4645 lines
187 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "747ddcf2",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33me1527193\u001b[0m (\u001b[33mflower-classification\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
]
},
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import wandb\n",
"\n",
"wandb.login()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "c37343d6",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torch.optim as optim\n",
"import torch.nn.functional as F\n",
"import torch.nn as nn\n",
"from torchvision import datasets, transforms\n",
"from torchvision.models import resnet50, ResNet50_Weights\n",
"from torch.utils.data import Dataset, DataLoader, random_split, SubsetRandomSampler\n",
"import numpy as np\n",
"import os\n",
"import time\n",
"import copy\n",
"import random\n",
"from sklearn import metrics\n",
"\n",
"torch.manual_seed(42)\n",
"np.random.seed(42)\n",
"\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "17b25dc7",
"metadata": {},
"outputs": [],
"source": [
"def build_dataset(batch_size): \n",
" data_transforms = {\n",
" 'train': transforms.Compose([\n",
" transforms.RandomResizedCrop(224),\n",
" transforms.RandomHorizontalFlip(),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n",
" ]),\n",
" 'test': transforms.Compose([\n",
" transforms.Resize(256),\n",
" transforms.CenterCrop(224),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n",
" ]),\n",
" }\n",
"\n",
" data_dir = 'plantsdata'\n",
" dataset = datasets.ImageFolder(os.path.join(data_dir))\n",
"\n",
" # 90/10 split\n",
" train_dataset, test_dataset = random_split(dataset, [0.9, 0.1])\n",
"\n",
" train_dataset.dataset.transform = data_transforms['train']\n",
" test_dataset.dataset.transform = data_transforms['test']\n",
"\n",
" train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,\n",
" shuffle=True, num_workers=4)\n",
" test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size,\n",
" shuffle=True, num_workers=4)\n",
"\n",
" dataloaders = {'train': train_loader, 'test': test_loader}\n",
" dataset_size = len(dataset)\n",
" dataset_sizes = {'train': len(train_dataset), 'test': len(test_dataset)}\n",
" class_names = dataset.classes\n",
"\n",
" return (dataloaders, dataset_sizes)\n",
"\n",
"def build_network():\n",
" network = resnet50(weights=ResNet50_Weights.DEFAULT)\n",
" num_ftrs = network.fc.in_features\n",
"\n",
" # Add linear layer with number of classes\n",
" network.fc = nn.Linear(num_ftrs, 2)\n",
"\n",
" return network.to(device)\n",
"\n",
"def build_optimizer(network, optimizer, learning_rate, beta_one, beta_two, eps):\n",
" if optimizer == \"sgd\":\n",
" optimizer = optim.SGD(network.parameters(),\n",
" lr=learning_rate, momentum=0.9)\n",
" elif optimizer == \"adam\":\n",
" optimizer = optim.Adam(network.parameters(),\n",
" lr=learning_rate,\n",
" betas=(beta_one, beta_two),\n",
" eps=eps)\n",
" return optimizer\n",
"\n",
"def train_epoch(network, loader, optimizer, criterion, scheduler, dataset_sizes):\n",
" network.train()\n",
" running_loss = 0.0\n",
" running_corrects = 0\n",
" for _, (data, target) in enumerate(loader):\n",
" data, target = data.to(device), target.to(device)\n",
" optimizer.zero_grad()\n",
"\n",
" # ➡ Forward pass\n",
" #loss = F.nll_loss(network(data), target)\n",
" with torch.set_grad_enabled(True):\n",
" outputs = network(data)\n",
" _, preds = torch.max(outputs, 1)\n",
" loss = criterion(outputs, target)\n",
" \n",
" #cumu_loss += loss.item()\n",
" \n",
" running_loss += loss.item() * data.size(0)\n",
" running_corrects += torch.sum(preds == target.data)\n",
"\n",
" # ⬅ Backward pass + weight update\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" wandb.log({'train/batch_loss': loss.item()})\n",
"\n",
" scheduler.step()\n",
"\n",
" epoch_loss = running_loss / dataset_sizes['train']\n",
" epoch_acc = running_corrects.double() / dataset_sizes['train']\n",
" \n",
" return (epoch_loss, epoch_acc)\n",
"\n",
"def test(network, loader, optimizer, criterion, dataset_sizes):\n",
" network.eval()\n",
" confusion = torch.empty([0, 1])\n",
" confusion = confusion.to(device)\n",
" running_loss = 0.0\n",
" test_corrects = 0\n",
" for _, (data, target) in enumerate(loader):\n",
" data, target = data.to(device), target.to(device)\n",
" optimizer.zero_grad()\n",
"\n",
" # ➡ Forward pass\n",
" with torch.set_grad_enabled(False):\n",
" outputs = network(data)\n",
" _, preds = torch.max(outputs, 1)\n",
" loss = criterion(outputs, target)\n",
"\n",
" running_loss += loss.item() * data.size(0)\n",
" test_corrects += torch.sum(preds == target.data)\n",
" \n",
" confusion = torch.cat((confusion, preds[:, None] / target.data[:, None]))\n",
"\n",
" tp = torch.sum(confusion == 1).item()\n",
" fp = torch.sum(confusion == float('inf')).item()\n",
" tn = torch.sum(torch.isnan(confusion)).item()\n",
" fn = torch.sum(confusion == 0).item()\n",
" \n",
" precision = tp / (tp + fp)\n",
" recall = tp / (tp + fn)\n",
" f = 2 * ((precision * recall) / (precision + recall))\n",
" \n",
" epoch_loss = running_loss / dataset_sizes['test']\n",
" epoch_acc = test_corrects.double() / dataset_sizes['test']\n",
" \n",
" return (epoch_loss, epoch_acc, precision, recall, f)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "5eff68bf",
"metadata": {},
"outputs": [],
"source": [
"def train(config=None):\n",
" # Initialize a new wandb run\n",
" with wandb.init(config=config):\n",
" # If called by wandb.agent, as below,\n",
" # this config will be set by Sweep Controller\n",
" config = wandb.config\n",
"\n",
" (dataloaders, dataset_sizes) = build_dataset(config.batch_size)\n",
" network = build_network()\n",
" optimizer = build_optimizer(network, config.optimizer, config.learning_rate, config.beta_one,\n",
" config.beta_two, config.eps)\n",
" criterion = nn.CrossEntropyLoss()\n",
" # Decay LR by a factor of 0.1 every 7 epochs\n",
" exp_lr_scheduler = optim.lr_scheduler.StepLR(optimizer, config.step_size, config.gamma)\n",
"\n",
" for epoch in range(config.epochs): \n",
" (epoch_loss, epoch_acc) = train_epoch(network, dataloaders['train'], optimizer,\n",
" criterion, exp_lr_scheduler,\n",
" dataset_sizes)\n",
" wandb.log({\"epoch\": epoch, 'train/epoch_loss': epoch_loss, 'train/epoch_acc': epoch_acc})\n",
" \n",
" (test_loss, test_acc, test_precision, test_recall, test_f) = test(network, dataloaders['test'],\n",
" optimizer, criterion,\n",
" dataset_sizes)\n",
" wandb.log({'test/epoch_loss': test_loss, 'test/epoch_acc': test_acc,\n",
" 'test/precision': test_precision, 'test/recall': test_recall,\n",
" 'test/f1-score': test_f})"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "732a83df",
"metadata": {},
"outputs": [],
"source": [
"sweep_config = {\n",
" 'method': 'random'\n",
"}\n",
"\n",
"metric = {\n",
" 'name': 'test/epoch_acc',\n",
" 'goal': 'maximize' \n",
"}\n",
"\n",
"sweep_config['metric'] = metric\n",
"\n",
"parameters_dict = {\n",
" 'optimizer': {\n",
" 'values': ['adam', 'sgd']\n",
" },\n",
"}\n",
"\n",
"sweep_config['parameters'] = parameters_dict\n",
"\n",
"parameters_dict.update({\n",
" 'epochs': {\n",
" 'value': 10},\n",
" 'batch_size': {\n",
" 'values': [4, 8]},\n",
" 'learning_rate': {\n",
" 'values': [0.1, 0.01, 0.003, 0.001, 0.0003, 0.0001]},\n",
" 'step_size': {\n",
" 'values': [2, 3, 5, 7]},\n",
" 'gamma': {\n",
" 'values': [0.1, 0.5]},\n",
" 'beta_one': {\n",
" 'values': [0.9, 0.99]},\n",
" 'beta_two': {\n",
" 'values': [0.5, 0.9, 0.99, 0.999]},\n",
" 'eps': {\n",
" 'values': [1e-08, 0.1, 1]}\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "9a01fef6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Create sweep with ID: eqwnoagh\n",
"Sweep URL: https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh\n"
]
}
],
"source": [
"sweep_id = wandb.sweep(sweep_config, project=\"pytorch-sweeps-demo\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e80d1730",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: znahtehx with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_210021-znahtehx</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/znahtehx' target=\"_blank\">sparkling-sweep-1</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/znahtehx' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/znahtehx</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bb4b99390e384bd5912f1133277e4a65",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.127552…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▂▅▆▅▇▄▇▃█</td></tr><tr><td>test/epoch_loss</td><td>█▃▂▂▃▂▂▁▂▂</td></tr><tr><td>test/f1-score</td><td>▁▃▅▆▄▆▄▇▃█</td></tr><tr><td>test/precision</td><td>▁▁▃▅▆▇▄█▃▇</td></tr><tr><td>test/recall</td><td>▁▆▇▆▁▄▃▄▃█</td></tr><tr><td>train/batch_loss</td><td>█▇▆▆▆▆▅▄▄▃▅▅█▆▃█▆▇▂▆▅▅▁▃▆▄▃██▅▆▄▆▅▄▂▂▇▇▆</td></tr><tr><td>train/epoch_acc</td><td>▁▆▇▇▇███▇█</td></tr><tr><td>train/epoch_loss</td><td>█▄▂▂▂▁▁▁▂▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.85556</td></tr><tr><td>test/epoch_loss</td><td>0.6166</td></tr><tr><td>test/f1-score</td><td>0.86022</td></tr><tr><td>test/precision</td><td>0.81633</td></tr><tr><td>test/recall</td><td>0.90909</td></tr><tr><td>train/batch_loss</td><td>0.66533</td></tr><tr><td>train/epoch_acc</td><td>0.75676</td></tr><tr><td>train/epoch_loss</td><td>0.61072</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">sparkling-sweep-1</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/znahtehx' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/znahtehx</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_210021-znahtehx/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: qutqx8ux with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_210951-qutqx8ux</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/qutqx8ux' target=\"_blank\">stoic-sweep-2</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/qutqx8ux' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/qutqx8ux</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "acea58027ff945afa7cd0132f556317c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.004 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129798…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▂▁▆▆█▇▆▃▅</td></tr><tr><td>test/epoch_loss</td><td>█▅▃▁▁▁▁▂▂▂</td></tr><tr><td>test/f1-score</td><td>▄▁▆█▇███▆▇</td></tr><tr><td>test/precision</td><td>▁▃▁▅▆█▆▅▃▄</td></tr><tr><td>test/recall</td><td>▅▁██▆▆██▆█</td></tr><tr><td>train/batch_loss</td><td>▄▁▃█▃▇▅▁▄▄▅▃▃▂▂▅▅▂▂▅▃▃▅▄▂▃▃▂▄▃▃▆▅▂▂▄▅▁▂▂</td></tr><tr><td>train/epoch_acc</td><td>▁▃▄▇▆▇█▇▇█</td></tr><tr><td>train/epoch_loss</td><td>█▄▃▂▂▁▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.7</td></tr><tr><td>test/epoch_loss</td><td>0.55412</td></tr><tr><td>test/f1-score</td><td>0.71579</td></tr><tr><td>test/precision</td><td>0.59649</td></tr><tr><td>test/recall</td><td>0.89474</td></tr><tr><td>train/batch_loss</td><td>0.78966</td></tr><tr><td>train/epoch_acc</td><td>0.66585</td></tr><tr><td>train/epoch_loss</td><td>0.61866</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">stoic-sweep-2</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/qutqx8ux' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/qutqx8ux</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_210951-qutqx8ux/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 9j8etw77 with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_211850-9j8etw77</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/9j8etw77' target=\"_blank\">hopeful-sweep-3</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/9j8etw77' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/9j8etw77</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "221cf6c293624e52a4c9c607f0f81dec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.127348…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁█▇▇▇▆▆▆▆▆</td></tr><tr><td>test/epoch_loss</td><td>█▂▃▁▂▂▂▁▁▁</td></tr><tr><td>test/f1-score</td><td>▁█▆▇▇▅▆▅▅▅</td></tr><tr><td>test/precision</td><td>▁█▇█▇▆▆▇▇▇</td></tr><tr><td>test/recall</td><td>▄█▄▁█▁▄▁▁▁</td></tr><tr><td>train/batch_loss</td><td>▄▆██▄▃▃▅▂▃▄▅▃▄▂▃▁▁▁▄▂▃▄▁▄▂▂▁▁▃▃▄▂▂▂▅▂▃▃▄</td></tr><tr><td>train/epoch_acc</td><td>▁▅█▇▇███▇▇</td></tr><tr><td>train/epoch_loss</td><td>█▄▂▂▁▁▁▁▂▂</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.75556</td></tr><tr><td>test/epoch_loss</td><td>0.6144</td></tr><tr><td>test/f1-score</td><td>0.76087</td></tr><tr><td>test/precision</td><td>0.67308</td></tr><tr><td>test/recall</td><td>0.875</td></tr><tr><td>train/batch_loss</td><td>0.65108</td></tr><tr><td>train/epoch_acc</td><td>0.7543</td></tr><tr><td>train/epoch_loss</td><td>0.62678</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">hopeful-sweep-3</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/9j8etw77' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/9j8etw77</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_211850-9j8etw77/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: k23a02gb with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_212648-k23a02gb</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k23a02gb' target=\"_blank\">dulcet-sweep-4</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k23a02gb' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k23a02gb</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▅▁▂▅▇▄▅▇█▇</td></tr><tr><td>test/epoch_loss</td><td>█▆▄▂▁▂▂▁▁▁</td></tr><tr><td>test/f1-score</td><td>▆▁▂▅▇▃▅▇█▇</td></tr><tr><td>test/precision</td><td>▁▁▄▅▇▆█▇█▆</td></tr><tr><td>test/recall</td><td>█▁▁▅▆▂▃▆▆▅</td></tr><tr><td>train/batch_loss</td><td>█▇▇▇▇▇▇▆▆▄▆▇▆▆▅▆▄▃▃▃▁▄▃▃▄▃▂▄▂▁▂▃▇▁▃▄▃▄▆▄</td></tr><tr><td>train/epoch_acc</td><td>▁▅▆▆▇█▇█▇█</td></tr><tr><td>train/epoch_loss</td><td>█▆▄▃▂▁▂▁▂▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.88889</td></tr><tr><td>test/epoch_loss</td><td>0.30289</td></tr><tr><td>test/f1-score</td><td>0.86486</td></tr><tr><td>test/precision</td><td>0.91429</td></tr><tr><td>test/recall</td><td>0.82051</td></tr><tr><td>train/batch_loss</td><td>0.27111</td></tr><tr><td>train/epoch_acc</td><td>0.89681</td></tr><tr><td>train/epoch_loss</td><td>0.28549</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">dulcet-sweep-4</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k23a02gb' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/k23a02gb</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_212648-k23a02gb/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 265qnj0c with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_213431-265qnj0c</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/265qnj0c' target=\"_blank\">hearty-sweep-5</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/265qnj0c' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/265qnj0c</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4f68d0e4fc994f12bdfba68bd75d2d3f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.010 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.369539…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▅▄▆▇█▇▇▆▆</td></tr><tr><td>test/epoch_loss</td><td>█▅▄▃▃▁▂▃▂▁</td></tr><tr><td>test/f1-score</td><td>▁▅▄▆▇██▇▆▇</td></tr><tr><td>test/precision</td><td>███▄▁▂▁▅▁▁</td></tr><tr><td>test/recall</td><td>▁▄▄▅▇██▇▆▇</td></tr><tr><td>train/batch_loss</td><td>██▇▇▅▅▃▆▂▃▂▂▂▂▄▄▂▂▂▂▄▁▂▅▃▁▁▁▂▆▂▃▃▁▁▁▂▂▁▂</td></tr><tr><td>train/epoch_acc</td><td>▁▅▆▇▇█████</td></tr><tr><td>train/epoch_loss</td><td>█▅▄▂▂▁▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.88889</td></tr><tr><td>test/epoch_loss</td><td>0.26007</td></tr><tr><td>test/f1-score</td><td>0.8913</td></tr><tr><td>test/precision</td><td>0.95349</td></tr><tr><td>test/recall</td><td>0.83673</td></tr><tr><td>train/batch_loss</td><td>0.01167</td></tr><tr><td>train/epoch_acc</td><td>0.98034</td></tr><tr><td>train/epoch_loss</td><td>0.08153</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">hearty-sweep-5</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/265qnj0c' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/265qnj0c</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_213431-265qnj0c/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: eg199ue9 with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_214215-eg199ue9</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eg199ue9' target=\"_blank\">smart-sweep-6</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eg199ue9' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eg199ue9</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "77222c4a821846208ce165385b4c6092",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.127718…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▇▆▆▁▅▆▃▃▃█</td></tr><tr><td>test/epoch_loss</td><td>█▄▃▄▄▅▂▄▃▁</td></tr><tr><td>test/f1-score</td><td>▇▆▆▁▅▆▄▃▄█</td></tr><tr><td>test/precision</td><td>▅▂█▃▁▂▁▄▁▅</td></tr><tr><td>test/recall</td><td>▇▇▅▁▆▇▅▃▅█</td></tr><tr><td>train/batch_loss</td><td>▆▆▆▆▃▂▂▄▂▂▁▃▂█▂▁▂▅▄▁▁▂▁▁▅▁▁▃▂▂▄▁▁▁▁▁▁▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▄▆▇▇▇████</td></tr><tr><td>train/epoch_loss</td><td>█▅▄▃▂▂▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.9</td></tr><tr><td>test/epoch_loss</td><td>0.22746</td></tr><tr><td>test/f1-score</td><td>0.89655</td></tr><tr><td>test/precision</td><td>0.92857</td></tr><tr><td>test/recall</td><td>0.86667</td></tr><tr><td>train/batch_loss</td><td>0.13858</td></tr><tr><td>train/epoch_acc</td><td>0.98403</td></tr><tr><td>train/epoch_loss</td><td>0.07075</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">smart-sweep-6</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eg199ue9' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/eg199ue9</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_214215-eg199ue9/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: vdaaitvt with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_215145-vdaaitvt</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/vdaaitvt' target=\"_blank\">glorious-sweep-7</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/vdaaitvt' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/vdaaitvt</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "16d2f2fc96774dcbaba181d48d444fc9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.003 MB of 0.003 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁▄▆██▇▇▇▇▆</td></tr><tr><td>test/epoch_loss</td><td>█▇▆▄▃▂▁▁▁▁</td></tr><tr><td>test/f1-score</td><td>▁▄▆█▇▆▆▆▆▃</td></tr><tr><td>test/precision</td><td>▁▃▄▆▇▇▇███</td></tr><tr><td>test/recall</td><td>▇▇██▆▅▅▄▄▁</td></tr><tr><td>train/batch_loss</td><td>▇▇▇▆▇▆▆▆▆▅▆▅▆▆▆▇▅▅▄▅█▅▃▄▅▃▅▇▃▅▅▅▅▂▄▁▅▄▄▅</td></tr><tr><td>train/epoch_acc</td><td>▁▄▆▇▇███▇█</td></tr><tr><td>train/epoch_loss</td><td>█▇▆▅▄▃▂▁▂▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.77778</td></tr><tr><td>test/epoch_loss</td><td>0.47685</td></tr><tr><td>test/f1-score</td><td>0.72222</td></tr><tr><td>test/precision</td><td>0.83871</td></tr><tr><td>test/recall</td><td>0.63415</td></tr><tr><td>train/batch_loss</td><td>0.37919</td></tr><tr><td>train/epoch_acc</td><td>0.82924</td></tr><tr><td>train/epoch_loss</td><td>0.45283</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">glorious-sweep-7</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/vdaaitvt' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/vdaaitvt</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_215145-vdaaitvt/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 16v61zix with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_215930-16v61zix</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/16v61zix' target=\"_blank\">elated-sweep-8</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/16v61zix' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/16v61zix</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "275f61520cf1419c9104636f4bd34994",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.127347…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▅▅▅██▁▅▅▁▁</td></tr><tr><td>test/epoch_loss</td><td>█▁▂▅▃▅▄▄▄▂</td></tr><tr><td>test/f1-score</td><td>▄▄▄█▇▁▄▄▁▁</td></tr><tr><td>test/precision</td><td>▃▅▃▁█▃▃▃▁▁</td></tr><tr><td>test/recall</td><td>▃▁▃█▁▁▃▃▃▃</td></tr><tr><td>train/batch_loss</td><td>█▆▇▇▂▂▅▆▄▆▂▁▁▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▂▁▁▁▂▁▁▁</td></tr><tr><td>train/epoch_acc</td><td>▁▅▇▇▇█████</td></tr><tr><td>train/epoch_loss</td><td>█▅▂▂▂▁▁▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.92222</td></tr><tr><td>test/epoch_loss</td><td>0.16872</td></tr><tr><td>test/f1-score</td><td>0.92135</td></tr><tr><td>test/precision</td><td>0.91111</td></tr><tr><td>test/recall</td><td>0.93182</td></tr><tr><td>train/batch_loss</td><td>0.00228</td></tr><tr><td>train/epoch_acc</td><td>0.99877</td></tr><tr><td>train/epoch_loss</td><td>0.02303</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">elated-sweep-8</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/16v61zix' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/16v61zix</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_215930-16v61zix/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: gy76rrgz with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_220712-gy76rrgz</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gy76rrgz' target=\"_blank\">major-sweep-9</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gy76rrgz' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gy76rrgz</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "859091dc42c94f2eb2732a64c9afc414",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.127052…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▃▃▁▃▃▆▆█▆▃</td></tr><tr><td>test/epoch_loss</td><td>█▆▄▃▂▂▁▁▁▁</td></tr><tr><td>test/f1-score</td><td>▄▃▁▃▃▆▆█▆▃</td></tr><tr><td>test/precision</td><td>▁█▇███████</td></tr><tr><td>test/recall</td><td>▆▃▁▃▃▆▆█▆▃</td></tr><tr><td>train/batch_loss</td><td>█▇██▇▆▇▃▅▃▇▄▄▄▃▆▃▅▃▅▃▁▇▅▃▄▄▆▂▅▂▂▃▁▁▂▂▁▃▁</td></tr><tr><td>train/epoch_acc</td><td>▁▅▅▆▇▇▇▇██</td></tr><tr><td>train/epoch_loss</td><td>█▆▅▃▃▂▂▂▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.88889</td></tr><tr><td>test/epoch_loss</td><td>0.26282</td></tr><tr><td>test/f1-score</td><td>0.87179</td></tr><tr><td>test/precision</td><td>0.97143</td></tr><tr><td>test/recall</td><td>0.7907</td></tr><tr><td>train/batch_loss</td><td>0.1486</td></tr><tr><td>train/epoch_acc</td><td>0.88698</td></tr><tr><td>train/epoch_loss</td><td>0.31064</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">major-sweep-9</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gy76rrgz' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/gy76rrgz</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_220712-gy76rrgz/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 4dx2f0j8 with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_221511-4dx2f0j8</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4dx2f0j8' target=\"_blank\">fallen-sweep-10</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4dx2f0j8' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4dx2f0j8</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "93aeee346a4849d88f08125cde60a1ef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129230…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▁█▅▇▇▇▇▇▇█</td></tr><tr><td>test/epoch_loss</td><td>█▁▄▃▆▅▆▅▅▄</td></tr><tr><td>test/f1-score</td><td>▁█▅▇▇▇▇▇▇█</td></tr><tr><td>test/precision</td><td>▆▅▇▄█▄█▄▁▅</td></tr><tr><td>test/recall</td><td>▁█▅▇▇▇▇▇▇█</td></tr><tr><td>train/batch_loss</td><td>▅▅▆▃▄▃▃▂▂▂▂▂▁▃█▁▅▁▂▂▂▁▁▂▃▁▁▁▁▃▁▁▁▁▁▂▁▁▄▁</td></tr><tr><td>train/epoch_acc</td><td>▁▄▆▆▇█████</td></tr><tr><td>train/epoch_loss</td><td>█▆▄▃▂▂▂▁▁▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.86667</td></tr><tr><td>test/epoch_loss</td><td>0.37958</td></tr><tr><td>test/f1-score</td><td>0.875</td></tr><tr><td>test/precision</td><td>0.95455</td></tr><tr><td>test/recall</td><td>0.80769</td></tr><tr><td>train/batch_loss</td><td>0.077</td></tr><tr><td>train/epoch_acc</td><td>0.9656</td></tr><tr><td>train/epoch_loss</td><td>0.09797</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">fallen-sweep-10</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4dx2f0j8' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4dx2f0j8</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_221511-4dx2f0j8/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: j93p9uxm with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_222419-j93p9uxm</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/j93p9uxm' target=\"_blank\">revived-sweep-11</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/j93p9uxm' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/j93p9uxm</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "46df1ce0b91447d0a2e0d047a3864afd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.010 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.369874…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▅█</td></tr><tr><td>test/epoch_acc</td><td>▁█</td></tr><tr><td>test/epoch_loss</td><td>█▁</td></tr><tr><td>test/f1-score</td><td>▁█</td></tr><tr><td>test/precision</td><td>▁█</td></tr><tr><td>test/recall</td><td>█▁</td></tr><tr><td>train/batch_loss</td><td>▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▁█▁▁▆▅▁▁</td></tr><tr><td>train/epoch_acc</td><td>█▃▁</td></tr><tr><td>train/epoch_loss</td><td>▁▁█</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>2</td></tr><tr><td>test/epoch_acc</td><td>0.56667</td></tr><tr><td>test/epoch_loss</td><td>92431672.3021</td></tr><tr><td>test/f1-score</td><td>0.62136</td></tr><tr><td>test/precision</td><td>0.47761</td></tr><tr><td>test/recall</td><td>0.88889</td></tr><tr><td>train/batch_loss</td><td>7666.14648</td></tr><tr><td>train/epoch_acc</td><td>0.46929</td></tr><tr><td>train/epoch_loss</td><td>4618.08651</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">revived-sweep-11</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/j93p9uxm' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/j93p9uxm</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_222419-j93p9uxm/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run j93p9uxm errored: ZeroDivisionError('division by zero')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run j93p9uxm errored: ZeroDivisionError('division by zero')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: pb5m44k2 with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_222656-pb5m44k2</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pb5m44k2' target=\"_blank\">faithful-sweep-12</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pb5m44k2' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pb5m44k2</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b54a0c709df84839b6a094fd08e2696d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.003 MB of 0.003 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>▁▂▃▃▄▅▆▆▇█</td></tr><tr><td>test/epoch_acc</td><td>▅▁▆▃▆▆▇▇▇█</td></tr><tr><td>test/epoch_loss</td><td>▅█▄▅▃▃▂▁▁▁</td></tr><tr><td>test/f1-score</td><td>▄▄▄▁▅▆▇▇▇█</td></tr><tr><td>test/precision</td><td>▆▁█▃▆▆█▇██</td></tr><tr><td>test/recall</td><td>▃█▂▁▄▆▅▆▅▇</td></tr><tr><td>train/batch_loss</td><td>▆▄▂▅▅▄▃▆█▃▂▄▂▁▃▂▄▁▂▂▄▃▅▂▂▅▂▂▃▄▁▄▃▁▂▄▂▂▃▄</td></tr><tr><td>train/epoch_acc</td><td>▁▁▃▃▄▄▆▆▇█</td></tr><tr><td>train/epoch_loss</td><td>█▇▇▆▅▅▃▃▂▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>epoch</td><td>9</td></tr><tr><td>test/epoch_acc</td><td>0.78889</td></tr><tr><td>test/epoch_loss</td><td>0.51027</td></tr><tr><td>test/f1-score</td><td>0.78161</td></tr><tr><td>test/precision</td><td>0.7234</td></tr><tr><td>test/recall</td><td>0.85</td></tr><tr><td>train/batch_loss</td><td>0.42048</td></tr><tr><td>train/epoch_acc</td><td>0.82555</td></tr><tr><td>train/epoch_loss</td><td>0.40512</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">faithful-sweep-12</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pb5m44k2' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pb5m44k2</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_222656-pb5m44k2/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: q8m1yt6d with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223624-q8m1yt6d</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q8m1yt6d' target=\"_blank\">fine-sweep-13</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q8m1yt6d' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q8m1yt6d</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style>\n",
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: left ; width: auto;} td:nth-child(2) {text-align: left ; width: 100%}\n",
" .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n",
" .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n",
" </style>\n",
"<div class=\"wandb-row\"><div class=\"wandb-col\"><h3>Run history:</h3><br/><table class=\"wandb\"><tr><td>train/batch_loss</td><td>▁</td></tr></table><br/></div><div class=\"wandb-col\"><h3>Run summary:</h3><br/><table class=\"wandb\"><tr><td>train/batch_loss</td><td>0.67379</td></tr></table><br/></div></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">fine-sweep-13</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q8m1yt6d' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q8m1yt6d</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_223624-q8m1yt6d/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run q8m1yt6d errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 1.95 GiB total capacity; 1.30 GiB already allocated; 11.31 MiB free; 1.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run q8m1yt6d errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 1.95 GiB total capacity; 1.30 GiB already allocated; 11.31 MiB free; 1.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: f3kiw40d with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223651-f3kiw40d</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/f3kiw40d' target=\"_blank\">devout-sweep-14</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/f3kiw40d' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/f3kiw40d</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5b4942d4dbd04d5baa953dbdfe4608de",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">devout-sweep-14</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/f3kiw40d' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/f3kiw40d</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_223651-f3kiw40d/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run f3kiw40d errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 3.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run f3kiw40d errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 3.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: i0xsie8j with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223710-i0xsie8j</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/i0xsie8j' target=\"_blank\">restful-sweep-15</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/i0xsie8j' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/i0xsie8j</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">restful-sweep-15</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/i0xsie8j' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/i0xsie8j</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_223710-i0xsie8j/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run i0xsie8j errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run i0xsie8j errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: bi477kch with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223736-bi477kch</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bi477kch' target=\"_blank\">pretty-sweep-16</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bi477kch' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bi477kch</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">pretty-sweep-16</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bi477kch' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/bi477kch</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_223736-bi477kch/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run bi477kch errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run bi477kch errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 7jmkpkmh with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223752-7jmkpkmh</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/7jmkpkmh' target=\"_blank\">daily-sweep-17</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/7jmkpkmh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/7jmkpkmh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">daily-sweep-17</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/7jmkpkmh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/7jmkpkmh</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_223752-7jmkpkmh/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run 7jmkpkmh errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run 7jmkpkmh errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: pc0kaw45 with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223812-pc0kaw45</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pc0kaw45' target=\"_blank\">dutiful-sweep-18</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pc0kaw45' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pc0kaw45</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "202c31bd32e34897b89b9f828ad6301e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">dutiful-sweep-18</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pc0kaw45' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/pc0kaw45</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_223812-pc0kaw45/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run pc0kaw45 errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run pc0kaw45 errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: o04kggii with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.999\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223833-o04kggii</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o04kggii' target=\"_blank\">glad-sweep-19</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o04kggii' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o04kggii</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ebfa8b7ad18e48efb4c7a99963364387",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129182…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">glad-sweep-19</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o04kggii' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/o04kggii</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_223833-o04kggii/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run o04kggii errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run o04kggii errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: mr7zxx8m with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223854-mr7zxx8m</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/mr7zxx8m' target=\"_blank\">dazzling-sweep-20</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/mr7zxx8m' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/mr7zxx8m</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b1e66d66721840b391339ee3201e55fb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129362…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">dazzling-sweep-20</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/mr7zxx8m' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/mr7zxx8m</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_223854-mr7zxx8m/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run mr7zxx8m errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run mr7zxx8m errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 292ds63r with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223916-292ds63r</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/292ds63r' target=\"_blank\">misunderstood-sweep-21</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/292ds63r' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/292ds63r</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2bd23ebb420c420f8f23ed3bc12e993f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129560…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">misunderstood-sweep-21</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/292ds63r' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/292ds63r</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_223916-292ds63r/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run 292ds63r errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run 292ds63r errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: fdlwffsj with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_223937-fdlwffsj</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/fdlwffsj' target=\"_blank\">glorious-sweep-22</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/fdlwffsj' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/fdlwffsj</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ff7c63d38a9a470b92b70583ec7dfbe2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.003 MB of 0.026 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.132928…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">glorious-sweep-22</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/fdlwffsj' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/fdlwffsj</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_223937-fdlwffsj/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run fdlwffsj errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run fdlwffsj errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 3s4wltdw with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224003-3s4wltdw</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3s4wltdw' target=\"_blank\">absurd-sweep-23</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3s4wltdw' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3s4wltdw</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">absurd-sweep-23</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3s4wltdw' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/3s4wltdw</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_224003-3s4wltdw/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run 3s4wltdw errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run 3s4wltdw errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: kv0nxhmk with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224028-kv0nxhmk</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/kv0nxhmk' target=\"_blank\">devout-sweep-24</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/kv0nxhmk' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/kv0nxhmk</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f47be2ec47854346b5d3306559f94b91",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.010 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.375132…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">devout-sweep-24</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/kv0nxhmk' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/kv0nxhmk</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_224028-kv0nxhmk/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run kv0nxhmk errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run kv0nxhmk errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: ixbulpc8 with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 5\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224049-ixbulpc8</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ixbulpc8' target=\"_blank\">silver-sweep-25</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ixbulpc8' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ixbulpc8</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bfd33251a13841f7a8b32b6145a2fdfe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.003 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.129490…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">silver-sweep-25</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ixbulpc8' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/ixbulpc8</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_224049-ixbulpc8/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run ixbulpc8 errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run ixbulpc8 errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: lfi2onyo with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224110-lfi2onyo</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/lfi2onyo' target=\"_blank\">winter-sweep-26</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/lfi2onyo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/lfi2onyo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">winter-sweep-26</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/lfi2onyo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/lfi2onyo</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_224110-lfi2onyo/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run lfi2onyo errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run lfi2onyo errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: 4uvn2tnq with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.001\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: adam\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224131-4uvn2tnq</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4uvn2tnq' target=\"_blank\">expert-sweep-27</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4uvn2tnq' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4uvn2tnq</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "224e6063b56942e8bad3124fe35c96a6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">expert-sweep-27</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4uvn2tnq' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/4uvn2tnq</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_224131-4uvn2tnq/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run 4uvn2tnq errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run 4uvn2tnq errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: y4niwbym with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 4\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.01\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 2\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224154-y4niwbym</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/y4niwbym' target=\"_blank\">tough-sweep-28</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/y4niwbym' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/y4niwbym</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cc40ab25a9354028bd95ee1802eb53d0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">tough-sweep-28</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/y4niwbym' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/y4niwbym</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_224154-y4niwbym/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run y4niwbym errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run y4niwbym errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: hxampiva with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.5\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.0003\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 3\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224215-hxampiva</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hxampiva' target=\"_blank\">misunderstood-sweep-29</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hxampiva' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hxampiva</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "18a4b9d577dc4678bc02fc829b527858",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">misunderstood-sweep-29</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hxampiva' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/hxampiva</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_224215-hxampiva/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run hxampiva errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run hxampiva errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Sweep Agent: Waiting for job.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Job received.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Agent Starting Run: q1v8qruc with config:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbatch_size: 8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_one: 0.99\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tbeta_two: 0.9\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tepochs: 10\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \teps: 1e-08\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tgamma: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tlearning_rate: 0.1\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \toptimizer: sgd\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \tstep_size: 7\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.11"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/zenon/Documents/master-thesis/classification/classifier/wandb/run-20230313_224241-q1v8qruc</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q1v8qruc' target=\"_blank\">cosmic-sweep-30</a></strong> to <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>Sweep page: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View sweep at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/sweeps/eqwnoagh</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q1v8qruc' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q1v8qruc</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:red\">(failed 1).</strong> Press Control-C to abort syncing."
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5504f3fc68844494809c30c364a93525",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='0.027 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">cosmic-sweep-30</strong> at: <a href='https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q1v8qruc' target=\"_blank\">https://wandb.ai/flower-classification/pytorch-sweeps-demo/runs/q1v8qruc</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230313_224241-q1v8qruc/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Run q1v8qruc errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[32m\u001b[41mERROR\u001b[0m Run q1v8qruc errored: OutOfMemoryError('CUDA out of memory. Tried to allocate 2.00 MiB (GPU 0; 1.95 GiB total capacity; 1.32 GiB already allocated; 1.31 MiB free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF')\n"
]
}
],
"source": [
"wandb.agent(sweep_id, train, count=30)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}