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CHAPTER

Evaluation

The following sections contain a detailed evaluation of the model in various scenarios.
First, we present metrics from the training phases of the constituent models. Second,
we employ methods from the field of Explainable Artificial Intelligence (XAI) such as
Gradient-weighted Class Activation Mapping (Grad-CAM)| to get a better understanding
of the models’ abstractions. Finally, we turn to the models’ aggregate performance on
the test set and discuss whether the initial goals set by the problem description have
been met or not.

1.1 Object Detection

The object detection model was pre-trained on the COCO [LMB™15|] dataset and fine-
tuned with data from the Open Images Dataset (OID) [KRAT20] in its sixth version.
Since the full |OID| dataset contains considerably more classes and samples than would
be feasibly trainable on a small cluster of GPUs, only images from the two classes Plant
and Houseplant have been downloaded. The samples from the Houseplant class are
merged into the Plant class because the distinction between the two is not necessary
for our model. Furthermore, the |OID| contains not only bounding box annotations for
object detection tasks, but also instance segmentations, classification labels and more.
These are not needed for our purposes and are omitted as well. In total, the dataset
consists of 91479 images with a roughly 85/5/10 split for training, validation and testing,
respectively.

1.1.1 Training Phase

The object detection model was trained for 300 epochs on 79204 images with 284130
ground truth labels. The weights from the best-performing epoch were saved. The

model’s fitness for each epoch is calculated as the weighted average of mAP@0.5 and
mAP@0.5:0.95:
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Figure 1.1: Object detection model fitness for each epoch calculated as in equation 1.1.
The vertical gray line at 133 marks the epoch with the highest fitness.

Fepoch = 0.1 - mAP@0.5 4 0.9 - mAP@0.5:0.95 (1.1)

Figure [1.1] shows the model’s fitness over the training period of 300 epochs. The gray
vertical line indicates the maximum fitness of 0.61 at epoch 133. The weights of that
epoch were frozen to be the final model parameters. Since the fitness metric assigns
the mAP at the higher range the overwhelming weight, the mAP@0.5 starts to decrease
after epoch 30, but the mAP©@0.5:0.95 picks up the slack until the maximum fitness at
epoch 133. This is an indication that the model achieves good performance early on
and continues to gain higher confidence values until performance deteriorates due to
overfitting.

Overall precision and recall per epoch are shown in figure 1.2, The values indicate that
neither precision nor recall change materially during training. In fact, precision starts
to decrease from the beginning, while recall experiences a barely noticeable increase.
Taken together with the box and object loss from figure 1.3, we speculate that the
pre-trained model already generalizes well to plant detection because one of the categories
in the COCO [LMB™15| dataset is potted plant. Any further training solely impacts the
confidence of detection, but does not lead to higher detection rates. This conclusion is
supported by the increasing mAP@0.5:0.95 until epoch 133.

Further culprits for the flat precision and recall values may be found in bad ground
truth data. The labels from the |OID] are sometimes not fine-grained enough. Images
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Figure 1.2: Overall precision and recall during training for each epoch. The vertical gray
line at 133 marks the epoch with the highest fitness.

which contain multiple individual—often overlapping—plants are labeled with one large
bounding box instead of multiple smaller ones. The model recognizes the individual
plants and returns tighter bounding boxes even if that is not what is specified in the
ground truth. Therefore, it is prudent to limit the training phase to relatively few epochs
in order to not penalize the more accurate detections of the model. The smaller bounding
boxes make more sense considering the fact that the cutout is passed to the classifier in
a later stage. Smaller bounding boxes help the classifier to only focus on one plant at a
time and to not get distracted by multiple plants in potentially different stages of wilting.

The box loss decreases slightly during training which indicates that the bounding boxes
become tighter around objects of interest. With increasing training time, however, the
object loss increases, indicating that less and less plants are present in the predicted
bounding boxes. It is likely that overfitting is a cause for the increasing object loss from
epoch 40 onward. Since the best weights as measured by fitness are found at epoch 133
and the object loss accelerates from that point, epoch 133 is probably the correct cutoff
before overfitting occurs.

1.1.2 Test Phase

Of the 91479 images around 10% were used for the test phase. These images contain a
total of 12238 ground truth labels. Table 1.1 shows precision, recall and the harmonic
mean of both (F1-score). The results indicate that the model errs on the side of sensitivity
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Figure 1.3: Box and object loss measured against the validation set of 3091 images and
4092 ground truth labels. The class loss is omitted because there is only one class in the
dataset and the loss is therefore always zero.

because recall is higher than precision. Although some detections are not labeled as
plants in the dataset, if there is a labeled plant in the ground truth data, the chance is
high that it will be detected. This behavior is in line with how the model’s detections
are handled in practice. The detections are drawn on the original image and the user is
able to check the bounding boxes visually. If there are wrong detections, the user can
ignore them and focus on the relevant ones instead. A higher recall will thus serve the
user’s needs better than a high precision.

Precision Recall Fl-score Support

Plant 0.547571 0.737866 0.628633  12238.0

Table 1.1: Precision, recall and F1-score for the object detection model.

Figure 1.4 shows the Average Precision (AP) for the Intersection over Union (IOU)
thresholds of 0.5 and 0.95. Predicted bounding boxes with an TOU] of less than 0.5 are not
taken into account for the precision and recall values of table|1.1. The lower the detection
threshold, the more plants are detected. Conversely, a higher detection threshold leaves
potential plants undetected. The precision-recall curves confirm this behavior because
the area under the curve for the threshold of 0.5 is higher than for the threshold of 0.95
(0.66 versus 0.41). These values are combined in COCO’s [LMB™ 15| main evaluation
metric which is the AP averaged across the [IOU] thresholds from 0.5 to 0.95 in 0.05 steps.
This value is then averaged across all classes and called mean average precision (mAP).
The object detection model achieves a state-of-the-art mAP| of 0.5727 for the Plant class.

1.2 Classification

The classifier receives cutouts from the object detection model and determines whether
the image shows a stressed plant or not. To achieve this goal, we trained a Residual
Neural Network (ResNet) [HZRT16] on a dataset of 452 images of healthy and 452
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Figure 1.4: Precision-recall curves for TOU) thresholds of 0.5 and 0.95. The |AP| of a
specific threshold is defined as the area under the precision-recall curve of that threshold.
The mAP, across [OU| thresholds from 0.5 to 0.95 in 0.05 steps mAP@0.5:0.95 is 0.5727.

stressed plants. We chose the ResNet| architecture due to its popularity and ease of
implementation as well as its consistently high performance on various classification tasks.
While its classification speed in comparison with networks optimized for mobile and edge
devices (e.g. MobileNet) is significantly lower, the deeper structure and the additional
parameters are necessary for the fairly complex task at hand. Furthermore, the generous
time budget for object detection and classification allows for more accurate results at the
expense of speed. The architecture allows for multiple different structures, depending
on the amount of layers. The smallest one has 18 and the largest 152 layers with 34, 50
and 101 in-between. The larger networks have better accuracy in general, but come with
trade-offs regarding training and inference time as well as required space. The 50 layer
architecture (ResNetb0) is adequate for our use case.

1.2.1 Training Phase

The dataset was split 85/15 into training and validation sets. The images in the training
set were augmented with a random crop to arrive at the expected image dimensions of
224 pixels. Additionally, the training images were modified with a random horizontal
flip to increase the variation in the set and to train a rotation invariant classifier. All
images, regardless of their membership in the training or validation set, were normalized
with the mean and standard deviation of the ImageNet [DDST09] dataset, which the
original ResNet model was pre-trained with. Training was done for 50 epochs and the
best-performing model as measured by validation accuracy was selected as the final
version.

Figure 1.5/ shows accuracy and loss on the training and validation sets. There is a clear
upwards trend until epoch 20 when validation accuracy and loss stabilize at around
0.84 and 0.3, respectively. The quick convergence and resistance to overfitting can be
attributed to the model already having robust feature extraction capabilities.
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Figure 1.5: Accuracy and loss during training of the classifier. The model converges
quickly, but additional epochs do not cause validation loss to increase, which would
indicate overfitting. The maximum validation accuracy of 0.9118 is achieved at epoch 27.

1.2.2 Class Activation Maps

Neural networks are notorious for their black-box behavior, where it is possible to observe
the inputs and the corresponding outputs, but the stage in-between stays hidden from view.
Models are continuously developed and deployed to aid in human decision-making and
sometimes supplant it. It is, therefore, crucial to obtain some amount of interpretability
of what the model does inside to be able to explain why a decision was made in a certain
way. The research field of XAl gained significance during the last few years because of
the development of new methods to peek inside these black boxes.

One such method, Class Activation Mapping (CAM) [ZKLT15|, is a popular tool to
produce visual explanations for decisions made by Convolutional Neural Networks (CNNs).
Convolutional layers essentially function as object detectors as long as no fully-connected
layers perform the classification. This ability to localize regions of interest which play
a significant role in the type of class the model predicts, can be retained until the last
layer and used to generate activation maps for the predictions.

A more recent approach to generating a|CAM]|via gradients is proposed by Selvaraju et al.
[SCD™20]. Their |Grad-CAM approach works by computing the gradient of the feature
maps of the last convolutional layer with respect to the specified class. The last layer is
chosen because the authors find that “[...] Grad-CAM maps become progressively worse
as we move to earlier convolutional layers as they have smaller receptive fields and only
focus on less semantic local features.” [SCD™20, p.5]

Turning to our classifier, figure [1.6/ shows the CAMsg| for healthy and stressed. While the
regions of interest for the healthy class lie on the healthy plant, the stressed plant is
barely considered and mostly rendered as background information (blue). Conversely,
when asked to explain the inputs to the stressed classification, the regions of interest
predominantly stay on the thirsty as opposed to the healthy plant. In fact, the large
hanging leaves play a significant role in determining the class the image belongs to. This
is an additional data point confirming that the model focuses on the right parts of the
image during classification.
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Figure 1.6: The top left image shows the original image of the same plant in a stressed
(left) and healthy (right) state. In the top right image, the for the class healthy is
laid over the original image. The classifier draws its conclusion mainly from the healthy
plant, which is indicated by the red hot spots around the tips of the plant. The bottom
right image shows the for the stressed class. The classifier focuses on the hanging
leaves of the thirsty plant. The image was classified as stressed with a confidence of 70%.

1.3 Aggregate Model

In this section we turn to the evaluation of the aggregate model. We have confirmed the
performance of the constituent models: the object detection and the classification model.
It remains to evaluate the complete pipeline from gathering detections of potential plants
in an image and forwarding them to the classifier to obtaining the results as either healthy
or stressed with their associated confidence scores.

The test set contains 640 images which were obtained from a google search using the
terms thirsty plant, wilted plant and stressed plant. Images which clearly show one or
multiple plants with some amount of visible stress were added to the dataset. Care was
taken to include plants with various degrees of stress and in various locations and lighting
conditions. The search not only provided images of stressed plants, but also of healthy
plants due to articles, which describe how to care for plants, having a banner image of
healthy plants. The dataset is biased towards potted plants which are commonly put on
display in western households. Furthermore, many plants, such as succulents, are sought
after for home environments because of their ease of maintenance. Due to their inclusion
in the dataset and how they exhibit water stress, the test set nevertheless contains a



1. EVALUATION

Precision Recall Fl-score Support

Healthy 0.824  0.745 0.783 662.0
Stressed 0.707  0.783 0.743 488.0
micro avg 0.769 0.761 0.765 1150.0
macro avg 0.766  0.764 0.763 1150.0
weighted avg 0.775 0.761 0.766 1150.0

Table 1.2: Precision, recall and Fl-score for the aggregate model.

wide variety of scenarios.

After collecting the images, the aggregate model was run on them to obtain initial
bounding boxes and classifications for ground truth labeling. Letting the model do the
work beforehand and then correcting the labels allowed to include more images in the
test set because they could be labeled more easily. Additionally, going over the detections
and classifications provided a comprehensive view on how the models work and what
their weaknesses and strengths are. After the labels have been corrected, the ground
truth of the test set contains 662 bounding boxes of healthy plants and 488 of stressed
plants.

Table [1.2) shows precision, recall and the Fl-score for both classes Healthy and Stressed.
Both precision and recall are balanced and the F1-score is high. Unfortunately, these
values do not take the accuracy of bounding boxes into account and thus have only
limited expressive power.

Figure|1.7/shows the precision and recall curves for both classes at different TOU|thresholds.
The left plot shows the AP for each class at the threshold of 0.5 and the right one at 0.95.
The mAP|is 0.6226 and calculated across all classes as the median of the IOU! thresholds
from 0.5 to 0.95 in 0.05 steps. The difference between mAPQ0.5 and mAP@0.95 is fairly
small which indicates that the bounding boxes encapsulate the objects of interest well.
The cliffs at around 0.77 (left) and 0.7 (right) happen at a detection threshold of 0.5.
The classifier’s last layer is a softmax layer which necessarily transforms the input into a
probability of showing either a healthy or stressed plant. If the probability of an image
showing a healthy plant is below 0.5, it is no longer classified as healthy but as stressed.
The threshold for discriminating the two classes lies at the 0.5 value and is therefore the
cutoff for either class.

Overall, we believe that the aggregate model shows sufficient predictive performance to
be deployed in the field. The detections are accurate, especially for potted plants, and
the classification into healthy and stressed is robust.
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Figure 1.7: Precision-recall curves for TOU) thresholds of 0.5 and 0.95. The |AP| of a
specific threshold is defined as the area under the precision-recall curve of that threshold.
The mAP)| across [OU| thresholds from 0.5 to 0.95 in 0.05 steps mAP@0.5:0.95 is 0.6226.
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