25 lines
633 B
Python
25 lines
633 B
Python
# 1. Importing new CSV data in pandas dataframes
|
|
import pandas as pd
|
|
import pickle
|
|
from sklearn import preprocessing
|
|
|
|
data = pd.read_csv("input.csv")
|
|
x = data.to_numpy()
|
|
|
|
# Preprocessing data - encode ip addresses to numerical values
|
|
le = preprocessing.LabelEncoder()
|
|
le.fit(data['sourceIPAddress'])
|
|
data['sourceIPAddress'] = le.transform(data['sourceIPAddress'])
|
|
le.fit(data['destinationIPAddress'])
|
|
data['destinationIPAddress'] = le.transform(data['destinationIPAddress'])
|
|
|
|
# 3. Loading a trained model
|
|
model = pickle.load(open('network_traffic_classifier.sav', 'rb'))
|
|
y_pred = model.predict(x)
|
|
|
|
print(data)
|
|
|
|
data.append(y_pred)
|
|
|
|
|