diff --git a/talk/talk.tex b/talk/talk.tex index f4c90f1..bf9fa4f 100644 --- a/talk/talk.tex +++ b/talk/talk.tex @@ -1,11 +1,20 @@ \documentclass{beamer} +\usetheme{Boadilla} +\usecolortheme{dolphin} + +\usepackage{graphicx} + \begin{document} \title[Participatory Budgeting]{Participatory Budgeting} \subtitle{Algorithms and Complexity} \author{Tobias Eidelpes} +\begin{frame} + \maketitle +\end{frame} + \begin{frame} \frametitle{Table of Contents} \tableofcontents @@ -15,31 +24,98 @@ \begin{frame} \frametitle{What is Participatory Budgeting?} + \begin{quote} + Participatory Budgeting (PB) is a democratic process in which + community members decide how to spend part of a public budget. + \end{quote} \end{frame} \begin{frame} \frametitle{How does it work?} \begin{itemize} - \item Designing the Process \pause - \item Collecting Ideas \pause - \item Developing Proposals \pause - \item Voting \pause + \item Designing the Process + \item Collecting Ideas + \item Developing Proposals + \item Voting \item Funding Winners \end{itemize} \end{frame} \begin{frame} - \frametitle{Differences to traditional Election} + \frametitle{Benefits of Participatory Budgeting} + \begin{itemize} + \item More efficient spending + \item Diverse participants + \item Higher voter satisfaction + \item Democratic and citizenship learning + \item Institutional and political change + \end{itemize} \end{frame} -\section{Properties of Algorithms} +\section{Computational Aspects} + +\begin{frame} + \frametitle{Computational Aspects of PB} + \begin{itemize} + \item Discrete or continuous projects? + \item How do we adequately capture voter's preferences? + \item How do we model these preferences? + \item How do we aggregate votes? + \end{itemize} +\end{frame} + +\begin{frame} + \frametitle{Decision Space} + \begin{figure} + \centering + \includegraphics[width=\textwidth]{taxonomy.png} + \end{figure} +\end{frame} + +\begin{frame} + \frametitle{Bounded Divisible PB} + \begin{itemize} + \item Projects are divisible + \item A cap for each project is defined + \item Fractional funding + \end{itemize} + \begin{block}{Bounded Divisible PB} + Each project has a cap $q_p = 1$ and $x_p = [0,1]$ denotes the + fraction of project $p\in P$ that is completed. The set of + feasible budget allocations under a budget $B = 1$ is therefore defined as + \[ \{ \vec{x} : \sum_{p\in P}{x_p}\leq 1 \}. \] + \end{block} + \begin{exampleblock}{Example} + A project that seeks to donate a bounded amount of money to a + charity. + \end{exampleblock} +\end{frame} + +\begin{frame} + \frametitle{Unbounded Divisible PB} + \begin{itemize} + \item Projects are divisible + \item No caps for projects + \item Generalizable to \emph{Portioning} + \item In practice still bounded by total budget + \end{itemize} + \begin{block}{Unbounded Divisible PB} + + \end{block} +\end{frame} + +\section{Preference Elicitation} + +\section{Preference Modeling} + +\section{Vote Aggregation} \begin{frame} \frametitle{Algorithm Axioms} \begin{itemize} - \item Pareto Optimality \pause - \item Monotonicity \pause - \item Truthfulness \pause + \item Pareto Optimality + \item Monotonicity + \item Truthfulness \item Fairness \end{itemize} \end{frame} diff --git a/talk/taxonomy.png b/talk/taxonomy.png new file mode 100644 index 0000000..bb217ce Binary files /dev/null and b/talk/taxonomy.png differ