# Plant Detection and State Classification with Machine Learning

Tobias Eidelpes

March 12, 2024

Automated detection of water stress

- Automated detection of water stress
- Automated watering of household plants

- Automated detection of water stress
- Automated watering of household plants
- Decision-making in the field

- Automated detection of water stress
- Automated watering of household plants
- Decision-making in the field
- No research so far in this context

#### Research Questions

1. How well does the model work in theory and how well in practice?

#### Research Questions

- 1. How well does the model work in theory and how well in practice?
- 2. What are possible reasons for it to work/not work?

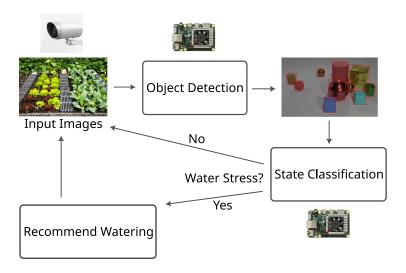
#### Research Questions

- 1. How well does the model work in theory and how well in practice?
- 2. What are possible reasons for it to work/not work?
- 3. What are possible improvements to the system in the future?

#### Methods

- 1. Literature Review
- 2. Dataset Curation
- 3. Model Training
- 4. Optimization
- 5. Deployment
- 6. Evaluation




Detect and Classify

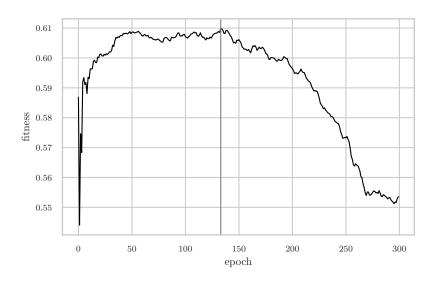
- Detect and Classify
- Publish Results via REST-API

- Detect and Classify
- Publish Results via REST-API
- ► Reasonable Inference Time

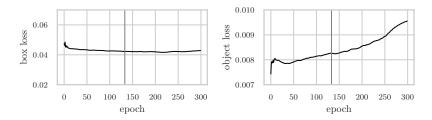
- Detect and Classify
- Publish Results via REST-API
- ► Reasonable Inference Time
- ► Reasonable Model Performance

## Prototype Design




## Prototype Implementation: YOLOv7n

- Pretrained on COCO
- OID classes Houseplant and Plant
- ► Training Set
  - ▶ 79 204 images
  - 284 130 bounding boxes
- Validation Set
  - ▶ 3091 images
  - ► 4092 bounding boxes



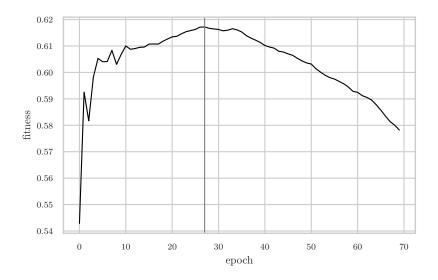

Earthy Tones For Fallsurlevif by Flickr User decor8 under CC BY 2.0

## Prototype Implementation: YOLOv7n



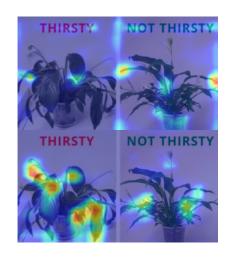
## Prototype Implementation: YOLOv7n



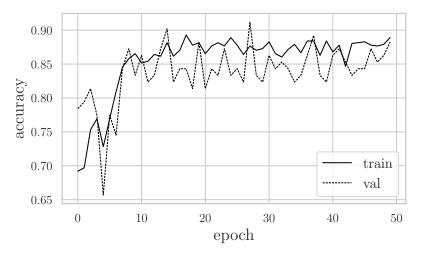

► Mutate 26 out of 30 hyperparameters

- Mutate 26 out of 30 hyperparameters
- ▶ Parent chosen randomly from top five previous generations

- ▶ Mutate 26 out of 30 hyperparameters
- ▶ Parent chosen randomly from top five previous generations
- 3 epochs per iteration

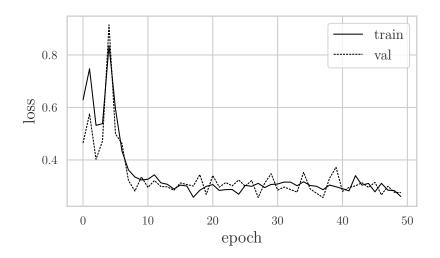

- Mutate 26 out of 30 hyperparameters
- ▶ Parent chosen randomly from top five previous generations
- 3 epochs per iteration
- ▶ 87 iterations

- Mutate 26 out of 30 hyperparameters
- ▶ Parent chosen randomly from top five previous generations
- 3 epochs per iteration
- ▶ 87 iterations
- ▶ Best with 0.6076 fitness




## Prototype Implementation: ResNet-50

- Pretrained on ImageNet
- ► Training Set
  - ▶ 384 healthy
  - 384 stressed
- Validation Set
  - ► 68 healthy
  - 68 stressed

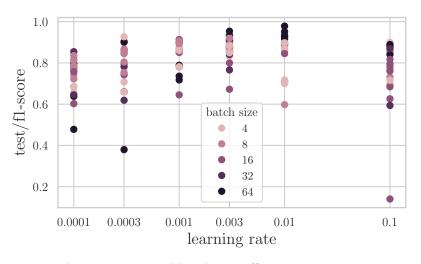



# Prototype Implementation: ResNet-50 Accuracy



Maximum validation accuracy of 0.9118 at epoch 27

## Prototype Implementation: ResNet-50 Loss




▶ Random search

- ► Random search
- ▶ 10 epochs per iteration

- ► Random search
- ▶ 10 epochs per iteration
- ▶ 138 iterations

- ► Random search
- ▶ 10 epochs per iteration
- ▶ 138 iterations
- ▶ Best with 0.9783 F<sub>1</sub>-score



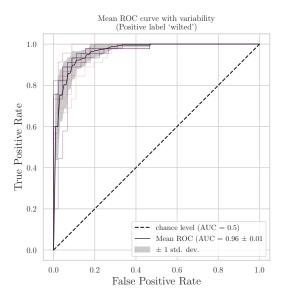
Learning rate and batch size effect on  $\mathrm{F}_1\text{-score}$ 

#### YOLOv7n Evaluation

- ► Test Set
  - ▶ 9000 images
  - ▶ 12 238 bounding boxes

#### YOLOv7n Evaluation

- ► Test Set
  - ▶ 9000 images
  - ► 12 238 bounding boxes


|       | Precision | Recall | $F_1$ -score | Support |
|-------|-----------|--------|--------------|---------|
| Plant | 0.5476    | 0.7379 | 0.6286       | 12 238  |

Results for the non-optimized object detection model

|       | Precision | Recall | $F_1$ -score | Support |
|-------|-----------|--------|--------------|---------|
| Plant | 0.6334    | 0.7028 | 0.6663       | 12 238  |

Results for the optimized object detection model

#### ResNet-50 Evaluation



ROC curves and AUC for classifier 10-fold cross-validation

- ► Pre-annotated Test Set
  - ► 640 images
  - ▶ 766 bounding boxes healthy
  - 494 bounding boxes stressed

- Pre-annotated Test Set
  - ▶ 640 images
  - ▶ 766 bounding boxes healthy
  - 494 bounding boxes stressed
- Non-optimized model mAP = 0.3581

- Pre-annotated Test Set
  - ► 640 images
  - 766 bounding boxes healthy
  - 494 bounding boxes stressed
- Non-optimized model mAP = 0.3581
- ightharpoonup Optimized model mAP = 0.3838

▶ I am *not* an expert labeler!

- ▶ I am *not* an expert labeler!
- ▶ Object detection performs well (mAP 0.5727)

- ▶ I am not an expert labeler!
- Object detection performs well (mAP 0.5727)
- Optimized detector worse than non-optimized

- ▶ I am *not* an expert labeler!
- Object detection performs well (mAP 0.5727)
- Optimized detector worse than non-optimized
- Inconsistent ground truth

- ▶ I am *not* an expert labeler!
- Object detection performs well (mAP 0.5727)
- Optimized detector worse than non-optimized
- Inconsistent ground truth
- Robust classification

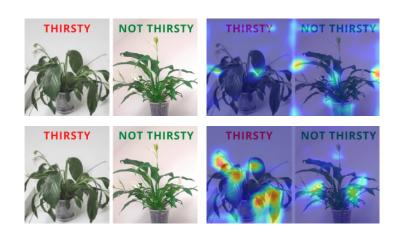
1. How well does the model work in theory and how well in practice?

- 1. How well does the model work in theory and how well in practice?
  - Plant detection comparable to benchmarks

- 1. How well does the model work in theory and how well in practice?
  - Plant detection comparable to benchmarks
  - ► Impressive stress classification

- 1. How well does the model work in theory and how well in practice?
  - ▶ Plant detection comparable to benchmarks
  - Impressive stress classification
- 2. What are possible reasons for it to work/not work?

- 1. How well does the model work in theory and how well in practice?
  - ▶ Plant detection comparable to benchmarks
  - Impressive stress classification
- 2. What are possible reasons for it to work/not work?
  - Dataset curation


- 1. How well does the model work in theory and how well in practice?
  - Plant detection comparable to benchmarks
  - Impressive stress classification
- 2. What are possible reasons for it to work/not work?
  - Dataset curation
- 3. What are possible improvements to the system in the future?

- 1. How well does the model work in theory and how well in practice?
  - Plant detection comparable to benchmarks
  - Impressive stress classification
- 2. What are possible reasons for it to work/not work?
  - Dataset curation
- 3. What are possible improvements to the system in the future?
  - Use more computational resources

- 1. How well does the model work in theory and how well in practice?
  - Plant detection comparable to benchmarks
  - Impressive stress classification
- 2. What are possible reasons for it to work/not work?
  - Dataset curation
- 3. What are possible improvements to the system in the future?
  - Use more computational resources
  - Expert labeling

# Thank you for your attention!

#### ResNet-50 CAM



Top-right: CAM for healthy. Bot-right: CAM for stressed

|              | Precision | Recall | $F_1$ -score | Support |
|--------------|-----------|--------|--------------|---------|
| Healthy      | 0.665     | 0.554  | 0.604        | 766     |
| Stressed     | 0.639     | 0.502  | 0.562        | 494     |
| Weighted Avg | 0.655     | 0.533  | 0.588        | 1260    |

 $\label{eq:metrics} \mbox{Metrics for the non-optimized aggregate model}$ 

|              | Precision | Recall | $\mathrm{F}_{1}	ext{-score}$ | Support |
|--------------|-----------|--------|------------------------------|---------|
| Healthy      | 0.711     | 0.555  | 0.623                        | 766     |
| Stressed     | 0.570     | 0.623  | 0.596                        | 494     |
| Weighted Avg | 0.656     | 0.582  | 0.612                        | 1260    |

Metrics for the optimized aggregate model