{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "3fe8177c",
"metadata": {},
"outputs": [],
"source": [
"import fiftyone as fo\n",
"from PIL import Image\n",
"from detection import detect"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "32f0f8ec",
"metadata": {},
"outputs": [],
"source": [
"name = \"dataset-small\"\n",
"dataset_dir = \"/home/zenon/Documents/master-thesis/evaluation/dataset-small\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6343aa55",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 100% |█████████████████| 401/401 [633.3ms elapsed, 0s remaining, 633.2 samples/s] \n"
]
}
],
"source": [
"# The splits to load\n",
"splits = [\"val\"]\n",
"\n",
"# Load the dataset, using tags to mark the samples in each split\n",
"dataset = fo.Dataset(name)\n",
"for split in splits:\n",
" dataset.add_dir(\n",
" dataset_dir=dataset_dir,\n",
" dataset_type=fo.types.YOLOv5Dataset,\n",
" split=split,\n",
" tags=split,\n",
" )\n",
"\n",
"classes = dataset.default_classes\n",
"predictions_view = dataset.view()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "29827e3f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 100% |█████████████████| 401/401 [5.4m elapsed, 0s remaining, 1.4 samples/s] \n"
]
}
],
"source": [
"# Do detections with model and save bounding boxes\n",
"with fo.ProgressBar() as pb:\n",
" for sample in pb(predictions_view):\n",
" image = Image.open(sample.filepath)\n",
" w, h = image.size\n",
" pred = detect(sample.filepath, 'yolo.onnx', 'resnet.onnx')\n",
"\n",
" detections = []\n",
" for _, row in pred.iterrows():\n",
" xmin, xmax = int(row['xmin']), int(row['xmax'])\n",
" ymin, ymax = int(row['ymin']), int(row['ymax'])\n",
" rel_box = [\n",
" xmin / w, ymin / h, (xmax - xmin) / w, (ymax - ymin) / h\n",
" ]\n",
" detections.append(\n",
" fo.Detection(label=classes[int(row['cls'])],\n",
" bounding_box=rel_box,\n",
" confidence=int(row['cls_conf'])))\n",
"\n",
" sample[\"yolo_resnet\"] = fo.Detections(detections=detections)\n",
" sample.save()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8ad67806",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Evaluating detections...\n",
" 100% |█████████████████| 401/401 [1.2s elapsed, 0s remaining, 339.9 samples/s] \n",
"Performing IoU sweep...\n",
" 100% |█████████████████| 401/401 [1.4s elapsed, 0s remaining, 288.5 samples/s] \n"
]
}
],
"source": [
"results = predictions_view.evaluate_detections(\n",
" \"yolo_resnet\",\n",
" gt_field=\"ground_truth\",\n",
" eval_key=\"eval\",\n",
" compute_mAP=True,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "b180420b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" precision recall f1-score support\n",
"\n",
" Healthy 0.80 0.81 0.81 430\n",
" Stressed 0.77 0.72 0.75 315\n",
"\n",
" micro avg 0.79 0.77 0.78 745\n",
" macro avg 0.79 0.77 0.78 745\n",
"weighted avg 0.79 0.77 0.78 745\n",
"\n",
"0.6336217415940075\n"
]
},
{
"data": {
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8e819dea581e48d69877fb551a949e49",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"FigureWidget({\n",
" 'data': [{'mode': 'markers',\n",
" 'opacity': 0.1,\n",
" 'type': 'scatter',\n",
" 'uid': '918e4315-b093-4d2b-8af4-789b5a5d5152',\n",
" 'x': array([0, 1, 2, 0, 1, 2, 0, 1, 2]),\n",
" 'y': array([0, 0, 0, 1, 1, 1, 2, 2, 2])},\n",
" {'colorscale': [[0.0, 'rgb(255,245,235)'], [0.125,\n",
" 'rgb(254,230,206)'], [0.25, 'rgb(253,208,162)'],\n",
" [0.375, 'rgb(253,174,107)'], [0.5, 'rgb(253,141,60)'],\n",
" [0.625, 'rgb(241,105,19)'], [0.75, 'rgb(217,72,1)'],\n",
" [0.875, 'rgb(166,54,3)'], [1.0, 'rgb(127,39,4)']],\n",
" 'hoverinfo': 'skip',\n",
" 'showscale': False,\n",
" 'type': 'heatmap',\n",
" 'uid': 'c2b76e66-be9d-4ca2-9060-d350e1d5e030',\n",
" 'z': array([[ 86, 68, 0],\n",
" [ 0, 228, 87],\n",
" [348, 0, 82]]),\n",
" 'zmax': 348,\n",
" 'zmin': 0},\n",
" {'colorbar': {'len': 1, 'lenmode': 'fraction'},\n",
" 'colorscale': [[0.0, 'rgb(255,245,235)'], [0.125,\n",
" 'rgb(254,230,206)'], [0.25, 'rgb(253,208,162)'],\n",
" [0.375, 'rgb(253,174,107)'], [0.5, 'rgb(253,141,60)'],\n",
" [0.625, 'rgb(241,105,19)'], [0.75, 'rgb(217,72,1)'],\n",
" [0.875, 'rgb(166,54,3)'], [1.0, 'rgb(127,39,4)']],\n",
" 'hovertemplate': 'count: %{z}
truth: %{y}
predicted: %{x}',\n",
" 'opacity': 0.25,\n",
" 'type': 'heatmap',\n",
" 'uid': 'faa2cc05-e7dd-41df-8b22-533e4ae70f67',\n",
" 'z': array([[ 86, 68, 0],\n",
" [ 0, 228, 87],\n",
" [348, 0, 82]]),\n",
" 'zmax': 348,\n",
" 'zmin': 0}],\n",
" 'layout': {'clickmode': 'event',\n",
" 'margin': {'b': 0, 'l': 0, 'r': 0, 't': 30},\n",
" 'template': '...',\n",
" 'title': {},\n",
" 'xaxis': {'constrain': 'domain',\n",
" 'range': [-0.5, 2.5],\n",
" 'tickmode': 'array',\n",
" 'ticktext': [Healthy, Stressed, (none)],\n",
" 'tickvals': array([0, 1, 2])},\n",
" 'yaxis': {'constrain': 'domain',\n",
" 'range': [-0.5, 2.5],\n",
" 'scaleanchor': 'x',\n",
" 'scaleratio': 1,\n",
" 'tickmode': 'array',\n",
" 'ticktext': array(['(none)', 'Stressed', 'Healthy'], dtype=object),\n",
" 'tickvals': array([0, 1, 2])}}\n",
"})"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "34fe31e66ebc452aba7202b9d206dee8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"FigureWidget({\n",
" 'data': [{'customdata': array([99. , 99. , 99. , 99. , 99. , 99. , 99. , 99. , 99. , 99. , 99. , 98. ,\n",
" 98. , 98. , 97. , 97. , 97. , 97. , 97. , 96. , 96. , 95. , 94.2, 94. ,\n",
" 93.2, 93. , 92.9, 91.9, 91.2, 91. , 91. , 90.8, 89.8, 88.8, 88. , 87.9,\n",
" 87. , 86.9, 86. , 85.9, 85.8, 85. , 84.8, 84.6, 83.1, 81.9, 81.8, 81.1,\n",
" 80.1, 79.9, 79.7, 78.9, 78.6, 77.9, 77.7, 76.8, 76. , 75.6, 74.6, 74.2,\n",
" 73.3, 71.9, 70.7, 69.5, 68.3, 67.1, 66.2, 65.1, 64. , 62.9, 61.2, 60.6,\n",
" 59.7, 58.9, 52.6, 51.1, 49.4, 47.2, 46.4, 40.7, 30.5, 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ]),\n",
" 'hovertemplate': ('class: %{text}
recal' ... 'customdata:.3f}'),\n",
" 'line': {'color': '#3366CC'},\n",
" 'mode': 'lines',\n",
" 'name': 'Healthy (AP = 0.674)',\n",
" 'text': array(['Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy'], dtype='class: %{text}
recal' ... 'customdata:.3f}'),\n",
" 'line': {'color': '#DC3912'},\n",
" 'mode': 'lines',\n",
" 'name': 'Stressed (AP = 0.593)',\n",
" 'text': array(['Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed'], dtype='"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"session = fo.launch_app(dataset, auto=False)\n",
"session.view = predictions_view\n",
"session.open_tab()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "535003f4",
"metadata": {},
"outputs": [],
"source": [
"session.plots.attach(matrix)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d3ba32f0",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}