From 04c8f74578057e84d235aa246273f69cb74e17cd Mon Sep 17 00:00:00 2001 From: Tobias Eidelpes Date: Tue, 28 Apr 2020 22:06:38 +0200 Subject: [PATCH] Add complexity part for algorithms Still missing definition for Limit Monotonicity and an example. Add a sentence about Discount Monotonicity with other Budgeting Algorithms. Write a nice conclusion slide. Mention that he focus is on discrete and bounded PB and that Approval-Based Voting is a mechanism for this type of problem. Add a short history of PB with a reference to Porto Alegre in Brazil to the Introduction. --- talk/talk.tex | 87 ++++++++++++++++++++++++++++++++++++++++++++++----- 1 file changed, 80 insertions(+), 7 deletions(-) diff --git a/talk/talk.tex b/talk/talk.tex index 209463e..172c16d 100644 --- a/talk/talk.tex +++ b/talk/talk.tex @@ -8,7 +8,6 @@ \usepackage{graphicx} \usepackage{tikz} \usepackage{dsfont} -\usepackage{comment} \usetikzlibrary{arrows} @@ -81,13 +80,13 @@ $c(p):P\rightarrow\mathbb{R}$ \item Projects are either divisible or indivisible (discrete) \end{itemize} - \item Select a set $P'\subseteq P$ as \emph{winning projects} not + \item Select a set $A\subseteq P$ as \emph{winning projects} not exceeding total budget $B$ \begin{itemize} \setlength{\itemsep}{.7\baselineskip} - \item Discrete case: $\sum_{p\in P'}c(p)\leq B$ + \item Discrete case: $\sum_{p\in A}c(p)\leq B$ \item Divisible case: $\mu(p): P\rightarrow [0,1]$ with - $\sum_{p\in P'}c(\mu(p))\leq B$ + $\sum_{p\in A}c(\mu(p))\leq B$ \end{itemize} \end{itemize} \end{frame} @@ -98,9 +97,9 @@ \setlength{\itemsep}{1\baselineskip} \item Voters $V=\{v_1,\dots,v_n\}$ \begin{itemize} - \setlength{\itemsep}{.5\baselineskip} + \setlength{\itemsep}{.4\baselineskip} \item Express preferences over individual projects in $P$ or - over subsets in $\mathcal{P}(P) := \{P'\,|\,P'\subseteq P\}$ + over subsets in $\mathcal{P}(P) := \{P_v\,|\,P_v\subseteq P\}$ \item Preference elicitation is dependent on the input method (approval-based, ranked orders) \end{itemize} @@ -231,7 +230,81 @@ \end{frame} \begin{frame} - \frametitle{} + \frametitle{Complexity of budgeting algorithms} + \begin{itemize} + \setlength{\itemsep}{1\baselineskip} + \item Computing winners using greedy rules ($\mathcal{R}^g_{sat}$) can + be done in polynomial time: + \begin{itemize} + \setlength{\itemsep}{.4\baselineskip} + \item these rules are defined through efficient iterative + processes + \item however: making a series of locally optimal choices does + not always lead to a globally optimal choice + \item $\mathcal{R}^g_{|A_v|}$ is similar to $k$-Approval and + knapsack voting + \end{itemize} + \item Max rules ($\mathcal{R}^m_{sat}$) are generally NP-hard + \begin{itemize} + \setlength{\itemsep}{.4\baselineskip} + \item $\mathcal{R}^m_{|A_v|}$ can be solved in polynomial time + because one dimension is fixed + \item $\mathcal{R}^m_{sat_{0/1}}$: finding a bundle with at least a + given total satisfaction is NP-hard + \item satisfaction functions can be modeled as integer linear + programs + \end{itemize} + \end{itemize} +\end{frame} + +\begin{frame} + \frametitle{Complexity of budgeting algorithms ctd.} + {\large Dealing with \emph{intractability}:} + \vspace{.3cm} + \begin{itemize} + \setlength{\itemsep}{1\baselineskip} + \item Provide an approximation algorithm, sacrificing exactness + \begin{itemize} + \setlength{\itemsep}{0.4\baselineskip} + \item No algorithm with approx. ratio better than $1-1/\epsilon$ + exists for $\mathcal{R}^m_{sat_{0/1}}$ + \end{itemize} + \item Fixed-parameter tractability: fix one parameter to solve problem + in reasonable amount of time + \begin{itemize} + \setlength{\itemsep}{0.4\baselineskip} + \item Fix parameter $m$ (the number of items) + \item Fix parameter $n$ (the number of voters) + \end{itemize} + \end{itemize} +\end{frame} + +\begin{frame} + \frametitle{Comparing budgeting algorithms} + By defining desirable axioms, different budgeting algorithms can + be compared: + \begin{block}{Discount Monotonicity} + Suppose a budgeting algorithm $\mathcal{R}$ outputs a winning set of + projects $A$. The cost of project $p\in A$ is lowered (discounted) + compared to the previous cost. $\mathcal{R}$ should output another + winning set $A'$ where project $p$ is not implemented to a lesser + degree. + \end{block} +\end{frame} + +\begin{frame} + \frametitle{Axiom Examples} + \begin{block}{A budgeting scenario} + Items $P = \{p_2,p_3,p_4,p_5,p_6\}$ and their associated cost $p_i$ + where $p_i$ costs $i$. Budget limit $B=10$ and 5 voters vote + $v_1=\{p_2,p_5,p_6\}$, $v_2=\{p_2,p_3,p_4,p_5\}$, $v_3=\{p_3,p_4,p_5\}$, + $v_4=\{p_4,p_5\}$ and $v_5=\{p_6\}$. + \end{block} + \begin{exampleblock}{Discount Monotonicity Example} + Under $\mathcal{R}^m_{|A_v|}$ the winning bundle is $\{p_2,p_3,p_5\}$. + After discounting $p_2$ to $p_1$, we still get $\{p_1,p_3,p_5\}$. The + total cost is one unit less but the total satisfaction remains the same. + \end{exampleblock} \end{frame} \section{Future Directions}