{
"cells": [
{
"cell_type": "markdown",
"id": "945c9b80",
"metadata": {},
"source": [
"# Table of contents\n",
"1. [Introduction](#introduction)\n",
"2. [Aggregate Model Evaluation](#modelevaluation)\n",
" 1. [Loading the dataset](#modeload)\n",
" 2. [Perform detections](#modeldetect)\n",
" 3. [Evaluate detections](#modeldetectionseval)\n",
" 4. [Calculate results and plot them](#modelshowresults)\n",
" 5. [View dataset in fiftyone](#modelfiftyonesession)"
]
},
{
"cell_type": "markdown",
"id": "01339680",
"metadata": {},
"source": [
"## Introduction \n",
"\n",
"This notebook loads the test dataset in YOLOv5 format from disk and evaluates the model's performance."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ff25695e",
"metadata": {},
"outputs": [],
"source": [
"import fiftyone as fo\n",
"from PIL import Image\n",
"from detection import detect\n",
"from detection import detect_yolo_only"
]
},
{
"cell_type": "markdown",
"id": "86a5e832",
"metadata": {},
"source": [
"## Aggregate Model Evaluation \n",
"\n",
"First, load the dataset from the directory containing the images and the labels in YOLOv5 format.\n",
"\n",
"### Loading the dataset "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bea1038e",
"metadata": {},
"outputs": [],
"source": [
"name = \"dataset\"\n",
"dataset_dir = \"dataset\"\n",
"\n",
"# The splits to load\n",
"splits = [\"val\"]\n",
"\n",
"# Load the dataset, using tags to mark the samples in each split\n",
"dataset = fo.Dataset(name)\n",
"for split in splits:\n",
" dataset.add_dir(\n",
" dataset_dir=dataset_dir,\n",
" dataset_type=fo.types.YOLOv5Dataset,\n",
" split=split,\n",
" tags=split,\n",
" )\n",
"\n",
"dataset.persistent = True\n",
"classes = dataset.default_classes"
]
},
{
"cell_type": "markdown",
"id": "361eeecd",
"metadata": {},
"source": [
"If the dataset already exists because it had been saved under the same name before, load the dataset from fiftyone's folder."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "2d479be8",
"metadata": {},
"outputs": [],
"source": [
"dataset = fo.load_dataset('dataset')\n",
"classes = dataset.default_classes"
]
},
{
"cell_type": "markdown",
"id": "4485dce3",
"metadata": {},
"source": [
"### Perform detections \n",
"\n",
"Now we can call the aggregate model to do detections on the images contained in the dataset. The actual detection happens at line 6 where `detect()` is called. This function currently does inference using the GPU via `onnxruntime-gpu`. All detections are saved to the `predictions` keyword of each sample. A sample is one image with potentially multiple detections.\n",
"\n",
"> **_NOTE:_** If the dataset already existed beforehand (you used `load_dataset()`), the detections are likely already saved in the dataset and you can skip the next step."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "63f675ab",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 100% |█████████████████| 640/640 [6.2m elapsed, 0s remaining, 2.1 samples/s] \n"
]
}
],
"source": [
"# Do detections with model and save bounding boxes\n",
"with fo.ProgressBar() as pb:\n",
" for sample in pb(dataset.view()):\n",
" image = Image.open(sample.filepath)\n",
" w, h = image.size\n",
" pred = detect(sample.filepath, '../weights/yolo.onnx', '../weights/resnet.onnx')\n",
"\n",
" detections = []\n",
" for _, row in pred.iterrows():\n",
" xmin, xmax = int(row['xmin']), int(row['xmax'])\n",
" ymin, ymax = int(row['ymin']), int(row['ymax'])\n",
" rel_box = [\n",
" xmin / w, ymin / h, (xmax - xmin) / w, (ymax - ymin) / h\n",
" ]\n",
" detections.append(\n",
" fo.Detection(label=classes[int(row['cls'])],\n",
" bounding_box=rel_box,\n",
" confidence=int(row['cls_conf'])))\n",
"\n",
" sample[\"predictions\"] = fo.Detections(detections=detections)\n",
" sample.save()"
]
},
{
"cell_type": "markdown",
"id": "10d94167",
"metadata": {},
"source": [
"### Evaluate detections against ground truth \n",
"\n",
"Having saved the predictions, we can now evaluate them by cross-checking with the ground truth labels. If we specify an `eval_key`, true positives, false positives and false negatives will be saved under that key."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "68cfdad2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Evaluating detections...\n",
" 100% |█████████████████| 640/640 [2.1s elapsed, 0s remaining, 305.3 samples/s] \n",
"Performing IoU sweep...\n",
" 100% |█████████████████| 640/640 [2.3s elapsed, 0s remaining, 274.2 samples/s] \n"
]
}
],
"source": [
"results = dataset.view().evaluate_detections(\n",
" \"predictions\",\n",
" gt_field=\"ground_truth\",\n",
" eval_key=\"eval\",\n",
" compute_mAP=True,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "94b9751f",
"metadata": {},
"source": [
"### Calculate results and plot them \n",
"\n",
"Now we have the performance of the model saved in the `results` variable and can extract various metrics from that. Here we print a simple report of all classes and their precision and recall values as well as the mAP with the metric employed by [COCO](https://cocodataset.org/#detection-eval). Next, a confusion matrix is plotted for each class (in our case only one). Finally, we can show the precision vs. recall curve for a specified threshold value."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "24df35b4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" precision recall f1-score support\n",
"\n",
" Healthy 0.82 0.74 0.78 662\n",
" Stressed 0.71 0.78 0.74 488\n",
"\n",
" micro avg 0.77 0.76 0.76 1150\n",
" macro avg 0.77 0.76 0.76 1150\n",
"weighted avg 0.77 0.76 0.77 1150\n",
"\n",
"0.6225848121901868\n"
]
},
{
"data": {
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "367567b8132d4b3b9ad2566a958a6bbd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"FigureWidget({\n",
" 'data': [{'mode': 'markers',\n",
" 'opacity': 0.1,\n",
" 'type': 'scatter',\n",
" 'uid': '79cc4c3d-21f9-416c-af39-7323e0a9570d',\n",
" 'x': array([0, 1, 2, 0, 1, 2, 0, 1, 2]),\n",
" 'y': array([0, 0, 0, 1, 1, 1, 2, 2, 2])},\n",
" {'colorscale': [[0.0, 'rgb(255,245,235)'], [0.125,\n",
" 'rgb(254,230,206)'], [0.25, 'rgb(253,208,162)'],\n",
" [0.375, 'rgb(253,174,107)'], [0.5, 'rgb(253,141,60)'],\n",
" [0.625, 'rgb(241,105,19)'], [0.75, 'rgb(217,72,1)'],\n",
" [0.875, 'rgb(166,54,3)'], [1.0, 'rgb(127,39,4)']],\n",
" 'hoverinfo': 'skip',\n",
" 'showscale': False,\n",
" 'type': 'heatmap',\n",
" 'uid': '266874fc-ec69-4c00-8a44-5305a17c5d3b',\n",
" 'z': array([[105, 158, 0],\n",
" [ 0, 382, 106],\n",
" [493, 0, 169]]),\n",
" 'zmax': 493,\n",
" 'zmin': 0},\n",
" {'colorbar': {'len': 1, 'lenmode': 'fraction'},\n",
" 'colorscale': [[0.0, 'rgb(255,245,235)'], [0.125,\n",
" 'rgb(254,230,206)'], [0.25, 'rgb(253,208,162)'],\n",
" [0.375, 'rgb(253,174,107)'], [0.5, 'rgb(253,141,60)'],\n",
" [0.625, 'rgb(241,105,19)'], [0.75, 'rgb(217,72,1)'],\n",
" [0.875, 'rgb(166,54,3)'], [1.0, 'rgb(127,39,4)']],\n",
" 'hovertemplate': 'count: %{z}
truth: %{y}
predicted: %{x}',\n",
" 'opacity': 0.25,\n",
" 'type': 'heatmap',\n",
" 'uid': '198d0f5a-0e64-45b2-b138-92efdc6c7232',\n",
" 'z': array([[105, 158, 0],\n",
" [ 0, 382, 106],\n",
" [493, 0, 169]]),\n",
" 'zmax': 493,\n",
" 'zmin': 0}],\n",
" 'layout': {'clickmode': 'event',\n",
" 'margin': {'b': 0, 'l': 0, 'r': 0, 't': 30},\n",
" 'template': '...',\n",
" 'title': {},\n",
" 'xaxis': {'constrain': 'domain',\n",
" 'range': [-0.5, 2.5],\n",
" 'tickmode': 'array',\n",
" 'ticktext': [Healthy, Stressed, (none)],\n",
" 'tickvals': array([0, 1, 2])},\n",
" 'yaxis': {'constrain': 'domain',\n",
" 'range': [-0.5, 2.5],\n",
" 'scaleanchor': 'x',\n",
" 'scaleratio': 1,\n",
" 'tickmode': 'array',\n",
" 'ticktext': array(['(none)', 'Stressed', 'Healthy'], dtype=object),\n",
" 'tickvals': array([0, 1, 2])}}\n",
"})"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2141a71d33524ec8a5ff3b3cf0706b72",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"FigureWidget({\n",
" 'data': [{'customdata': array([99., 99., 99., 99., 99., 99., 99., 99., 99., 99., 99., 98., 98., 98.,\n",
" 97., 97., 97., 97., 96., 96., 96., 95., 94., 93., 93., 92., 91., 91.,\n",
" 90., 89., 88., 87., 87., 86., 86., 85., 85., 84., 82., 82., 81., 80.,\n",
" 80., 79., 78., 78., 77., 76., 75., 74., 72., 70., 70., 68., 67., 66.,\n",
" 65., 64., 62., 62., 61., 59., 58., 56., 53., 52., 51., 50., 0., 0.,\n",
" 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
" 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
" 0., 0., 0.]),\n",
" 'hovertemplate': ('class: %{text}
recal' ... 'customdata:.3f}'),\n",
" 'line': {'color': '#3366CC'},\n",
" 'mode': 'lines',\n",
" 'name': 'Healthy (AP = 0.562)',\n",
" 'text': array(['Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy',\n",
" 'Healthy', 'Healthy', 'Healthy', 'Healthy', 'Healthy'], dtype='class: %{text}
recal' ... 'customdata:.3f}'),\n",
" 'line': {'color': '#DC3912'},\n",
" 'mode': 'lines',\n",
" 'name': 'Stressed (AP = 0.532)',\n",
" 'text': array(['Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed',\n",
" 'Stressed', 'Stressed', 'Stressed', 'Stressed', 'Stressed'], dtype='\n",
"\n",
"We can launch a fiftyone session in a new tab to explore the dataset and the results."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "bfb39b5d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Session launched. Run `session.show()` to open the App in a cell output.\n"
]
},
{
"data": {
"application/javascript": [
"window.open('http://localhost:5151/');"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"session = fo.launch_app(dataset, auto=False)\n",
"session.view = dataset.view()\n",
"session.plots.attach(matrix)\n",
"session.open_tab()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e1d00573",
"metadata": {},
"outputs": [],
"source": [
"session.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "53a67321",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}