master-thesis/classification/classifier/classifier_hyp.ipynb

3401 lines
141 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"id": "2ee2704f-4d86-41b3-b511-c21f4f6cdbb8",
"metadata": {},
"source": [
"# Hyperparameter Optimization for Classifier\n",
"\n",
"This notebook is used in Google Colab to run the hyperparameter search for the classifier. The results of each run are uploaded to W&B where the metrics can be aggregated properly."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "CkZsS-w4atkF",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "CkZsS-w4atkF",
"outputId": "f3a78987-dbd2-4771-92ca-69cdf97d0571"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mounted at /content/drive\n"
]
}
],
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "zzWoPgRpd1xn",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "zzWoPgRpd1xn",
"outputId": "daa8edca-5ddf-4ac8-cb91-b4e77f9cc858"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
"Collecting wandb\n",
" Downloading wandb-0.14.0-py3-none-any.whl (2.0 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m27.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting sentry-sdk>=1.0.0\n",
" Downloading sentry_sdk-1.19.0-py2.py3-none-any.whl (199 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m199.2/199.2 KB\u001b[0m \u001b[31m25.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.9/dist-packages (from wandb) (67.6.1)\n",
"Requirement already satisfied: protobuf!=4.21.0,<5,>=3.15.0 in /usr/local/lib/python3.9/dist-packages (from wandb) (3.20.3)\n",
"Requirement already satisfied: psutil>=5.0.0 in /usr/local/lib/python3.9/dist-packages (from wandb) (5.9.4)\n",
"Requirement already satisfied: requests<3,>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from wandb) (2.27.1)\n",
"Collecting GitPython!=3.1.29,>=1.0.0\n",
" Downloading GitPython-3.1.31-py3-none-any.whl (184 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m184.3/184.3 KB\u001b[0m \u001b[31m22.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: appdirs>=1.4.3 in /usr/local/lib/python3.9/dist-packages (from wandb) (1.4.4)\n",
"Collecting docker-pycreds>=0.4.0\n",
" Downloading docker_pycreds-0.4.0-py2.py3-none-any.whl (9.0 kB)\n",
"Collecting setproctitle\n",
" Downloading setproctitle-1.3.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30 kB)\n",
"Requirement already satisfied: Click!=8.0.0,>=7.0 in /usr/local/lib/python3.9/dist-packages (from wandb) (8.1.3)\n",
"Requirement already satisfied: PyYAML in /usr/local/lib/python3.9/dist-packages (from wandb) (6.0)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.9/dist-packages (from wandb) (4.5.0)\n",
"Collecting pathtools\n",
" Downloading pathtools-0.1.2.tar.gz (11 kB)\n",
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"Requirement already satisfied: six>=1.4.0 in /usr/local/lib/python3.9/dist-packages (from docker-pycreds>=0.4.0->wandb) (1.16.0)\n",
"Collecting gitdb<5,>=4.0.1\n",
" Downloading gitdb-4.0.10-py3-none-any.whl (62 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.7/62.7 KB\u001b[0m \u001b[31m8.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests<3,>=2.0.0->wandb) (3.4)\n",
"Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests<3,>=2.0.0->wandb) (2.0.12)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests<3,>=2.0.0->wandb) (2022.12.7)\n",
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests<3,>=2.0.0->wandb) (1.26.15)\n",
"Collecting smmap<6,>=3.0.1\n",
" Downloading smmap-5.0.0-py3-none-any.whl (24 kB)\n",
"Building wheels for collected packages: pathtools\n",
" Building wheel for pathtools (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for pathtools: filename=pathtools-0.1.2-py3-none-any.whl size=8807 sha256=e0132d67db355152a3925f1b0367a996c977716084c67122838eac002d321662\n",
" Stored in directory: /root/.cache/pip/wheels/b7/0a/67/ada2a22079218c75a88361c0782855cc72aebc4d18d0289d05\n",
"Successfully built pathtools\n",
"Installing collected packages: pathtools, smmap, setproctitle, sentry-sdk, docker-pycreds, gitdb, GitPython, wandb\n",
"Successfully installed GitPython-3.1.31 docker-pycreds-0.4.0 gitdb-4.0.10 pathtools-0.1.2 sentry-sdk-1.19.0 setproctitle-1.3.2 smmap-5.0.0 wandb-0.14.0\n"
]
}
],
"source": [
"!pip install wandb"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "747ddcf2",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 121
},
"id": "747ddcf2",
"outputId": "ebf3b723-ac7b-41ba-a9a6-e2e82e907879"
},
"outputs": [
{
"data": {
"application/javascript": [
"\n",
" window._wandbApiKey = new Promise((resolve, reject) => {\n",
" function loadScript(url) {\n",
" return new Promise(function(resolve, reject) {\n",
" let newScript = document.createElement(\"script\");\n",
" newScript.onerror = reject;\n",
" newScript.onload = resolve;\n",
" document.body.appendChild(newScript);\n",
" newScript.src = url;\n",
" });\n",
" }\n",
" loadScript(\"https://cdn.jsdelivr.net/npm/postmate/build/postmate.min.js\").then(() => {\n",
" const iframe = document.createElement('iframe')\n",
" iframe.style.cssText = \"width:0;height:0;border:none\"\n",
" document.body.appendChild(iframe)\n",
" const handshake = new Postmate({\n",
" container: iframe,\n",
" url: 'https://wandb.ai/authorize'\n",
" });\n",
" const timeout = setTimeout(() => reject(\"Couldn't auto authenticate\"), 5000)\n",
" handshake.then(function(child) {\n",
" child.on('authorize', data => {\n",
" clearTimeout(timeout)\n",
" resolve(data)\n",
" });\n",
" });\n",
" })\n",
" });\n",
" "
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Logging into wandb.ai. (Learn how to deploy a W&B server locally: https://wandb.me/wandb-server)\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: You can find your API key in your browser here: https://wandb.ai/authorize\n",
"wandb: Paste an API key from your profile and hit enter, or press ctrl+c to quit:"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" ··········\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Appending key for api.wandb.ai to your netrc file: /root/.netrc\n"
]
},
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import wandb\n",
"\n",
"wandb.login()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c37343d6",
"metadata": {
"id": "c37343d6"
},
"outputs": [],
"source": [
"import torch\n",
"import torch.optim as optim\n",
"import torch.nn.functional as F\n",
"import torch.nn as nn\n",
"from torchvision import datasets, transforms\n",
"from torchvision.models import resnet50, ResNet50_Weights\n",
"from torch.utils.data import Dataset, DataLoader, random_split, SubsetRandomSampler\n",
"import numpy as np\n",
"import os\n",
"import time\n",
"import copy\n",
"import random\n",
"from sklearn import metrics\n",
"\n",
"torch.manual_seed(42)\n",
"np.random.seed(42)\n",
"\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")"
]
},
{
"cell_type": "markdown",
"id": "d7dd71bd-7d96-46e1-be2a-b384f405e108",
"metadata": {},
"source": [
"## Create the Dataset\n",
"\n",
"The dataset (in folder `plantsdata`) is split into 90/10 train/test splits. During each epoch the metrics are reported to W&B where it is easier to see them all in aggregate over time."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "17b25dc7",
"metadata": {
"id": "17b25dc7"
},
"outputs": [],
"source": [
"def build_dataset(batch_size): \n",
" data_transforms = {\n",
" 'train': transforms.Compose([\n",
" transforms.RandomResizedCrop(224),\n",
" transforms.RandomHorizontalFlip(),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n",
" ]),\n",
" 'test': transforms.Compose([\n",
" transforms.Resize(256),\n",
" transforms.CenterCrop(224),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n",
" ]),\n",
" }\n",
"\n",
" data_dir = '/content/drive/MyDrive/plantsdata'\n",
" dataset = datasets.ImageFolder(os.path.join(data_dir))\n",
"\n",
" # 90/10 split\n",
" train_dataset, test_dataset = random_split(dataset, [0.9, 0.1])\n",
"\n",
" train_dataset.dataset.transform = data_transforms['train']\n",
" test_dataset.dataset.transform = data_transforms['test']\n",
"\n",
" train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,\n",
" shuffle=True, num_workers=4)\n",
" test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size,\n",
" shuffle=True, num_workers=4)\n",
"\n",
" dataloaders = {'train': train_loader, 'test': test_loader}\n",
" dataset_size = len(dataset)\n",
" dataset_sizes = {'train': len(train_dataset), 'test': len(test_dataset)}\n",
" class_names = dataset.classes\n",
"\n",
" return (dataloaders, dataset_sizes)\n",
"\n",
"def build_network():\n",
" network = resnet50(weights=ResNet50_Weights.DEFAULT)\n",
" num_ftrs = network.fc.in_features\n",
"\n",
" # Add linear layer with number of classes\n",
" network.fc = nn.Linear(num_ftrs, 2)\n",
"\n",
" return network.to(device)\n",
"\n",
"def build_optimizer(network, optimizer, learning_rate, beta_one, beta_two, eps):\n",
" if optimizer == \"sgd\":\n",
" optimizer = optim.SGD(network.parameters(),\n",
" lr=learning_rate, momentum=0.9)\n",
" elif optimizer == \"adam\":\n",
" optimizer = optim.Adam(network.parameters(),\n",
" lr=learning_rate,\n",
" betas=(beta_one, beta_two),\n",
" eps=eps)\n",
" return optimizer\n",
"\n",
"def train_epoch(network, loader, optimizer, criterion, scheduler, dataset_sizes):\n",
" network.train()\n",
" running_loss = 0.0\n",
" running_corrects = 0\n",
" for _, (data, target) in enumerate(loader):\n",
" data, target = data.to(device), target.to(device)\n",
" optimizer.zero_grad()\n",
"\n",
" # ➡ Forward pass\n",
" #loss = F.nll_loss(network(data), target)\n",
" with torch.set_grad_enabled(True):\n",
" outputs = network(data)\n",
" _, preds = torch.max(outputs, 1)\n",
" loss = criterion(outputs, target)\n",
" \n",
" #cumu_loss += loss.item()\n",
" \n",
" running_loss += loss.item() * data.size(0)\n",
" running_corrects += torch.sum(preds == target.data)\n",
"\n",
" # ⬅ Backward pass + weight update\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" wandb.log({'train/batch_loss': loss.item()})\n",
"\n",
" scheduler.step()\n",
"\n",
" epoch_loss = running_loss / dataset_sizes['train']\n",
" epoch_acc = running_corrects.double() / dataset_sizes['train']\n",
" \n",
" return (epoch_loss, epoch_acc)\n",
"\n",
"def test(network, loader, optimizer, criterion, dataset_sizes):\n",
" network.eval()\n",
" confusion = torch.empty([0, 1])\n",
" confusion = confusion.to(device)\n",
" running_loss = 0.0\n",
" test_corrects = 0\n",
" for _, (data, target) in enumerate(loader):\n",
" data, target = data.to(device), target.to(device)\n",
" optimizer.zero_grad()\n",
"\n",
" # ➡ Forward pass\n",
" with torch.set_grad_enabled(False):\n",
" outputs = network(data)\n",
" _, preds = torch.max(outputs, 1)\n",
" loss = criterion(outputs, target)\n",
"\n",
" running_loss += loss.item() * data.size(0)\n",
" test_corrects += torch.sum(preds == target.data)\n",
" \n",
" confusion = torch.cat((confusion, preds[:, None] / target.data[:, None]))\n",
"\n",
" tp = torch.sum(confusion == 1).item()\n",
" fp = torch.sum(confusion == float('inf')).item()\n",
" tn = torch.sum(torch.isnan(confusion)).item()\n",
" fn = torch.sum(confusion == 0).item()\n",
" \n",
" precision = tp / (tp + fp)\n",
" recall = tp / (tp + fn)\n",
" f = 2 * ((precision * recall) / (precision + recall))\n",
" \n",
" epoch_loss = running_loss / dataset_sizes['test']\n",
" epoch_acc = test_corrects.double() / dataset_sizes['test']\n",
" \n",
" return (epoch_loss, epoch_acc, precision, recall, f)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "5eff68bf",
"metadata": {
"id": "5eff68bf"
},
"outputs": [],
"source": [
"def train(config=None):\n",
" # Initialize a new wandb run\n",
" with wandb.init(config=config):\n",
" # If called by wandb.agent, as below,\n",
" # this config will be set by Sweep Controller\n",
" config = wandb.config\n",
"\n",
" (dataloaders, dataset_sizes) = build_dataset(config.batch_size)\n",
" network = build_network()\n",
" optimizer = build_optimizer(network, config.optimizer, config.learning_rate, config.beta_one,\n",
" config.beta_two, config.eps)\n",
" criterion = nn.CrossEntropyLoss()\n",
" # Decay LR by a factor of 0.1 every 7 epochs\n",
" exp_lr_scheduler = optim.lr_scheduler.StepLR(optimizer, config.step_size, config.gamma)\n",
"\n",
" for epoch in range(config.epochs): \n",
" (epoch_loss, epoch_acc) = train_epoch(network, dataloaders['train'], optimizer,\n",
" criterion, exp_lr_scheduler,\n",
" dataset_sizes)\n",
" wandb.log({\"epoch\": epoch, 'train/epoch_loss': epoch_loss, 'train/epoch_acc': epoch_acc})\n",
" \n",
" (test_loss, test_acc, test_precision, test_recall, test_f) = test(network, dataloaders['test'],\n",
" optimizer, criterion,\n",
" dataset_sizes)\n",
" wandb.log({'test/epoch_loss': test_loss, 'test/epoch_acc': test_acc,\n",
" 'test/precision': test_precision, 'test/recall': test_recall,\n",
" 'test/f1-score': test_f})"
]
},
{
"cell_type": "markdown",
"id": "caf3c858-c57a-4fe1-bc3e-b709223f1652",
"metadata": {},
"source": [
"## W&B config\n",
"\n",
"These dictionaries specify the parameters which should be optimized as well as how the optimization should be done (`grid`, `random`,…)."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "732a83df",
"metadata": {
"id": "732a83df"
},
"outputs": [],
"source": [
"sweep_config = {\n",
" 'method': 'random'\n",
"}\n",
"\n",
"metric = {\n",
" 'name': 'test/epoch_acc',\n",
" 'goal': 'maximize' \n",
"}\n",
"\n",
"sweep_config['metric'] = metric\n",
"\n",
"parameters_dict = {\n",
" 'optimizer': {\n",
" 'values': ['adam', 'sgd']\n",
" },\n",
"}\n",
"\n",
"sweep_config['parameters'] = parameters_dict\n",
"\n",
"parameters_dict.update({\n",
" 'epochs': {\n",
" 'value': 10},\n",
" 'batch_size': {\n",
" 'values': [4, 8, 16, 32, 64]},\n",
" 'learning_rate': {\n",
" 'values': [0.1, 0.01, 0.003, 0.001, 0.0003, 0.0001]},\n",
" 'step_size': {\n",
" 'values': [2, 3, 5, 7]},\n",
" 'gamma': {\n",
" 'values': [0.1, 0.5]},\n",
" 'beta_one': {\n",
" 'values': [0.9, 0.99]},\n",
" 'beta_two': {\n",
" 'values': [0.5, 0.9, 0.99, 0.999]},\n",
" 'eps': {\n",
" 'values': [1e-08, 0.1, 1]}\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "9a01fef6",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "9a01fef6",
"outputId": "dd802f5b-fd67-4e16-c042-f7fdbe65d568"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Create sweep with ID: 9681wnh0\n",
"Sweep URL: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0\n"
]
}
],
"source": [
"sweep_id = wandb.sweep(sweep_config, project=\"pytorch-sweeps-demo\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e80d1730",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000,
"referenced_widgets": [
"e840ed026b3342718c0aa068f81d93f3",
"d510d413136c4231bc720200145a5d77",
"a6a0d4738d434aa1b734c8407dde4e74",
"9e4d93cf62094092809fee70ba7885f5",
"32a491d3031c476da2d8687861ccbf7d",
"ff00a24840224f8d9cce9ade4e77ac0c",
"d8ec9c75b1f14686a6734b86eea24bb7",
"220d541b7b4347b08a7fc9b8feb09f98"
]
},
"id": "e80d1730",
"outputId": "fb105ba8-6c50-4e19-9d02-88a9e8357bc0"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: pw52k3j3 with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33me1527193\u001b[0m (\u001b[33mflower-classification\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_135456-pw52k3j3</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pw52k3j3' target=\"_blank\">snowy-sweep-1</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pw52k3j3' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pw52k3j3</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.9/dist-packages/torch/utils/data/dataloader.py:561: UserWarning: This DataLoader will create 4 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.\n",
" warnings.warn(_create_warning_msg(\n",
"Downloading: \"https://download.pytorch.org/models/resnet50-11ad3fa6.pth\" to /root/.cache/torch/hub/checkpoints/resnet50-11ad3fa6.pth\n",
"100%|██████████| 97.8M/97.8M [00:00<00:00, 236MB/s]\n"
]
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e840ed026b3342718c0aa068f81d93f3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.001 MB of 0.001 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▅▆▆██▇▇▇█</td></tr><tr><td>test/epoch_loss</td><td>█▅▂▂▂▂▁▁▂▂</td></tr><tr><td>test/f1-score</td><td>▁▆▇▇███▇▇█</td></tr><tr><td>test/precision</td><td>▁▄▅▅█▇▆▇▅▇</td></tr><tr><td>test/recall</td><td>▁▇▇▇▆▇█▆█▇</td></tr><tr><td>train/batch_loss</td><td>▇▆█▅▅▆▆▆▅▃▄▅▄▄▄▅▃█▄█▃▄▂▁▄▃▁▆▅▁▄▆▂▄▂▂▃▄▆▄</td></tr><tr><td>train/epoch_acc</td><td>▁▆▆▇█▇██▇█</td></tr><tr><td>train/epoch_loss</td><td>█▅▃▂▁▂▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.81111</td></tr><tr><td>test/epoch_loss</td><td>0.60187</td></tr><tr><td>test/f1-score</td><td>0.8172</td></tr><tr><td>test/precision</td><td>0.77551</td></tr><tr><td>test/recall</td><td>0.86364</td></tr><tr><td>train/batch_loss</td><td>0.5635</td></tr><tr><td>train/epoch_acc</td><td>0.77273</td></tr><tr><td>train/epoch_loss</td><td>0.59496</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">snowy-sweep-1</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pw52k3j3' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pw52k3j3</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_135456-pw52k3j3/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: ea718wsd with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 32\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_140117-ea718wsd</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ea718wsd' target=\"_blank\">splendid-sweep-2</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ea718wsd' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ea718wsd</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▃▆█</td></tr><tr><td>test/epoch_acc</td><td>▁▁▁</td></tr><tr><td>test/epoch_loss</td><td>█▁▁</td></tr><tr><td>test/f1-score</td><td>▁▁▁</td></tr><tr><td>test/precision</td><td>▁▁▁</td></tr><tr><td>test/recall</td><td>▁▁▁</td></tr><tr><td>train/batch_loss</td><td>▁▁█▁▁▂▁▁▁▁▂▂▁▁▃▁▁▂▁▁▁▁▂▂▁▁▁▂▁▁▂▁▁▁▁▁▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▃▁▇█</td></tr><tr><td>train/epoch_loss</td><td>█▆▃▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>3</td></tr><tr><td>test/epoch_acc</td><td>0.42222</td></tr><tr><td>test/epoch_loss</td><td>109.2288</td></tr><tr><td>test/f1-score</td><td>0.59375</td></tr><tr><td>test/precision</td><td>0.42222</td></tr><tr><td>test/recall</td><td>1.0</td></tr><tr><td>train/batch_loss</td><td>1.26954</td></tr><tr><td>train/epoch_acc</td><td>0.51474</td></tr><tr><td>train/epoch_loss</td><td>3.22592</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">splendid-sweep-2</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ea718wsd' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ea718wsd</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_140117-ea718wsd/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run ea718wsd errored: ZeroDivisionError('float division by zero')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run ea718wsd errored: ZeroDivisionError('float division by zero')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 2igypsdg with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 64\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_140346-2igypsdg</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/2igypsdg' target=\"_blank\">visionary-sweep-3</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/2igypsdg' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/2igypsdg</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>█▅▁▁▁▁▃▁▃▃</td></tr><tr><td>test/epoch_loss</td><td>▁▆█▄▄▄▆▅▃▅</td></tr><tr><td>test/f1-score</td><td>▁█▅▅▅▅▆▅▆▆</td></tr><tr><td>test/precision</td><td>▂█▁▁▁▁▃▁▃▃</td></tr><tr><td>test/recall</td><td>▁█▇▇▇▇▇▇▇▇</td></tr><tr><td>train/batch_loss</td><td>█▇██▄█▆▆▁▂▂▁▃▅▆▄▅▂▇▃▄▁▆▆▁▆▆▄▄▃▃▆▇▂▇█▅▅▁▄</td></tr><tr><td>train/epoch_acc</td><td>▁▄▇█▇█▇▇▆▇</td></tr><tr><td>train/epoch_loss</td><td>█▅▂▂▂▁▁▂▂▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.34444</td></tr><tr><td>test/epoch_loss</td><td>0.72334</td></tr><tr><td>test/f1-score</td><td>0.47788</td></tr><tr><td>test/precision</td><td>0.35065</td></tr><tr><td>test/recall</td><td>0.75</td></tr><tr><td>train/batch_loss</td><td>0.67509</td></tr><tr><td>train/epoch_acc</td><td>0.56265</td></tr><tr><td>train/epoch_loss</td><td>0.67967</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">visionary-sweep-3</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/2igypsdg' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/2igypsdg</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_140346-2igypsdg/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 37tqne1y with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 64\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_140933-37tqne1y</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/37tqne1y' target=\"_blank\">proud-sweep-4</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/37tqne1y' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/37tqne1y</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▆▅▁▅▃▇▇███</td></tr><tr><td>test/epoch_loss</td><td>▂▁█▁▅▁▁▁▁▁</td></tr><tr><td>test/f1-score</td><td>▅▆▄▄▁▇▇███</td></tr><tr><td>test/precision</td><td>█▅▁█▆▅▅▆▇▇</td></tr><tr><td>test/recall</td><td>▃▆▇▃▁▇█▇▇▇</td></tr><tr><td>train/batch_loss</td><td>█▆▅▄▃▂▁▃▇▃▄▄▂▂▅▃▂▄▂▄▂▄▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▆▅▆▆▆████</td></tr><tr><td>train/epoch_loss</td><td>█▄▆▄▄▃▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.84444</td></tr><tr><td>test/epoch_loss</td><td>0.62389</td></tr><tr><td>test/f1-score</td><td>0.84091</td></tr><tr><td>test/precision</td><td>0.84091</td></tr><tr><td>test/recall</td><td>0.84091</td></tr><tr><td>train/batch_loss</td><td>0.00493</td></tr><tr><td>train/epoch_acc</td><td>1.0</td></tr><tr><td>train/epoch_loss</td><td>0.00446</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">proud-sweep-4</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/37tqne1y' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/37tqne1y</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_140933-37tqne1y/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 3co2jpxp with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_141514-3co2jpxp</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3co2jpxp' target=\"_blank\">restful-sweep-5</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3co2jpxp' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3co2jpxp</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▄█▁▃▃▅▆▇▇█</td></tr><tr><td>test/epoch_loss</td><td>▃▁▆▄█▃▄▂▃▃</td></tr><tr><td>test/f1-score</td><td>▂▇▁▂▃▆▅▆▆█</td></tr><tr><td>test/precision</td><td>▅█▁▃▂▄▆▆▆▇</td></tr><tr><td>test/recall</td><td>▁▂█▄██▂▃▄▄</td></tr><tr><td>train/batch_loss</td><td>▄▂▃▄▂▂▃█▂▁▃▁▂▂▁▁▃▁▁▂▁▁▁▂▁▁▁▃▁▁▁▁▁▁▅▁▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▄▅▆▆▆▇███</td></tr><tr><td>train/epoch_loss</td><td>█▆▄▄▃▃▂▂▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.87778</td></tr><tr><td>test/epoch_loss</td><td>0.53854</td></tr><tr><td>test/f1-score</td><td>0.86747</td></tr><tr><td>test/precision</td><td>0.85714</td></tr><tr><td>test/recall</td><td>0.87805</td></tr><tr><td>train/batch_loss</td><td>0.00185</td></tr><tr><td>train/epoch_acc</td><td>0.99631</td></tr><tr><td>train/epoch_loss</td><td>0.01069</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">restful-sweep-5</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3co2jpxp' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3co2jpxp</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_141514-3co2jpxp/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: ppthue5q with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_142101-ppthue5q</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ppthue5q' target=\"_blank\">charmed-sweep-6</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ppthue5q' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ppthue5q</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▄▃▇▆▇███▇</td></tr><tr><td>test/epoch_loss</td><td>█▄▃▅▃▁▁▁▂▂</td></tr><tr><td>test/f1-score</td><td>▁▄▃▆▆▇███▆</td></tr><tr><td>test/precision</td><td>▁▂▂▆▅▅▆▇█▆</td></tr><tr><td>test/recall</td><td>▁█▃▅▃▆▆▅▃▅</td></tr><tr><td>train/batch_loss</td><td>█▃▆▅▇▆▄▃▄▁▄▃▁▁▂▂▁▁▁▁▃▁▁▃▁▁▁▁▁▁▂▁▁▁▂▂▁▃▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▃▆▆▇▇████</td></tr><tr><td>train/epoch_loss</td><td>█▆▄▄▂▂▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.87778</td></tr><tr><td>test/epoch_loss</td><td>0.24035</td></tr><tr><td>test/f1-score</td><td>0.86076</td></tr><tr><td>test/precision</td><td>0.85</td></tr><tr><td>test/recall</td><td>0.87179</td></tr><tr><td>train/batch_loss</td><td>0.03008</td></tr><tr><td>train/epoch_acc</td><td>0.99386</td></tr><tr><td>train/epoch_loss</td><td>0.02099</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">charmed-sweep-6</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ppthue5q' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ppthue5q</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_142101-ppthue5q/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: eakg0nsy with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_142642-eakg0nsy</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eakg0nsy' target=\"_blank\">still-sweep-7</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eakg0nsy' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eakg0nsy</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▆▅▃█▆▅▆▆▆</td></tr><tr><td>test/epoch_loss</td><td>▆▄▃▆▁▇█▇██</td></tr><tr><td>test/f1-score</td><td>▁▆▅▃█▅▄▆▆▅</td></tr><tr><td>test/precision</td><td>▁▆▁▆▇█▅▇▇▆</td></tr><tr><td>test/recall</td><td>▃▅█▁▆▃▃▄▄▄</td></tr><tr><td>train/batch_loss</td><td>▄▅▃▄▅▆▆█▄▂▂▃▂▁▁▂▁▁▂▁▃▁▁▁▁▁▂▃▁▁▁▁▁▁▁▁▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▄▅▆▇▇▇███</td></tr><tr><td>train/epoch_loss</td><td>█▆▅▃▂▂▂▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.85556</td></tr><tr><td>test/epoch_loss</td><td>0.44089</td></tr><tr><td>test/f1-score</td><td>0.87379</td></tr><tr><td>test/precision</td><td>0.9375</td></tr><tr><td>test/recall</td><td>0.81818</td></tr><tr><td>train/batch_loss</td><td>0.01161</td></tr><tr><td>train/epoch_acc</td><td>0.99386</td></tr><tr><td>train/epoch_loss</td><td>0.02177</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">still-sweep-7</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eakg0nsy' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eakg0nsy</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_142642-eakg0nsy/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: jucrzfat with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 16\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_143240-jucrzfat</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/jucrzfat' target=\"_blank\">crimson-sweep-8</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/jucrzfat' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/jucrzfat</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▆▅▆▇█████</td></tr><tr><td>test/epoch_loss</td><td>█▂▁▁▁▁▁▁▁▁</td></tr><tr><td>test/f1-score</td><td>▁▂▄▅▆▇▇███</td></tr><tr><td>test/precision</td><td>▁▇▅▆▆█████</td></tr><tr><td>test/recall</td><td>█▁▄▅▅▅▅▅▅▅</td></tr><tr><td>train/batch_loss</td><td>▆▅▄▇▄▄▅█▆▄▃▅▄▃▅▂▄▄▄▃▃▃▄▂▄▃▄▅▁▃▃▂▂▂▂▃▃▂▁▃</td></tr><tr><td>train/epoch_acc</td><td>▁▄▅▅▇▇▇▇██</td></tr><tr><td>train/epoch_loss</td><td>█▅▄▃▂▂▂▂▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.78889</td></tr><tr><td>test/epoch_loss</td><td>0.46169</td></tr><tr><td>test/f1-score</td><td>0.7957</td></tr><tr><td>test/precision</td><td>0.84091</td></tr><tr><td>test/recall</td><td>0.7551</td></tr><tr><td>train/batch_loss</td><td>0.63008</td></tr><tr><td>train/epoch_acc</td><td>0.77396</td></tr><tr><td>train/epoch_loss</td><td>0.4697</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">crimson-sweep-8</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/jucrzfat' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/jucrzfat</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_143240-jucrzfat/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: bhks7msu with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 32\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_143816-bhks7msu</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bhks7msu' target=\"_blank\">lilac-sweep-9</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bhks7msu' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bhks7msu</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▃▃█▁▆▆▃▃█</td></tr><tr><td>test/epoch_loss</td><td>█▅▂▂▁▁▁▁▁▁</td></tr><tr><td>test/f1-score</td><td>▁▄▄█▂▆▆▄▄█</td></tr><tr><td>test/precision</td><td>▂▃▃█▁▆▆▃▃█</td></tr><tr><td>test/recall</td><td>▁█████████</td></tr><tr><td>train/batch_loss</td><td>██▇▅▅▄▄▅▅▂▅▂▃▄▃▅▂▃▃▆▂▃▂▃▃▂▂▅▃▂▁▂▂▅▄▄▃▃▁▅</td></tr><tr><td>train/epoch_acc</td><td>▁▅▇███▇███</td></tr><tr><td>train/epoch_loss</td><td>█▅▃▂▁▁▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.85556</td></tr><tr><td>test/epoch_loss</td><td>0.54705</td></tr><tr><td>test/f1-score</td><td>0.86022</td></tr><tr><td>test/precision</td><td>0.78431</td></tr><tr><td>test/recall</td><td>0.95238</td></tr><tr><td>train/batch_loss</td><td>0.61833</td></tr><tr><td>train/epoch_acc</td><td>0.8059</td></tr><tr><td>train/epoch_loss</td><td>0.558</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">lilac-sweep-9</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bhks7msu' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bhks7msu</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_143816-bhks7msu/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: ezctslju with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 32\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_144350-ezctslju</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ezctslju' target=\"_blank\">different-sweep-10</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ezctslju' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ezctslju</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▂▇███▇▇▄▇</td></tr><tr><td>test/epoch_loss</td><td>█▆▅▃▂▂▁▁▁▁</td></tr><tr><td>test/f1-score</td><td>▁▅▆███▆▆▁▆</td></tr><tr><td>test/precision</td><td>▂▁██████▇█</td></tr><tr><td>test/recall</td><td>▅█▃▅▅▅▃▃▁▃</td></tr><tr><td>train/batch_loss</td><td>███▇▇▆▆▇▆▆▆▆▅▅▅▅▃▅▃▅▃▃▂▄▃▂▄▂▂▁▂▃▃▃▄▄▃▅▃▄</td></tr><tr><td>train/epoch_acc</td><td>▁▅▇▇▇█▇███</td></tr><tr><td>train/epoch_loss</td><td>█▆▅▄▂▂▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.75556</td></tr><tr><td>test/epoch_loss</td><td>0.53376</td></tr><tr><td>test/f1-score</td><td>0.76596</td></tr><tr><td>test/precision</td><td>0.76596</td></tr><tr><td>test/recall</td><td>0.76596</td></tr><tr><td>train/batch_loss</td><td>0.52814</td></tr><tr><td>train/epoch_acc</td><td>0.86118</td></tr><tr><td>train/epoch_loss</td><td>0.46213</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">different-sweep-10</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ezctslju' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ezctslju</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_144350-ezctslju/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: gxvcwlwu with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 64\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_144922-gxvcwlwu</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gxvcwlwu' target=\"_blank\">glowing-sweep-11</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gxvcwlwu' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gxvcwlwu</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▂▅▆▆▆▇███</td></tr><tr><td>test/epoch_loss</td><td>█▇▅▄▄▃▂▂▂▁</td></tr><tr><td>test/f1-score</td><td>▁▂▅▆▇▇▇███</td></tr><tr><td>test/precision</td><td>▁▂▄▅▆▆▇███</td></tr><tr><td>test/recall</td><td>▁▄▇███████</td></tr><tr><td>train/batch_loss</td><td>▇█▆▇▇▆▆▆▆▅▅▆▅▅▃▅▅▄▅▅▃▄▄▂▃▃▃▃▃▃▃▂▁▃▃▃▂▃▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▄▅▆▇▇▇███</td></tr><tr><td>train/epoch_loss</td><td>█▇▆▄▄▃▂▂▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.86667</td></tr><tr><td>test/epoch_loss</td><td>0.53756</td></tr><tr><td>test/f1-score</td><td>0.86364</td></tr><tr><td>test/precision</td><td>0.80851</td></tr><tr><td>test/recall</td><td>0.92683</td></tr><tr><td>train/batch_loss</td><td>0.52993</td></tr><tr><td>train/epoch_acc</td><td>0.80098</td></tr><tr><td>train/epoch_loss</td><td>0.55775</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">glowing-sweep-11</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gxvcwlwu' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gxvcwlwu</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_144922-gxvcwlwu/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: o4ceynjw with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 64\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_145500-o4ceynjw</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o4ceynjw' target=\"_blank\">chocolate-sweep-12</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o4ceynjw' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o4ceynjw</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▆▄▇▇█████</td></tr><tr><td>test/epoch_loss</td><td>█▄▄▁▁▁▁▁▁▁</td></tr><tr><td>test/f1-score</td><td>▁▆▄▇▇█████</td></tr><tr><td>test/precision</td><td>▂▁█▆██████</td></tr><tr><td>test/recall</td><td>▁█▃█▇█████</td></tr><tr><td>train/batch_loss</td><td>██▇▆▅▅▄▄▃▃▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▅▇███████</td></tr><tr><td>train/epoch_loss</td><td>█▅▃▁▁▁▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.97778</td></tr><tr><td>test/epoch_loss</td><td>0.13521</td></tr><tr><td>test/f1-score</td><td>0.97826</td></tr><tr><td>test/precision</td><td>1.0</td></tr><tr><td>test/recall</td><td>0.95745</td></tr><tr><td>train/batch_loss</td><td>0.00408</td></tr><tr><td>train/epoch_acc</td><td>1.0</td></tr><tr><td>train/epoch_loss</td><td>0.00712</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">chocolate-sweep-12</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o4ceynjw' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o4ceynjw</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_145500-o4ceynjw/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: w0els6yx with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_150038-w0els6yx</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/w0els6yx' target=\"_blank\">glorious-sweep-13</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/w0els6yx' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/w0els6yx</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▂▁▄▄▇▆▆▇█▇</td></tr><tr><td>test/epoch_loss</td><td>█▆▅▆▃▂▂▂▂▁</td></tr><tr><td>test/f1-score</td><td>▁▁▅▄▇▇▇███</td></tr><tr><td>test/precision</td><td>▂▁▄▃▆▆▆▆█▇</td></tr><tr><td>test/recall</td><td>▁▂▅▄▆▆▇█▆█</td></tr><tr><td>train/batch_loss</td><td>█▆▆▆▆▆▆▃▇█▄▄▇█▆▅▄▇▇▃▄▄▅▂▃▄▆▆▁▆▂▄▄▅▅▅▄▆▄▄</td></tr><tr><td>train/epoch_acc</td><td>▁▃▄▄▆▆▇▇▇█</td></tr><tr><td>train/epoch_loss</td><td>█▇▆▅▃▃▂▂▂▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.68889</td></tr><tr><td>test/epoch_loss</td><td>0.66123</td></tr><tr><td>test/f1-score</td><td>0.65854</td></tr><tr><td>test/precision</td><td>0.64286</td></tr><tr><td>test/recall</td><td>0.675</td></tr><tr><td>train/batch_loss</td><td>0.60239</td></tr><tr><td>train/epoch_acc</td><td>0.65233</td></tr><tr><td>train/epoch_loss</td><td>0.66732</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">glorious-sweep-13</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/w0els6yx' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/w0els6yx</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_150038-w0els6yx/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: sn7rpzsv with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_150639-sn7rpzsv</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/sn7rpzsv' target=\"_blank\">stoic-sweep-14</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/sn7rpzsv' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/sn7rpzsv</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▃▁▃▆▆▃▆▆▄█</td></tr><tr><td>test/epoch_loss</td><td>█▆▄▁▃▆▃▃▄▁</td></tr><tr><td>test/f1-score</td><td>▄▁▃▇▆▃▆▆▅█</td></tr><tr><td>test/precision</td><td>▃▆▁▂██▂▁▃▇</td></tr><tr><td>test/recall</td><td>▄▁▄█▄▂▇█▅▇</td></tr><tr><td>train/batch_loss</td><td>█▆▇▆▇█▂▆▂▄▃▁▁▁▄▃▄▂▁▁▁▁▁▃▁▁▁▁▁▁▁▁▁▁▁▂▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▄▆▇▇▇▇███</td></tr><tr><td>train/epoch_loss</td><td>█▆▄▃▂▂▂▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.92222</td></tr><tr><td>test/epoch_loss</td><td>0.22225</td></tr><tr><td>test/f1-score</td><td>0.91358</td></tr><tr><td>test/precision</td><td>0.94872</td></tr><tr><td>test/recall</td><td>0.88095</td></tr><tr><td>train/batch_loss</td><td>0.01037</td></tr><tr><td>train/epoch_acc</td><td>0.98649</td></tr><tr><td>train/epoch_loss</td><td>0.04606</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">stoic-sweep-14</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/sn7rpzsv' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/sn7rpzsv</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_150639-sn7rpzsv/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: m64aehal with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_151243-m64aehal</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/m64aehal' target=\"_blank\">rare-sweep-15</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/m64aehal' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/m64aehal</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁█▃▅█▇▄▇██</td></tr><tr><td>test/epoch_loss</td><td>█▁▆▃▂▄█▄▃▃</td></tr><tr><td>test/f1-score</td><td>▃█▁▃██▃▇██</td></tr><tr><td>test/precision</td><td>▁▅██▆▄▅▆▆▆</td></tr><tr><td>test/recall</td><td>▅█▁▂▇█▃▆▆▇</td></tr><tr><td>train/batch_loss</td><td>▄▅▃▅▂▇▂▄▂▃█▄▂▃▁▃▄▁▂▁▁▁▃▁▂▁▁▂▁▂▁▁▁▁▁▁▁▅▁▂</td></tr><tr><td>train/epoch_acc</td><td>▁▃▄▆▆▇▇▇██</td></tr><tr><td>train/epoch_loss</td><td>█▆▅▄▃▂▂▂▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.86667</td></tr><tr><td>test/epoch_loss</td><td>0.52816</td></tr><tr><td>test/f1-score</td><td>0.85</td></tr><tr><td>test/precision</td><td>0.85</td></tr><tr><td>test/recall</td><td>0.85</td></tr><tr><td>train/batch_loss</td><td>0.0016</td></tr><tr><td>train/epoch_acc</td><td>0.99509</td></tr><tr><td>train/epoch_loss</td><td>0.02902</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">rare-sweep-15</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/m64aehal' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/m64aehal</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_151243-m64aehal/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 71er7icc with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 32\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_151846-71er7icc</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/71er7icc' target=\"_blank\">winter-sweep-16</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/71er7icc' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/71er7icc</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▃▅▆▇▇▇███</td></tr><tr><td>test/epoch_loss</td><td>█▇▅▄▄▃▃▂▂▁</td></tr><tr><td>test/f1-score</td><td>▁▃▆▆▇▇▇███</td></tr><tr><td>test/precision</td><td>▁▃▆▅▆▇▇███</td></tr><tr><td>test/recall</td><td>▁▃▆▇▇▇▇███</td></tr><tr><td>train/batch_loss</td><td>▇█▆▆▆▆▅▇▅▇▅▅▅▅▅▄▄▅▅▄▃▃▄▃▂▃▄▃▂▄▂▃▁▁▃▄▃▂▂▃</td></tr><tr><td>train/epoch_acc</td><td>▁▃▄▆▇▇▇█▇█</td></tr><tr><td>train/epoch_loss</td><td>█▇▆▅▄▃▃▂▂▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.83333</td></tr><tr><td>test/epoch_loss</td><td>0.5844</td></tr><tr><td>test/f1-score</td><td>0.85437</td></tr><tr><td>test/precision</td><td>0.88</td></tr><tr><td>test/recall</td><td>0.83019</td></tr><tr><td>train/batch_loss</td><td>0.60478</td></tr><tr><td>train/epoch_acc</td><td>0.82801</td></tr><tr><td>train/epoch_loss</td><td>0.58084</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">winter-sweep-16</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/71er7icc' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/71er7icc</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_151846-71er7icc/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: k0hwgfjk with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_152419-k0hwgfjk</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k0hwgfjk' target=\"_blank\">sleek-sweep-17</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k0hwgfjk' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k0hwgfjk</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▃▁█▆▆▆█▅▅█</td></tr><tr><td>test/epoch_loss</td><td>▅█▂▂▁▁▁▁▁▁</td></tr><tr><td>test/f1-score</td><td>▂▁█▇▇▇█▅▅█</td></tr><tr><td>test/precision</td><td>▇▃█▄▁▁█▁▁█</td></tr><tr><td>test/recall</td><td>▁▁▆▆██▆▆▆▆</td></tr><tr><td>train/batch_loss</td><td>▆█▄▅▃▃▇▁▁▁▁▁▁▁▂▁▂▂▁▁▁▁▁▂▁▄▃▁▁▂▂▁▁▃▁▁▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▅██████▇█</td></tr><tr><td>train/epoch_loss</td><td>█▄▁▁▁▁▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.91111</td></tr><tr><td>test/epoch_loss</td><td>0.2015</td></tr><tr><td>test/f1-score</td><td>0.89744</td></tr><tr><td>test/precision</td><td>0.94595</td></tr><tr><td>test/recall</td><td>0.85366</td></tr><tr><td>train/batch_loss</td><td>0.00723</td></tr><tr><td>train/epoch_acc</td><td>0.98157</td></tr><tr><td>train/epoch_loss</td><td>0.07856</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">sleek-sweep-17</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k0hwgfjk' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k0hwgfjk</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_152419-k0hwgfjk/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: hb00vz7w with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_152956-hb00vz7w</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hb00vz7w' target=\"_blank\">smart-sweep-18</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hb00vz7w' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hb00vz7w</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▅▆▇▆▇▆▆▆█</td></tr><tr><td>test/epoch_loss</td><td>█▅▅▃▃▁▃▄▂▁</td></tr><tr><td>test/f1-score</td><td>▁▄▆▇▆▇▆▆▆█</td></tr><tr><td>test/precision</td><td>▁█▆▆▂▄▆█▆▄</td></tr><tr><td>test/recall</td><td>▁▂▅▆▇▇▅▄▅█</td></tr><tr><td>train/batch_loss</td><td>▅▅▄▆▅▅▂▂▂▃▂▅▃▂▂▁▂▃▂▁█▁▁▂▁▁▁▁▁▁▁▁▁▂▂▁▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▄▅▇▇▇▇▇██</td></tr><tr><td>train/epoch_loss</td><td>█▆▄▃▂▂▂▂▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.9</td></tr><tr><td>test/epoch_loss</td><td>0.24883</td></tr><tr><td>test/f1-score</td><td>0.89888</td></tr><tr><td>test/precision</td><td>0.93023</td></tr><tr><td>test/recall</td><td>0.86957</td></tr><tr><td>train/batch_loss</td><td>0.01547</td></tr><tr><td>train/epoch_acc</td><td>0.98771</td></tr><tr><td>train/epoch_loss</td><td>0.04667</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">smart-sweep-18</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hb00vz7w' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hb00vz7w</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230404_152956-hb00vz7w/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 0bg49if5 with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n"
]
}
],
"source": [
"wandb.agent(sweep_id, train, count=60)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0p3H2-jRjJIG",
"metadata": {
"id": "0p3H2-jRjJIG"
},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"220d541b7b4347b08a7fc9b8feb09f98": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"32a491d3031c476da2d8687861ccbf7d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9e4d93cf62094092809fee70ba7885f5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a6a0d4738d434aa1b734c8407dde4e74": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d8ec9c75b1f14686a6734b86eea24bb7",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_220d541b7b4347b08a7fc9b8feb09f98",
"value": 1
}
},
"d510d413136c4231bc720200145a5d77": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "LabelModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "LabelModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "LabelView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_32a491d3031c476da2d8687861ccbf7d",
"placeholder": "",
"style": "IPY_MODEL_ff00a24840224f8d9cce9ade4e77ac0c",
"value": "0.001 MB of 0.001 MB uploaded (0.000 MB deduped)\r"
}
},
"d8ec9c75b1f14686a6734b86eea24bb7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e840ed026b3342718c0aa068f81d93f3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "VBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "VBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "VBoxView",
"box_style": "",
"children": [
"IPY_MODEL_d510d413136c4231bc720200145a5d77",
"IPY_MODEL_a6a0d4738d434aa1b734c8407dde4e74"
],
"layout": "IPY_MODEL_9e4d93cf62094092809fee70ba7885f5"
}
},
"ff00a24840224f8d9cce9ade4e77ac0c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}