import pandas as pd import pickle # Preprocessing data - encode ip addresses to numerical values def ip_to_bin(ip): parts = ip.split('.') return (int(parts[0]) << 24) + (int(parts[1]) << 16) + (int(parts[2]) << 8) + int(parts[3]) # 1. Import data data = pd.read_csv('input.csv', converters={ 'sourceIPAddress': lambda x1: ip_to_bin(x1), 'destinationIPAddress': lambda x2: ip_to_bin(x2) }) x = data.to_numpy() # 2. Loading a trained model and predict model = pickle.load(open('network_traffic_classifier.sav', 'rb')) y_pred = model.predict(x) data['label'] = y_pred print(data) # 3. Save output file pickle.dump(pd, open('output.csv', 'wb'))