master-thesis/classification/classifier/classifier_hyp.ipynb

3370 lines
158 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "CkZsS-w4atkF",
"outputId": "f3a78987-dbd2-4771-92ca-69cdf97d0571"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Mounted at /content/drive\n"
]
}
],
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
],
"id": "CkZsS-w4atkF"
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "zzWoPgRpd1xn",
"outputId": "daa8edca-5ddf-4ac8-cb91-b4e77f9cc858"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
"Collecting wandb\n",
" Downloading wandb-0.14.0-py3-none-any.whl (2.0 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m27.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting sentry-sdk>=1.0.0\n",
" Downloading sentry_sdk-1.19.0-py2.py3-none-any.whl (199 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m199.2/199.2 KB\u001b[0m \u001b[31m25.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.9/dist-packages (from wandb) (67.6.1)\n",
"Requirement already satisfied: protobuf!=4.21.0,<5,>=3.15.0 in /usr/local/lib/python3.9/dist-packages (from wandb) (3.20.3)\n",
"Requirement already satisfied: psutil>=5.0.0 in /usr/local/lib/python3.9/dist-packages (from wandb) (5.9.4)\n",
"Requirement already satisfied: requests<3,>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from wandb) (2.27.1)\n",
"Collecting GitPython!=3.1.29,>=1.0.0\n",
" Downloading GitPython-3.1.31-py3-none-any.whl (184 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m184.3/184.3 KB\u001b[0m \u001b[31m22.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: appdirs>=1.4.3 in /usr/local/lib/python3.9/dist-packages (from wandb) (1.4.4)\n",
"Collecting docker-pycreds>=0.4.0\n",
" Downloading docker_pycreds-0.4.0-py2.py3-none-any.whl (9.0 kB)\n",
"Collecting setproctitle\n",
" Downloading setproctitle-1.3.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30 kB)\n",
"Requirement already satisfied: Click!=8.0.0,>=7.0 in /usr/local/lib/python3.9/dist-packages (from wandb) (8.1.3)\n",
"Requirement already satisfied: PyYAML in /usr/local/lib/python3.9/dist-packages (from wandb) (6.0)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.9/dist-packages (from wandb) (4.5.0)\n",
"Collecting pathtools\n",
" Downloading pathtools-0.1.2.tar.gz (11 kB)\n",
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"Requirement already satisfied: six>=1.4.0 in /usr/local/lib/python3.9/dist-packages (from docker-pycreds>=0.4.0->wandb) (1.16.0)\n",
"Collecting gitdb<5,>=4.0.1\n",
" Downloading gitdb-4.0.10-py3-none-any.whl (62 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.7/62.7 KB\u001b[0m \u001b[31m8.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests<3,>=2.0.0->wandb) (3.4)\n",
"Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests<3,>=2.0.0->wandb) (2.0.12)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests<3,>=2.0.0->wandb) (2022.12.7)\n",
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests<3,>=2.0.0->wandb) (1.26.15)\n",
"Collecting smmap<6,>=3.0.1\n",
" Downloading smmap-5.0.0-py3-none-any.whl (24 kB)\n",
"Building wheels for collected packages: pathtools\n",
" Building wheel for pathtools (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for pathtools: filename=pathtools-0.1.2-py3-none-any.whl size=8807 sha256=e0132d67db355152a3925f1b0367a996c977716084c67122838eac002d321662\n",
" Stored in directory: /root/.cache/pip/wheels/b7/0a/67/ada2a22079218c75a88361c0782855cc72aebc4d18d0289d05\n",
"Successfully built pathtools\n",
"Installing collected packages: pathtools, smmap, setproctitle, sentry-sdk, docker-pycreds, gitdb, GitPython, wandb\n",
"Successfully installed GitPython-3.1.31 docker-pycreds-0.4.0 gitdb-4.0.10 pathtools-0.1.2 sentry-sdk-1.19.0 setproctitle-1.3.2 smmap-5.0.0 wandb-0.14.0\n"
]
}
],
"source": [
"!pip install wandb"
],
"id": "zzWoPgRpd1xn"
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 121
},
"id": "747ddcf2",
"outputId": "ebf3b723-ac7b-41ba-a9a6-e2e82e907879"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.Javascript object>"
],
"application/javascript": [
"\n",
" window._wandbApiKey = new Promise((resolve, reject) => {\n",
" function loadScript(url) {\n",
" return new Promise(function(resolve, reject) {\n",
" let newScript = document.createElement(\"script\");\n",
" newScript.onerror = reject;\n",
" newScript.onload = resolve;\n",
" document.body.appendChild(newScript);\n",
" newScript.src = url;\n",
" });\n",
" }\n",
" loadScript(\"https://cdn.jsdelivr.net/npm/postmate/build/postmate.min.js\").then(() => {\n",
" const iframe = document.createElement('iframe')\n",
" iframe.style.cssText = \"width:0;height:0;border:none\"\n",
" document.body.appendChild(iframe)\n",
" const handshake = new Postmate({\n",
" container: iframe,\n",
" url: 'https://wandb.ai/authorize'\n",
" });\n",
" const timeout = setTimeout(() => reject(\"Couldn't auto authenticate\"), 5000)\n",
" handshake.then(function(child) {\n",
" child.on('authorize', data => {\n",
" clearTimeout(timeout)\n",
" resolve(data)\n",
" });\n",
" });\n",
" })\n",
" });\n",
" "
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Logging into wandb.ai. (Learn how to deploy a W&B server locally: https://wandb.me/wandb-server)\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: You can find your API key in your browser here: https://wandb.ai/authorize\n",
"wandb: Paste an API key from your profile and hit enter, or press ctrl+c to quit:"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" ··········\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Appending key for api.wandb.ai to your netrc file: /root/.netrc\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"True"
]
},
"metadata": {},
"execution_count": 3
}
],
"source": [
"import wandb\n",
"\n",
"wandb.login()"
],
"id": "747ddcf2"
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "c37343d6"
},
"outputs": [],
"source": [
"import torch\n",
"import torch.optim as optim\n",
"import torch.nn.functional as F\n",
"import torch.nn as nn\n",
"from torchvision import datasets, transforms\n",
"from torchvision.models import resnet50, ResNet50_Weights\n",
"from torch.utils.data import Dataset, DataLoader, random_split, SubsetRandomSampler\n",
"import numpy as np\n",
"import os\n",
"import time\n",
"import copy\n",
"import random\n",
"from sklearn import metrics\n",
"\n",
"torch.manual_seed(42)\n",
"np.random.seed(42)\n",
"\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")"
],
"id": "c37343d6"
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "17b25dc7"
},
"outputs": [],
"source": [
"def build_dataset(batch_size): \n",
" data_transforms = {\n",
" 'train': transforms.Compose([\n",
" transforms.RandomResizedCrop(224),\n",
" transforms.RandomHorizontalFlip(),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n",
" ]),\n",
" 'test': transforms.Compose([\n",
" transforms.Resize(256),\n",
" transforms.CenterCrop(224),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n",
" ]),\n",
" }\n",
"\n",
" data_dir = '/content/drive/MyDrive/plantsdata'\n",
" dataset = datasets.ImageFolder(os.path.join(data_dir))\n",
"\n",
" # 90/10 split\n",
" train_dataset, test_dataset = random_split(dataset, [0.9, 0.1])\n",
"\n",
" train_dataset.dataset.transform = data_transforms['train']\n",
" test_dataset.dataset.transform = data_transforms['test']\n",
"\n",
" train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,\n",
" shuffle=True, num_workers=4)\n",
" test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size,\n",
" shuffle=True, num_workers=4)\n",
"\n",
" dataloaders = {'train': train_loader, 'test': test_loader}\n",
" dataset_size = len(dataset)\n",
" dataset_sizes = {'train': len(train_dataset), 'test': len(test_dataset)}\n",
" class_names = dataset.classes\n",
"\n",
" return (dataloaders, dataset_sizes)\n",
"\n",
"def build_network():\n",
" network = resnet50(weights=ResNet50_Weights.DEFAULT)\n",
" num_ftrs = network.fc.in_features\n",
"\n",
" # Add linear layer with number of classes\n",
" network.fc = nn.Linear(num_ftrs, 2)\n",
"\n",
" return network.to(device)\n",
"\n",
"def build_optimizer(network, optimizer, learning_rate, beta_one, beta_two, eps):\n",
" if optimizer == \"sgd\":\n",
" optimizer = optim.SGD(network.parameters(),\n",
" lr=learning_rate, momentum=0.9)\n",
" elif optimizer == \"adam\":\n",
" optimizer = optim.Adam(network.parameters(),\n",
" lr=learning_rate,\n",
" betas=(beta_one, beta_two),\n",
" eps=eps)\n",
" return optimizer\n",
"\n",
"def train_epoch(network, loader, optimizer, criterion, scheduler, dataset_sizes):\n",
" network.train()\n",
" running_loss = 0.0\n",
" running_corrects = 0\n",
" for _, (data, target) in enumerate(loader):\n",
" data, target = data.to(device), target.to(device)\n",
" optimizer.zero_grad()\n",
"\n",
" # ➡ Forward pass\n",
" #loss = F.nll_loss(network(data), target)\n",
" with torch.set_grad_enabled(True):\n",
" outputs = network(data)\n",
" _, preds = torch.max(outputs, 1)\n",
" loss = criterion(outputs, target)\n",
" \n",
" #cumu_loss += loss.item()\n",
" \n",
" running_loss += loss.item() * data.size(0)\n",
" running_corrects += torch.sum(preds == target.data)\n",
"\n",
" # ⬅ Backward pass + weight update\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" wandb.log({'train/batch_loss': loss.item()})\n",
"\n",
" scheduler.step()\n",
"\n",
" epoch_loss = running_loss / dataset_sizes['train']\n",
" epoch_acc = running_corrects.double() / dataset_sizes['train']\n",
" \n",
" return (epoch_loss, epoch_acc)\n",
"\n",
"def test(network, loader, optimizer, criterion, dataset_sizes):\n",
" network.eval()\n",
" confusion = torch.empty([0, 1])\n",
" confusion = confusion.to(device)\n",
" running_loss = 0.0\n",
" test_corrects = 0\n",
" for _, (data, target) in enumerate(loader):\n",
" data, target = data.to(device), target.to(device)\n",
" optimizer.zero_grad()\n",
"\n",
" # ➡ Forward pass\n",
" with torch.set_grad_enabled(False):\n",
" outputs = network(data)\n",
" _, preds = torch.max(outputs, 1)\n",
" loss = criterion(outputs, target)\n",
"\n",
" running_loss += loss.item() * data.size(0)\n",
" test_corrects += torch.sum(preds == target.data)\n",
" \n",
" confusion = torch.cat((confusion, preds[:, None] / target.data[:, None]))\n",
"\n",
" tp = torch.sum(confusion == 1).item()\n",
" fp = torch.sum(confusion == float('inf')).item()\n",
" tn = torch.sum(torch.isnan(confusion)).item()\n",
" fn = torch.sum(confusion == 0).item()\n",
" \n",
" precision = tp / (tp + fp)\n",
" recall = tp / (tp + fn)\n",
" f = 2 * ((precision * recall) / (precision + recall))\n",
" \n",
" epoch_loss = running_loss / dataset_sizes['test']\n",
" epoch_acc = test_corrects.double() / dataset_sizes['test']\n",
" \n",
" return (epoch_loss, epoch_acc, precision, recall, f)"
],
"id": "17b25dc7"
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "5eff68bf"
},
"outputs": [],
"source": [
"def train(config=None):\n",
" # Initialize a new wandb run\n",
" with wandb.init(config=config):\n",
" # If called by wandb.agent, as below,\n",
" # this config will be set by Sweep Controller\n",
" config = wandb.config\n",
"\n",
" (dataloaders, dataset_sizes) = build_dataset(config.batch_size)\n",
" network = build_network()\n",
" optimizer = build_optimizer(network, config.optimizer, config.learning_rate, config.beta_one,\n",
" config.beta_two, config.eps)\n",
" criterion = nn.CrossEntropyLoss()\n",
" # Decay LR by a factor of 0.1 every 7 epochs\n",
" exp_lr_scheduler = optim.lr_scheduler.StepLR(optimizer, config.step_size, config.gamma)\n",
"\n",
" for epoch in range(config.epochs): \n",
" (epoch_loss, epoch_acc) = train_epoch(network, dataloaders['train'], optimizer,\n",
" criterion, exp_lr_scheduler,\n",
" dataset_sizes)\n",
" wandb.log({\"epoch\": epoch, 'train/epoch_loss': epoch_loss, 'train/epoch_acc': epoch_acc})\n",
" \n",
" (test_loss, test_acc, test_precision, test_recall, test_f) = test(network, dataloaders['test'],\n",
" optimizer, criterion,\n",
" dataset_sizes)\n",
" wandb.log({'test/epoch_loss': test_loss, 'test/epoch_acc': test_acc,\n",
" 'test/precision': test_precision, 'test/recall': test_recall,\n",
" 'test/f1-score': test_f})"
],
"id": "5eff68bf"
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "732a83df"
},
"outputs": [],
"source": [
"sweep_config = {\n",
" 'method': 'random'\n",
"}\n",
"\n",
"metric = {\n",
" 'name': 'test/epoch_acc',\n",
" 'goal': 'maximize' \n",
"}\n",
"\n",
"sweep_config['metric'] = metric\n",
"\n",
"parameters_dict = {\n",
" 'optimizer': {\n",
" 'values': ['adam', 'sgd']\n",
" },\n",
"}\n",
"\n",
"sweep_config['parameters'] = parameters_dict\n",
"\n",
"parameters_dict.update({\n",
" 'epochs': {\n",
" 'value': 10},\n",
" 'batch_size': {\n",
" 'values': [4, 8, 16, 32, 64]},\n",
" 'learning_rate': {\n",
" 'values': [0.1, 0.01, 0.003, 0.001, 0.0003, 0.0001]},\n",
" 'step_size': {\n",
" 'values': [2, 3, 5, 7]},\n",
" 'gamma': {\n",
" 'values': [0.1, 0.5]},\n",
" 'beta_one': {\n",
" 'values': [0.9, 0.99]},\n",
" 'beta_two': {\n",
" 'values': [0.5, 0.9, 0.99, 0.999]},\n",
" 'eps': {\n",
" 'values': [1e-08, 0.1, 1]}\n",
"})"
],
"id": "732a83df"
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "9a01fef6",
"outputId": "dd802f5b-fd67-4e16-c042-f7fdbe65d568"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Create sweep with ID: 9681wnh0\n",
"Sweep URL: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0\n"
]
}
],
"source": [
"sweep_id = wandb.sweep(sweep_config, project=\"pytorch-sweeps-demo\")"
],
"id": "9a01fef6"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000,
"referenced_widgets": [
"e840ed026b3342718c0aa068f81d93f3",
"d510d413136c4231bc720200145a5d77",
"a6a0d4738d434aa1b734c8407dde4e74",
"9e4d93cf62094092809fee70ba7885f5",
"32a491d3031c476da2d8687861ccbf7d",
"ff00a24840224f8d9cce9ade4e77ac0c",
"d8ec9c75b1f14686a6734b86eea24bb7",
"220d541b7b4347b08a7fc9b8feb09f98"
]
},
"id": "e80d1730",
"outputId": "fb105ba8-6c50-4e19-9d02-88a9e8357bc0"
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: pw52k3j3 with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33me1527193\u001b[0m (\u001b[33mflower-classification\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_135456-pw52k3j3</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pw52k3j3' target=\"_blank\">snowy-sweep-1</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pw52k3j3' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pw52k3j3</a>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.9/dist-packages/torch/utils/data/dataloader.py:561: UserWarning: This DataLoader will create 4 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.\n",
" warnings.warn(_create_warning_msg(\n",
"Downloading: \"https://download.pytorch.org/models/resnet50-11ad3fa6.pth\" to /root/.cache/torch/hub/checkpoints/resnet50-11ad3fa6.pth\n",
"100%|██████████| 97.8M/97.8M [00:00<00:00, 236MB/s]\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"VBox(children=(Label(value='0.001 MB of 0.001 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "e840ed026b3342718c0aa068f81d93f3"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▅▆▆██▇▇▇█</td></tr><tr><td>test/epoch_loss</td><td>█▅▂▂▂▂▁▁▂▂</td></tr><tr><td>test/f1-score</td><td>▁▆▇▇███▇▇█</td></tr><tr><td>test/precision</td><td>▁▄▅▅█▇▆▇▅▇</td></tr><tr><td>test/recall</td><td>▁▇▇▇▆▇█▆█▇</td></tr><tr><td>train/batch_loss</td><td>▇▆█▅▅▆▆▆▅▃▄▅▄▄▄▅▃█▄█▃▄▂▁▄▃▁▆▅▁▄▆▂▄▂▂▃▄▆▄</td></tr><tr><td>train/epoch_acc</td><td>▁▆▆▇█▇██▇█</td></tr><tr><td>train/epoch_loss</td><td>█▅▃▂▁▂▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.81111</td></tr><tr><td>test/epoch_loss</td><td>0.60187</td></tr><tr><td>test/f1-score</td><td>0.8172</td></tr><tr><td>test/precision</td><td>0.77551</td></tr><tr><td>test/recall</td><td>0.86364</td></tr><tr><td>train/batch_loss</td><td>0.5635</td></tr><tr><td>train/epoch_acc</td><td>0.77273</td></tr><tr><td>train/epoch_loss</td><td>0.59496</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">snowy-sweep-1</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pw52k3j3' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pw52k3j3</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_135456-pw52k3j3/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: ea718wsd with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 32\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_140117-ea718wsd</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ea718wsd' target=\"_blank\">splendid-sweep-2</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ea718wsd' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ea718wsd</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▃▆█</td></tr><tr><td>test/epoch_acc</td><td>▁▁▁</td></tr><tr><td>test/epoch_loss</td><td>█▁▁</td></tr><tr><td>test/f1-score</td><td>▁▁▁</td></tr><tr><td>test/precision</td><td>▁▁▁</td></tr><tr><td>test/recall</td><td>▁▁▁</td></tr><tr><td>train/batch_loss</td><td>▁▁█▁▁▂▁▁▁▁▂▂▁▁▃▁▁▂▁▁▁▁▂▂▁▁▁▂▁▁▂▁▁▁▁▁▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▃▁▇█</td></tr><tr><td>train/epoch_loss</td><td>█▆▃▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>3</td></tr><tr><td>test/epoch_acc</td><td>0.42222</td></tr><tr><td>test/epoch_loss</td><td>109.2288</td></tr><tr><td>test/f1-score</td><td>0.59375</td></tr><tr><td>test/precision</td><td>0.42222</td></tr><tr><td>test/recall</td><td>1.0</td></tr><tr><td>train/batch_loss</td><td>1.26954</td></tr><tr><td>train/epoch_acc</td><td>0.51474</td></tr><tr><td>train/epoch_loss</td><td>3.22592</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">splendid-sweep-2</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ea718wsd' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ea718wsd</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_140117-ea718wsd/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"Run ea718wsd errored: ZeroDivisionError('float division by zero')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run ea718wsd errored: ZeroDivisionError('float division by zero')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 2igypsdg with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 64\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_140346-2igypsdg</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/2igypsdg' target=\"_blank\">visionary-sweep-3</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/2igypsdg' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/2igypsdg</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>█▅▁▁▁▁▃▁▃▃</td></tr><tr><td>test/epoch_loss</td><td>▁▆█▄▄▄▆▅▃▅</td></tr><tr><td>test/f1-score</td><td>▁█▅▅▅▅▆▅▆▆</td></tr><tr><td>test/precision</td><td>▂█▁▁▁▁▃▁▃▃</td></tr><tr><td>test/recall</td><td>▁█▇▇▇▇▇▇▇▇</td></tr><tr><td>train/batch_loss</td><td>█▇██▄█▆▆▁▂▂▁▃▅▆▄▅▂▇▃▄▁▆▆▁▆▆▄▄▃▃▆▇▂▇█▅▅▁▄</td></tr><tr><td>train/epoch_acc</td><td>▁▄▇█▇█▇▇▆▇</td></tr><tr><td>train/epoch_loss</td><td>█▅▂▂▂▁▁▂▂▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.34444</td></tr><tr><td>test/epoch_loss</td><td>0.72334</td></tr><tr><td>test/f1-score</td><td>0.47788</td></tr><tr><td>test/precision</td><td>0.35065</td></tr><tr><td>test/recall</td><td>0.75</td></tr><tr><td>train/batch_loss</td><td>0.67509</td></tr><tr><td>train/epoch_acc</td><td>0.56265</td></tr><tr><td>train/epoch_loss</td><td>0.67967</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">visionary-sweep-3</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/2igypsdg' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/2igypsdg</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_140346-2igypsdg/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 37tqne1y with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 64\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_140933-37tqne1y</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/37tqne1y' target=\"_blank\">proud-sweep-4</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/37tqne1y' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/37tqne1y</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▆▅▁▅▃▇▇███</td></tr><tr><td>test/epoch_loss</td><td>▂▁█▁▅▁▁▁▁▁</td></tr><tr><td>test/f1-score</td><td>▅▆▄▄▁▇▇███</td></tr><tr><td>test/precision</td><td>█▅▁█▆▅▅▆▇▇</td></tr><tr><td>test/recall</td><td>▃▆▇▃▁▇█▇▇▇</td></tr><tr><td>train/batch_loss</td><td>█▆▅▄▃▂▁▃▇▃▄▄▂▂▅▃▂▄▂▄▂▄▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▆▅▆▆▆████</td></tr><tr><td>train/epoch_loss</td><td>█▄▆▄▄▃▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.84444</td></tr><tr><td>test/epoch_loss</td><td>0.62389</td></tr><tr><td>test/f1-score</td><td>0.84091</td></tr><tr><td>test/precision</td><td>0.84091</td></tr><tr><td>test/recall</td><td>0.84091</td></tr><tr><td>train/batch_loss</td><td>0.00493</td></tr><tr><td>train/epoch_acc</td><td>1.0</td></tr><tr><td>train/epoch_loss</td><td>0.00446</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">proud-sweep-4</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/37tqne1y' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/37tqne1y</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_140933-37tqne1y/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 3co2jpxp with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_141514-3co2jpxp</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3co2jpxp' target=\"_blank\">restful-sweep-5</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3co2jpxp' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3co2jpxp</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▄█▁▃▃▅▆▇▇█</td></tr><tr><td>test/epoch_loss</td><td>▃▁▆▄█▃▄▂▃▃</td></tr><tr><td>test/f1-score</td><td>▂▇▁▂▃▆▅▆▆█</td></tr><tr><td>test/precision</td><td>▅█▁▃▂▄▆▆▆▇</td></tr><tr><td>test/recall</td><td>▁▂█▄██▂▃▄▄</td></tr><tr><td>train/batch_loss</td><td>▄▂▃▄▂▂▃█▂▁▃▁▂▂▁▁▃▁▁▂▁▁▁▂▁▁▁▃▁▁▁▁▁▁▅▁▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▄▅▆▆▆▇███</td></tr><tr><td>train/epoch_loss</td><td>█▆▄▄▃▃▂▂▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.87778</td></tr><tr><td>test/epoch_loss</td><td>0.53854</td></tr><tr><td>test/f1-score</td><td>0.86747</td></tr><tr><td>test/precision</td><td>0.85714</td></tr><tr><td>test/recall</td><td>0.87805</td></tr><tr><td>train/batch_loss</td><td>0.00185</td></tr><tr><td>train/epoch_acc</td><td>0.99631</td></tr><tr><td>train/epoch_loss</td><td>0.01069</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">restful-sweep-5</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3co2jpxp' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3co2jpxp</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_141514-3co2jpxp/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: ppthue5q with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_142101-ppthue5q</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ppthue5q' target=\"_blank\">charmed-sweep-6</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ppthue5q' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ppthue5q</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▄▃▇▆▇███▇</td></tr><tr><td>test/epoch_loss</td><td>█▄▃▅▃▁▁▁▂▂</td></tr><tr><td>test/f1-score</td><td>▁▄▃▆▆▇███▆</td></tr><tr><td>test/precision</td><td>▁▂▂▆▅▅▆▇█▆</td></tr><tr><td>test/recall</td><td>▁█▃▅▃▆▆▅▃▅</td></tr><tr><td>train/batch_loss</td><td>█▃▆▅▇▆▄▃▄▁▄▃▁▁▂▂▁▁▁▁▃▁▁▃▁▁▁▁▁▁▂▁▁▁▂▂▁▃▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▃▆▆▇▇████</td></tr><tr><td>train/epoch_loss</td><td>█▆▄▄▂▂▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.87778</td></tr><tr><td>test/epoch_loss</td><td>0.24035</td></tr><tr><td>test/f1-score</td><td>0.86076</td></tr><tr><td>test/precision</td><td>0.85</td></tr><tr><td>test/recall</td><td>0.87179</td></tr><tr><td>train/batch_loss</td><td>0.03008</td></tr><tr><td>train/epoch_acc</td><td>0.99386</td></tr><tr><td>train/epoch_loss</td><td>0.02099</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">charmed-sweep-6</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ppthue5q' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ppthue5q</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_142101-ppthue5q/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: eakg0nsy with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_142642-eakg0nsy</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eakg0nsy' target=\"_blank\">still-sweep-7</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eakg0nsy' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eakg0nsy</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▆▅▃█▆▅▆▆▆</td></tr><tr><td>test/epoch_loss</td><td>▆▄▃▆▁▇█▇██</td></tr><tr><td>test/f1-score</td><td>▁▆▅▃█▅▄▆▆▅</td></tr><tr><td>test/precision</td><td>▁▆▁▆▇█▅▇▇▆</td></tr><tr><td>test/recall</td><td>▃▅█▁▆▃▃▄▄▄</td></tr><tr><td>train/batch_loss</td><td>▄▅▃▄▅▆▆█▄▂▂▃▂▁▁▂▁▁▂▁▃▁▁▁▁▁▂▃▁▁▁▁▁▁▁▁▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▄▅▆▇▇▇███</td></tr><tr><td>train/epoch_loss</td><td>█▆▅▃▂▂▂▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.85556</td></tr><tr><td>test/epoch_loss</td><td>0.44089</td></tr><tr><td>test/f1-score</td><td>0.87379</td></tr><tr><td>test/precision</td><td>0.9375</td></tr><tr><td>test/recall</td><td>0.81818</td></tr><tr><td>train/batch_loss</td><td>0.01161</td></tr><tr><td>train/epoch_acc</td><td>0.99386</td></tr><tr><td>train/epoch_loss</td><td>0.02177</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">still-sweep-7</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eakg0nsy' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eakg0nsy</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_142642-eakg0nsy/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: jucrzfat with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 16\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_143240-jucrzfat</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/jucrzfat' target=\"_blank\">crimson-sweep-8</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/jucrzfat' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/jucrzfat</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▆▅▆▇█████</td></tr><tr><td>test/epoch_loss</td><td>█▂▁▁▁▁▁▁▁▁</td></tr><tr><td>test/f1-score</td><td>▁▂▄▅▆▇▇███</td></tr><tr><td>test/precision</td><td>▁▇▅▆▆█████</td></tr><tr><td>test/recall</td><td>█▁▄▅▅▅▅▅▅▅</td></tr><tr><td>train/batch_loss</td><td>▆▅▄▇▄▄▅█▆▄▃▅▄▃▅▂▄▄▄▃▃▃▄▂▄▃▄▅▁▃▃▂▂▂▂▃▃▂▁▃</td></tr><tr><td>train/epoch_acc</td><td>▁▄▅▅▇▇▇▇██</td></tr><tr><td>train/epoch_loss</td><td>█▅▄▃▂▂▂▂▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.78889</td></tr><tr><td>test/epoch_loss</td><td>0.46169</td></tr><tr><td>test/f1-score</td><td>0.7957</td></tr><tr><td>test/precision</td><td>0.84091</td></tr><tr><td>test/recall</td><td>0.7551</td></tr><tr><td>train/batch_loss</td><td>0.63008</td></tr><tr><td>train/epoch_acc</td><td>0.77396</td></tr><tr><td>train/epoch_loss</td><td>0.4697</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">crimson-sweep-8</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/jucrzfat' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/jucrzfat</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_143240-jucrzfat/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: bhks7msu with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 32\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_143816-bhks7msu</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bhks7msu' target=\"_blank\">lilac-sweep-9</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bhks7msu' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bhks7msu</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▃▃█▁▆▆▃▃█</td></tr><tr><td>test/epoch_loss</td><td>█▅▂▂▁▁▁▁▁▁</td></tr><tr><td>test/f1-score</td><td>▁▄▄█▂▆▆▄▄█</td></tr><tr><td>test/precision</td><td>▂▃▃█▁▆▆▃▃█</td></tr><tr><td>test/recall</td><td>▁█████████</td></tr><tr><td>train/batch_loss</td><td>██▇▅▅▄▄▅▅▂▅▂▃▄▃▅▂▃▃▆▂▃▂▃▃▂▂▅▃▂▁▂▂▅▄▄▃▃▁▅</td></tr><tr><td>train/epoch_acc</td><td>▁▅▇███▇███</td></tr><tr><td>train/epoch_loss</td><td>█▅▃▂▁▁▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.85556</td></tr><tr><td>test/epoch_loss</td><td>0.54705</td></tr><tr><td>test/f1-score</td><td>0.86022</td></tr><tr><td>test/precision</td><td>0.78431</td></tr><tr><td>test/recall</td><td>0.95238</td></tr><tr><td>train/batch_loss</td><td>0.61833</td></tr><tr><td>train/epoch_acc</td><td>0.8059</td></tr><tr><td>train/epoch_loss</td><td>0.558</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">lilac-sweep-9</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bhks7msu' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bhks7msu</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_143816-bhks7msu/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: ezctslju with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 32\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_144350-ezctslju</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ezctslju' target=\"_blank\">different-sweep-10</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ezctslju' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ezctslju</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▂▇███▇▇▄▇</td></tr><tr><td>test/epoch_loss</td><td>█▆▅▃▂▂▁▁▁▁</td></tr><tr><td>test/f1-score</td><td>▁▅▆███▆▆▁▆</td></tr><tr><td>test/precision</td><td>▂▁██████▇█</td></tr><tr><td>test/recall</td><td>▅█▃▅▅▅▃▃▁▃</td></tr><tr><td>train/batch_loss</td><td>███▇▇▆▆▇▆▆▆▆▅▅▅▅▃▅▃▅▃▃▂▄▃▂▄▂▂▁▂▃▃▃▄▄▃▅▃▄</td></tr><tr><td>train/epoch_acc</td><td>▁▅▇▇▇█▇███</td></tr><tr><td>train/epoch_loss</td><td>█▆▅▄▂▂▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.75556</td></tr><tr><td>test/epoch_loss</td><td>0.53376</td></tr><tr><td>test/f1-score</td><td>0.76596</td></tr><tr><td>test/precision</td><td>0.76596</td></tr><tr><td>test/recall</td><td>0.76596</td></tr><tr><td>train/batch_loss</td><td>0.52814</td></tr><tr><td>train/epoch_acc</td><td>0.86118</td></tr><tr><td>train/epoch_loss</td><td>0.46213</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">different-sweep-10</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ezctslju' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ezctslju</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_144350-ezctslju/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: gxvcwlwu with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 64\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_144922-gxvcwlwu</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gxvcwlwu' target=\"_blank\">glowing-sweep-11</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gxvcwlwu' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gxvcwlwu</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▂▅▆▆▆▇███</td></tr><tr><td>test/epoch_loss</td><td>█▇▅▄▄▃▂▂▂▁</td></tr><tr><td>test/f1-score</td><td>▁▂▅▆▇▇▇███</td></tr><tr><td>test/precision</td><td>▁▂▄▅▆▆▇███</td></tr><tr><td>test/recall</td><td>▁▄▇███████</td></tr><tr><td>train/batch_loss</td><td>▇█▆▇▇▆▆▆▆▅▅▆▅▅▃▅▅▄▅▅▃▄▄▂▃▃▃▃▃▃▃▂▁▃▃▃▂▃▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▄▅▆▇▇▇███</td></tr><tr><td>train/epoch_loss</td><td>█▇▆▄▄▃▂▂▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.86667</td></tr><tr><td>test/epoch_loss</td><td>0.53756</td></tr><tr><td>test/f1-score</td><td>0.86364</td></tr><tr><td>test/precision</td><td>0.80851</td></tr><tr><td>test/recall</td><td>0.92683</td></tr><tr><td>train/batch_loss</td><td>0.52993</td></tr><tr><td>train/epoch_acc</td><td>0.80098</td></tr><tr><td>train/epoch_loss</td><td>0.55775</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">glowing-sweep-11</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gxvcwlwu' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gxvcwlwu</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_144922-gxvcwlwu/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: o4ceynjw with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 64\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_145500-o4ceynjw</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o4ceynjw' target=\"_blank\">chocolate-sweep-12</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o4ceynjw' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o4ceynjw</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▆▄▇▇█████</td></tr><tr><td>test/epoch_loss</td><td>█▄▄▁▁▁▁▁▁▁</td></tr><tr><td>test/f1-score</td><td>▁▆▄▇▇█████</td></tr><tr><td>test/precision</td><td>▂▁█▆██████</td></tr><tr><td>test/recall</td><td>▁█▃█▇█████</td></tr><tr><td>train/batch_loss</td><td>██▇▆▅▅▄▄▃▃▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▅▇███████</td></tr><tr><td>train/epoch_loss</td><td>█▅▃▁▁▁▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.97778</td></tr><tr><td>test/epoch_loss</td><td>0.13521</td></tr><tr><td>test/f1-score</td><td>0.97826</td></tr><tr><td>test/precision</td><td>1.0</td></tr><tr><td>test/recall</td><td>0.95745</td></tr><tr><td>train/batch_loss</td><td>0.00408</td></tr><tr><td>train/epoch_acc</td><td>1.0</td></tr><tr><td>train/epoch_loss</td><td>0.00712</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">chocolate-sweep-12</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o4ceynjw' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o4ceynjw</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_145500-o4ceynjw/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: w0els6yx with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_150038-w0els6yx</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/w0els6yx' target=\"_blank\">glorious-sweep-13</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/w0els6yx' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/w0els6yx</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▂▁▄▄▇▆▆▇█▇</td></tr><tr><td>test/epoch_loss</td><td>█▆▅▆▃▂▂▂▂▁</td></tr><tr><td>test/f1-score</td><td>▁▁▅▄▇▇▇███</td></tr><tr><td>test/precision</td><td>▂▁▄▃▆▆▆▆█▇</td></tr><tr><td>test/recall</td><td>▁▂▅▄▆▆▇█▆█</td></tr><tr><td>train/batch_loss</td><td>█▆▆▆▆▆▆▃▇█▄▄▇█▆▅▄▇▇▃▄▄▅▂▃▄▆▆▁▆▂▄▄▅▅▅▄▆▄▄</td></tr><tr><td>train/epoch_acc</td><td>▁▃▄▄▆▆▇▇▇█</td></tr><tr><td>train/epoch_loss</td><td>█▇▆▅▃▃▂▂▂▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.68889</td></tr><tr><td>test/epoch_loss</td><td>0.66123</td></tr><tr><td>test/f1-score</td><td>0.65854</td></tr><tr><td>test/precision</td><td>0.64286</td></tr><tr><td>test/recall</td><td>0.675</td></tr><tr><td>train/batch_loss</td><td>0.60239</td></tr><tr><td>train/epoch_acc</td><td>0.65233</td></tr><tr><td>train/epoch_loss</td><td>0.66732</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">glorious-sweep-13</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/w0els6yx' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/w0els6yx</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_150038-w0els6yx/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: sn7rpzsv with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_150639-sn7rpzsv</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/sn7rpzsv' target=\"_blank\">stoic-sweep-14</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/sn7rpzsv' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/sn7rpzsv</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▃▁▃▆▆▃▆▆▄█</td></tr><tr><td>test/epoch_loss</td><td>█▆▄▁▃▆▃▃▄▁</td></tr><tr><td>test/f1-score</td><td>▄▁▃▇▆▃▆▆▅█</td></tr><tr><td>test/precision</td><td>▃▆▁▂██▂▁▃▇</td></tr><tr><td>test/recall</td><td>▄▁▄█▄▂▇█▅▇</td></tr><tr><td>train/batch_loss</td><td>█▆▇▆▇█▂▆▂▄▃▁▁▁▄▃▄▂▁▁▁▁▁▃▁▁▁▁▁▁▁▁▁▁▁▂▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▄▆▇▇▇▇███</td></tr><tr><td>train/epoch_loss</td><td>█▆▄▃▂▂▂▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.92222</td></tr><tr><td>test/epoch_loss</td><td>0.22225</td></tr><tr><td>test/f1-score</td><td>0.91358</td></tr><tr><td>test/precision</td><td>0.94872</td></tr><tr><td>test/recall</td><td>0.88095</td></tr><tr><td>train/batch_loss</td><td>0.01037</td></tr><tr><td>train/epoch_acc</td><td>0.98649</td></tr><tr><td>train/epoch_loss</td><td>0.04606</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">stoic-sweep-14</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/sn7rpzsv' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/sn7rpzsv</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_150639-sn7rpzsv/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: m64aehal with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_151243-m64aehal</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/m64aehal' target=\"_blank\">rare-sweep-15</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/m64aehal' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/m64aehal</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁█▃▅█▇▄▇██</td></tr><tr><td>test/epoch_loss</td><td>█▁▆▃▂▄█▄▃▃</td></tr><tr><td>test/f1-score</td><td>▃█▁▃██▃▇██</td></tr><tr><td>test/precision</td><td>▁▅██▆▄▅▆▆▆</td></tr><tr><td>test/recall</td><td>▅█▁▂▇█▃▆▆▇</td></tr><tr><td>train/batch_loss</td><td>▄▅▃▅▂▇▂▄▂▃█▄▂▃▁▃▄▁▂▁▁▁▃▁▂▁▁▂▁▂▁▁▁▁▁▁▁▅▁▂</td></tr><tr><td>train/epoch_acc</td><td>▁▃▄▆▆▇▇▇██</td></tr><tr><td>train/epoch_loss</td><td>█▆▅▄▃▂▂▂▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.86667</td></tr><tr><td>test/epoch_loss</td><td>0.52816</td></tr><tr><td>test/f1-score</td><td>0.85</td></tr><tr><td>test/precision</td><td>0.85</td></tr><tr><td>test/recall</td><td>0.85</td></tr><tr><td>train/batch_loss</td><td>0.0016</td></tr><tr><td>train/epoch_acc</td><td>0.99509</td></tr><tr><td>train/epoch_loss</td><td>0.02902</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">rare-sweep-15</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/m64aehal' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/m64aehal</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_151243-m64aehal/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 71er7icc with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 32\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_151846-71er7icc</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/71er7icc' target=\"_blank\">winter-sweep-16</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/71er7icc' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/71er7icc</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▃▅▆▇▇▇███</td></tr><tr><td>test/epoch_loss</td><td>█▇▅▄▄▃▃▂▂▁</td></tr><tr><td>test/f1-score</td><td>▁▃▆▆▇▇▇███</td></tr><tr><td>test/precision</td><td>▁▃▆▅▆▇▇███</td></tr><tr><td>test/recall</td><td>▁▃▆▇▇▇▇███</td></tr><tr><td>train/batch_loss</td><td>▇█▆▆▆▆▅▇▅▇▅▅▅▅▅▄▄▅▅▄▃▃▄▃▂▃▄▃▂▄▂▃▁▁▃▄▃▂▂▃</td></tr><tr><td>train/epoch_acc</td><td>▁▃▄▆▇▇▇█▇█</td></tr><tr><td>train/epoch_loss</td><td>█▇▆▅▄▃▃▂▂▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.83333</td></tr><tr><td>test/epoch_loss</td><td>0.5844</td></tr><tr><td>test/f1-score</td><td>0.85437</td></tr><tr><td>test/precision</td><td>0.88</td></tr><tr><td>test/recall</td><td>0.83019</td></tr><tr><td>train/batch_loss</td><td>0.60478</td></tr><tr><td>train/epoch_acc</td><td>0.82801</td></tr><tr><td>train/epoch_loss</td><td>0.58084</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">winter-sweep-16</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/71er7icc' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/71er7icc</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_151846-71er7icc/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: k0hwgfjk with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_152419-k0hwgfjk</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k0hwgfjk' target=\"_blank\">sleek-sweep-17</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k0hwgfjk' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k0hwgfjk</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▃▁█▆▆▆█▅▅█</td></tr><tr><td>test/epoch_loss</td><td>▅█▂▂▁▁▁▁▁▁</td></tr><tr><td>test/f1-score</td><td>▂▁█▇▇▇█▅▅█</td></tr><tr><td>test/precision</td><td>▇▃█▄▁▁█▁▁█</td></tr><tr><td>test/recall</td><td>▁▁▆▆██▆▆▆▆</td></tr><tr><td>train/batch_loss</td><td>▆█▄▅▃▃▇▁▁▁▁▁▁▁▂▁▂▂▁▁▁▁▁▂▁▄▃▁▁▂▂▁▁▃▁▁▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▅██████▇█</td></tr><tr><td>train/epoch_loss</td><td>█▄▁▁▁▁▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.91111</td></tr><tr><td>test/epoch_loss</td><td>0.2015</td></tr><tr><td>test/f1-score</td><td>0.89744</td></tr><tr><td>test/precision</td><td>0.94595</td></tr><tr><td>test/recall</td><td>0.85366</td></tr><tr><td>train/batch_loss</td><td>0.00723</td></tr><tr><td>train/epoch_acc</td><td>0.98157</td></tr><tr><td>train/epoch_loss</td><td>0.07856</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">sleek-sweep-17</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k0hwgfjk' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k0hwgfjk</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_152419-k0hwgfjk/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: hb00vz7w with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Tracking run with wandb version 0.14.0"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Run data is saved locally in <code>/content/wandb/run-20230404_152956-hb00vz7w</code>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hb00vz7w' target=\"_blank\">smart-sweep-18</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/9681wnh0</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hb00vz7w' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hb00vz7w</a>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▅▆▇▆▇▆▆▆█</td></tr><tr><td>test/epoch_loss</td><td>█▅▅▃▃▁▃▄▂▁</td></tr><tr><td>test/f1-score</td><td>▁▄▆▇▆▇▆▆▆█</td></tr><tr><td>test/precision</td><td>▁█▆▆▂▄▆█▆▄</td></tr><tr><td>test/recall</td><td>▁▂▅▆▇▇▅▄▅█</td></tr><tr><td>train/batch_loss</td><td>▅▅▄▆▅▅▂▂▂▃▂▅▃▂▂▁▂▃▂▁█▁▁▂▁▁▁▁▁▁▁▁▁▂▂▁▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▄▅▇▇▇▇▇██</td></tr><tr><td>train/epoch_loss</td><td>█▆▄▃▂▂▂▂▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.9</td></tr><tr><td>test/epoch_loss</td><td>0.24883</td></tr><tr><td>test/f1-score</td><td>0.89888</td></tr><tr><td>test/precision</td><td>0.93023</td></tr><tr><td>test/recall</td><td>0.86957</td></tr><tr><td>train/batch_loss</td><td>0.01547</td></tr><tr><td>train/epoch_acc</td><td>0.98771</td></tr><tr><td>train/epoch_loss</td><td>0.04667</td></tr></table><br/></div></div>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
" View run <strong style=\"color:#cdcd00\">smart-sweep-18</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hb00vz7w' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hb00vz7w</a><br/>Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"Find logs at: <code>./wandb/run-20230404_152956-hb00vz7w/logs</code>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 0bg49if5 with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n"
]
}
],
"source": [
"wandb.agent(sweep_id, train, count=60)"
],
"id": "e80d1730"
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "0p3H2-jRjJIG"
},
"id": "0p3H2-jRjJIG",
"execution_count": null,
"outputs": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.15"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"e840ed026b3342718c0aa068f81d93f3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "VBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "VBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "VBoxView",
"box_style": "",
"children": [
"IPY_MODEL_d510d413136c4231bc720200145a5d77",
"IPY_MODEL_a6a0d4738d434aa1b734c8407dde4e74"
],
"layout": "IPY_MODEL_9e4d93cf62094092809fee70ba7885f5"
}
},
"d510d413136c4231bc720200145a5d77": {
"model_module": "@jupyter-widgets/controls",
"model_name": "LabelModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "LabelModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "LabelView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_32a491d3031c476da2d8687861ccbf7d",
"placeholder": "",
"style": "IPY_MODEL_ff00a24840224f8d9cce9ade4e77ac0c",
"value": "0.001 MB of 0.001 MB uploaded (0.000 MB deduped)\r"
}
},
"a6a0d4738d434aa1b734c8407dde4e74": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d8ec9c75b1f14686a6734b86eea24bb7",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_220d541b7b4347b08a7fc9b8feb09f98",
"value": 1
}
},
"9e4d93cf62094092809fee70ba7885f5": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"32a491d3031c476da2d8687861ccbf7d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ff00a24840224f8d9cce9ade4e77ac0c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"d8ec9c75b1f14686a6734b86eea24bb7": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"220d541b7b4347b08a7fc9b8feb09f98": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}