106 lines
3.7 KiB
Python
Executable File
106 lines
3.7 KiB
Python
Executable File
# MIT License
|
|
# Copyright (c) 2019 JetsonHacks
|
|
# See license
|
|
# Using a CSI camera (such as the Raspberry Pi Version 2) connected to a
|
|
# NVIDIA Jetson Nano Developer Kit using OpenCV
|
|
# Drivers for the camera and OpenCV are included in the base image
|
|
|
|
import cv2
|
|
import numpy as py
|
|
import os
|
|
|
|
def focusing(val):
|
|
value = (val << 4) & 0x3ff0
|
|
data1 = (value >> 8) & 0x3f
|
|
data2 = value & 0xf0
|
|
os.system("i2cset -y 6 0x0c %d %d" % (data1,data2))
|
|
|
|
def sobel(img):
|
|
img_gray = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)
|
|
img_sobel = cv2.Sobel(img_gray,cv2.CV_16U,1,1)
|
|
return cv2.mean(img_sobel)[0]
|
|
|
|
def laplacian(img):
|
|
img_gray = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)
|
|
img_sobel = cv2.Laplacian(img_gray,cv2.CV_16U)
|
|
return cv2.mean(img_sobel)[0]
|
|
|
|
|
|
# gstreamer_pipeline returns a GStreamer pipeline for capturing from the CSI camera
|
|
# Defaults to 1280x720 @ 60fps
|
|
# Flip the image by setting the flip_method (most common values: 0 and 2)
|
|
# display_width and display_height determine the size of the window on the screen
|
|
|
|
def gstreamer_pipeline (capture_width=1920, capture_height=1080, display_width=1280, display_height=720, framerate=29.99999, flip_method=2) :
|
|
return ('nvarguscamerasrc ! '
|
|
'video/x-raw(memory:NVMM), '
|
|
'width=(int)%d, height=(int)%d, '
|
|
'format=(string)NV12, framerate=(fraction)%d/1 ! '
|
|
'nvvidconv flip-method=%d ! '
|
|
'video/x-raw, width=(int)%d, height=(int)%d, format=(string)BGRx ! '
|
|
'videoconvert ! '
|
|
'video/x-raw, format=(string)BGR ! appsink' % (capture_width,capture_height,framerate,flip_method,display_width,display_height))
|
|
|
|
def show_camera():
|
|
max_index = 10
|
|
max_value = 0.0
|
|
last_value = 0.0
|
|
dec_count = 0
|
|
focal_distance = 10
|
|
focus_finished = False
|
|
# To flip the image, modify the flip_method parameter (0 and 2 are the most common)
|
|
print(gstreamer_pipeline(flip_method=2))
|
|
cap = cv2.VideoCapture(gstreamer_pipeline(flip_method=2), cv2.CAP_GSTREAMER)
|
|
if cap.isOpened():
|
|
window_handle = cv2.namedWindow('CSI Camera', cv2.WINDOW_AUTOSIZE)
|
|
# Window
|
|
while cv2.getWindowProperty('CSI Camera',0) >= 0:
|
|
ret_val, img = cap.read()
|
|
cv2.imshow('CSI Camera',img)
|
|
|
|
if dec_count < 6 and focal_distance < 1000:
|
|
#Adjust focus
|
|
focusing(focal_distance)
|
|
#Take image and calculate image clarity
|
|
val = laplacian(img)
|
|
#Find the maximum image clarity
|
|
if val > max_value:
|
|
max_index = focal_distance
|
|
max_value = val
|
|
|
|
#If the image clarity starts to decrease
|
|
if val < last_value:
|
|
dec_count += 1
|
|
else:
|
|
dec_count = 0
|
|
#Image clarity is reduced by six consecutive frames
|
|
if dec_count < 6:
|
|
last_value = val
|
|
#Increase the focal distance
|
|
focal_distance += 10
|
|
|
|
elif not focus_finished:
|
|
#Adjust focus to the best
|
|
focusing(max_index)
|
|
focus_finished = True
|
|
# This also acts as
|
|
keyCode = cv2.waitKey(16) & 0xff
|
|
# Stop the program on the ESC key
|
|
if keyCode == 27:
|
|
break
|
|
elif keyCode == 10:
|
|
max_index = 10
|
|
max_value = 0.0
|
|
last_value = 0.0
|
|
dec_count = 0
|
|
focal_distance = 10
|
|
focus_finished = False
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
else:
|
|
print('Unable to open camera')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
show_camera()
|