{ "cells": [ { "cell_type": "markdown", "id": "5eca6897-e43c-4358-9281-ab6b1ece871a", "metadata": {}, "source": [ "# Local Hyperparameter Optimization\n", "\n", "This notebook is similar to the `classifier_hyp` notebook, but it runs the hyperparameter optimization locally instead of on Google Colab. The definitive version is the Google Colab one because we run many more iterations and parameter combinations there due to GPU availability." ] }, { "cell_type": "code", "execution_count": 1, "id": "747ddcf2", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33me1527193\u001b[0m (\u001b[33mflower-classification\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import wandb\n", "\n", "wandb.login()" ] }, { "cell_type": "code", "execution_count": 2, "id": "c37343d6", "metadata": {}, "outputs": [], "source": [ "import torch\n", "import torch.optim as optim\n", "import torch.nn.functional as F\n", "import torch.nn as nn\n", "from torchvision import datasets, transforms\n", "from torchvision.models import resnet50, ResNet50_Weights\n", "from torch.utils.data import Dataset, DataLoader, random_split, SubsetRandomSampler\n", "import numpy as np\n", "import os\n", "import time\n", "import copy\n", "import random\n", "from sklearn import metrics\n", "\n", "torch.manual_seed(42)\n", "np.random.seed(42)\n", "\n", "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "17b25dc7", "metadata": {}, "outputs": [], "source": [ "def build_dataset(batch_size): \n", " data_transforms = {\n", " 'train': transforms.Compose([\n", " transforms.RandomResizedCrop(224),\n", " transforms.RandomHorizontalFlip(),\n", " transforms.ToTensor(),\n", " transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n", " ]),\n", " 'test': transforms.Compose([\n", " transforms.Resize(256),\n", " transforms.CenterCrop(224),\n", " transforms.ToTensor(),\n", " transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n", " ]),\n", " }\n", "\n", " data_dir = 'plantsdata'\n", " dataset = datasets.ImageFolder(os.path.join(data_dir))\n", "\n", " # 90/10 split\n", " train_dataset, test_dataset = random_split(dataset, [0.9, 0.1])\n", "\n", " train_dataset.dataset.transform = data_transforms['train']\n", " test_dataset.dataset.transform = data_transforms['test']\n", "\n", " train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,\n", " shuffle=True, num_workers=4)\n", " test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size,\n", " shuffle=True, num_workers=4)\n", "\n", " dataloaders = {'train': train_loader, 'test': test_loader}\n", " dataset_size = len(dataset)\n", " dataset_sizes = {'train': len(train_dataset), 'test': len(test_dataset)}\n", " class_names = dataset.classes\n", "\n", " return (dataloaders, dataset_sizes)\n", "\n", "def build_network():\n", " network = resnet50(weights=ResNet50_Weights.DEFAULT)\n", " num_ftrs = network.fc.in_features\n", "\n", " # Add linear layer with number of classes\n", " network.fc = nn.Linear(num_ftrs, 2)\n", "\n", " return network.to(device)\n", "\n", "def build_optimizer(network, optimizer, learning_rate, beta_one, beta_two, eps):\n", " if optimizer == \"sgd\":\n", " optimizer = optim.SGD(network.parameters(),\n", " lr=learning_rate, momentum=0.9)\n", " elif optimizer == \"adam\":\n", " optimizer = optim.Adam(network.parameters(),\n", " lr=learning_rate,\n", " betas=(beta_one, beta_two),\n", " eps=eps)\n", " return optimizer\n", "\n", "def train_epoch(network, loader, optimizer, criterion, scheduler, dataset_sizes):\n", " network.train()\n", " running_loss = 0.0\n", " running_corrects = 0\n", " for _, (data, target) in enumerate(loader):\n", " data, target = data.to(device), target.to(device)\n", " optimizer.zero_grad()\n", "\n", " # ➡ Forward pass\n", " #loss = F.nll_loss(network(data), target)\n", " with torch.set_grad_enabled(True):\n", " outputs = network(data)\n", " _, preds = torch.max(outputs, 1)\n", " loss = criterion(outputs, target)\n", " \n", " #cumu_loss += loss.item()\n", " \n", " running_loss += loss.item() * data.size(0)\n", " running_corrects += torch.sum(preds == target.data)\n", "\n", " # ⬅ Backward pass + weight update\n", " loss.backward()\n", " optimizer.step()\n", "\n", " wandb.log({'train/batch_loss': loss.item()})\n", "\n", " scheduler.step()\n", "\n", " epoch_loss = running_loss / dataset_sizes['train']\n", " epoch_acc = running_corrects.double() / dataset_sizes['train']\n", " \n", " return (epoch_loss, epoch_acc)\n", "\n", "def test(network, loader, optimizer, criterion, dataset_sizes):\n", " network.eval()\n", " confusion = torch.empty([0, 1])\n", " confusion = confusion.to(device)\n", " running_loss = 0.0\n", " test_corrects = 0\n", " for _, (data, target) in enumerate(loader):\n", " data, target = data.to(device), target.to(device)\n", " optimizer.zero_grad()\n", "\n", " # ➡ Forward pass\n", " with torch.set_grad_enabled(False):\n", " outputs = network(data)\n", " _, preds = torch.max(outputs, 1)\n", " loss = criterion(outputs, target)\n", "\n", " running_loss += loss.item() * data.size(0)\n", " test_corrects += torch.sum(preds == target.data)\n", " \n", " confusion = torch.cat((confusion, preds[:, None] / target.data[:, None]))\n", "\n", " tp = torch.sum(confusion == 1).item()\n", " fp = torch.sum(confusion == float('inf')).item()\n", " tn = torch.sum(torch.isnan(confusion)).item()\n", " fn = torch.sum(confusion == 0).item()\n", " \n", " precision = tp / (tp + fp)\n", " recall = tp / (tp + fn)\n", " f = 2 * ((precision * recall) / (precision + recall))\n", " \n", " epoch_loss = running_loss / dataset_sizes['test']\n", " epoch_acc = test_corrects.double() / dataset_sizes['test']\n", " \n", " return (epoch_loss, epoch_acc, precision, recall, f)" ] }, { "cell_type": "code", "execution_count": 4, "id": "5eff68bf", "metadata": {}, "outputs": [], "source": [ "def train(config=None):\n", " # Initialize a new wandb run\n", " with wandb.init(config=config):\n", " # If called by wandb.agent, as below,\n", " # this config will be set by Sweep Controller\n", " config = wandb.config\n", "\n", " (dataloaders, dataset_sizes) = build_dataset(config.batch_size)\n", " network = build_network()\n", " optimizer = build_optimizer(network, config.optimizer, config.learning_rate, config.beta_one,\n", " config.beta_two, config.eps)\n", " criterion = nn.CrossEntropyLoss()\n", " # Decay LR by a factor of 0.1 every 7 epochs\n", " exp_lr_scheduler = optim.lr_scheduler.StepLR(optimizer, config.step_size, config.gamma)\n", "\n", " for epoch in range(config.epochs): \n", " (epoch_loss, epoch_acc) = train_epoch(network, dataloaders['train'], optimizer,\n", " criterion, exp_lr_scheduler,\n", " dataset_sizes)\n", " wandb.log({\"epoch\": epoch, 'train/epoch_loss': epoch_loss, 'train/epoch_acc': epoch_acc})\n", " \n", " (test_loss, test_acc, test_precision, test_recall, test_f) = test(network, dataloaders['test'],\n", " optimizer, criterion,\n", " dataset_sizes)\n", " wandb.log({'test/epoch_loss': test_loss, 'test/epoch_acc': test_acc,\n", " 'test/precision': test_precision, 'test/recall': test_recall,\n", " 'test/f1-score': test_f})" ] }, { "cell_type": "code", "execution_count": 5, "id": "732a83df", "metadata": {}, "outputs": [], "source": [ "sweep_config = {\n", " 'method': 'random'\n", "}\n", "\n", "metric = {\n", " 'name': 'test/epoch_acc',\n", " 'goal': 'maximize' \n", "}\n", "\n", "sweep_config['metric'] = metric\n", "\n", "parameters_dict = {\n", " 'optimizer': {\n", " 'values': ['adam', 'sgd']\n", " },\n", "}\n", "\n", "sweep_config['parameters'] = parameters_dict\n", "\n", "parameters_dict.update({\n", " 'epochs': {\n", " 'value': 10},\n", " 'batch_size': {\n", " 'values': [4, 8]},\n", " 'learning_rate': {\n", " 'values': [0.1, 0.01, 0.003, 0.001, 0.0003, 0.0001]},\n", " 'step_size': {\n", " 'values': [2, 3, 5, 7]},\n", " 'gamma': {\n", " 'values': [0.1, 0.5]},\n", " 'beta_one': {\n", " 'values': [0.9, 0.99]},\n", " 'beta_two': {\n", " 'values': [0.5, 0.9, 0.99, 0.999]},\n", " 'eps': {\n", " 'values': [1e-08, 0.1, 1]}\n", "})" ] }, { "cell_type": "code", "execution_count": 6, "id": "9a01fef6", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Create sweep with ID: eqwnoagh\n", "Sweep URL: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh\n" ] } ], "source": [ "sweep_id = wandb.sweep(sweep_config, project=\"pytorch-sweeps-demo\")" ] }, { "cell_type": "code", "execution_count": 7, "id": "e80d1730", "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: znahtehx with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_210021-znahtehx" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run sparkling-sweep-1 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/znahtehx" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bb4b99390e384bd5912f1133277e4a65", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.127552…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▁▂▅▆▅▇▄▇▃█
test/epoch_loss█▃▂▂▃▂▂▁▂▂
test/f1-score▁▃▅▆▄▆▄▇▃█
test/precision▁▁▃▅▆▇▄█▃▇
test/recall▁▆▇▆▁▄▃▄▃█
train/batch_loss█▇▆▆▆▆▅▄▄▃▅▅█▆▃█▆▇▂▆▅▅▁▃▆▄▃██▅▆▄▆▅▄▂▂▇▇▆
train/epoch_acc▁▆▇▇▇███▇█
train/epoch_loss█▄▂▂▂▁▁▁▂▁

Run summary:


epoch9
test/epoch_acc0.85556
test/epoch_loss0.6166
test/f1-score0.86022
test/precision0.81633
test/recall0.90909
train/batch_loss0.66533
train/epoch_acc0.75676
train/epoch_loss0.61072

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run sparkling-sweep-1 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/znahtehx
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_210021-znahtehx/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: qutqx8ux with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_210951-qutqx8ux" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run stoic-sweep-2 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/qutqx8ux" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "acea58027ff945afa7cd0132f556317c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.004 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129798…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▁▂▁▆▆█▇▆▃▅
test/epoch_loss█▅▃▁▁▁▁▂▂▂
test/f1-score▄▁▆█▇███▆▇
test/precision▁▃▁▅▆█▆▅▃▄
test/recall▅▁██▆▆██▆█
train/batch_loss▄▁▃█▃▇▅▁▄▄▅▃▃▂▂▅▅▂▂▅▃▃▅▄▂▃▃▂▄▃▃▆▅▂▂▄▅▁▂▂
train/epoch_acc▁▃▄▇▆▇█▇▇█
train/epoch_loss█▄▃▂▂▁▁▁▁▁

Run summary:


epoch9
test/epoch_acc0.7
test/epoch_loss0.55412
test/f1-score0.71579
test/precision0.59649
test/recall0.89474
train/batch_loss0.78966
train/epoch_acc0.66585
train/epoch_loss0.61866

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run stoic-sweep-2 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/qutqx8ux
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_210951-qutqx8ux/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 9j8etw77 with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_211850-9j8etw77" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run hopeful-sweep-3 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/9j8etw77" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "221cf6c293624e52a4c9c607f0f81dec", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.127348…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▁█▇▇▇▆▆▆▆▆
test/epoch_loss█▂▃▁▂▂▂▁▁▁
test/f1-score▁█▆▇▇▅▆▅▅▅
test/precision▁█▇█▇▆▆▇▇▇
test/recall▄█▄▁█▁▄▁▁▁
train/batch_loss▄▆██▄▃▃▅▂▃▄▅▃▄▂▃▁▁▁▄▂▃▄▁▄▂▂▁▁▃▃▄▂▂▂▅▂▃▃▄
train/epoch_acc▁▅█▇▇███▇▇
train/epoch_loss█▄▂▂▁▁▁▁▂▂

Run summary:


epoch9
test/epoch_acc0.75556
test/epoch_loss0.6144
test/f1-score0.76087
test/precision0.67308
test/recall0.875
train/batch_loss0.65108
train/epoch_acc0.7543
train/epoch_loss0.62678

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run hopeful-sweep-3 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/9j8etw77
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_211850-9j8etw77/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: k23a02gb with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_212648-k23a02gb" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run dulcet-sweep-4 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k23a02gb" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▅▁▂▅▇▄▅▇█▇
test/epoch_loss█▆▄▂▁▂▂▁▁▁
test/f1-score▆▁▂▅▇▃▅▇█▇
test/precision▁▁▄▅▇▆█▇█▆
test/recall█▁▁▅▆▂▃▆▆▅
train/batch_loss█▇▇▇▇▇▇▆▆▄▆▇▆▆▅▆▄▃▃▃▁▄▃▃▄▃▂▄▂▁▂▃▇▁▃▄▃▄▆▄
train/epoch_acc▁▅▆▆▇█▇█▇█
train/epoch_loss█▆▄▃▂▁▂▁▂▁

Run summary:


epoch9
test/epoch_acc0.88889
test/epoch_loss0.30289
test/f1-score0.86486
test/precision0.91429
test/recall0.82051
train/batch_loss0.27111
train/epoch_acc0.89681
train/epoch_loss0.28549

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run dulcet-sweep-4 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k23a02gb
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_212648-k23a02gb/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 265qnj0c with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_213431-265qnj0c" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run hearty-sweep-5 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/265qnj0c" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4f68d0e4fc994f12bdfba68bd75d2d3f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.010 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.369539…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▁▅▄▆▇█▇▇▆▆
test/epoch_loss█▅▄▃▃▁▂▃▂▁
test/f1-score▁▅▄▆▇██▇▆▇
test/precision███▄▁▂▁▅▁▁
test/recall▁▄▄▅▇██▇▆▇
train/batch_loss██▇▇▅▅▃▆▂▃▂▂▂▂▄▄▂▂▂▂▄▁▂▅▃▁▁▁▂▆▂▃▃▁▁▁▂▂▁▂
train/epoch_acc▁▅▆▇▇█████
train/epoch_loss█▅▄▂▂▁▁▁▁▁

Run summary:


epoch9
test/epoch_acc0.88889
test/epoch_loss0.26007
test/f1-score0.8913
test/precision0.95349
test/recall0.83673
train/batch_loss0.01167
train/epoch_acc0.98034
train/epoch_loss0.08153

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run hearty-sweep-5 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/265qnj0c
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_213431-265qnj0c/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: eg199ue9 with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_214215-eg199ue9" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run smart-sweep-6 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eg199ue9" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "77222c4a821846208ce165385b4c6092", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.127718…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▇▆▆▁▅▆▃▃▃█
test/epoch_loss█▄▃▄▄▅▂▄▃▁
test/f1-score▇▆▆▁▅▆▄▃▄█
test/precision▅▂█▃▁▂▁▄▁▅
test/recall▇▇▅▁▆▇▅▃▅█
train/batch_loss▆▆▆▆▃▂▂▄▂▂▁▃▂█▂▁▂▅▄▁▁▂▁▁▅▁▁▃▂▂▄▁▁▁▁▁▁▁▁▁
train/epoch_acc▁▄▆▇▇▇████
train/epoch_loss█▅▄▃▂▂▁▁▁▁

Run summary:


epoch9
test/epoch_acc0.9
test/epoch_loss0.22746
test/f1-score0.89655
test/precision0.92857
test/recall0.86667
train/batch_loss0.13858
train/epoch_acc0.98403
train/epoch_loss0.07075

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run smart-sweep-6 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eg199ue9
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_214215-eg199ue9/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: vdaaitvt with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_215145-vdaaitvt" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run glorious-sweep-7 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/vdaaitvt" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "16d2f2fc96774dcbaba181d48d444fc9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.003 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▁▄▆██▇▇▇▇▆
test/epoch_loss█▇▆▄▃▂▁▁▁▁
test/f1-score▁▄▆█▇▆▆▆▆▃
test/precision▁▃▄▆▇▇▇███
test/recall▇▇██▆▅▅▄▄▁
train/batch_loss▇▇▇▆▇▆▆▆▆▅▆▅▆▆▆▇▅▅▄▅█▅▃▄▅▃▅▇▃▅▅▅▅▂▄▁▅▄▄▅
train/epoch_acc▁▄▆▇▇███▇█
train/epoch_loss█▇▆▅▄▃▂▁▂▁

Run summary:


epoch9
test/epoch_acc0.77778
test/epoch_loss0.47685
test/f1-score0.72222
test/precision0.83871
test/recall0.63415
train/batch_loss0.37919
train/epoch_acc0.82924
train/epoch_loss0.45283

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run glorious-sweep-7 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/vdaaitvt
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_215145-vdaaitvt/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 16v61zix with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_215930-16v61zix" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run elated-sweep-8 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/16v61zix" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "275f61520cf1419c9104636f4bd34994", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.127347…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▅▅▅██▁▅▅▁▁
test/epoch_loss█▁▂▅▃▅▄▄▄▂
test/f1-score▄▄▄█▇▁▄▄▁▁
test/precision▃▅▃▁█▃▃▃▁▁
test/recall▃▁▃█▁▁▃▃▃▃
train/batch_loss█▆▇▇▂▂▅▆▄▆▂▁▁▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▂▁▁▁▂▁▁▁
train/epoch_acc▁▅▇▇▇█████
train/epoch_loss█▅▂▂▂▁▁▁▁▁

Run summary:


epoch9
test/epoch_acc0.92222
test/epoch_loss0.16872
test/f1-score0.92135
test/precision0.91111
test/recall0.93182
train/batch_loss0.00228
train/epoch_acc0.99877
train/epoch_loss0.02303

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run elated-sweep-8 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/16v61zix
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_215930-16v61zix/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: gy76rrgz with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_220712-gy76rrgz" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run major-sweep-9 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gy76rrgz" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "859091dc42c94f2eb2732a64c9afc414", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.127052…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▃▃▁▃▃▆▆█▆▃
test/epoch_loss█▆▄▃▂▂▁▁▁▁
test/f1-score▄▃▁▃▃▆▆█▆▃
test/precision▁█▇███████
test/recall▆▃▁▃▃▆▆█▆▃
train/batch_loss█▇██▇▆▇▃▅▃▇▄▄▄▃▆▃▅▃▅▃▁▇▅▃▄▄▆▂▅▂▂▃▁▁▂▂▁▃▁
train/epoch_acc▁▅▅▆▇▇▇▇██
train/epoch_loss█▆▅▃▃▂▂▂▁▁

Run summary:


epoch9
test/epoch_acc0.88889
test/epoch_loss0.26282
test/f1-score0.87179
test/precision0.97143
test/recall0.7907
train/batch_loss0.1486
train/epoch_acc0.88698
train/epoch_loss0.31064

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run major-sweep-9 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gy76rrgz
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_220712-gy76rrgz/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 4dx2f0j8 with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_221511-4dx2f0j8" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run fallen-sweep-10 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4dx2f0j8" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "93aeee346a4849d88f08125cde60a1ef", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129230…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▁█▅▇▇▇▇▇▇█
test/epoch_loss█▁▄▃▆▅▆▅▅▄
test/f1-score▁█▅▇▇▇▇▇▇█
test/precision▆▅▇▄█▄█▄▁▅
test/recall▁█▅▇▇▇▇▇▇█
train/batch_loss▅▅▆▃▄▃▃▂▂▂▂▂▁▃█▁▅▁▂▂▂▁▁▂▃▁▁▁▁▃▁▁▁▁▁▂▁▁▄▁
train/epoch_acc▁▄▆▆▇█████
train/epoch_loss█▆▄▃▂▂▂▁▁▁

Run summary:


epoch9
test/epoch_acc0.86667
test/epoch_loss0.37958
test/f1-score0.875
test/precision0.95455
test/recall0.80769
train/batch_loss0.077
train/epoch_acc0.9656
train/epoch_loss0.09797

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run fallen-sweep-10 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4dx2f0j8
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_221511-4dx2f0j8/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: j93p9uxm with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_222419-j93p9uxm" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run revived-sweep-11 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/j93p9uxm" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "46df1ce0b91447d0a2e0d047a3864afd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.010 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.369874…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▅█
test/epoch_acc▁█
test/epoch_loss█▁
test/f1-score▁█
test/precision▁█
test/recall█▁
train/batch_loss▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▁█▁▁▆▅▁▁
train/epoch_acc█▃▁
train/epoch_loss▁▁█

Run summary:


epoch2
test/epoch_acc0.56667
test/epoch_loss92431672.3021
test/f1-score0.62136
test/precision0.47761
test/recall0.88889
train/batch_loss7666.14648
train/epoch_acc0.46929
train/epoch_loss4618.08651

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run revived-sweep-11 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/j93p9uxm
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_222419-j93p9uxm/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run j93p9uxm errored: ZeroDivisionError('division by zero')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run j93p9uxm errored: ZeroDivisionError('division by zero')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: pb5m44k2 with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_222656-pb5m44k2" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run faithful-sweep-12 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pb5m44k2" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b54a0c709df84839b6a094fd08e2696d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.003 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▅▁▆▃▆▆▇▇▇█
test/epoch_loss▅█▄▅▃▃▂▁▁▁
test/f1-score▄▄▄▁▅▆▇▇▇█
test/precision▆▁█▃▆▆█▇██
test/recall▃█▂▁▄▆▅▆▅▇
train/batch_loss▆▄▂▅▅▄▃▆█▃▂▄▂▁▃▂▄▁▂▂▄▃▅▂▂▅▂▂▃▄▁▄▃▁▂▄▂▂▃▄
train/epoch_acc▁▁▃▃▄▄▆▆▇█
train/epoch_loss█▇▇▆▅▅▃▃▂▁

Run summary:


epoch9
test/epoch_acc0.78889
test/epoch_loss0.51027
test/f1-score0.78161
test/precision0.7234
test/recall0.85
train/batch_loss0.42048
train/epoch_acc0.82555
train/epoch_loss0.40512

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run faithful-sweep-12 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pb5m44k2
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_222656-pb5m44k2/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: q8m1yt6d with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223624-q8m1yt6d" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run fine-sweep-13 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q8m1yt6d" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


train/batch_loss

Run summary:


train/batch_loss0.67379

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run fine-sweep-13 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q8m1yt6d
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223624-q8m1yt6d/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run q8m1yt6d errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 1.95 GiB total capacity; 1.30 GiB already allocated; 11.31 MiB free; 1.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run q8m1yt6d errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 1.95 GiB total capacity; 1.30 GiB already allocated; 11.31 MiB free; 1.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: f3kiw40d with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223651-f3kiw40d" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run devout-sweep-14 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/f3kiw40d" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5b4942d4dbd04d5baa953dbdfe4608de", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run devout-sweep-14 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/f3kiw40d
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223651-f3kiw40d/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run f3kiw40d errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 3.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run f3kiw40d errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 3.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: i0xsie8j with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223710-i0xsie8j" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run restful-sweep-15 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/i0xsie8j" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run restful-sweep-15 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/i0xsie8j
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223710-i0xsie8j/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run i0xsie8j errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run i0xsie8j errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: bi477kch with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223736-bi477kch" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run pretty-sweep-16 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bi477kch" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run pretty-sweep-16 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bi477kch
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223736-bi477kch/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run bi477kch errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run bi477kch errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 7jmkpkmh with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223752-7jmkpkmh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run daily-sweep-17 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/7jmkpkmh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run daily-sweep-17 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/7jmkpkmh
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223752-7jmkpkmh/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run 7jmkpkmh errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run 7jmkpkmh errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: pc0kaw45 with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223812-pc0kaw45" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run dutiful-sweep-18 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pc0kaw45" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "202c31bd32e34897b89b9f828ad6301e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run dutiful-sweep-18 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pc0kaw45
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223812-pc0kaw45/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run pc0kaw45 errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run pc0kaw45 errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: o04kggii with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223833-o04kggii" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run glad-sweep-19 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o04kggii" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ebfa8b7ad18e48efb4c7a99963364387", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129182…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run glad-sweep-19 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o04kggii
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223833-o04kggii/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run o04kggii errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run o04kggii errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: mr7zxx8m with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223854-mr7zxx8m" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run dazzling-sweep-20 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/mr7zxx8m" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b1e66d66721840b391339ee3201e55fb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129362…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run dazzling-sweep-20 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/mr7zxx8m
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223854-mr7zxx8m/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run mr7zxx8m errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run mr7zxx8m errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 292ds63r with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223916-292ds63r" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run misunderstood-sweep-21 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/292ds63r" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2bd23ebb420c420f8f23ed3bc12e993f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129560…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run misunderstood-sweep-21 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/292ds63r
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223916-292ds63r/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run 292ds63r errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run 292ds63r errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: fdlwffsj with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223937-fdlwffsj" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run glorious-sweep-22 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/fdlwffsj" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ff7c63d38a9a470b92b70583ec7dfbe2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.026 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.132928…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run glorious-sweep-22 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/fdlwffsj
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223937-fdlwffsj/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run fdlwffsj errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run fdlwffsj errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 3s4wltdw with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224003-3s4wltdw" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run absurd-sweep-23 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3s4wltdw" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run absurd-sweep-23 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3s4wltdw
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224003-3s4wltdw/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run 3s4wltdw errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run 3s4wltdw errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: kv0nxhmk with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224028-kv0nxhmk" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run devout-sweep-24 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/kv0nxhmk" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f47be2ec47854346b5d3306559f94b91", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.010 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.375132…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run devout-sweep-24 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/kv0nxhmk
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224028-kv0nxhmk/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run kv0nxhmk errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run kv0nxhmk errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: ixbulpc8 with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224049-ixbulpc8" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run silver-sweep-25 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ixbulpc8" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bfd33251a13841f7a8b32b6145a2fdfe", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129490…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run silver-sweep-25 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ixbulpc8
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224049-ixbulpc8/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run ixbulpc8 errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run ixbulpc8 errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: lfi2onyo with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224110-lfi2onyo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run winter-sweep-26 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/lfi2onyo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run winter-sweep-26 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/lfi2onyo
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224110-lfi2onyo/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run lfi2onyo errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run lfi2onyo errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 4uvn2tnq with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224131-4uvn2tnq" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run expert-sweep-27 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4uvn2tnq" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "224e6063b56942e8bad3124fe35c96a6", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run expert-sweep-27 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4uvn2tnq
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224131-4uvn2tnq/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run 4uvn2tnq errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run 4uvn2tnq errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: y4niwbym with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224154-y4niwbym" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run tough-sweep-28 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/y4niwbym" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cc40ab25a9354028bd95ee1802eb53d0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run tough-sweep-28 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/y4niwbym
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224154-y4niwbym/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run y4niwbym errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run y4niwbym errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: hxampiva with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224215-hxampiva" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run misunderstood-sweep-29 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hxampiva" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "18a4b9d577dc4678bc02fc829b527858", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run misunderstood-sweep-29 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hxampiva
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224215-hxampiva/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run hxampiva errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run hxampiva errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: q1v8qruc with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224241-q1v8qruc" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run cosmic-sweep-30 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q1v8qruc" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5504f3fc68844494809c30c364a93525", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run cosmic-sweep-30 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q1v8qruc
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224241-q1v8qruc/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run q1v8qruc errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run q1v8qruc errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n" ] } ], "source": [ "wandb.agent(sweep_id, train, count=30)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" } }, "nbformat": 4, "nbformat_minor": 5 }