master-thesis/evaluation/detection.py

168 lines
5.0 KiB
Python

import cv2
import torch
import onnxruntime
import numpy as np
import pandas as pd
import albumentations as A
from torchvision import transforms, ops
from albumentations.pytorch import ToTensorV2
from utils.conversions import scale_bboxes
from utils.manipulations import get_cutout
def detect(img_path: str, yolo_path: str, resnet_path: str):
"""Load an image, detect individual plants and label them as
healthy or wilted.
:param str img_path: path to image
:param str yolo_path: path to yolo weights
:param str resnet_path: path to resnet weights
:returns: tuple of recent image and dict of bounding boxes and
their predictions
"""
img = cv2.imread(img_path)
# Get bounding boxes from object detection model
box_coords = get_boxes(yolo_path, img.copy())
box_coords.sort_values(by=['xmin'], ignore_index=True, inplace=True)
predictions = []
for _, row in box_coords.iterrows():
xmin, xmax = int(row['xmin']), int(row['xmax'])
ymin, ymax = int(row['ymin']), int(row['ymax'])
# Get tensor of ROI in BGR
cropped_image = get_cutout(img.copy(), xmin, xmax, ymin, ymax)
# Classify ROI in RGB
predictions.append(classify(resnet_path, cropped_image[..., ::-1]))
# Gather top class and confidence values
cls = []
cls_conf = []
for pred in predictions:
ans, index = torch.topk(pred, 1)
cls.append(index.int().item())
cls_conf.append(round(ans.double().item(), 6))
# Add predicted classes and confidence values to pandas dataframe
box_coords['cls'] = cls
box_coords['cls_conf'] = cls_conf
return box_coords
def classify(resnet_path, img):
"""Classify img with object classification model.
:param model: object classification model
:param img: opencv2 image object in RGB
:returns: tensor of class predictions
"""
# Transform image for ResNet
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
transforms.Resize((224, 224))
])
img = transform(img.copy())
batch = img.unsqueeze(0)
# Do inference
session = onnxruntime.InferenceSession(resnet_path)
outname = [i.name for i in session.get_outputs()]
inname = [i.name for i in session.get_inputs()]
inp = {inname[0]: batch.numpy()}
out = torch.tensor(np.array(session.run(outname, inp)))[0]
# Apply softmax to get percentage confidence of classes
out = torch.nn.functional.softmax(out, dim=1)[0] * 100
return out
def apply_nms(predictions,
confidence_threshold: float = 0.3,
nms_threshold: float = 0.65):
"""Apply Non Maximum Suppression to a list of bboxes.
:param predictions List[Tensor[N, 7]]: predicted bboxes
:param confidence_threshold float: discard all bboxes with lower
confidence
:param nms_threshold float: discard all overlapping bboxes with
higher IoU
:returns List[Tensor[N, 7]]: filtered bboxes
"""
preds_nms = []
for pred in predictions:
pred = pred[pred[:, 6] > confidence_threshold]
nms_idx = ops.batched_nms(
boxes=pred[:, 1:5],
scores=pred[:, 6],
idxs=pred[:, 5],
iou_threshold=nms_threshold,
)
preds_nms.append(pred[nms_idx])
return preds_nms
def get_boxes(yolo_path, image):
"""Run object detection model on an image and get the bounding box
coordinates of all matches.
:param model: path to onnx object detection model (YOLO)
:param img: opencv2 image object
:returns: pandas dataframe of matches
"""
# Convert from BGR to RGB
img = image[..., ::-1].copy()
resized_hw = (640, 640)
original_hw = (image.shape[0], image.shape[1])
transform = [
A.LongestMaxSize(max(resized_hw)),
A.PadIfNeeded(
resized_hw[0],
resized_hw[1],
border_mode=0,
value=(114, 114, 114),
),
A.ToFloat(max_value=255),
ToTensorV2(transpose_mask=True),
]
# Pad (letterbox) and transform image to correct dims
transform = A.Compose(transform)
img = transform(image=img)
# Add batch dimension
img['image'] = img['image'].unsqueeze(0)
# Do inference
session = onnxruntime.InferenceSession(yolo_path)
outname = [i.name for i in session.get_outputs()]
inname = [i.name for i in session.get_inputs()]
inp = {inname[0]: img['image'].numpy()}
out = torch.tensor(np.array(session.run(outname, inp)))[0]
# Apply NMS to results
preds_nms = apply_nms([out])[0]
# Convert boxes from resized img to original img
xyxy_boxes = preds_nms[:, [1, 2, 3, 4]] # xmin, ymin, xmax, ymax
bboxes = scale_bboxes(xyxy_boxes, resized_hw, original_hw).int().numpy()
# Construct DataFrame with bboxes and their confidence
box_coords = pd.DataFrame(np.c_[bboxes, preds_nms[:, 6]])
box_coords.columns = ['xmin', 'ymin', 'xmax', 'ymax', 'box_conf']
return box_coords