Finalize presentation

This commit is contained in:
Tobias Eidelpes 2020-05-01 11:24:15 +02:00
parent e0e57c0542
commit 9e1f72f6f9

View File

@ -146,6 +146,7 @@
Example aggregation methods: \pause
\begin{itemize}
\item Maximizing social welfare \pause
\item Maximizing voter satisfaction \pause
\item Greedy selection \pause
\item Fairness-based selection \pause
\end{itemize}
@ -189,7 +190,7 @@
\begin{exampleblock}{$sat_\#(P_v,A)$}
$sat_\#(P_v,A) = |A_v|$: The satisfaction of voter $v$ is the number of
funded items that are approved.
\end{exampleblock} \pause
\end{exampleblock}
\end{frame}
\begin{frame}
@ -264,14 +265,12 @@
processes \pause
\item however: making a series of locally optimal choices does
not always lead to a globally optimal choice \pause
\item $\mathcal{R}^g_{|A_v|}$ is similar to $k$-Approval and
knapsack voting \pause
\end{itemize}
\item Max rules ($\mathcal{R}^m_{sat}$) are generally NP-hard \pause
\begin{itemize}
\setlength{\itemsep}{.4\baselineskip}
\item $\mathcal{R}^m_{|A_v|}$ can be solved in polynomial time
because one dimension is fixed \pause
\pause
\item $\mathcal{R}^m_{sat_{0/1}}$: finding a bundle with at least a
given total satisfaction is NP-hard \pause
\item satisfaction functions can be modeled as integer linear
@ -400,7 +399,6 @@
\centering
\Large
Thank you for your attention! \\
Questions \& Answers
\begin{figure}
\centering
\includegraphics[width=.5\textwidth]{voting_referendum.png}