B Informatics

Flower State Classification for
Watering System

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering & Internet Computing
eingereicht von

Tobias Eidelpes, BSc
Matrikelnummer 01527193

an der Fakultat fir Informatik

der Technischen Universitat Wien

Betreuung: Ao.Univ.-Prof. Dr. Horst Eidenberger

Wien, 20. Februar 2023

Tobias Eidelpes Horst Eidenberger

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

B Informatics

Flower State Classification for
Watering System

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Software Engineering & Internet Computing
by

Tobias Eidelpes, BSc
Registration Number 01527193

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.-Prof. Dr. Horst Eidenberger

Vienna, 20" February, 2023

Tobias Eidelpes Horst Eidenberger

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

Erklarung zur Verfassung der
Arbeit

Tobias Eidelpes, BSc

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. Februar 2023

Tobias Eidelpes

Danksagung
(Ihr Text bier.

vii

Acknowledgements

ix

Kurzfassung

xi

Abstract

Contents

Kurzfassung xi
Abstract xiii
Contents XV
1 Introduction 1
1.1 _Motivation and Problem Statement 1

1.2 Methodological Approach 3
1.3 Thesis Structure 3

2 Theoretical Background 5
2.1 Related Work e 5
2.2 Object Detection 8
2.3 Classification e 8

3 Prototype Development 9
3.1 Object Detection 9
3.2 Classification e 9
3.3 Deployment L 9

4 Results 11
4.1 Object Detection| L 11
4.1.1 Training Phase, 11

4.1.2 Test Phasel 13

4.1.3 Hyper-parameter Optimization 14

4.2 Classification e 17
4.2.1 Training Phase, oL L 18

4.2.2 Hyper-parameter Optimization 18

4.2.3 Class Activation Maps| 22

4.3 Aggregate Modell 24
4.3.1 Non-optimized Model, 25

4.3.2 Optimized Model 26

XV

List of Figures
List of Tables

List of Algorithms
Acronyms

Bibliography

29

31

33

35

37

CHAPTER

Introduction

Machine learning has seen an unprecedented rise in various research fields during the
last few years. Large-scale distributed computing and advances in hardware manufactur-
ing have allowed machine learning models to become more sophisticated and complex.
Multi-billion parameter deep learning models show best-in-class performance in Natural
Language Processing (NLP) [BMR™20], fast object detection [BWL20| and various classi-
fication tasks [ZHT22; |AH22|. Agriculture is one of the areas which profits substantially
from the automation possible with machine learning.

Large-scale as well as small local farmers are able to survey their fields and gardens with
drones or stationary cameras to determine soil and plant condition as well as when to
water or fertilize [RRL™20]. Machine learning models play an important role in that
process because they allow automated decision-making in real time.

1.1 Motivation and Problem Statement

The challenges to implement an automated system are numerous. First, gathering data in
the field requires a network of sensors which are linked to a central server for processing.
Since communication between sensors is difficult without proper infrastructure, there is a
high demand for processing the data on the sensor itself [MWL22|. Second, differences
in local soil, plant and weather conditions require models to be optimized for these
diverse inputs. Centrally trained models often lose the nuances present in the data
because they have to provide actionable information for a larger area [Awal9|. Third,
specialized methods such as hyper- or multispectral imaging in the field provide fine-
grained information about the object of interest but come with substantial upfront
costs.

To address all of the aforementioned problems, there is a need for an installation which
is deployable in the field, gathers data using readily available hardware and performs

1

1.

INTRODUCTION

computation on the device without a connection to a central server. The device should
be able to visually determine whether the plants in its field of view need water or not
and output its recommendation.

The aim of this work is to develop a prototype which can be deployed in the field to
survey plants and recommend watering or not. To this end, a machine learning model
will be trained to first identify the plants in the field of view and then to determine if
the plants need water or not. The model should be suitable for edge devices equipped
with a TPU or GPU but with otherwise limited processing capabilities. Examples of
such systems include Google’s Coral development board and the Nvidia Jetson series of
single-board computers (SBCs). The model should make use of state-of-the-art algorithms
from either classical machine learning or deep learning. The literature review will yield
an appropriate machine learning method. Furthermore, the adaption of existing models
(transfer learning) for object detection to the domain of plant recognition may provide
higher performance than would otherwise be achievable within the time constraints.

The model will be deployed to the single-board computer and evaluated in the field. The
evaluation will seek to answer the following questions:

1. How well does the model work in theory and how well in practice?

We will measure the performance of our model with common metrics such as
accuracy, F-score, receiver operating characteristics (ROC) curve, and area under
curve (AUC). These measurements will allow comparisons between our model
and existing models. We expect the plant detection part of the model to achieve
high scores on the test dataset. However, the classification of plants into stressed
and non-stressed will likely prove to be more difficult. The model is limited to
physiological markers of water stress and thus will have difficulties with plants
which do not overtly display such features.

Even though models may work well in theory, some do not easily transfer to
practical applications. It is, therefore, important to examine if the model is suited
for productive use in the field. The evaluation will contain a discussion about
the model’s transferability because theoretical performance does not automatically
guarantee real-world performance due to different environmental conditions.

2. What are possible reasons for it to work/not work?

Even if a model scores high on performance metrics, there might be a mismatch
between how researchers think it achieves its goal and how it actually achieves its
goal. The results have to be plausible and explainable with its inputs. Otherwise,
there can be no confidence in the model’s outputs. Conversely, if the model does
not work, there must be a reason. We estimate that the curation of the dataset for
the training and test phases will play a significant role. Explanations for model
out- or underperformance are likely to be found in the structure and composition
of the model’s inputs.

1.2. Methodological Approach

3. What are possible improvements to the system in the future?

The previous two questions will yield the data for possible improvements to the
model and/or our approach. With the decision to include a plant detection step
at the start, we hope to create consistent conditions for the stress classification.
A downside to this approach is that errors during detection can be propagated
through the system and result in adverse effects to overall performance. Although we
estimate this problem to be negligible, additional feedback regarding our approach
in this way might offer insight into potential improvements. If the model does
not work as well as expected, which changes to the approach will yield a better
result? Similarly to the previous question, the answer will likely lie in the dataset.
A heavy focus on dataset construction and curation will ensure satisfactory model
performance.

1.2 Methodological Approach

The methodological approach consists of the following steps and is also shown in Figure|1.1:

Literature Review The literature review informs the type of machine learning methods
which are later applied during the implementation of the prototype.

Object Detection Flowers present in the image will be detected using object detection
methods. These methods will draw bounding boxes around the objects of interest.
The output is fed into the next stage.

State Classification The bounded images will be fed to a classifier which will determine
whether the plant needs water or not.

Deployment to SBC The software prototype will be deployed to the single-board
computer in the field.

Evaluation The prototype will be evaluated in the field to determine its feasibility and
performance. During evaluation the author seeks to provide a basis for answering
the research questions.

1.3 Thesis Structure

The first part of the thesis contains the theoretical basis of the models which we use for
the prototype.

1. INTRODUCTION

—

Recommend Watering

Water Stress? | State Classification

i)

Figure 1.1: Setup in the field for water stress classification.

CHAPTER

Theoretical Background

Describe the contents of this chapter.

o Related Work. (3 pages)
o Description of inner workings of YOLOvT as the object detection model. (4 pages)

e Description of inner workings of ResNet as the classification model. (2 pages)

Estimated 9 pages for this chapter.

2.1 Related Work

The literature on machine learning in agriculture is broadly divided into four main
areas: livestock management, soil management, water management, and crop manage-
ment [BTD™21]. Of those four, water management only makes up about 10% of all
surveyed papers during the years 2018-2020. This highlights the potential for research in
this area to have a high real-world impact.

Su et al. [SCL™20] used traditional feature extraction and pre-processing techniques to
train various machine learning models for classifying water stress for a wheat field. They
took top-down images of the field using an unmanned aerial vehicle (UAV), segmented
wheat pixels from background pixels and constructed features based on spectral intensities
and color indices. The features are fed into a support vector machine (SVM) with a
Gaussian kernel and optimized using Bayesian optimization. Their results of 92.8%
accuracy show that classical machine learning approaches can offer high classification
scores if meaningful features are chosen. One disadvantage is that feature extraction is
often a tedious task involving trial and error. Advantages are the small dataset and the
short training time (3s) required to obtain a good result.

2.

THEORETICAL BACKGROUND

Similarly, Lépez-Garcia et al. [LIMT22] investigated the potential for UAVs to determine
water stress for vineyards using RGB and multispectral imaging. The measurements
of the UAV were taken at 80 m with a common off-the-shelf APS-C sensor. At the
same time, stem water measurements were taken with a pressure chamber to be able to
evaluate the performance of an artificial neural network (ANN) against the ground truth.
The RGB images were used to calculate the green canopy cover (GCC) which was also
fed to the model as input. The model achieves a high determination coefficient R? of
0.98 for the 2018 season on RGB data with a relative error of RE = 10.84 %. However,
their results do not transfer well to the other seasons under survey (2019 and 2020).

Zhuang et al. [ZWJ717] showed that water stress in maize can be detected early on
and, therefore, still provide actionable information before the plants succumb to drought.
They installed a camera which took 640 x 480 pixel RGB images every two hours. A
simple linear classifier (SVM) segmented the image into foreground and background using
the green color channel. The authors constructed a fourteen-dimensional feature space
consisting of color and texture features. A gradient boosted decision tree (GBDT) model
classified the images into water stressed and non-stressed and achieved an accuracy of
90.39 %. Remarkably, the classification was not significantly impacted by illumination
changes throughout the day.

An et al. [ALL™19] used the ResNet50 model as a basis for transfer learning and achieved
high classification scores (ca. 95%) on maize. Their model was fed with 640 x 480
pixel images of maize from three different viewpoints and across three different growth
phases. The images were converted to grayscale which turned out to slightly lower
classification accuracy. Their results also highlight the superiority of deep convolutional
neural networks (DCNNs) compared to manual feature extraction and gradient boosted
decision trees (GBDTs).

Chandel et al. [CCR™21] investigated deep learning models in depth by comparing three
well-known CNNs. The models under scrutiny were AlexNet, GoogLeNet, and Inception
V3. Each model was trained with a dataset containing images of maize, okra, and
soybean at different stages of growth and under stress and no stress. The researchers
did not include an object detection step before image classification and compiled a fairly
small dataset of 1200 images. Of the three models, GooglLeNet beat the other two
with a sizable lead at a classification accuracy of >94% for all three types of crop. The
authors attribute its success to its inherently deeper structure and application of multiple
convolutional layers at different stages. Unfortunately, all of the images were taken at the
same 45° + 5° angle and it stands to reason that the models would perform significantly
worse on images taken under different conditions.

Ramos-Giraldo et al. [RRL™20] detected water stress in soybean and corn crops with
a pretrained model based on DenseNet-121. Low-cost cameras deployed in the field
provided the training data over a 70-day period. They achieved a classification accuracy
for the degree of wilting of 88%.

In a later study, the same authors [RRM™20] deployed their machine learning model

2.1. Related Work

in the field to test it for production use. They installed multiple Raspberry Pis with
attached Raspberry Pi Cameras which took images in 30 min intervals. The authors had
difficulties with cameras not working and power supply issues. Furthermore, running
the model on the resource-constrained RPis proved difficult and they had to port their
TensorFlow model to a TensorFlow Lite model. This conversion lowered their classification
scores slightly since it was sometimes off by one water stress level. Nevertheless, their
architecture allowed for reasonably high classification scores on corn and soybean with a
low-cost setup.

Azimi, Kaur, and Gandhi [AKG20| demonstrate the efficacy of deep learning models versus
classical machine learning models on chickpea plants. The authors created their own
dataset in a laboratory setting for stressed and non-stressed plants. They acquired 8000
images at eight different angles in total. For the classical machine learning models, they
extracted feature vectors using scale-invariant feature transform (SIFT) and histogram
of oriented gradients (HOG). The features are fed into three classical machine learning
models: support vector machine (SVM), k-nearest neighbors (KNN), and a decision tree
(DT) using the classification and regression (CART) algorithm. On the deep learning
side, they used their own CNN architecture and the pre-trained ResNet-18 model. The
accuracy scores for the classical models was in the range of 60 % to 73 % with the SVM
outperforming the two others. The CNN achieved higher scores at 72 % to 78 % and
ResNet-18 achieved the highest scores at 82 % to 86 %. The results clearly show the
superiority of deep learning over classical machine learning. A downside of their approach
lies in the collection of the images. The background in all images was uniformly white and
the plants were prominently placed in the center. It should, therefore, not be assumed
that the same classification scores can be achieved on plants in the field with messy and
noisy backgrounds as well as illumination changes and so forth.

A significant problem in the detection of water stress is posed by the evolution of indicators
across time. Since physiological features such as leaf wilting progress as time passes, the
additional time domain has to be taken into account. To make use of these spatiotemporal
patterns, Azimi, Wadhawan, and Gandhi [AWG21]| propose the application of a CNN-long
short-term memory (CNN-LSTM) architecture. The model was trained on chickpea
plants and achieves a robust classification accuracy of >97%.

All of the previously mentioned studies solely focus on either one specific type of plant
or on a small number of them. Furthermore, the researchers construct their datasets in
homogeneous environments which often do not mimic real-world conditions. Finally, there
exist no studies on common household or garden plants. This fact may be attributed
to the propensity for funding to come from the agricultural sector. It is thus desirable
to explore how plants other than crops show water stress and if there is additional
information to be gained from them.

2. THEORETICAL BACKGROUND

2.2 Object Detection

Describe the inner workings of the YOLOvV7 model structure. Reference the original pa-
per [WBL22| and possibly papers of previous versions of the same model (YOLOvV5 [JCS™22],
YOLOv4 [BWL20)).

Estimated 4 pages for this section.

2.3 Classification

Describe the inner workings of the ResNet model structure. Reference the original
paper [HZR™16].

Estimated 2 pages for this section.

CHAPTER

Prototype Development

Describe the architecture of the prototype regarding the overall design, how the object
detection model was trained and tuned, and do the same for the classifier. Also describe
the shape and contents of the training sets.

3.1 Object Detection

Describe how the object detection model was trained, what the training set looks like
and which complications arose during training as well as fine-tuning.

3.2 Classification

Describe how the classification model was trained, what the training set looks like and
which complications arose during training as well as fine-tuning.

3.3 Deployment

Describe the Jetson Nano, how the model is deployed to the device and how it reports
its results.

CHAPTER

Results

The following sections contain a detailed evaluation of the model in various scenarios.
First, we present metrics from the training phases of the constituent models. Second,
we employ methods from the field of [Explainable Artificial Intelligence (XAI) such as
Gradient-weighted Class Activation Mapping (Grad-CAM)| to get a better understanding
of the models’ abstractions. Finally, we turn to the models’ aggregate performance on
the test set.

4.1 Object Detection

The object detection model was pre-trained on the COCO [LMBT15| dataset and fine-
tuned with data from the Open Images Dataset (OID) [KRA™20] in its sixth version.
Since the full |OID| dataset contains considerably more classes and samples than would
be feasibly trainable on a small cluster of GPUs, only images from the two classes Plant
and Houseplant have been downloaded. The samples from the Houseplant class are
merged into the Plant class because the distinction between the two is not necessary
for our model. Furthermore, the |(OID| contains not only bounding box annotations for
object detection tasks, but also instance segmentations, classification labels and more.
These are not needed for our purposes and are omitted as well. In total, the dataset
consists of 91479 images with a roughly 85/5/10 split for training, validation and testing,
respectively.

4.1.1 Training Phase

The object detection model was trained for 300 epochs on 79204 images with 284130
ground truth labels. The weights from the best-performing epoch were saved. The

model’s fitness for each epoch is calculated as the weighted average of mAP@0.5 and
mAP@0.5:0.95:

11

4.

REsuLTS

12

0.61

0.60

0.59

0.58

fitness

0.57

0.56

0.55

0 50 100 150 200 250 300
epoch

Figure 4.1: Object detection model fitness for each epoch calculated as in equation 4.1.
The vertical gray line at 133 marks the epoch with the highest fitness.

Fepoch = 0.1 - mAP@0.5 4 0.9 - mAP@0.5:0.95 (4.1)

Figure 4.1| shows the model’s fitness over the training period of 300 epochs. The gray
vertical line indicates the maximum fitness of 0.61 at epoch 133. The weights of that
epoch were frozen to be the final model parameters. Since the fitness metric assigns
the mAP at the higher range the overwhelming weight, the mAP@0.5 starts to decrease
after epoch 30, but the mAP©@0.5:0.95 picks up the slack until the maximum fitness at
epoch 133. This is an indication that the model achieves good performance early on
and continues to gain higher confidence values until performance deteriorates due to
overfitting.

Overall precision and recall per epoch are shown in figure 4.2. The values indicate that
neither precision nor recall change materially during training. In fact, precision starts
to decrease from the beginning, while recall experiences a barely noticeable increase.
Taken together with the box and object loss from figure 4.3, we speculate that the
pre-trained model already generalizes well to plant detection because one of the categories
in the COCO [LMB™15| dataset is potted plant. Any further training solely impacts the
confidence of detection, but does not lead to higher detection rates. This conclusion is
supported by the increasing mAP@0.5:0.95 until epoch 133.

Further culprits for the flat precision and recall values may be found in bad ground
truth data. The labels from the |OID] are sometimes not fine-grained enough. Images

4.1. Object Detection

1.0
metric
= precision
==== recall
o AWMMW
: DN R i~ o e, 0 A N
0.6 w,‘"“,“u“,"""'“"“'.(".--"""-”""“" Vi v v«.“.."‘)\~ W ""*,"‘;"' WY ~.“‘~»"__r\‘ e, s \'.:\-' ‘,'_.’,‘! - -,“ 'r,’ N
0.4
0.2
0.0
0 50 100 150 200 250 300

epoch

Figure 4.2: Overall precision and recall during training for each epoch. The vertical gray
line at 133 marks the epoch with the highest fitness.

which contain multiple individual—often overlapping—plants are labeled with one large
bounding box instead of multiple smaller ones. The model recognizes the individual
plants and returns tighter bounding boxes even if that is not what is specified in the
ground truth. Therefore, it is prudent to limit the training phase to relatively few epochs
in order to not penalize the more accurate detections of the model. The smaller bounding
boxes make more sense considering the fact that the cutout is passed to the classifier in
a later stage. Smaller bounding boxes help the classifier to only focus on one plant at a

time and to not get distracted by multiple plants in potentially different stages of wilting.

The box loss decreases slightly during training which indicates that the bounding boxes
become tighter around objects of interest. With increasing training time, however, the
object loss increases, indicating that less and less plants are present in the predicted
bounding boxes. It is likely that overfitting is a cause for the increasing object loss from
epoch 40 onward. Since the best weights as measured by fitness are found at epoch 133
and the object loss accelerates from that point, epoch 133 is probably the correct cutoff
before overfitting occurs.

4.1.2 Test Phase

Of the 91479 images around 10% were used for the test phase. These images contain a
total of 12238 ground truth labels. Table 4.1 shows precision, recall and the harmonic
mean of both (F1-score). The results indicate that the model errs on the side of sensitivity

13

4.

REsuLTS

14

0.010
0.06

95}
0 199)

z & 0.009
:: 0.04 g

2 = 0.008
o

0.02 0.007

0 50 100 150 200 250 300 0 50 100 150 200 250 300
epoch epoch

Figure 4.3: Box and object loss measured against the validation set of 3091 images and
4092 ground truth labels. The class loss is omitted because there is only one class in the
dataset and the loss is therefore always zero.

because recall is higher than precision. Although some detections are not labeled as
plants in the dataset, if there is a labeled plant in the ground truth data, the chance is
high that it will be detected. This behavior is in line with how the model’s detections
are handled in practice. The detections are drawn on the original image and the user is
able to check the bounding boxes visually. If there are wrong detections, the user can
ignore them and focus on the relevant ones instead. A higher recall will thus serve the
user’s needs better than a high precision.

Precision Recall Fl-score Support

Plant 0.547571 0.737866 0.628633 12238.0

Table 4.1: Precision, recall and F1-score for the object detection model.

Figure 4.4/ shows the Average Precision (AP) for the Intersection over Union (IOU)
thresholds of 0.5 and 0.95. Predicted bounding boxes with an IOU] of less than 0.5 are not
taken into account for the precision and recall values of table 4.1 The lower the detection
threshold, the more plants are detected. Conversely, a higher detection threshold leaves
potential plants undetected. The precision-recall curves confirm this behavior because
the area under the curve for the threshold of 0.5 is higher than for the threshold of 0.95
(0.66 versus 0.41). These values are combined in COCO’s [LMB™ 15| main evaluation
metric which is the [AP| averaged across the IOU| thresholds from 0.5 to 0.95 in 0.05 steps.
This value is then averaged across all classes and called mean average precision (mAP).
The object detection model achieves a state-of-the-art mAP)| of 0.5727 for the Plant class.

4.1.3 Hyper-parameter Optimization

To further improve the object detection performance, we perform hyper-parameter
optimization using a genetic algorithm. Evolution of the hyper-parameters starts from
the initial 30 default values provided by the authors of YOLO. Of those 30 values, 26
are allowed to mutate. During each generation, there is an 80% chance that a mutation

4.1. Object Detection

1.0 1.0
— AP =041
]]
5 S
205 £ 05
[})
— —
ol ol
— AP = 0.66
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall

Figure 4.4: Precision-recall curves for TOU) thresholds of 0.5 and 0.95. The |AP)| of a
specific threshold is defined as the area under the precision-recall curve of that threshold.
The mAP, across [OU| thresholds from 0.5 to 0.95 in 0.05 steps mAP@0.5:0.95 is 0.5727.

occurs with a variance of 0.04. To determine which generation should be the parent of
the new mutation, all previous generations are ordered by fitness in decreasing order.
At most five top generations are selected and one of them is chosen at random. Better
generations have a higher chance of being selected as the selection is weighted by fitness.
The parameters of that chosen generation are then mutated with the aforementioned
probability and variance. Each generation is trained for three epochs and the fitness of
the best epoch is recorded.

In total, we ran 87 iterations of which the 34" generation provides the best fitness of

0.6076. Due to time constraints, it was not possible to train each generation for more
epochs or to run more iterations in total. We assume that the performance of the first
few epochs is a reasonable proxy for model performance overall. The optimized version
of the object detection model is then trained for 70 epochs using the parameters of the
34 generation.

Figure [4.5| shows the model’s fitness during training for each epoch. After the highest
fitness of 0.6172 at epoch 27, the performance quickly declines and shows that further
training would likely not yield improved results. The model converges to its highest
fitness much earlier than the non-optimized version, which indicates that the adjusted
parameters provide a better starting point in general. Furthermore, the maximum fitness
is 0.74% higher than in the non-optimized version.

Figure [4.6 shows precision and recall for the optimized model during training. Similarly
to the non-optimized model from figure 4.2, both metrics do not change materially during
training. Precision is slightly higher than in the non-optimized version and recall hovers
at the same levels.

The box and object loss during training is pictured in figure 4.7. Both losses start from
a lower level which suggests that the initial optimized parameters allow the model to
converge quicker. The object loss exhibits a similar slope to the non-optimized model in
figure [4.3. The vertical gray line again marks epoch 27 with the highest fitness. The box

15

4. RESULTS

0.62

0.61

0.60

0.59

0.58

fitness

0.57

0.56

0.55

0.54

0 10 20 30 40 50 60 70
epoch

Figure 4.5: Object detection model fitness for each epoch calculated as in equation 4.1.
The vertical gray line at 27 marks the epoch with the highest fitness of 0.6172.

1.0
metric
= precision
0.8 W ==== recall
PRI PR N IR L NN T T N T UL L D R
0.6 "1, ______ ’ REEEEEEE S A v S 1% o S e L DY ’
0.4
0.2
0.0
0 10 20 30 40 50 60 70

epoch

Figure 4.6: Overall precision and recall during training for each epoch of the optimized
model. The vertical gray line at 27 marks the epoch with the highest fitness.

16

4.2. Classification

0.0300 0.0070
» 0.0275 % 0.0065
z 2
" 0.0250 5 0.0060 —/__/
@] i \V"M-‘__
= 0.0225 S 0.0055

0.0200 0.0050

0 20 40 60 0 20 40 60
epoch epoch

Figure 4.7: Box and object loss measured against the validation set of 3091 images and
4092 ground truth labels. The class loss is omitted because there is only one class in the
dataset and the loss is therefore always zero.

loss reaches its lower limit at that point and the object loss starts to increase again after
epoch 27.

Precision Recall Fl-score Support

Plant 0.633358 0.702811 0.666279 12238.0

Table 4.2: Precision, recall and F1-score for the optimized object detection model.

Turning to the evaluation of the optimized model on the test dataset, table 4.2 shows
precision, recall and the F1l-score for the optimized model. Comparing these metrics
with the non-optimized version from table [4.1, precision is significantly higher by more
than 8.5%. Recall, however, is 3.5% lower. The F1-score is higher by more than 3.7%
which indicates that the optimized model is better overall despite the lower recall. We
feel that the lower recall value is a suitable trade off for the substantially higher precision
considering that the non-optimized model’s precision is quite low at 0.55.

The precision-recall curves in figure |4.8 for the optimized model show that the model
draws looser bounding boxes than the optimized model. The |[AP|for both TOU]| thresholds
of 0.5 and 0.95 is lower indicating worse performance. It is likely that more iterations
during evolution would help increase the |AP|values as well. Even though the precision
and recall values from table 4.2 are better, the mAP@0.5:0.95 is lower by 1.8%.

4.2 Classification

The classifier receives cutouts from the object detection model and determines whether
the image shows a stressed plant or not. To achieve this goal, we trained a Residual
Neural Network (ResNet) [HZRT16] on a dataset of 452 images of healthy and 452
stressed plants. We chose the ResNet| architecture due to its popularity and ease of
implementation as well as its consistently high performance on various classification tasks.
While its classification speed in comparison with networks optimized for mobile and edge

17

4.

REsuLTS

18

1.0 1.0
— AP = 0.40
] g
z 8
b z
5 0.5 g 0.5
(] (]
— —
[al ol
— AP = 0.64
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall

Figure 4.8: Precision-recall curves for IOU) thresholds of 0.5 and 0.95. The |AP)| of a
specific threshold is defined as the area under the precision-recall curve of that threshold.
The mAP), across [OU| thresholds from 0.5 to 0.95 in 0.05 steps mAP@0.5:0.95 is 0.5546.

devices (e.g. MobileNet) is significantly lower, the deeper structure and the additional
parameters are necessary for the fairly complex task at hand. Furthermore, the generous
time budget for object detection and classification allows for more accurate results at the
expense of speed. The architecture allows for multiple different structures, depending
on the amount of layers. The smallest one has 18 and the largest 152 layers with 34, 50
and 101 in-between. The larger networks have better accuracy in general, but come with
trade-offs regarding training and inference time as well as required space. The 50 layer
architecture (ResNet50) is adequate for our use case.

4.2.1 Training Phase

The dataset was split 85/15 into training and validation sets. The images in the training
set were augmented with a random crop to arrive at the expected image dimensions of
224 pixels. Additionally, the training images were modified with a random horizontal
flip to increase the variation in the set and to train a rotation invariant classifier. All
images, regardless of their membership in the training or validation set, were normalized
with the mean and standard deviation of the ImageNet [DDST09] dataset, which the
original ResNet/ model was pre-trained with. Training was done for 50 epochs and the
best-performing model as measured by validation accuracy was selected as the final
version.

Figure [4.9| shows accuracy and loss on the training and validation sets. There is a clear
upwards trend until epoch 20 when validation accuracy and loss stabilize at around
0.84 and 0.3, respectively. The quick convergence and resistance to overfitting can be
attributed to the model already having robust feature extraction capabilities.

4.2.2 Hyper-parameter Optimization

In order to improve the aforementioned accuracy values, we perform hyper-parameter
optimization across a wide range of parameters. Table 4.3 lists the hyper-parameters
and their possible values. Since the number of all combinations of values is 11520 and

4.2. Classification

accuracy
o o
oo Nej

o
3

Figure 4.9: Accuracy and loss during training of the classifier. The model converges
quickly, but additional epochs do not cause validation loss to increase, which would
indicate overfitting. The maximum validation accuracy of 0.9118 is achieved at epoch 27.

each combination is trained for 10 epochs with a training time of approximately six
minutes per combination, exhausting the search space would take 48 days. Due to time
limitations, we have chosen to not search exhaustively but to pick random combinations
instead. Random search works surprisingly well—especially compared to grid search—in
a number of domains, one of which is hyper-parameter optimization [BB12].

Parameter Values
optimizer adam, sgd
batch size 4, 8, 16, 32, 64
learning rate 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.1
step size 2,3,5, 7
gamma 0.1, 0.5
beta one 0.9, 0.99
beta two 0.5, 0.9, 0.99, 0.999
eps 0.00000001, 0.1, 1

Table 4.3: Hyper-parameters and their possible values during optimization.

The random search was run for 138 iterations which equates to a 75% probability that
the best solution lies within 1% of the theoretical maximum (4.2). Figure 4.10 shows
three of the eight parameters and their impact on a high Fl-score. [Stochastic Gradient
Descent (SGD) has less variation in its results than Adam [KB17] and manages to provide
eight out of the ten best results. The number of epochs to train for was chosen based on
the observation that almost all configurations converge well before reaching the tenth
epoch. The assumption that a training run with ten epochs provides a good proxy for
final performance is supported by the quick convergence of validation accuracy and loss
in figure [4.9

1—(1-0.01)"~0.75 (4.2)

19

4.

REsuLTS

20

1.0 I
: %
* *] ® %
[]
0.8 | % 5)¢ g
] $ 1
®
[} []
8 L * ®
% 0.6 ° : v
_ batch size
= 4
47 x
I3 8
0.4 ® 16
¢ o 32
@ 64
optimizer
0.2 @® adam
8 sed [}
0.0001 0.0003 0.001 0.003 0.01 0.1

learning rate

Figure 4.10: This figure shows three of the eight hyper-parameters and their performance
measured by the Fl-score during 138 trials. Differently colored markers show the batch
size with darker colors representing a larger batch size. The type of marker (circle or cross)
shows which optimizer was used. The x-axis shows the learning rate on a logarithmic
scale. In general, a learning rate between 0.003 and 0.01 results in more robust and better
F1l-scores. Larger batch sizes more often lead to better performance as well. As for the
type of optimizer, SGD| produced the best iteration with an F1l-score of 0.9783. Adam
tends to require more customization of its parameters than SGD|to achieve good results.

Table |4.4 lists the final hyper-parameters which were chosen to train the improved model.
In order to confirm that the model does not suffer from overfitting or is a product
of chance due to a coincidentally advantageous train/test split, we perform stratified
10-fold cross validation on the dataset. Each fold contains 90% training and 10% test
data and was trained for 25 epochs. Figure 4.11] shows the performance of the epoch
with the highest Fl-score of each fold as measured against the test split. The mean
Receiver Operating Characteristic (ROC) curve provides a robust metric for a classifier’s
performance because it averages out the variability of the evaluation. Each fold manages
to achieve at least an |Area Under the Curve (AUC) of 0.94, while the best fold reaches
0.98. The mean ROC! has an [AUC! of 0.96 with a standard deviation of 0.02. These
results indicate that the model is accurately predicting the correct class and is robust
against variations in the training set.

The classifier shows good performance so far, but care has to be taken to not overfit the
model to the training set. Comparing the Fl-score during training with the Fl-score

4.2. Classification

1.0

0.8

0.6

True Positive Rate

0.4

0.2

0.0

Mean ROC curve with variability
(Positive label ‘wilted’)

Fold 0 (AUC = 0.94)
Fold 1 (AUC = 0.96)
Fold 2 (AUC = 0.96)
Fold 3 (AUC = 0.99)

Fold 4 (AUC =0.98)
Fold 5 (AUC = 0.95)
Fold 6 (A =0.98)
Fold 7 (AUC = 0.97)
Fold 8 (AUC =0.97)

Fold 9 (AUC = 0.98)

chance level (AUC = 0.5)

Mean ROC (AUC = 0.96 + 0.02
+ 1 std. dev.

0.4 0.6 0.8 1.0
False Positive Rate

Figure 4.11: This plot shows the |[ROC curve for the epoch with the highest F1-score of
each fold as well as the AUC. To get a less variable performance metric of the classifier,
the mean |ROC]| curve is shown as a thick line and the variability is shown in gray. The
overall mean AUC is 0.96 with a standard deviation of 0.02. The best-performing fold
reaches an [AUC of 0.99 and the worst an [AUC| of 0.94. The black dashed line indicates
the performance of a classifier which picks classes at random (AUC = 0.5). The shapes
of the ROC] curves show that the classifier performs well and is robust against variations

in the training set.

21

4.

REsuLTS

22

Optimizer Batch Size Learning Rate Step Size
SGD 64 0.01 5

Table 4.4: Chosen hyper-parameters for the final, improved model. The difference to
the parameters listed in Table 4.3/ comes as a result of choosing [SGD)| over Adam. The
missing four parameters are only required for Adam and not SGD|.

during testing gives insight into when the model tries to increase its performance during
training at the expense of generalizability. Figure |4.12| shows the F1-scores of each epoch
and fold. The classifier converges quickly to 1 for the training set at which point it
experiences a slight drop in generalizability. Training the model for at most five epochs is
sufficient because there are generally no improvements afterwards. The best-performing
epoch for each fold is between the second and fourth epoch which is just before the model
achieves an F1-score of 1 on the training set.

4.2.3 Class Activation Maps

Neural networks are notorious for their black-box behavior, where it is possible to observe
the inputs and the corresponding outputs, but the stage in-between stays hidden from view.
Models are continuously developed and deployed to aid in human decision-making and
sometimes supplant it. It is, therefore, crucial to obtain some amount of interpretability
of what the model does inside to be able to explain why a decision was made in a certain
way. The research field of XAl gained significance during the last few years because of
the development of new methods to peek inside these black boxes.

One such method, Class Activation Mapping (CAM) [ZKLT15|, is a popular tool to
produce visual explanations for decisions made by Convolutional Neural Networks (CNNs).
Convolutional layers essentially function as object detectors as long as no fully-connected
layers perform the classification. This ability to localize regions of interest, which play
a significant role in the type of class the model predicts, can be retained until the last
layer and used to generate activation maps for the predictions.

A more recent approach to generating a|CAM]|via gradients is proposed by Selvaraju et al.
[SCD™20]. Their |Grad-CAM approach works by computing the gradient of the feature
maps of the last convolutional layer with respect to the specified class. The last layer is
chosen because the authors find that “[...] Grad-CAM maps become progressively worse
as we move to earlier convolutional layers as they have smaller receptive fields and only
focus on less semantic local features.” [SCD™20, p.5]

Turning to our classifier, figure |4.13| shows the (CAMs for healthy and stressed. While
the regions of interest for the healthy class lie on the healthy plant, the stressed plant is
barely considered and mostly rendered as background information (blue). Conversely,
when asked to explain the inputs to the stressed classification, the regions of interest
predominantly stay on the thirsty as opposed to the healthy plant. In fact, the large

4.2. Classification

0.90

fold

train/fl-score
o
o2}
(S8

o
[
]

0.75

0.70

© 00 DU W NN O

0.90

0.85

o
[
s]

test/fl-score

(=)
~
ot

0.70

0
1
2
3
4
5
6
7
8
9

epoch

Figure 4.12: These plots show the Fl-score during training as well as testing for each
of the folds. The classifier converges to 1 by the third epoch during the training phase,
which might indicate overfitting. However, the performance during testing increases until
epoch three in most cases and then stabilizes at approximately 2-3% lower than the
best epoch. We believe that the third, or in some cases fourth, epoch is detrimental to
performance and results in overfitting, because the model achieves an F1l-score of 1 for
the training set, but that gain does not transfer to the test set. Early stopping during
training alleviates this problem.

23

4.

REsuLTS

24

THIRSTY NOT THIRSTY

THIRSTY NOT THIRSTY

Figure 4.13: The top left image shows the original image of the same plant in a stressed
(left) and healthy (right) state. In the top right image, the for the class healthy is
laid over the original image. The classifier draws its conclusion mainly from the healthy
plant, which is indicated by the red hot spots around the tips of the plant. The bottom
right image shows the (CAM for the stressed class. The classifier focuses on the hanging
leaves of the thirsty plant. The image was classified as stressed with a confidence of 70%.

hanging leaves play a significant role in determining the class the image belongs to.
This is an additional data point confirming that the model focuses on the semantically
meaningful parts of the image during classification.

4.3 Aggregate Model

In this section we turn to the evaluation of the aggregate model. We have confirmed the
performance of the constituent models: the object detection and the classification model.
It remains to evaluate the complete pipeline from gathering detections of potential plants
in an image and forwarding them to the classifier to obtaining the results as either healthy
or stressed with their associated confidence scores.

The test set contains 640 images which were obtained from a google search using the
terms thirsty plant, wilted plant and stressed plant. Images which clearly show one or
multiple plants with some amount of visible stress were added to the dataset. Care was
taken to include plants with various degrees of stress and in various locations and lighting
conditions. The search not only provided images of stressed plants, but also of healthy
plants due to articles, which describe how to care for plants, having a banner image of

4.3. Aggregate Model

precision recall fl-score support

Healthy 0.665 0.554 0.604 766
Stressed 0.639 0.502 0.562 494
micro avg 0.655 0.533 0.588 1260
macro avg 0.652 0.528 0.583 1260

weighted avg 0.655 0.533 0.588 1260

Table 4.5: Precision, recall and Fl-score for the aggregate model.

healthy plants. The dataset is biased towards potted plants which are commonly put on
display in western households. Furthermore, many plants, such as succulents, are sought
after for home environments because of their ease of maintenance. Due to their inclusion
in the dataset and how they exhibit water stress, the test set nevertheless contains a
wide variety of scenarios.

After collecting the images, the aggregate model was run on them to obtain initial
bounding boxes and classifications for ground truth labeling. Letting the model do the
work beforehand and then correcting the labels allowed to include more images in the
test set because they could be labeled more easily. Additionally, going over the detections
and classifications provided a comprehensive view on how the models work and what
their weaknesses and strengths are. After the labels have been corrected, the ground
truth of the test set contains 766 bounding boxes of healthy plants and 494 of stressed
plants.

4.3.1 Non-optimized Model

Table 4.5 shows precision, recall and the F1l-score for both classes Healthy and Stressed.

Precision is higher than recall for both classes and the Fl-score is at 0.59. Unfortunately,
these values do not take the accuracy of bounding boxes into account and thus have only
limited expressive power.

Figure |4.14] shows the precision and recall curves for both classes at different IOU
thresholds. The left plot shows the |[AP| for each class at the threshold of 0.5 and the
right one at 0.95. The mAP)|is 0.3581 and calculated across all classes as the median of
the TOU thresholds from 0.5 to 0.95 in 0.05 steps. The cliffs at around 0.6 (left) and 0.3
(right) happen at a detection threshold of 0.5. The classifier’s last layer is a softmax layer
which necessarily transforms the input into a probability of showing either a healthy or
stressed plant. If the probability of an image showing a healthy plant is below 0.5, it is
no longer classified as healthy but as stressed. The threshold for discriminating the two
classes lies at the 0.5 value and is therefore the cutoff for either class.

25

4.

REsuLTS

26

1.0 1.0

Precision
(=]
ot
Precision
(e}
ot

0.18, class = Healthy
0.16, class = Stressed

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall

Figure 4.14: Precision-recall curves for [OU| thresholds of 0.5 and 0.95. The AP|of a
specific threshold is defined as the area under the precision-recall curve of that threshold.
The mAP), across [OU| thresholds from 0.5 to 0.95 in 0.05 steps mAP@0.5:0.95 is 0.3581.

precision recall fl-score support

Healthy 0.711 0.555 0.623 766
Stressed 0.570 0.623 0.596 494
micro avg 0.644 0.582 0.611 1260
macro avg 0.641 0.589 0.609 1260

weighted avg 0.656 0.582 0.612 1260

Table 4.6: Precision, recall and Fl-score for the optimized aggregate model.

4.3.2 Optimized Model

So far the metrics shown in table |4.5| are obtained with the non-optimized versions of
both the object detection and classification model. Hyper-parameter optimization of the
classifier led to significant model improvements, while the object detector has improved
precision but lower recall and slightly lower mAP)| values. To evaluate the final aggregate
model which consists of the individual optimized models, we run the same test described
in section 4.3,

Table 4.6 shows precision, recall and F1-score for the optimized model on the same test
dataset of 640 images. All of the metrics are better for the optimized model. In particular,
precision for the healthy class could be improved significantly while recall remains at
the same level. This results in a better F1-score for the healthy class. Precision for the
stressed class is lower with the optimized model, but recall is significantly higher (0.502
vs. 0.623). The higher recall results in a 3% gain for the Fl-score in the stressed class.
Overall, precision is the same but recall has improved significantly, which also results in
a noticeable improvement for the average F1-score across both classes.

Figure [4.15| confirms the performance increase of the optimized model established in
table 4.6. The mAP@0.5 is higher for both classes, indicating that the model better detects
plants in general. The mAP@Q.95 is slightly lower for the healthy class, which means
that the confidence for the healthy class is slightly lower compared to the non-optimized

4.3. Aggregate Model

1.0 1.0
g =i
o o
% ™ ‘B
‘S 0.5 I ‘D 0.5
2 - 2
A .48, =+ Stressed ol 0.16, class = Healthy
—— AP = 0.46, cla :'r Healthy 0.16, class = Stressed
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall

Figure 4.15: Precision-recall curves for IOU]| thresholds of 0.5 and 0.95. The AP|of a

specific threshold is defined as the area under the precision-recall curve of that threshold.

The mAP)| across [OU| thresholds from 0.5 to 0.95 in 0.05 steps mAP@0.5:0.95 is 0.3838.

model. The result is that more plants are correctly detected and classified overall, but
the confidence scores tend to be lower with the optimized model. The mAP@0.5:0.95
could be improved by about 0.025.

27

List of Figures

1.1 Setup in the field for water stress classification.| 4
4.1 Object detection fitness per epoch.| 12
4.2 Object detection precision and recall during training.|. 13
4.3 Object detection box and object loss.|. 14
4.4 Object detection AP@(0.5 and AP@0.95.] 15
4.5 Optimized object detection fitness per epoch.| 16
4.6 Hyper-parameter optimized object detection precision and recall during train-

INE. o o o e e 16
4.7 Hyper-parameter optimized object detection box and object loss.| 17
4.8 Hyper-parameter optimized object detection APQ0.5 and AP@0.95.] . . . 18
4.9 Classifier accuracy and loss during training.| 19
4.10 Classifier hyper-parameter optimization results.| 20
4.11 Mean |ROC and variability of hyper-parameter-optimized model. 21
4.12 Fl-score of stratified 10-fold cross validation. 23
4.13 Classifier CAMS. e 24
4.14 Aggregate model APQ@Q.5 and AP@0.95.|. 26
4.15 Optimized aggregate model AP@(0.5 and AP@0.95.|. 27

29

4.1
4.2
4.3
4.4
4.5
4.6

List of Tables

Precision, recall and F1-score for the object detection model. .
Precision, recall and F1-score for the optimized object detection
Hyper-parameters and their possible values during optimization.
Hyper-parameters for the optimized classifier.|
Precision, recall and F1-score for the aggregate model.|
Precision, recall and F1-score for the optimized aggregate model

model.

14
17
19
22
25
26

31

List of Algorithms

33

Acronyms

AP Average Precision. 4, |5, |8

CAM Class Activation Mapping. 6}, 9

CNN Convolutional Neural Network. 6

Grad-CAM Gradient-weighted Class Activation Mapping. |1, 6
IOU Intersection over Union. 4, 5, 8

mAP mean average precision. 4, |5, |8

OID Open Images Dataset. |1, 2

ResNet Residual Neural Network. [4, 5

XAI Explainable Artificial Intelligence. |1, 6

35

[AH22|

[AKG20]

[ALL*19]

[Awal9]

[AWG21]

[BB12]

[BMR*+20]

Bibliography

Omar El Ariss and Kaoning Hu. ResNet-based Parkinson’s Disease Clas-
sification. IFEE Transactions on Artificial Intelligence:1-11, 2022. DOI:
10.1109/TAT.2022.3193651.

Shiva Azimi, Taranjit Kaur, and Tapan K Gandhi. Water Stress Identification
in Chickpea Plant Shoot Images using Deep Learning. In 2020 IEEFE 17th
India Council International Conference (INDICON). 2020 IEEE 17th India
Council International Conference (INDICON), pages 1-7, December 2020.
DOI:110.1109/INDICON49873.2020.9342388.

Jiangyong An, Wanyi Li, Maosong Li, Sanrong Cui, and Huanran Yue.
Identification and Classification of Maize Drought Stress Using Deep Con-
volutional Neural Network. Symmetry, 11(2):256, 2, February 2019. DOI:
10.3390/sym11020256. (Visited on 09/28/2022).

Mohamad M. Awad. Toward Precision in Crop Yield Estimation Using
Remote Sensing and Optimization Techniques. Agriculture, 9(3):54, 3, March
2019. DO1: 10.3390/agriculture9030054. (Visited on 10/18/2022).

Shiva Azimi, Rohan Wadhawan, and Tapan K. Gandhi. Intelligent Monitor-
ing of Stress Induced by Water Deficiency in Plants Using Deep Learning.
IEEE Transactions on Instrumentation and Measurement, 70:1-13, 2021.
DOI:[10.1109/TIM.2021.3111994\

James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. The Journal of Machine Learning Research, 13:281-305, null,
February 1, 2012.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei.
Language Models are Few-Shot Learners. July 22, 2020. DO1: 1 10.48550/
arXiv.2005.14165. (Visited on 10/18/2022). preprint.

37

https://doi.org/10.1109/TAI.2022.3193651
https://doi.org/10.1109/INDICON49873.2020.9342388
https://doi.org/10.3390/sym11020256
https://doi.org/10.3390/agriculture9030054
https://doi.org/10.1109/TIM.2021.3111994
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165

[BTD*+21]

[BWL20]

[CCR™21]

[DDS+09)

[HZR'16]

[JCS*22]

[KB17]

[KRAT20]

38

Lefteris Benos, Aristotelis C. Tagarakis, Georgios Dolias, Remigio Berruto,
Dimitrios Kateris, and Dionysis Bochtis. Machine Learning in Agriculture:
A Comprehensive Updated Review. Sensors, 21(11):3758, 11, January 2021.
DOI: [10.3390/521113758. (Visited on 10/05/2022).

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4:
Optimal Speed and Accuracy of Object Detection. April 22, 2020. DOTI:
10.48550/arXiv.2004.10934. (Visited on 10/18/2022). preprint.

Narendra Singh Chandel, Subir Kumar Chakraborty, Yogesh Anand Ra-
jwade, Kumkum Dubey, Mukesh K. Tiwari, and Dilip Jat. Identifying crop
water stress using deep learning models. Neural Computing and Applications,
33(10):5353-5367, May 1, 2021. DOI: [10.1007/500521-020-05325- 4l
(Visited on 09/28/2022).

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
geNet: A large-scale hierarchical image database. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition. 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pages 248-255, June 2009. DOTI:
10.1109/CVPR.2009.5206848.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770-778, June 2016. DOI:
10.1109/CVPR.2016.90.

Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, NanoCode012,
Yonghye Kwon, Kalen Michael, TaoXie, Jiacong Fang, imyhxy, Lorna, Zeng
Yifu, Colin Wong, Abhiram V, Diego Montes, Zhigiang Wang, Cristi Fati,
Jebastin Nadar, Laughing, UnglvKitDe, Victor Sonck, tkianai, yxNONG,
Piotr Skalski, Adam Hogan, Dhruv Nair, Max Strobel, and Mrinal Jain.
Ultralytics/yolovh: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation,
Zenodo, November 22, 2022. DOI: 10.5281/zenodo.7347926. (Visited
on 07/30/2023).

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. January 29, 2017. DOI: 10.48550/arXiv.1412.6980. (Visited
on 04/05/2023). preprint.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin,
Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander
Kolesnikov, Tom Duerig, and Vittorio Ferrari. The Open Images Dataset
V4: Unified image classification, object detection, and visual relationship
detection at scale. International Journal of Computer Vision, 128(7):1956—
1981, July 2020. por: |[10.1007/s11263-020-01316-z. (Visited on
02/26/2023).

https://doi.org/10.3390/s21113758
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.1007/s00521-020-05325-4
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.5281/zenodo.7347926
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1007/s11263-020-01316-z

[LIM*22]

[LMB™15]

[MWL22]

[RRLT20]

[RRM+20]

[SCD*20]

[SCL+20]

[WBL22]

Patricia Lépez-Garcia, Diego Intrigliolo, Miguel A. Moreno, Alejandro
Martinez-Moreno, José Fernando Ortega, Eva Pilar Pérez-Alvarez, and
Rocio Ballesteros. Machine Learning-Based Processing of Multispectral
and RGB UAV Imagery for the Multitemporal Monitoring of Vineyard
Water Status. Agronomy, 12(9):2122, 9, September 2022. DOI: |10.3390/
agronomy12092122. (Visited on 10/16,/2022).

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Gir-
shick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and
Piotr Dollar. Microsoft COCO: Common Objects in Context. February 20,
2015. poI: 10 .48550/arXiv.1405.0312. (Visited on 02/28/2023).
preprint.

Patrick McEnroe, Shen Wang, and Madhusanka Liyanage. A Survey on
the Convergence of Edge Computing and Al for UAVs: Opportunities and
Challenges. IEEE Internet of Things Journal, 9(17):15435-15459, September
2022. DOI: [10.1109/JI0T.2022.3176400.

Paula Ramos-Giraldo, Chris Reberg-Horton, Anna M. Locke, Steven Mirsky,
and Edgar Lobaton. Drought Stress Detection Using Low-Cost Computer
Vision Systems and Machine Learning Techniques. IT Professional, 22(3):27—
29, May 2020. po1: 110.1109/MITP.2020.2986103.

Paula Ramos-Giraldo, S. Chris Reberg-Horton, Steven Mirsky, Edgar Loba-
ton, Anna M. Locke, Esleyther Henriquez, Ane Zuniga, and Artem Minin.
Low-cost Smart Camera System for Water Stress Detection in Crops. In
2020 IEEE SENSORS. 2020 IEEE SENSORS, pages 1-4, October 2020. DOTI:
10.1109/SENSORS47125.2020.9278744.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual Explanations
from Deep Networks via Gradient-based Localization. International Jour-
nal of Computer Vision, 128(2):336-359, February 2020. DOI1: (10.1007 /
s11263-019-01228-7. (Visited on 03/08/2023).

Jinya Su, Matthew Coombes, Cunjia Liu, Yongchao Zhu, Xingyang Song,
Shibo Fang, Lei Guo, and Wen-Hua Chen. Machine Learning-Based Crop
Drought Mapping System by UAV Remote Sensing RGB Imagery. Unmanned
Systems, 08(01):71-83, January 2020. DO1: 10.1142/5S2301385020500053.
(Visited on 10/16,/2022).

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. YOLOvT:
Trainable bag-of-freebies sets new state-of-the-art for real-time object de-
tectors. July 6, 2022. DOI: 10.48550/arXiv.2207.02696. (Visited on
07/30/2023). preprint.

39

https://doi.org/10.3390/agronomy12092122
https://doi.org/10.3390/agronomy12092122
https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.1109/JIOT.2022.3176400
https://doi.org/10.1109/MITP.2020.2986103
https://doi.org/10.1109/SENSORS47125.2020.9278744
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1142/S2301385020500053
https://doi.org/10.48550/arXiv.2207.02696

[ZHT22]

[ZKL+15]

[ZWJI*17]

40

Yiwei Zhong, Baojin Huang, and Chaowei Tang. Classification of Cas-
sava Leaf Disease Based on a Non-Balanced Dataset Using Transformer-
Embedded ResNet. Agriculture, 12(9):1360, 9, September 2022. pDOI: 10 |
3390/agriculturel2091360. (Visited on 10/18/2022).

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Tor-
ralba. Learning Deep Features for Discriminative Localization. December 13,
2015. pOI: 10 .48550/arxXiv.1512.04150. (Visited on 03/08/2023).
preprint.

Shuo Zhuang, Ping Wang, Boran Jiang, Maosong Li, and Zhihong Gong.
Early detection of water stress in maize based on digital images. Computers
and Electronics in Agriculture, 140:461-468, August 1, 2017. DO1:[10.1016/
j.compag.2017.06.022. (Visited on 10/16/2022).

https://doi.org/10.3390/agriculture12091360
https://doi.org/10.3390/agriculture12091360
https://doi.org/10.48550/arXiv.1512.04150
https://doi.org/10.1016/j.compag.2017.06.022
https://doi.org/10.1016/j.compag.2017.06.022

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Methodological Approach
	Thesis Structure

	Theoretical Background
	Related Work
	Object Detection
	Classification

	Prototype Development
	Object Detection
	Classification
	Deployment

	Results
	Object Detection
	Training Phase
	Test Phase
	Hyper-parameter Optimization

	Classification
	Training Phase
	Hyper-parameter Optimization
	Class Activation Maps

	Aggregate Model
	Non-optimized Model
	Optimized Model

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

