{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "747ddcf2", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33me1527193\u001b[0m (\u001b[33mflower-classification\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import wandb\n", "\n", "wandb.login()" ] }, { "cell_type": "code", "execution_count": 2, "id": "c37343d6", "metadata": {}, "outputs": [], "source": [ "import torch\n", "import torch.optim as optim\n", "import torch.nn.functional as F\n", "import torch.nn as nn\n", "from torchvision import datasets, transforms\n", "from torchvision.models import resnet50, ResNet50_Weights\n", "from torch.utils.data import Dataset, DataLoader, random_split, SubsetRandomSampler\n", "import numpy as np\n", "import os\n", "import time\n", "import copy\n", "import random\n", "from sklearn import metrics\n", "\n", "torch.manual_seed(42)\n", "np.random.seed(42)\n", "\n", "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "17b25dc7", "metadata": {}, "outputs": [], "source": [ "def build_dataset(batch_size): \n", " data_transforms = {\n", " 'train': transforms.Compose([\n", " transforms.RandomResizedCrop(224),\n", " transforms.RandomHorizontalFlip(),\n", " transforms.ToTensor(),\n", " transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n", " ]),\n", " 'test': transforms.Compose([\n", " transforms.Resize(256),\n", " transforms.CenterCrop(224),\n", " transforms.ToTensor(),\n", " transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n", " ]),\n", " }\n", "\n", " data_dir = 'plantsdata'\n", " dataset = datasets.ImageFolder(os.path.join(data_dir))\n", "\n", " # 90/10 split\n", " train_dataset, test_dataset = random_split(dataset, [0.9, 0.1])\n", "\n", " train_dataset.dataset.transform = data_transforms['train']\n", " test_dataset.dataset.transform = data_transforms['test']\n", "\n", " train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,\n", " shuffle=True, num_workers=4)\n", " test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size,\n", " shuffle=True, num_workers=4)\n", "\n", " dataloaders = {'train': train_loader, 'test': test_loader}\n", " dataset_size = len(dataset)\n", " dataset_sizes = {'train': len(train_dataset), 'test': len(test_dataset)}\n", " class_names = dataset.classes\n", "\n", " return (dataloaders, dataset_sizes)\n", "\n", "def build_network():\n", " network = resnet50(weights=ResNet50_Weights.DEFAULT)\n", " num_ftrs = network.fc.in_features\n", "\n", " # Add linear layer with number of classes\n", " network.fc = nn.Linear(num_ftrs, 2)\n", "\n", " return network.to(device)\n", "\n", "def build_optimizer(network, optimizer, learning_rate, beta_one, beta_two, eps):\n", " if optimizer == \"sgd\":\n", " optimizer = optim.SGD(network.parameters(),\n", " lr=learning_rate, momentum=0.9)\n", " elif optimizer == \"adam\":\n", " optimizer = optim.Adam(network.parameters(),\n", " lr=learning_rate,\n", " betas=(beta_one, beta_two),\n", " eps=eps)\n", " return optimizer\n", "\n", "def train_epoch(network, loader, optimizer, criterion, scheduler, dataset_sizes):\n", " network.train()\n", " running_loss = 0.0\n", " running_corrects = 0\n", " for _, (data, target) in enumerate(loader):\n", " data, target = data.to(device), target.to(device)\n", " optimizer.zero_grad()\n", "\n", " # ➡ Forward pass\n", " #loss = F.nll_loss(network(data), target)\n", " with torch.set_grad_enabled(True):\n", " outputs = network(data)\n", " _, preds = torch.max(outputs, 1)\n", " loss = criterion(outputs, target)\n", " \n", " #cumu_loss += loss.item()\n", " \n", " running_loss += loss.item() * data.size(0)\n", " running_corrects += torch.sum(preds == target.data)\n", "\n", " # ⬅ Backward pass + weight update\n", " loss.backward()\n", " optimizer.step()\n", "\n", " wandb.log({'train/batch_loss': loss.item()})\n", "\n", " scheduler.step()\n", "\n", " epoch_loss = running_loss / dataset_sizes['train']\n", " epoch_acc = running_corrects.double() / dataset_sizes['train']\n", " \n", " return (epoch_loss, epoch_acc)\n", "\n", "def test(network, loader, optimizer, criterion, dataset_sizes):\n", " network.eval()\n", " confusion = torch.empty([0, 1])\n", " confusion = confusion.to(device)\n", " running_loss = 0.0\n", " test_corrects = 0\n", " for _, (data, target) in enumerate(loader):\n", " data, target = data.to(device), target.to(device)\n", " optimizer.zero_grad()\n", "\n", " # ➡ Forward pass\n", " with torch.set_grad_enabled(False):\n", " outputs = network(data)\n", " _, preds = torch.max(outputs, 1)\n", " loss = criterion(outputs, target)\n", "\n", " running_loss += loss.item() * data.size(0)\n", " test_corrects += torch.sum(preds == target.data)\n", " \n", " confusion = torch.cat((confusion, preds[:, None] / target.data[:, None]))\n", "\n", " tp = torch.sum(confusion == 1).item()\n", " fp = torch.sum(confusion == float('inf')).item()\n", " tn = torch.sum(torch.isnan(confusion)).item()\n", " fn = torch.sum(confusion == 0).item()\n", " \n", " precision = tp / (tp + fp)\n", " recall = tp / (tp + fn)\n", " f = 2 * ((precision * recall) / (precision + recall))\n", " \n", " epoch_loss = running_loss / dataset_sizes['test']\n", " epoch_acc = test_corrects.double() / dataset_sizes['test']\n", " \n", " return (epoch_loss, epoch_acc, precision, recall, f)" ] }, { "cell_type": "code", "execution_count": 4, "id": "5eff68bf", "metadata": {}, "outputs": [], "source": [ "def train(config=None):\n", " # Initialize a new wandb run\n", " with wandb.init(config=config):\n", " # If called by wandb.agent, as below,\n", " # this config will be set by Sweep Controller\n", " config = wandb.config\n", "\n", " (dataloaders, dataset_sizes) = build_dataset(config.batch_size)\n", " network = build_network()\n", " optimizer = build_optimizer(network, config.optimizer, config.learning_rate, config.beta_one,\n", " config.beta_two, config.eps)\n", " criterion = nn.CrossEntropyLoss()\n", " # Decay LR by a factor of 0.1 every 7 epochs\n", " exp_lr_scheduler = optim.lr_scheduler.StepLR(optimizer, config.step_size, config.gamma)\n", "\n", " for epoch in range(config.epochs): \n", " (epoch_loss, epoch_acc) = train_epoch(network, dataloaders['train'], optimizer,\n", " criterion, exp_lr_scheduler,\n", " dataset_sizes)\n", " wandb.log({\"epoch\": epoch, 'train/epoch_loss': epoch_loss, 'train/epoch_acc': epoch_acc})\n", " \n", " (test_loss, test_acc, test_precision, test_recall, test_f) = test(network, dataloaders['test'],\n", " optimizer, criterion,\n", " dataset_sizes)\n", " wandb.log({'test/epoch_loss': test_loss, 'test/epoch_acc': test_acc,\n", " 'test/precision': test_precision, 'test/recall': test_recall,\n", " 'test/f1-score': test_f})" ] }, { "cell_type": "code", "execution_count": 5, "id": "732a83df", "metadata": {}, "outputs": [], "source": [ "sweep_config = {\n", " 'method': 'random'\n", "}\n", "\n", "metric = {\n", " 'name': 'test/epoch_acc',\n", " 'goal': 'maximize' \n", "}\n", "\n", "sweep_config['metric'] = metric\n", "\n", "parameters_dict = {\n", " 'optimizer': {\n", " 'values': ['adam', 'sgd']\n", " },\n", "}\n", "\n", "sweep_config['parameters'] = parameters_dict\n", "\n", "parameters_dict.update({\n", " 'epochs': {\n", " 'value': 10},\n", " 'batch_size': {\n", " 'values': [4, 8]},\n", " 'learning_rate': {\n", " 'values': [0.1, 0.01, 0.003, 0.001, 0.0003, 0.0001]},\n", " 'step_size': {\n", " 'values': [2, 3, 5, 7]},\n", " 'gamma': {\n", " 'values': [0.1, 0.5]},\n", " 'beta_one': {\n", " 'values': [0.9, 0.99]},\n", " 'beta_two': {\n", " 'values': [0.5, 0.9, 0.99, 0.999]},\n", " 'eps': {\n", " 'values': [1e-08, 0.1, 1]}\n", "})" ] }, { "cell_type": "code", "execution_count": 6, "id": "9a01fef6", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Create sweep with ID: eqwnoagh\n", "Sweep URL: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh\n" ] } ], "source": [ "sweep_id = wandb.sweep(sweep_config, project=\"pytorch-sweeps-demo\")" ] }, { "cell_type": "code", "execution_count": 7, "id": "e80d1730", "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: znahtehx with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_210021-znahtehx" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run sparkling-sweep-1 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/znahtehx" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bb4b99390e384bd5912f1133277e4a65", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.127552…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▁▂▅▆▅▇▄▇▃█
test/epoch_loss█▃▂▂▃▂▂▁▂▂
test/f1-score▁▃▅▆▄▆▄▇▃█
test/precision▁▁▃▅▆▇▄█▃▇
test/recall▁▆▇▆▁▄▃▄▃█
train/batch_loss█▇▆▆▆▆▅▄▄▃▅▅█▆▃█▆▇▂▆▅▅▁▃▆▄▃██▅▆▄▆▅▄▂▂▇▇▆
train/epoch_acc▁▆▇▇▇███▇█
train/epoch_loss█▄▂▂▂▁▁▁▂▁

Run summary:


epoch9
test/epoch_acc0.85556
test/epoch_loss0.6166
test/f1-score0.86022
test/precision0.81633
test/recall0.90909
train/batch_loss0.66533
train/epoch_acc0.75676
train/epoch_loss0.61072

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run sparkling-sweep-1 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/znahtehx
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_210021-znahtehx/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: qutqx8ux with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_210951-qutqx8ux" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run stoic-sweep-2 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/qutqx8ux" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "acea58027ff945afa7cd0132f556317c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.004 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129798…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▁▂▁▆▆█▇▆▃▅
test/epoch_loss█▅▃▁▁▁▁▂▂▂
test/f1-score▄▁▆█▇███▆▇
test/precision▁▃▁▅▆█▆▅▃▄
test/recall▅▁██▆▆██▆█
train/batch_loss▄▁▃█▃▇▅▁▄▄▅▃▃▂▂▅▅▂▂▅▃▃▅▄▂▃▃▂▄▃▃▆▅▂▂▄▅▁▂▂
train/epoch_acc▁▃▄▇▆▇█▇▇█
train/epoch_loss█▄▃▂▂▁▁▁▁▁

Run summary:


epoch9
test/epoch_acc0.7
test/epoch_loss0.55412
test/f1-score0.71579
test/precision0.59649
test/recall0.89474
train/batch_loss0.78966
train/epoch_acc0.66585
train/epoch_loss0.61866

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run stoic-sweep-2 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/qutqx8ux
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_210951-qutqx8ux/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 9j8etw77 with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_211850-9j8etw77" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run hopeful-sweep-3 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/9j8etw77" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "221cf6c293624e52a4c9c607f0f81dec", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.127348…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▁█▇▇▇▆▆▆▆▆
test/epoch_loss█▂▃▁▂▂▂▁▁▁
test/f1-score▁█▆▇▇▅▆▅▅▅
test/precision▁█▇█▇▆▆▇▇▇
test/recall▄█▄▁█▁▄▁▁▁
train/batch_loss▄▆██▄▃▃▅▂▃▄▅▃▄▂▃▁▁▁▄▂▃▄▁▄▂▂▁▁▃▃▄▂▂▂▅▂▃▃▄
train/epoch_acc▁▅█▇▇███▇▇
train/epoch_loss█▄▂▂▁▁▁▁▂▂

Run summary:


epoch9
test/epoch_acc0.75556
test/epoch_loss0.6144
test/f1-score0.76087
test/precision0.67308
test/recall0.875
train/batch_loss0.65108
train/epoch_acc0.7543
train/epoch_loss0.62678

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run hopeful-sweep-3 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/9j8etw77
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_211850-9j8etw77/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: k23a02gb with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_212648-k23a02gb" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run dulcet-sweep-4 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k23a02gb" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▅▁▂▅▇▄▅▇█▇
test/epoch_loss█▆▄▂▁▂▂▁▁▁
test/f1-score▆▁▂▅▇▃▅▇█▇
test/precision▁▁▄▅▇▆█▇█▆
test/recall█▁▁▅▆▂▃▆▆▅
train/batch_loss█▇▇▇▇▇▇▆▆▄▆▇▆▆▅▆▄▃▃▃▁▄▃▃▄▃▂▄▂▁▂▃▇▁▃▄▃▄▆▄
train/epoch_acc▁▅▆▆▇█▇█▇█
train/epoch_loss█▆▄▃▂▁▂▁▂▁

Run summary:


epoch9
test/epoch_acc0.88889
test/epoch_loss0.30289
test/f1-score0.86486
test/precision0.91429
test/recall0.82051
train/batch_loss0.27111
train/epoch_acc0.89681
train/epoch_loss0.28549

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run dulcet-sweep-4 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k23a02gb
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_212648-k23a02gb/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 265qnj0c with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_213431-265qnj0c" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run hearty-sweep-5 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/265qnj0c" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4f68d0e4fc994f12bdfba68bd75d2d3f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.010 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.369539…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▁▅▄▆▇█▇▇▆▆
test/epoch_loss█▅▄▃▃▁▂▃▂▁
test/f1-score▁▅▄▆▇██▇▆▇
test/precision███▄▁▂▁▅▁▁
test/recall▁▄▄▅▇██▇▆▇
train/batch_loss██▇▇▅▅▃▆▂▃▂▂▂▂▄▄▂▂▂▂▄▁▂▅▃▁▁▁▂▆▂▃▃▁▁▁▂▂▁▂
train/epoch_acc▁▅▆▇▇█████
train/epoch_loss█▅▄▂▂▁▁▁▁▁

Run summary:


epoch9
test/epoch_acc0.88889
test/epoch_loss0.26007
test/f1-score0.8913
test/precision0.95349
test/recall0.83673
train/batch_loss0.01167
train/epoch_acc0.98034
train/epoch_loss0.08153

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run hearty-sweep-5 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/265qnj0c
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_213431-265qnj0c/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: eg199ue9 with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_214215-eg199ue9" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run smart-sweep-6 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eg199ue9" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "77222c4a821846208ce165385b4c6092", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.127718…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▇▆▆▁▅▆▃▃▃█
test/epoch_loss█▄▃▄▄▅▂▄▃▁
test/f1-score▇▆▆▁▅▆▄▃▄█
test/precision▅▂█▃▁▂▁▄▁▅
test/recall▇▇▅▁▆▇▅▃▅█
train/batch_loss▆▆▆▆▃▂▂▄▂▂▁▃▂█▂▁▂▅▄▁▁▂▁▁▅▁▁▃▂▂▄▁▁▁▁▁▁▁▁▁
train/epoch_acc▁▄▆▇▇▇████
train/epoch_loss█▅▄▃▂▂▁▁▁▁

Run summary:


epoch9
test/epoch_acc0.9
test/epoch_loss0.22746
test/f1-score0.89655
test/precision0.92857
test/recall0.86667
train/batch_loss0.13858
train/epoch_acc0.98403
train/epoch_loss0.07075

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run smart-sweep-6 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eg199ue9
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_214215-eg199ue9/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: vdaaitvt with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_215145-vdaaitvt" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run glorious-sweep-7 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/vdaaitvt" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "16d2f2fc96774dcbaba181d48d444fc9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.003 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▁▄▆██▇▇▇▇▆
test/epoch_loss█▇▆▄▃▂▁▁▁▁
test/f1-score▁▄▆█▇▆▆▆▆▃
test/precision▁▃▄▆▇▇▇███
test/recall▇▇██▆▅▅▄▄▁
train/batch_loss▇▇▇▆▇▆▆▆▆▅▆▅▆▆▆▇▅▅▄▅█▅▃▄▅▃▅▇▃▅▅▅▅▂▄▁▅▄▄▅
train/epoch_acc▁▄▆▇▇███▇█
train/epoch_loss█▇▆▅▄▃▂▁▂▁

Run summary:


epoch9
test/epoch_acc0.77778
test/epoch_loss0.47685
test/f1-score0.72222
test/precision0.83871
test/recall0.63415
train/batch_loss0.37919
train/epoch_acc0.82924
train/epoch_loss0.45283

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run glorious-sweep-7 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/vdaaitvt
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_215145-vdaaitvt/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 16v61zix with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_215930-16v61zix" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run elated-sweep-8 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/16v61zix" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "275f61520cf1419c9104636f4bd34994", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.127347…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▅▅▅██▁▅▅▁▁
test/epoch_loss█▁▂▅▃▅▄▄▄▂
test/f1-score▄▄▄█▇▁▄▄▁▁
test/precision▃▅▃▁█▃▃▃▁▁
test/recall▃▁▃█▁▁▃▃▃▃
train/batch_loss█▆▇▇▂▂▅▆▄▆▂▁▁▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▂▁▁▁▂▁▁▁
train/epoch_acc▁▅▇▇▇█████
train/epoch_loss█▅▂▂▂▁▁▁▁▁

Run summary:


epoch9
test/epoch_acc0.92222
test/epoch_loss0.16872
test/f1-score0.92135
test/precision0.91111
test/recall0.93182
train/batch_loss0.00228
train/epoch_acc0.99877
train/epoch_loss0.02303

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run elated-sweep-8 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/16v61zix
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_215930-16v61zix/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: gy76rrgz with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_220712-gy76rrgz" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run major-sweep-9 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gy76rrgz" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "859091dc42c94f2eb2732a64c9afc414", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.127052…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▃▃▁▃▃▆▆█▆▃
test/epoch_loss█▆▄▃▂▂▁▁▁▁
test/f1-score▄▃▁▃▃▆▆█▆▃
test/precision▁█▇███████
test/recall▆▃▁▃▃▆▆█▆▃
train/batch_loss█▇██▇▆▇▃▅▃▇▄▄▄▃▆▃▅▃▅▃▁▇▅▃▄▄▆▂▅▂▂▃▁▁▂▂▁▃▁
train/epoch_acc▁▅▅▆▇▇▇▇██
train/epoch_loss█▆▅▃▃▂▂▂▁▁

Run summary:


epoch9
test/epoch_acc0.88889
test/epoch_loss0.26282
test/f1-score0.87179
test/precision0.97143
test/recall0.7907
train/batch_loss0.1486
train/epoch_acc0.88698
train/epoch_loss0.31064

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run major-sweep-9 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gy76rrgz
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_220712-gy76rrgz/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 4dx2f0j8 with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_221511-4dx2f0j8" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run fallen-sweep-10 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4dx2f0j8" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "93aeee346a4849d88f08125cde60a1ef", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129230…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▁█▅▇▇▇▇▇▇█
test/epoch_loss█▁▄▃▆▅▆▅▅▄
test/f1-score▁█▅▇▇▇▇▇▇█
test/precision▆▅▇▄█▄█▄▁▅
test/recall▁█▅▇▇▇▇▇▇█
train/batch_loss▅▅▆▃▄▃▃▂▂▂▂▂▁▃█▁▅▁▂▂▂▁▁▂▃▁▁▁▁▃▁▁▁▁▁▂▁▁▄▁
train/epoch_acc▁▄▆▆▇█████
train/epoch_loss█▆▄▃▂▂▂▁▁▁

Run summary:


epoch9
test/epoch_acc0.86667
test/epoch_loss0.37958
test/f1-score0.875
test/precision0.95455
test/recall0.80769
train/batch_loss0.077
train/epoch_acc0.9656
train/epoch_loss0.09797

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run fallen-sweep-10 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4dx2f0j8
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_221511-4dx2f0j8/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: j93p9uxm with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_222419-j93p9uxm" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run revived-sweep-11 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/j93p9uxm" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "46df1ce0b91447d0a2e0d047a3864afd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.010 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.369874…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▅█
test/epoch_acc▁█
test/epoch_loss█▁
test/f1-score▁█
test/precision▁█
test/recall█▁
train/batch_loss▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▁█▁▁▆▅▁▁
train/epoch_acc█▃▁
train/epoch_loss▁▁█

Run summary:


epoch2
test/epoch_acc0.56667
test/epoch_loss92431672.3021
test/f1-score0.62136
test/precision0.47761
test/recall0.88889
train/batch_loss7666.14648
train/epoch_acc0.46929
train/epoch_loss4618.08651

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run revived-sweep-11 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/j93p9uxm
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_222419-j93p9uxm/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run j93p9uxm errored: ZeroDivisionError('division by zero')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run j93p9uxm errored: ZeroDivisionError('division by zero')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: pb5m44k2 with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_222656-pb5m44k2" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run faithful-sweep-12 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pb5m44k2" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b54a0c709df84839b6a094fd08e2696d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.003 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


epoch▁▂▃▃▄▅▆▆▇█
test/epoch_acc▅▁▆▃▆▆▇▇▇█
test/epoch_loss▅█▄▅▃▃▂▁▁▁
test/f1-score▄▄▄▁▅▆▇▇▇█
test/precision▆▁█▃▆▆█▇██
test/recall▃█▂▁▄▆▅▆▅▇
train/batch_loss▆▄▂▅▅▄▃▆█▃▂▄▂▁▃▂▄▁▂▂▄▃▅▂▂▅▂▂▃▄▁▄▃▁▂▄▂▂▃▄
train/epoch_acc▁▁▃▃▄▄▆▆▇█
train/epoch_loss█▇▇▆▅▅▃▃▂▁

Run summary:


epoch9
test/epoch_acc0.78889
test/epoch_loss0.51027
test/f1-score0.78161
test/precision0.7234
test/recall0.85
train/batch_loss0.42048
train/epoch_acc0.82555
train/epoch_loss0.40512

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run faithful-sweep-12 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pb5m44k2
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_222656-pb5m44k2/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: q8m1yt6d with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223624-q8m1yt6d" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run fine-sweep-13 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q8m1yt6d" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


train/batch_loss

Run summary:


train/batch_loss0.67379

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run fine-sweep-13 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q8m1yt6d
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223624-q8m1yt6d/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run q8m1yt6d errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 1.95 GiB total capacity; 1.30 GiB already allocated; 11.31 MiB free; 1.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run q8m1yt6d errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 1.95 GiB total capacity; 1.30 GiB already allocated; 11.31 MiB free; 1.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: f3kiw40d with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223651-f3kiw40d" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run devout-sweep-14 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/f3kiw40d" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5b4942d4dbd04d5baa953dbdfe4608de", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run devout-sweep-14 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/f3kiw40d
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223651-f3kiw40d/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run f3kiw40d errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 3.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run f3kiw40d errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 3.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: i0xsie8j with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223710-i0xsie8j" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run restful-sweep-15 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/i0xsie8j" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run restful-sweep-15 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/i0xsie8j
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223710-i0xsie8j/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run i0xsie8j errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run i0xsie8j errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: bi477kch with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223736-bi477kch" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run pretty-sweep-16 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bi477kch" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run pretty-sweep-16 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bi477kch
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223736-bi477kch/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run bi477kch errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run bi477kch errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 7jmkpkmh with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223752-7jmkpkmh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run daily-sweep-17 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/7jmkpkmh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run daily-sweep-17 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/7jmkpkmh
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223752-7jmkpkmh/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run 7jmkpkmh errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run 7jmkpkmh errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: pc0kaw45 with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223812-pc0kaw45" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run dutiful-sweep-18 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pc0kaw45" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "202c31bd32e34897b89b9f828ad6301e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run dutiful-sweep-18 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pc0kaw45
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223812-pc0kaw45/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run pc0kaw45 errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run pc0kaw45 errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: o04kggii with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223833-o04kggii" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run glad-sweep-19 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o04kggii" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ebfa8b7ad18e48efb4c7a99963364387", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129182…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run glad-sweep-19 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o04kggii
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223833-o04kggii/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run o04kggii errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run o04kggii errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: mr7zxx8m with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223854-mr7zxx8m" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run dazzling-sweep-20 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/mr7zxx8m" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b1e66d66721840b391339ee3201e55fb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129362…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run dazzling-sweep-20 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/mr7zxx8m
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223854-mr7zxx8m/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run mr7zxx8m errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run mr7zxx8m errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 292ds63r with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223916-292ds63r" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run misunderstood-sweep-21 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/292ds63r" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2bd23ebb420c420f8f23ed3bc12e993f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129560…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run misunderstood-sweep-21 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/292ds63r
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223916-292ds63r/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run 292ds63r errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run 292ds63r errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: fdlwffsj with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223937-fdlwffsj" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run glorious-sweep-22 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/fdlwffsj" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ff7c63d38a9a470b92b70583ec7dfbe2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.026 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.132928…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run glorious-sweep-22 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/fdlwffsj
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_223937-fdlwffsj/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run fdlwffsj errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run fdlwffsj errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 3s4wltdw with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224003-3s4wltdw" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run absurd-sweep-23 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3s4wltdw" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run absurd-sweep-23 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3s4wltdw
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224003-3s4wltdw/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run 3s4wltdw errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run 3s4wltdw errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: kv0nxhmk with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224028-kv0nxhmk" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run devout-sweep-24 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/kv0nxhmk" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f47be2ec47854346b5d3306559f94b91", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.010 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.375132…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run devout-sweep-24 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/kv0nxhmk
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224028-kv0nxhmk/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run kv0nxhmk errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run kv0nxhmk errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: ixbulpc8 with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224049-ixbulpc8" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run silver-sweep-25 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ixbulpc8" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bfd33251a13841f7a8b32b6145a2fdfe", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129490…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run silver-sweep-25 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ixbulpc8
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224049-ixbulpc8/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run ixbulpc8 errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run ixbulpc8 errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: lfi2onyo with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224110-lfi2onyo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run winter-sweep-26 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/lfi2onyo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run winter-sweep-26 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/lfi2onyo
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224110-lfi2onyo/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run lfi2onyo errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run lfi2onyo errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 4uvn2tnq with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224131-4uvn2tnq" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run expert-sweep-27 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4uvn2tnq" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "224e6063b56942e8bad3124fe35c96a6", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run expert-sweep-27 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4uvn2tnq
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224131-4uvn2tnq/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run 4uvn2tnq errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run 4uvn2tnq errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: y4niwbym with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224154-y4niwbym" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run tough-sweep-28 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/y4niwbym" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cc40ab25a9354028bd95ee1802eb53d0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run tough-sweep-28 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/y4niwbym
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224154-y4niwbym/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run y4niwbym errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run y4niwbym errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: hxampiva with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224215-hxampiva" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run misunderstood-sweep-29 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hxampiva" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "18a4b9d577dc4678bc02fc829b527858", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run misunderstood-sweep-29 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hxampiva
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224215-hxampiva/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run hxampiva errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run hxampiva errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: q1v8qruc with config:\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n" ] }, { "data": { "text/html": [ "Tracking run with wandb version 0.13.11" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224241-q1v8qruc" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run cosmic-sweep-30 to Weights & Biases (docs)
Sweep page: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/flower-classification/pytorch-sweeps-demo" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View sweep at https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q1v8qruc" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5504f3fc68844494809c30c364a93525", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run cosmic-sweep-30 at: https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q1v8qruc
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20230313_224241-q1v8qruc/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Run q1v8qruc errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run q1v8qruc errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n" ] } ], "source": [ "wandb.agent(sweep_id, train, count=30)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.15" } }, "nbformat": 4, "nbformat_minor": 5 }