diff --git a/talk/talk.tex b/talk/talk.tex index 135211a..22cf550 100644 --- a/talk/talk.tex +++ b/talk/talk.tex @@ -4,6 +4,9 @@ \usecolortheme{dolphin} \usepackage{graphicx} +\usepackage{tikz} + +\usetikzlibrary{arrows} \begin{document} @@ -28,194 +31,70 @@ Participatory Budgeting (PB) is a democratic process in which community members decide how to spend part of a public budget. \end{quote} + \vspace{1cm} + \begin{itemize} + \setlength{\itemsep}{1.1\baselineskip} + \item Participatory part: community members propose projects + \item Budgeting part: each project requires a fixed amount of money + \item Goal: Fund the \emph{best} projects without exceeding the budget + \end{itemize} \end{frame} \begin{frame} - \frametitle{How does it work?} + \frametitle{How does it work?} + \tikzstyle{blue} = [rectangle,rounded + corners=3pt,draw=blue!50,fill=blue!20,node distance=1cm] + \tikzstyle{red} = [rectangle,rounded corners=3pt,draw=red!50,fill=red!20] + \tikzstyle{arrow} = [line width=1pt,->,>=triangle 60,draw=black!70] + \begin{center} + \begin{tikzpicture}[shorten >= 2pt,level distance=1.3cm] + \node[blue](design){Design the process} + child { node [blue](collect){Collect ideas} + child { node [blue](develop){Develop feasible projects} + child { node [red](vote){Vote on projects} + child { node [red](aggregate){Aggregate votes \& fund winners} + } + } + } + } + ; + \draw [arrow] (design) to (collect); + \draw [arrow] (collect) to (develop); + \draw [arrow] (develop) to (vote); + \draw [arrow] (vote) to (aggregate); + \end{tikzpicture} + \end{center} +\end{frame} + +\begin{frame} + \frametitle{A formal model for PB} \begin{itemize} - \item Designing the Process - \item Collecting Ideas - \item Developing Proposals - \item Voting - \item Funding Winners + \setlength{\itemsep}{1\baselineskip} + \item Projects can be bounded or unbounded + \item Projects can be divisible or indivisible (discrete) + \item Each project has an associated cost + \item Voters approve a subset of all projects (\emph{input method}) + \item The total cost is limited by the available budget + \item An \emph{aggregation method} provides a list of projects to fund \end{itemize} \end{frame} \begin{frame} - \frametitle{Benefits of Participatory Budgeting} - \begin{itemize} - \item More efficient spending - \item Diverse participants - \item Higher voter satisfaction - \item Democratic and citizenship learning - \item Institutional and political change - \end{itemize} -\end{frame} + \frametitle{Input and aggregation methods} + \begin{itemize} + \item Approval voting + \item Ranked voting + \item Knapsack voting + \end{itemize} -\section{Computational Aspects} - -\begin{frame} - \frametitle{Computational Aspects of PB} - \begin{itemize} - \item Discrete or continuous projects? - \item How do we model preferences mathematically? - \item How do we adequately capture voter's preferences? - \item How do we aggregate votes? - \end{itemize} -\end{frame} - -\begin{frame} - \frametitle{Decision Space} - \begin{figure} - \centering - \includegraphics[width=\textwidth]{taxonomy.png} - \end{figure} -\end{frame} - -\begin{frame} - \frametitle{Bounded Divisible PB} - \begin{itemize} - \item Projects are divisible - \item A cap for each project is defined - \item Fractional funding - \end{itemize} - \begin{exampleblock}{Example} - A project that seeks to donate a bounded amount of money to a - charity. - \end{exampleblock} -\end{frame} - -\begin{frame} - \frametitle{Unbounded Divisible PB} - \begin{itemize} - \item Projects are divisible - \item No caps for projects - \item Generalizable to \emph{Portioning} - \end{itemize} - \begin{block}{Unbounded Divisible PB} $x_p = [0,1]$ denotes the - fraction of project $p\in P$ that is completed and $c_p(x_p) = - x_p$ is the cost function of project $p$. The set of feasible - budget allocations under a budget $B = 1$ is therefore defined - as \[ \{ \vec{x} : \sum_{p\in P}{x_p}\leq 1 \}. \] - \end{block} - \begin{exampleblock}{Example} - A project that seeks to donate an unbounded amount of money to a - charity. Every additional amount can be used effectively. - \end{exampleblock} -\end{frame} - -\begin{frame} - \frametitle{Bounded Discrete PB} - \begin{itemize} - \item Projects are either fully implemented or not at all - \item Degree of completion has a cap - \item Budget is defined as subset of projects which can be - implemented subject to budget constraints - \end{itemize} - \begin{exampleblock}{Example} - A project for building a new school. - \end{exampleblock} -\end{frame} - -\begin{frame} - \frametitle{Unbounded Discrete PB} - \begin{itemize} - \item Multiple degrees of completion - \item Substages of projects (milestones) can be defined - \item Still bounded by total available budget - \end{itemize} - \begin{exampleblock}{Example} - A project for building public toilets. The degree of completion - is the number of toilets that have already been built. - \end{exampleblock} -\end{frame} - -\section{Preference Modeling} - -\begin{frame} - \frametitle{Preference Modeling} - Model preferences as a cardinal utility function or an ordinal - preference relation: - \begin{block}{Cardinal utility function} - Each resident $i$ has a cardinal utility function $u_i : - A\rightarrow \mathbb{R}$, where $A$ is the set of feasible - allocations. - \end{block} - \begin{block}{Ordinal preference relation} - $\succ_i$ over $A$ - \end{block} - \begin{alertblock}{Problem} - This does not adequately reflect any structural properties of - residents' preferences. - \end{alertblock} -\end{frame} - -\begin{frame} - \frametitle{Preference Modeling} - \begin{itemize} - \item Impose a structural assumption on the utility function: - \[ u_i : 2^P\rightarrow\mathbb{R} \] - and $u_i$ satisfies subadditivity or superadditivity. - \item Use spatial models where preferences are situated in a - metric space and the distance between them models a - resident's utility for another allocation. - \item Take preferences over projects and use a rule to extend - them to allocations. - \end{itemize} -\end{frame} - -\begin{frame} - \frametitle{Cardinal extensions} - \begin{block}{Scalar separable utility function} - A resident $i$ derives utility $u_{i,p}\cdot f_p(x_p)$ from each - project. A resident's utility for an allocation $\vec{x}$ is - additive across projects: - \[ u_i(\vec{x}) = \sum_{p\in P}{u_{i,p}\cdot f_p(x_p)} \] - \end{block} - \begin{block}{Dichotomous preferences} - Assuming $x_p\in\{0,1\}$ and $u_{i,p}\in\{0,1\}$, residents - either approve or disapprove a project and care only about the - number of projects implemented. - \end{block} - \begin{block}{Max set extension} - Utility of an allocation is defined as the utility for a - resident's most favorite project: $u_i(S) = \mathsf{max}_{p\in - S}u_{i,p}$ for each $S\subseteq P$. - \end{block} -\end{frame} - -\begin{frame} - \frametitle{Ordinal extensions} - \begin{block}{Stochastic dominance extension} - For two allocations $\vec{x},\vec{y}\in A$ and - $E_i^1,\dots,E_i^{k_i}$ being the equivalence classes of the - relation $\succ_i$ in decreasing order of preferences: \[ - \vec{x}\succ_{i}^{SD}\vec{y} \text{ iff } - \sum_{j=1}^{l}{\sum_{p\in E_i^j}{x_p}}\geq\sum_{j=1}^{l}{\sum_{p\in -E_i^j}{y_p}}\quad\text{for all } l\in\{1,\dots,k_i\}\] - \end{block} - \begin{block}{Lexicographic extension $\succ_i^{lex}$} - A resident $i$ cares significantly more about project $p$ than - about $p'$ whenever $p\succ_i p'$. - \end{block} - \begin{block}{Scoring rules} - Convert ordinal to cardinal preferences by taking a ranking - $\succ_i$ over projects and determining the utility as $u_{i,p} - = s_k$ where $k$ is the rank in a scoring vector $\vec{s} = - (s_1,\dots,s_m)$ and $s_1\geq\dots\geq s_m\geq 0$. - \end{block} -\end{frame} - -\section{Preference Elicitation} - -\begin{frame} - \frametitle{Preference elicitation} - \begin{itemize} - \item Also known as \emph{Ballot Design} - \item Communicating full preferences over sometimes - exponentially many allocations is difficult - \item Cognitive burden can lead to lower turnout rates - \end{itemize} + \begin{block}{An approval-based budgeting scenario} + A budgeting scenario is a tuple $E = (A,V,c,l)$ where $A = + \{a_1,\dots,a_m\}$ is a set of items (projects), $V$ is a set of voters, + $c : A\rightarrow\mathbb{N}$ is a cost function associating each project + $a\in A$ with its cost $c(a)$ and $l\in\mathbb{N}$ is a budget limit. A + voter $v\in V$ specifies $A_v\subseteq A$, containing all approved + items. + \end{block} \end{frame} \begin{frame}