From 31065aba3c87360fab97c4a4a47aafccdcc347e9 Mon Sep 17 00:00:00 2001 From: Tobias Eidelpes Date: Fri, 15 May 2020 12:53:10 +0200 Subject: [PATCH] Add example for greedy selection rules --- paper/termpaper.tex | 35 ++++++++++++++++++++++++++++++----- 1 file changed, 30 insertions(+), 5 deletions(-) diff --git a/paper/termpaper.tex b/paper/termpaper.tex index b3616f1..ae03ec9 100644 --- a/paper/termpaper.tex +++ b/paper/termpaper.tex @@ -18,7 +18,7 @@ \addbibresource{references.bib} -%opening +% opening \title{Participatory Budgeting: Algorithms and Complexity} \author{ \authorname{Tobias Eidelpes} \\ @@ -27,6 +27,11 @@ \email{e1527193@student.tuwien.ac.at} } +% Numbered example environment +\newcounter{example}[section] +\newenvironment{example}[1][]{\refstepcounter{example}\par\medskip + \noindent \textbf{Example~\theexample. #1} \rmfamily}{\medskip} + \begin{document} \maketitle @@ -210,10 +215,10 @@ of this property. \end{equation} The third satisfaction function assumes that voters are content as long as there -is at least one of the projects they have approved is selected to be in the -winning set. Therefore, a voter achieves satisfaction 1 when at least one -approved project ends up in the winning bundle, i.e. if $|A_v| > 0$ and 0 -satisfaction otherwise (see equation~\ref{eq:5}). +is at least one of the projects they have approved selected to be in the winning +set. Therefore, a voter achieves satisfaction 1 when at least one approved +project ends up in the winning bundle, i.e. if $|A_v| > 0$ and 0 satisfaction +otherwise (see equation~\ref{eq:5}). \begin{equation}\label{eq:5} sat_{0/1}(P_v,A) = \begin{cases} @@ -221,6 +226,26 @@ satisfaction otherwise (see equation~\ref{eq:5}). 0 & \mathsf{otherwise} \end{cases} \end{equation} +The satisfaction functions from equations~\ref{eq:4} and \ref{eq:5} can also be +combined with the greedy rule, potentially giving slightly different outcomes +than $\mathcal{R}_{sat_\#}^g$. + +\begin{example} + A set of projects $P = \{ p_2,p_3,p_4,p_5,p_6 \}$ and their associated cost + $p_i$ where project $p_i$ costs $i$ and a budget limit $B = 10$ is given. + Futhermore, five voters vote $v_1 = \{ p_2,p_5,p_6 \}$, $v_2 = \{ p_2, + p_3,p_4,p_5 \}$, $v_3 = \{ p_3,p_4,p_5 \}$, $v_4 = \{ p_4,p_5 \}$ and $v_5 = + \{ p_6 \}$. Under $\mathcal{R}_{sat_\#}^g$ the winning bundle is $\{ p_4,p_5 + \}$, $\mathcal{R}_{sat_\$}^g$ gives $\{ p_4,p_5 \}$ and + $\mathcal{R}_{sat_{0/1}}^g$ $\{ p_2,p_3,p_5 \}$. +\end{example} + +These three satisfaction functions cannot only be combined with a greedy +selection process. A different possibility is to always select a winning set of +projects that maximizes the sum of the voters' satisfaction: +\begin{equation}\label{eq:6} + \max_{A\subseteq P}\sum_{v\in V}sat(P_v,A) +\end{equation} \printbibliography