeBVuz<|=1|L)`7~TVbB1!YY{$Wgp zwSqJjhwZ6(Ed9JctGA0t5^NS{-5F#;2bDDX9IiC=3FDn z3E7G6NhOX3FGc#J=w6N!vgamDjnLSUQVvUxOcx0Folwoag9G}(y%n}qi~TMi^5xbY z>Sp7s5u;xSL^;+Sro zjH!A50GAReQsAPpSFw(|Dt&_;Ay`lBk+emROFp?+W%NO%b~3QGHb)5#c$b1L@$Mr( z6+uSOxX!B(J%;MoqfX5+`ctuSX{Y?7hGWMh?bwCbWD%j10p+)%#;0=OF3cgj@45@l z2sPfm1&nu3ga!twc5g=d*!y+kjM`S7(bh^GKoQ~Nej0AcIj?@!*b28vXJv=DXPQ); zb}-oBU%mqrtaEj0TzEx){sk1 zVx*sYWoq(xPA-OBp-*sQ%Kpr^buePQD=cA1vEZ_+xgZvU4g2&utQ^N&GJiXbf;B1+ z1kS&%C?FOYGpr)_GvZ)?M6P?H27)toaac3t_5})xuqXFnm!g(iO-nCOx5EYB~lf61(8_BDO$zvEd(xppMk}ZNrCQUvFnlA54zaCABUk z(1aD^rLETH`lh$|=UG{>&iG?`(>~@5A81RrId*uuF5ztV57k8r0q;CFoQ}~8*Z5aJ z$H89l=5?atvOT<>ae3y_!Wlsjt9BzyL^=dHe3n7_xQ+?}mZKLzBpt&8a}K~JlBvLX zDf`TnHAbZ(pH`@=-S9akfTJaduYf&K;F~8g88V47MzTrpn=+MaT(B$K;iC8|3TWXG znu&!rR{O_-p^-QL53?Q?5=JOXA5a7}wwejz-ZI&#^Nll|ixqa$l&pY4`MdM*pFAdy z-wJ}9Va`7k&ypT}MU;%QKGqfYb$@HGUL1OYNJlfKvw0>^Z_$BEsSLZEk1QGT1%%w$ z#%TCNtt-h@ak#7_RV|!yMW01_06lU)i_Riwu6`O4=+j_#*UHifV&-Ftt5k#AF(qkB zZ$x~5WRF0VpU9EVvPd(C5I}t-OfmowvK|$Xrbw*OE*zdJD6CDX*+TF;%=)>FO<={5 z15%;AcO2TOib*|{w;qNaz}~PtjYJ)+>NQjfj;$Fgap^EspW_*w!R9Ip4S6Ykm&k{mL@N_*2a!G!jDk(wvMk-!H%Gu3|%pRr}@{`AV@QU%^w zPb0v;C3W6vxT+MW7L(>vjk#0{hflr}g>h+EtOh+6_v{MbaK z^ltalx+C`yfrcKO=pSEEnPeEDfq!9*_i?mxS*q7{yVx6iRUfn3NBYc}+z!JELdzl?!1Nl1N@;KIT(i$-mPU1kPf|8Ns`JSy_n(f-ZBymtE1|;r_b6nkz8vMF$CGsH{M>L;Kwpi2YDR4+fX$Ssde589X1zm_&VJZ9aIOto`N__M5KNj) zN-3e=MMZ<_RRu&p5xb$ggZ~75Ez>Vs{(Y9v_ZL3jSU{sgVoF8augzm z{$Y5Wb@F$ba!*`Dk19@Aa?omZzqRXQxqHrhS{lKt+DM*-7ec#ia6MZi|LEhPQh%=l zlvcJ0BW6oFgM~jz@fkHU_M96eAASPN-by~F%j;*dns_hje&Ho07hj`+OH$2hFy9nf zVa{Pos|@f-*MG!P7xV6pN4vkGSr7w%m42%IKRd!2n>6F!Kw9=uW%6drM z?a+ecA#NbYRDsW2x!VK@(a%`}B1U~VmTGPPbz#>4ge0nt;G>`VbBpkYQu%V{MEM`= zsAKu$kV1~;4qxpMWBio84Jjh4AuLWwut__v#(toQ`u<=PnM*X+5NW(BXDJfJlaIAM zZ!R{n6EY#TLNu|n2}&;0nL49dwXOT)EmO$Tg?vbaAKt1I@l*Sks4`|exWShGr32X1 zoCgldwoe$|D55DmsPye=jX{c2%0`>rU&)Y@fXLJuy5P$~ow&wJ0In(v5j?s)A%3YZ zIVDixCQ`kzG@xqQCI8|&#V4C!ZzK|~#zO&rgIdUQyRT!PUV(+%TV(leFJcJ)1NQ;( z%kG>P0}5W9ouj6pQXN|8iSBbFpnvMIBtPQS`a+>0Vt!Z@Iq)!ol+@@w`@jWo;)&YC^8)7DW=?9w zwN~!%MLDt-k;x3bE@ceTlE1WGB!p+3G4Q<5A_+(~5l5BMBhUb038fo(Cs1U~hKb4l z8QjfaP4GGv!cw9Nx#;7}Q96qQ;mq#8;-CB?utmLqwR>C^#^KtoJ=ZojFrpKQkPd`; z#94nA(H@n)`hG`@=2e7&Z1#BH-f{P^|8Oiw%UA!^6;Y2cvqsu7I*-ZRH;t@(#IRh{ z9y)@A_)O?{pNSs?_JO2JF3YaE_7Cs)aG`5wZ(vmKAH+M@nPEgJW(f z5dBCPw$U3YPX2L0yLJ0;=FoPhaS#aFywj7L1cU6yi&hH63=y|@4)v-8O|95Rx){IP z-w^%``_Kt(WNWH^ zEyUr$yE6?@Q!4O@NQ6yyJNvPx@uFS$3=yK#l5@9tW|wM#0jjN>inkTL zLm_6bH^HL&B08{gM=$-8NK@?hrYilCLzM^h!7lh6bybQ^BWt=hX_Ar=jUM@^^K#SV z-Vv;?KDg6FSQ>FGh|O+{kTy`s?{*vGc&+zQh+@PZQmGYk?jO?rl4uEIWH&GKw&JS$ zFITliGQLG@Vvjq#x__8<&=-f|B97glLXR8 z0#9)))oVqoYi*l$e0e!W(N;ki)Bt)e7(k5{jG*2V{wZ^w^Lp#VD(82)D_S5?f<SodT$jj5&xYcF3X(uutxUVrU1D52?_v&X&|3`iZ-Opd zyBC|>x$T;6B87#8Po9ZdaQ^BN$6uIR=~9%lYI4uW2DdFrt4+)Mjx_rs1raER)XN&R zu2P^zM-?bf{A>2A=V_AGaAO|zmq|v1fV&V&3@j|z7K~*ILa}IkGLWTns;_jU49%>% zby4Duw67L3otpCbd+AwpygDkRtJ6JP5q9eECav1-dXByw|_EFxQdV->uZk(x7mMKt1Xi;R)xaMTu<|~*1#*Nr)Y)*Qq63vJ3o?`HQ(o6Oa zKifX#%Gw$XnGxqGkB{%?E)>H?mU!@LwILdsGfK3Hd@+-|cJMA?q5{Uge-V15??jLB z#V@OefAp%s!l=Rp%DL(QP)MeL?y3`d2I<(~VygS=&j~#r=|zM%A5x&TOUB#STIN9q zCPh~&mFvc&u}5p_1MM@7jx^NZ1i0#GI*U<@Ke*&*-m+M`Ax%cM7b4G)o-4Z$J@xIe zJj0<3?SS2ptT$!_L}1)DV>B&kml-Ury4J)D9Mda|;19&=sv)d>64&64Gy)(srm%y%kPt@>}^ zyuL&Phvv0Zj+i3LD1cz<*Q;vE3$-8er_l;Q1>!7*Dc`ESSOv~m<^3{2F1QvEY43u$ zHsIhI-PdxU#$>Q3dgz2NG~TW!)!T+=)Q9@JM%xQ#sc{?Am@7NuQBWZ zPbR&6$MDEsl6=768$-G&Qt1`QtHknjN0uDDmT9bLmFyMa&bysVo&{J%J=k6$YL7}@ zzy~5`LhL}IxCZs9giiZO$f=OjXtO!Bkj z_#95+|7lYhp$*jbVTKj;0sOA>j+TM9aXj%9(5EN>Uk_&iiQeLzafG`is9E z6`n1p`X7)MutQH2W2Sa7NRN|gT1t`(o|Rt`v6(Xotna0T*ay`Kua3|6>A}R=wik!Uf zrc{pJLq{JT1SvC@4j;`}4!wTAgcbbh4-*bd8TzD6m{N13hrT6BNj&pq>#IfQ<0yke z1piGhxS5+Mp3FmL;HWl=QX$9L6{9oe`EATA1pQF$$+mpg zl2}0Do%e8t-Qiy%V$gE0RQh)8T78vX=tk3s&S6yf<^≺tb*oi8J0kT|HF&(uFCn z+bhWM3mMoH3b&G*wLZrGRZs{P*`O9zfm#k#s)gOf5UORr=Ua|sF zXu#=`P^usI%$$USJutX`JM!6=9qz%dg@R-y5G`E+5z8;z#pr}j2evq4F|t-9C3M3a z`JK>*@j(y=3eiS%tB19uEtves4m1gv{mFN~_bXLtrT;I-Mq!cI%f;0Ba?@kHyJlyj zV-W-`hh8b?xH@e;387v4%1RRc;h@FK#LsI1paSPVm470q-atJS^)O?8R%Izqe1}dc zk8X;%cwB%II%;^!>4ct}Ip-LrIO*g8_~Xaj8Uh)eh6mHg<(Fa7UKMshR@Cgmswigg zXp9r zXG%ODyn}Wyo8I&bWqx!*NK`$9paCS!i@I&3BNi5C!|z`V-Rrr|#i~~-?WPWz(3omg zR)Qn;)BG9hynedO?u;jAFr60Paxo4&m2KtXey7Nf26mvG%;2squ`wnWFBCDO>mN$q zaQVMbaT2H}!PKM8S4Z@j$FxCr2cpI%KW=ZNw!i?@&%Z^gojR%BB!3 zm$GMXw|&gi2*#8w{wR3vXeDekN+j8c_p#sKGB;MUoGE-4R-hkw11*rokH7lkuU{Ay zeRD7J1tg$x^qGJk>9!Zww{~jkd>C+*9S(7k8~XmQm#2UFv9M{I+o2HD zrzU~>QBNf+)XLH z5cxDk2;zDTi@a5OtxtH)IgRDlni{J?rG#lwBakL2Zyj1Zv$hA~f`&deRfG}y@nO6? zpF8+O6p6LsA%ncq*tk1rMzT>M97ekxz}e3$j-=14cPhM|;hKQT1+@IF*K962aGJPa z;KRmQ2RSsgV+flx_o#HtSug~rQbW4-c8Zg14;Q}u-hEj2tU1_h@a zOU=9~-W{Z2nN6WQ44{+=Pjz9&iwRYrRe?9#Y7)#ys=qR>n*btT?57#Kfue!2{|^!t zy`{$!?nM@yorCFrfw9v=a7wh_lBI>@8m>_6d-Pu(>>3-O9Plmw3zkh60?<)@%m0F9 z*USOFWZ>+a|IK0>37Db&mMm#PV*vED&t^bN3v44`6AX-c_y2Ev5@-}!OZgBW`9I-FeI#gU zACmz2mb@{5^na#s|7VI}i_Fxw{Lg(RtbH%|9nsoiH1|IVxYC3JzZX6T!)W<!dO8u-7N;4CpfKNfT|BR9)Y@VaG!?r4> zfz|V(crB`cJPGZ^Q?zS{QehybAxs$Sn9^tk5H3VnounxYlOiA0h(k-Z9j-*RLJ2Gs zH(k{xz&C%18U!?rUHBa50L}tF+P}?5UAqjXOe(#}Ib_5fg-`7_E&1dgdv82b`HH_v zKg*^_6pU7Y093E1VF-VbJPL$Nkv>Y}kYoW2A~T+HFbEwuCbE*2SV$oc?5sbrGUQ$X z5XuIC;txZYAL@#eE(ufWkA_WQ~@Vc!;sCu9#B3?%5)5yPDi%^{flQQH6w)HgPq z7l1=j3D{IhCl>OiB<3I2@P-QW#{nTn|KY)wy*+zsObN~bn|gXp;{`^I9WGh~c_4(~ zQy_xf%Yw^-Y#v}%YtEztNF^0NnA&XF@_Qmc7gsjO19lr^18M!}<0vcDyV5ZZ7GB-G zbch6j?{)qLJ-7(nK6=T}3ri!wE<>lPuO9bqf9`PAH}tAzx&#}WC*ck~+8!b}ssjPs zs)6}XUxK{$@d2*uzrIM1QNFgbZ`gqld=EzSe+Otf7&F^itEU7c@Eef)j_7C!QrR44 z+x5v(MS7`EoS?L5mf>}Xs|cBA<&YnYAqEo+^wnE&V|O&9J;$ zPZ0KG!PC{94Zc*VwO}ymC z9QF@>_QlKIc)N474J)W>UBV%kP16p}SkU1_p)>>5v8)8l`jSh99AH3Ji!e0wSFf(jAi0Eg&H^lz<2y|Fz!r zzL($KIcJ?GF80+v&$IV)tkwzbuF?cAJ?hBf<3r%!Fr}5XjGVevE|%_B0Ktdm9qyF! zf)#z)T{XMd*QmR-Bu)DYLZpzF+uNY`m9u&=JLD}K8O%f~Y8uvw{TL>q3ok{5Y@bE& znXl2y9xv^4)2@n}?w=a>Wf#ngRNAGkj0Vhl3m`6`>d!XX$>2v;}q zp;hEiNvL+*dDpTx$a77iO8) zrg~>@rlT<+hKgXlC9~regaNxy34{-5xJ|1YcQOgQ=6dzKVb8}I$~&2|(wUR!K`>9sd0WzSF2hS9%KyZD$;xK7Rq5~SstbR5CM)0o%l{kse?`iW`Hq?0IrcG5Da zM!lu8+(^fecZYyVcy&$Irso3G5+kC`lw`jEvnS0QO(D0f(D0+ULvw+^K|Bv>goE@N!wF4g#EvRk{1Jh8 z>3eZInOULt*@$Q5^i8fWpT|LpNZYo{*|-E1h&~x+_uL{@V9J&UR7tztgXtIEXbHjM zjDHnn^k2;iA)|a;2h`dNFD++HskE^6 zImiD=xxMx$%g}9_*VR@VaTA8F{L*-(F7a8{9J#`yiH)*B_W?;uDy;C`hg1i01Iio?b*aqm|V z?OSzm>yq`FqAtm17DjXu9@lUGHrnty18JC84LV5G}6n8_k{JQ#2 zN#499qbO(n%KItZV5s8ft7OYHSWf_X^XAv^x$MU?@zAZPkh5NaZ~Kx8k!7|L<@U~; zj1HKGw0os++HD}Ky}DV}ZtgqgF;NvhUlb)+m2xeTX+pPc6x~C=HVKt`AS8Fsqs~&2 ze;z$Zab-QMTVs2{J$0CZ^VSW!rHU2nDB416!=fTQ>=RlXT4(OqfZ+EMG9riDw7GYW zA~>pShG>PZwYo^;RIYO>zrGT*_;960<_ycRdtFR(&IHgYr8jNjk$6{4t&1|;j4vZH zL9>z_f5)|8f@MChsB~~GkJ&i7Z;tVG&dRfdCQWxN@kz=P&C4G(e>gGEgRoUP@=4yE?($_! z&|i3D`v8!7Pm7c!fVW)?he)~_v;bmn^>yvnmd*C{I=@Mn^v#X?u$8-Nn#`eI+Och28rpn`& zJjZ}6|2x+oTVJ{q=_jhm6@=foMBe`sNVcG(d%QTiLf$(GkP+=t_J zW>CnNYk^eF^||(&GvqNkltJN1=U#N5nzU@V88ec{ICf{xjRSOK1S}C7nbEty&oyrq z0t^^3;bZxu`D1Fg&si-B76<~R%y18;rpCT&$aXvm!+}uw1*Yk&pdp?pScYkw%(hEpYJ+sHvsW?D< zd&-;|NXY_(Uj6GyD~?hvc=L=Rz$|~mOpC(#2G1sa)3~%Z|F>bRGxdR|3~901o{`M1 zUTpf9efJ{u2g5N;NS*wWSNSo&o~&fR)kRNG%H5TXPtWHQ64Md(ynPE;W1+pGQyMXw zWJcAz`h&Q7_Sn8(D)OM6F*)>(ISrVGQ+WKd3x*Ttn(_SPqI$&qd?k@KZO}gK?|**S z*HiHv;nr+ss5CZr!>YsFph`4vauTI#wLlAJ(6p433dvCV!N^>ir(+Oe)EPZ|S9p(! z-oJBcXUO64ranRk=_n}vugb!FKHo?)B-|M-w(Mf;7H_no;@JRcuim_oeHyTD=)ECV|vc5Cxn`jO?HkpXCf=PYi`-9G$#Zm<8{j0i+?Be0^XcEOZp-72<7Y&sxf%L1lfAo9f%o<><`DkBwFR zkUNfSmi!R!;~kqWP;4`5lo{FaX;CB37xNo0^G2ZpEK@>6rA~@&a+}$AARKD%SVr~t z=wPdTdpo@ZpM4ihJp{Zn=;7kY+Sxf(oOnNMtoOS&MNRenm;5iKu}*JEDcq`he*BU|!+3!+mPs zh+F=C%g?LgM_j^P%i(>Xf2{gW0g{i7(09ssYR>f)ny`hA;UjC2kjfbj7~6Ui>LvPUcWl;VjRM{whA6} z2kJG4ne9aSd3}e1hsN$ZpAjaoyyd+tO}T=moYpn0-Ch^KX(MA^*&;>5rSKf)h|Z;< zElu_hG6r8melfW)R)Q63|12)g=e7Q|!oKENcn8^S?g>l|aXlXS8a)@Q3EN6Zvs#NY z`kSvwU7y>_9#l)WliZ6x-S&9IkTZx848*QwS8iY(JtE9C-?~mE9XY9_T?Doo$$Z$@ z{MaVlVmalv$c&YCT4wJL+U~;cg$IJPkhl{F(0T}Her4$IID_gG%h^$FX8)wWz|W4B zM^HquEwk9rpwTrFQr&Y)@Gz1YRKvV5Fx)%C0 zMpLP?>%fc)wrHOZOx8sjGM>ey1; z=-o1spB9rx9j%R7-Q`=K90bhrrsFNmHU#=60i^_a z21UtIn8H-xx0CezPOxX)fO=-lCGF9fQ4AXFr)3hyq}xNzT*dA^Mc&vU>cd*&k@#CZ zDu=Td8Pc%%%&%z!JC>qSTDSMee98-2hR-*=`D&Tl^a<2BF#_U7v$rmmn}DjfjYI&` zbWD02SVnsiPI2|XHKm&Dm_iF+ZGVD6w6-9E4^JPL+XT!Qe-GCJ;lcm-DH7!qYYufs zMPjD1?r$K^biAz#_A)OXv&~q8XGLs~fov2YHCuN7xX%k$F`-f#63_c%(vIb0W>byM)=&Js2oG3@0}STi0tslsZ4_U7+cI$~N(h04 zAmIOP$;83K%R+~Oq5l!ww3Ol?0cA%|FK;H%|22$b5*8Lpn#b>Y{y`+x^=LnHa<5j63;r z7EOi=cIqw11b^WGY{H*^d`0uT^&5*9q5;$WWW-0=Z8_xkdn%)W-<4l}krWS4t7#t# z*0<1YKlw!NU_+|x*iQRLsbiyCq9)WA+0LByl7-qz`3?fAd4fZ!i(3L`mx4_hRSe&d z6+S75sHA$4lyPP#y%+kBef=-#u4L_Xvd~sTxDZQG!e^Gl7+|E)uVzx#a>V<%o0D$%AR?m8EqGRJ=9irJ9%yER9&9%o%;=OT~2l)g}|c++ruO- zJ1@KKk)_IG``Rc0>==N#bfqNMsNn8+9UoT1h0gJ<@%_bL8z`SlR67%fzh;GWa!SjL z)IB(NHS9Rn0+~PM)_>IeTS^^b?ATcQ`rVK6Ht{%W_x)<#pFYUI0J^v#`RwbaFJDBk zSp8IjZpbVMI6Y$j;{Fzt4E{g3{2yANOkk$}a3duJ5-Dk(W1k~JYZ2g%` z!Awv=QFD-hzGI;6e<27EFk&(lWP&gWK2`PLaPOz8@Y5c8|1GhDKV>5SlPNNpN(m|m z2|mFLDz7B3B=kb~g{TrlQ3#?e1Qiw(R|Z2~$T0o?Tb|B&Y3pY1?Z6}`0v6AlCcxtY z5XLSUN>ovMlG3i)gc^l>8ihd`e;!;)cuVAPZFw4PU2%^K!zi)fQ<9W1&n*HpGNw6otBKy~f=*GD0W6lSAyU@K=6>a^A-syCW zfkzw-@yyflCRumIkezGNau&?yv=tQ~9eajJ#Z5q0hBM}j+B1lgA_A|K#j~A@BAmCC z*|VKf3w?Gw?7f9&ADMmF2Ru)TR_3??D~eXk9W1U1EVdn|k>gJ=(CBa#+tPYREUGdMX$>asV#U%PX(dE6}IUFM)LeL$B4r686w_Ck%KSaK{w>bLcH zK&I{bMEut+ayAC&Nds_bXBw?z^HIdZ1Q1Pe%X@z8PXJgkF7ARX#IVY zPf^dqLUxQ$n^Wv@Z`~$p$v~CpAy%yW*svqwS;i7`Dc733{=!dW?iOq_9+|D8vbyh3 z14bXt{7;vjTSV3AOSShlm`kk;G??FW!fER+tGKS}iN;ZL0ANH)hkzoII|Y6+<0@i- z!Y#*^MF>K%chSSKi^SXH)ryl79FB05i@wDxU=5a?_GEGtR&xSOMd`)|p!O#3nJu#S!rj~3Fowt1GvVGl? z5ne}xW%=C!84eDlOhcrOMXxnB{67;k>ICfghND}FQUT~eDAjC1Ju(FuNr%!8I`mdr za@k=5sD@|=4BlrjlG^9PB;P={h|Y_|Jf-pi({KGVz(X0GB-=j4(9f`3)Q&znjg4Fb z(s2S+dTw6nD@Abwf?=XBd?5m5X84ea=U6s4SBTDyY7oXV2jVFfCe7}`Fg?^hv^*>+ ze3!zoO5imY42wv5)24fI3R6eCz*BBF%sJc^FA>=RKj`>OS0Wa#-|rD zFg#Ege;>v^u6DjRy`1PzVKDu^%naYBc9ncM(B|R2w4cY-5d3%C_#xJsSUWI>{M!`0 zM^N#gp5r_8WHLkJt&9zFLsRyP%H}~Kw!SzgKK&qh-CSG#$D+^cae71KBCzRUX{Gqe z{a$OO#8;OJTDobr8W&_Drp<@AN_>c80O8zpbWuj$WPE*Wlxw@;948jU^Yi{UF=L~$ ztJ#f6Z+=Y6BArL<@)!qe_0-K_GVwwiOZ6Y6RjRlfPpO~3oQXGbjsC2J$yBOzb5fyW zcfSA=T)r+&K31?Ip~F%^$w#&>9z?c#XG6OELXt4Q*CE8`g@%NF!3NC+>-B5;IT$9q dpC0y02D4`}Q{vI%2|^)YArKpzlD0DF{{j4QbGHBh diff --git a/thesis/thesis.tex b/thesis/thesis.tex index 0bdb94b..999971c 100644 --- a/thesis/thesis.tex +++ b/thesis/thesis.tex @@ -79,6 +79,8 @@ \newacronym{resnet}{ResNet}{Residual Neural Network} \newacronym{cnn}{CNN}{Convolutional Neural Network} \newacronym{sgd}{SGD}{Stochastic Gradient Descent} +\newacronym{roc}{ROC}{Receiver Operating Characteristic} +\newacronym{auc}{AUC}{Area Under the Curve} \begin{document} @@ -294,6 +296,135 @@ for the \emph{Plant} class. \label{fig:yolo-ap} \end{figure} +\subsection{Hyper-parameter Optimization} +\label{ssec:yolo-hyp-opt} + +To further improve the object detection performance, we perform +hyper-parameter optimization using a genetic algorithm. Evolution of +the hyper-parameters starts from the initial 30 default values +provided by the authors of YOLO. Of those 30 values, 26 are allowed to +mutate. During each generation, there is an 80\% chance that a +mutation occurs with a variance of 0.04. To determine which generation +should be the parent of the new mutation, all previous generations are +ordered by fitness in decreasing order. At most five top generations +are selected and one of them is chosen at random. Better generations +have a higher chance of being selected as the selection is weighted by +fitness. The parameters of that chosen generation are then mutated +with the aforementioned probability and variance. Each generation is +trained for three epochs and the fitness of the best epoch is +recorded. + +In total, we ran 87 iterations of which the 34\textsuperscript{th} +generation provides the best fitness of 0.6076. Due to time +constraints, it was not possible to train each generation for more +epochs or to run more iterations in total. We assume that the +performance of the first few epochs is a reasonable proxy for model +performance overall. The optimized version of the object detection +model is then trained for 70 epochs using the parameters of the +34\textsuperscript{th} generation. + +\begin{figure} + \centering + \includegraphics{graphics/model_fitness_final.pdf} + \caption[Optimized object detection fitness per epoch.]{Object + detection model fitness for each epoch calculated as in + equation~\ref{eq:fitness}. The vertical gray line at 27 marks the + epoch with the highest fitness of 0.6172.} + \label{fig:hyp-opt-fitness} +\end{figure} + +Figure~\ref{fig:hyp-opt-fitness} shows the model's fitness during +training for each epoch. After the highest fitness of 0.6172 at epoch +27, the performance quickly declines and shows that further training +would likely not yield improved results. The model converges to its +highest fitness much earlier than the non-optimized version discussed +in section~\ref{ssec:yolo-training-phase}, which indicates that the +adjusted parameters provide a better starting point in general. +Furthermore, the maximum fitness is 0.74\% higher than in the +non-optimized version. + +\begin{figure} + \centering + \includegraphics{graphics/precision_recall_final.pdf} + \caption[Hyper-parameter optimized object detection precision and + recall during training.]{Overall precision and recall during + training for each epoch of the optimized model. The vertical gray + line at 27 marks the epoch with the highest fitness.} + \label{fig:hyp-opt-prec-rec} +\end{figure} + +Figure~\ref{fig:hyp-opt-prec-rec} shows precision and recall for the +optimized model during training. Similarly to the non-optimized model +from figure~\ref{fig:prec-rec}, both metrics do not change materially +during training. Precision is slightly higher than in the +non-optimized version and recall hovers at the same levels. + +\begin{figure} + \centering + \includegraphics{graphics/val_box_obj_loss_final.pdf} + \caption[Hyper-parameter optimized object detection box and object + loss.]{Box and object loss measured against the validation set of + 3091 images and 4092 ground truth labels. The class loss is + omitted because there is only one class in the dataset and the + loss is therefore always zero.} + \label{fig:hyp-opt-box-obj-loss} +\end{figure} + +The box and object loss during training is pictured in +figure~\ref{fig:hyp-opt-box-obj-loss}. Both losses start from a lower +level which suggests that the initial optimized parameters allow the +model to converge quicker. The object loss exhibits a similar slope to +the non-optimized model in figure~\ref{fig:box-obj-loss}. The vertical +gray line again marks epoch 27 with the highest fitness. The box loss +reaches its lower limit at that point and the object loss starts to +increase again after epoch 27. + +\begin{table}[h] + \centering + \begin{tabular}{lrrrr} + \toprule + {} & Precision & Recall & F1-score & Support \\ + \midrule + Plant & 0.633358 & 0.702811 & 0.666279 & 12238.0 \\ + \bottomrule + \end{tabular} + \caption{Precision, recall and F1-score for the optimized object + detection model.} + \label{tab:yolo-metrics-hyp} +\end{table} + +Turning to the evaluation of the optimized model on the test dataset, +table~\ref{tab:yolo-metrics-hyp} shows precision, recall and the +F1-score for the optimized model. Comparing these metrics with the +non-optimized version from table~\ref{tab:yolo-metrics}, precision is +significantly higher by more than 8.5\%. Recall, however, is 3.5\% +lower. The F1-score is higher by more than 3.7\% which indicates that +the optimized model is better overall despite the lower recall. We +feel that the lower recall value is a suitable trade off for the +substantially higher precision considering that the non-optimized +model's precision is quite low at 0.55. + +The precision-recall curves in figure~\ref{fig:yolo-ap-hyp} for the +optimized model show that the model draws looser bounding boxes than +the optimized model. The \gls{ap} for both \gls{iou} thresholds of 0.5 +and 0.95 is lower indicating worse performance. It is likely that more +iterations during evolution would help increase the \gls{ap} values as +well. Even though the precision and recall values from +table~\ref{tab:yolo-metrics-hyp} are better, the \textsf{mAP}@0.5:0.95 +is lower by 1.8\%. + +\begin{figure} + \centering + \includegraphics{graphics/APpt5-pt95-final.pdf} + \caption[Hyper-parameter optimized object detection AP@0.5 and + AP@0.95.]{Precision-recall curves for \gls{iou} thresholds of 0.5 + and 0.95. The \gls{ap} of a specific threshold is defined as the + area under the precision-recall curve of that threshold. The + \gls{map} across \gls{iou} thresholds from 0.5 to 0.95 in 0.05 + steps \textsf{mAP}@0.5:0.95 is 0.5546.} + \label{fig:yolo-ap-hyp} +\end{figure} + \section{Classification} \label{sec:resnet-eval} @@ -421,6 +552,89 @@ figure~\ref{fig:classifier-training-metrics}. \label{fig:resnet-hyp-results} \end{figure} +Table~\ref{tab:resnet-final-hyps} lists the final hyper-parameters +which were chosen to train the improved model. In order to confirm +that the model does not suffer from overfitting or is a product of +chance due to a coincidentally advantageous train/test split, we +perform stratified $10$-fold cross validation on the dataset. Each +fold contains 90\% training and 10\% test data and was trained for 25 +epochs. Figure~\ref{fig:classifier-hyp-roc} shows the performance of +the epoch with the highest F1-score of each fold as measured against +the test split. The mean \gls{roc} curve provides a robust metric for +a classifier's performance because it averages out the variability of +the evaluation. Each fold manages to achieve at least an \gls{auc} of +0.94, while the best fold reaches 0.98. The mean \gls{roc} has an +\gls{auc} of 0.96 with a standard deviation of 0.02. These results +indicate that the model is accurately predicting the correct class and +is robust against variations in the training set. + +\begin{table} + \centering + \begin{tabular}{cccc} + \toprule + Optimizer & Batch Size & Learning Rate & Step Size \\ + \midrule + \gls{sgd} & 64 & 0.01 & 5\\ + \bottomrule + \end{tabular} + \caption[Hyper-parameters for the optimized classifier.]{Chosen + hyper-parameters for the final, improved model. The difference to + the parameters listed in Table~\ref{tab:resnet-hyps} comes as a + result of choosing \gls{sgd} over Adam. The missing four + parameters are only required for Adam and not \gls{sgd}.} + \label{tab:resnet-final-hyps} +\end{table} + +\begin{figure} + \centering + \includegraphics{graphics/classifier-hyp-folds-roc.pdf} + \caption[Mean \gls{roc} and variability of hyper-parameter-optimized + model.]{This plot shows the \gls{roc} curve for the epoch with the + highest F1-score of each fold as well as the \gls{auc}. To get a + less variable performance metric of the classifier, the mean + \gls{roc} curve is shown as a thick line and the variability is + shown in gray. The overall mean \gls{auc} is 0.96 with a standard + deviation of 0.02. The best-performing fold reaches an \gls{auc} + of 0.99 and the worst an \gls{auc} of 0.94. The black dashed line + indicates the performance of a classifier which picks classes at + random ($\mathrm{\gls{auc}} = 0.5$). The shapes of the \gls{roc} + curves show that the classifier performs well and is robust + against variations in the training set.} + \label{fig:classifier-hyp-roc} +\end{figure} + +The classifier shows good performance so far, but care has to be taken +to not overfit the model to the training set. Comparing the F1-score +during training with the F1-score during testing gives insight into +when the model tries to increase its performance during training at +the expense of generalizability. Figure~\ref{fig:classifier-hyp-folds} +shows the F1-scores of each epoch and fold. The classifier converges +quickly to 1 for the training set at which point it experiences a +slight drop in generalizability. Training the model for at most five +epochs is sufficient because there are generally no improvements +afterwards. The best-performing epoch for each fold is between the +second and fourth epoch which is just before the model achieves an +F1-score of 1 on the training set. + +\begin{figure} + \centering + \includegraphics[width=.9\textwidth]{graphics/classifier-hyp-folds-f1.pdf} + \caption[F1-score of stratified $10$-fold cross validation.]{These + plots show the F1-score during training as well as testing for + each of the folds. The classifier converges to 1 by the third + epoch during the training phase, which might indicate + overfitting. However, the performance during testing increases + until epoch three in most cases and then stabilizes at + approximately 2-3\% lower than the best epoch. We believe that the + third, or in some cases fourth, epoch is detrimental to + performance and results in overfitting, because the model achieves + an F1-score of 1 for the training set, but that gain does not + transfer to the test set. Early stopping during training + alleviates this problem.} + \label{fig:classifier-hyp-folds} +\end{figure} + + \subsection{Class Activation Maps} \label{ssec:resnet-cam} @@ -438,7 +652,7 @@ One such method, \gls{cam}~\cite{zhou2015}, is a popular tool to produce visual explanations for decisions made by \glspl{cnn}. Convolutional layers essentially function as object detectors as long as no fully-connected layers perform the -classification. This ability to localize regions of interest which +classification. This ability to localize regions of interest, which play a significant role in the type of class the model predicts, can be retained until the last layer and used to generate activation maps for the predictions. @@ -567,10 +781,95 @@ the cutoff for either class. \label{fig:aggregate-ap} \end{figure} -Overall, we believe that the aggregate model shows sufficient -predictive performance to be deployed in the field. The detections are -accurate, especially for potted plants, and the classification into -healthy and stressed is robust. +\subsection{Hyper-parameter Optimization} +\label{ssec:model-hyp-opt} + +So far the metrics shown in table~\ref{tab:model-metrics} are obtained +with the non-optimized versions of both the object detection and +classification model. Hyper-parameter optimization of the classifier +led to significant model improvements, while the object detector has +improved precision but lower recall and slightly lower \gls{map} +values. To evaluate the final aggregate model which consists of the +individual optimized models, we run the same test as in +section~\ref{sec:aggregate-model}. + +\begin{table} + \centering + \begin{tabular}{lrrrr} + \toprule + {} & precision & recall & f1-score & support \\ + \midrule + Healthy & 0.664 & 0.640 & 0.652 & 662.0 \\ + Stressed & 0.680 & 0.539 & 0.601 & 488.0 \\ + micro avg & 0.670 & 0.597 & 0.631 & 1150.0 \\ + macro avg & 0.672 & 0.590 & 0.626 & 1150.0 \\ + weighted avg & 0.670 & 0.597 & 0.630 & 1150.0 \\ + \bottomrule + \end{tabular} + \caption{Precision, recall and F1-score for the optimized aggregate + model.} + \label{tab:model-metrics-hyp} +\end{table} + +Table~\ref{tab:model-metrics-hyp} shows precision, recall and F1-score +for the optimized model on the same test dataset of 640 images. All of +the metrics are significantly worse than for the non-optimized +model. Considering that the optimized classifier performs better than +the non-optimized version this is a surprising result. There are +multiple possible explanations for this behavior: + +\begin{enumerate} +\item The optimized classifier has worse generalizability than the + non-optimized version. +\item The small difference in the \gls{map} values for the object + detection model result in significantly higher error rates + overall. This might be the case because a large number of plants is + not detected in the first place and/or those which are detected are + more often not classified correctly by the classifier. As mentioned + in section~\ref{ssec:yolo-hyp-opt}, running the evolution of the + hyper-parameters for more generations could better the performance + overall. +\item The test dataset is tailored to the non-optimized version and + does not provide an accurate measure of real-world performance. The + test dataset was labeled by running the individual models on the + images and taking the predicted bounding boxes and labels as a + starting point for the labeling process. If the labels were not + rigorously corrected, the dataset will allow the non-optimized model + to achieve high scores because the labels are already in line with + what it predicts. Conversely, the optimized model might get closer + to the actual ground truth, but that truth is not what is specified + by the labels to begin with. If that is the case, the evaluation of + the non-optimized model is too favorably and should be corrected + down. +\end{enumerate} + +Of these three possibilities, the second and third points are the most +likely culprits. The first scenario is unlikely because the optimized +classifier has been evaluated in a cross validation setting and the +results do not lend themselves easily to such an +interpretation. Dealing with the second scenario could allow the +object detection model to perform better on its own, but would +probably not explain the big difference in performance. Scenario three +is the most likely one because the process of creating the test +dataset can lead to favorable labels for the non-optimized model. + +\begin{figure} + \centering + \includegraphics{graphics/APmodel-final.pdf} + \caption[Optimized aggregate model AP@0.5 and + AP@0.95.]{Precision-recall curves for \gls{iou} thresholds of 0.5 + and 0.95. The \gls{ap} of a specific threshold is defined as the + area under the precision-recall curve of that threshold. The + \gls{map} across \gls{iou} thresholds from 0.5 to 0.95 in 0.05 + steps \textsf{mAP}@0.5:0.95 is 0.4426.} + \label{fig:aggregate-ap-hyp} +\end{figure} + +Figure~\ref{fig:aggregate-ap-hyp} confirms the suspicions raised by +the lower metrics from table~\ref{tab:model-metrics-hyp}. More +iterations for the evolution of the object detection model would +likely have a significant effect on \gls{iou} and the confidence +values associated with the bounding boxes. \backmatter