2021-06-01 16:14:51 +02:00

37 lines
1.3 KiB
Python

# 1. Importing CSV data for training in pandas dataframes
import pandas as pd
data = pd.read_csv("iris_base.csv")
# 2. Separating labels from data
y = data["label"]
data = data.drop(columns=["label"])
x = data.to_numpy()
# 3. Splitting data into training/test subsets for model training and validation
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(data, y, test_size=0.2, stratify=y)
# 4. Fitting a Naive Gaussian classifier with the training split
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(x_train,y_train)
# 5. The obtained model is tested with both the training and test split
# to ensure no underfitting and overfitting issues
y_pred_train = gnb.predict(x_train)
y_pred_test = gnb.predict(x_test)
from sklearn.metrics import classification_report, confusion_matrix
print("\n *************** TRAINING ****************")
print("\n Confusion matrix:")
print(confusion_matrix(y_train, y_pred_train))
print(classification_report(y_train,y_pred_train))
print("\n ************** VALIDATION ***************")
print("\n Confusion matrix:")
print(confusion_matrix(y_test, y_pred_test))
print(classification_report(y_test,y_pred_test))
# 6. Saving the obtained model
import pickle
pickle.dump(gnb, open('iris_classif_model.sav', 'wb'))