# 1. Importing new CSV data in pandas dataframes import pandas as pd data = pd.read_csv("iris_extension.csv") # 2. Separating labels from data y = data["label"] data = data.drop(columns=["label"]) x = data.to_numpy() # 3. Loading a trained model import pickle model = pickle.load(open('iris_classif_model.sav', 'rb')) y_pred = model.predict(x) # 4. Evaluating the model with the new data from sklearn.metrics import classification_report, confusion_matrix print("\n *************** MODEL EVALUATION ****************") print("Confusion matrix:") print(confusion_matrix(y, y_pred)) print(classification_report(y,y_pred))