Finish preliminary presentation
This commit is contained in:
parent
b3d76a9b4c
commit
f7de406092
2
.gitignore
vendored
2
.gitignore
vendored
@ -7,6 +7,8 @@
|
||||
*.pdf
|
||||
*.synctex.gz
|
||||
|
||||
*.out
|
||||
*.toc
|
||||
|
||||
*.nav
|
||||
*.snm
|
||||
|
||||
249
talk/talk.tex
249
talk/talk.tex
@ -58,8 +58,8 @@
|
||||
\frametitle{Computational Aspects of PB}
|
||||
\begin{itemize}
|
||||
\item Discrete or continuous projects?
|
||||
\item How do we model preferences mathematically?
|
||||
\item How do we adequately capture voter's preferences?
|
||||
\item How do we model these preferences?
|
||||
\item How do we aggregate votes?
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
@ -79,12 +79,6 @@
|
||||
\item A cap for each project is defined
|
||||
\item Fractional funding
|
||||
\end{itemize}
|
||||
\begin{block}{Bounded Divisible PB}
|
||||
Each project has a cap $q_p = 1$ and $x_p = [0,1]$ denotes the
|
||||
fraction of project $p\in P$ that is completed. The set of
|
||||
feasible budget allocations under a budget $B = 1$ is therefore defined as
|
||||
\[ \{ \vec{x} : \sum_{p\in P}{x_p}\leq 1 \}. \]
|
||||
\end{block}
|
||||
\begin{exampleblock}{Example}
|
||||
A project that seeks to donate a bounded amount of money to a
|
||||
charity.
|
||||
@ -97,33 +91,252 @@
|
||||
\item Projects are divisible
|
||||
\item No caps for projects
|
||||
\item Generalizable to \emph{Portioning}
|
||||
\item In practice still bounded by total budget
|
||||
\end{itemize}
|
||||
\begin{block}{Unbounded Divisible PB}
|
||||
\begin{block}{Unbounded Divisible PB} $x_p = [0,1]$ denotes the
|
||||
fraction of project $p\in P$ that is completed and $c_p(x_p) =
|
||||
x_p$ is the cost function of project $p$. The set of feasible
|
||||
budget allocations under a budget $B = 1$ is therefore defined
|
||||
as \[ \{ \vec{x} : \sum_{p\in P}{x_p}\leq 1 \}. \]
|
||||
\end{block}
|
||||
\begin{exampleblock}{Example}
|
||||
A project that seeks to donate an unbounded amount of money to a
|
||||
charity. Every additional amount can be used effectively.
|
||||
\end{exampleblock}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Bounded Discrete PB}
|
||||
\begin{itemize}
|
||||
\item Projects are either fully implemented or not at all
|
||||
\item Degree of completion has a cap
|
||||
\item Budget is defined as subset of projects which can be
|
||||
implemented subject to budget constraints
|
||||
\end{itemize}
|
||||
\begin{exampleblock}{Example}
|
||||
A project for building a new school.
|
||||
\end{exampleblock}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Unbounded Discrete PB}
|
||||
\begin{itemize}
|
||||
\item Multiple degrees of completion
|
||||
\item Substages of projects (milestones) can be defined
|
||||
\item Still bounded by total available budget
|
||||
\end{itemize}
|
||||
\begin{exampleblock}{Example}
|
||||
A project for building public toilets. The degree of completion
|
||||
is the number of toilets that have already been built.
|
||||
\end{exampleblock}
|
||||
\end{frame}
|
||||
|
||||
\section{Preference Modeling}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Preference Modeling}
|
||||
Model preferences as a cardinal utility function or an ordinal
|
||||
preference relation:
|
||||
\begin{block}{Cardinal utility function}
|
||||
Each resident $i$ has a cardinal utility function $u_i :
|
||||
A\rightarrow \mathbb{R}$, where $A$ is the set of feasible
|
||||
allocations.
|
||||
\end{block}
|
||||
\begin{block}{Ordinal preference relation}
|
||||
$\succ_i$ over $A$
|
||||
\end{block}
|
||||
\begin{alertblock}{Problem}
|
||||
This does not adequately reflect any structural properties of
|
||||
residents' preferences.
|
||||
\end{alertblock}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Preference Modeling}
|
||||
\begin{itemize}
|
||||
\item Impose a structural assumption on the utility function:
|
||||
\[ u_i : 2^P\rightarrow\mathbb{R} \]
|
||||
and $u_i$ satisfies subadditivity or superadditivity.
|
||||
\item Use spatial models where preferences are situated in a
|
||||
metric space and the distance between them models a
|
||||
resident's utility for another allocation.
|
||||
\item Take preferences over projects and use a rule to extend
|
||||
them to allocations.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Cardinal extensions}
|
||||
\begin{block}{Scalar separable utility function}
|
||||
A resident $i$ derives utility $u_{i,p}\cdot f_p(x_p)$ from each
|
||||
project. A resident's utility for an allocation $\vec{x}$ is
|
||||
additive across projects:
|
||||
\[ u_i(\vec{x}) = \sum_{p\in P}{u_{i,p}\cdot f_p(x_p)} \]
|
||||
\end{block}
|
||||
\begin{block}{Dichotomous preferences}
|
||||
Assuming $x_p\in\{0,1\}$ and $u_{i,p}\in\{0,1\}$, residents
|
||||
either approve or disapprove a project and care only about the
|
||||
number of projects implemented.
|
||||
\end{block}
|
||||
\begin{block}{Max set extension}
|
||||
Utility of an allocation is defined as the utility for a
|
||||
resident's most favorite project: $u_i(S) = \mathsf{max}_{p\in
|
||||
S}u_{i,p}$ for each $S\subseteq P$.
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Ordinal extensions}
|
||||
\begin{block}{Stochastic dominance extension}
|
||||
For two allocations $\vec{x},\vec{y}\in A$ and
|
||||
$E_i^1,\dots,E_i^{k_i}$ being the equivalence classes of the
|
||||
relation $\succ_i$ in decreasing order of preferences: \[
|
||||
\vec{x}\succ_{i}^{SD}\vec{y} \text{ iff }
|
||||
\sum_{j=1}^{l}{\sum_{p\in E_i^j}{x_p}}\geq\sum_{j=1}^{l}{\sum_{p\in
|
||||
E_i^j}{y_p}}\quad\text{for all } l\in\{1,\dots,k_i\}\]
|
||||
\end{block}
|
||||
\begin{block}{Lexicographic extension $\succ_i^{lex}$}
|
||||
A resident $i$ cares significantly more about project $p$ than
|
||||
about $p'$ whenever $p\succ_i p'$.
|
||||
\end{block}
|
||||
\begin{block}{Scoring rules}
|
||||
Convert ordinal to cardinal preferences by taking a ranking
|
||||
$\succ_i$ over projects and determining the utility as $u_{i,p}
|
||||
= s_k$ where $k$ is the rank in a scoring vector $\vec{s} =
|
||||
(s_1,\dots,s_m)$ and $s_1\geq\dots\geq s_m\geq 0$.
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
\section{Preference Elicitation}
|
||||
|
||||
\section{Preference Modeling}
|
||||
\begin{frame}
|
||||
\frametitle{Preference elicitation}
|
||||
\begin{itemize}
|
||||
\item Also known as \emph{Ballot Design}
|
||||
\item Communicating full preferences over sometimes
|
||||
exponentially many allocations is difficult
|
||||
\item Cognitive burden can lead to lower turnout rates
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Preference elicitation}
|
||||
\begin{block}{Range voting}
|
||||
Voters rate projects based on their utility for each project.
|
||||
\end{block}
|
||||
\begin{block}{$k$-Approval}
|
||||
Voters approve the $k$ projects they like the most.
|
||||
\end{block}
|
||||
\begin{block}{Approval voting}
|
||||
Voters approve all projects that they like.
|
||||
\end{block}
|
||||
\begin{block}{Threshold approval voting}
|
||||
Voters approve projects where their utility is above a specified
|
||||
threshold.
|
||||
\end{block}
|
||||
\begin{block}{Knapsack voting}
|
||||
Voters provide ideal allocation based on their preferences.
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
\section{Vote Aggregation}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Algorithm Axioms}
|
||||
\frametitle{Vote Aggregation}
|
||||
\begin{itemize}
|
||||
\item Pareto Optimality
|
||||
\item Monotonicity
|
||||
\item Truthfulness
|
||||
\item Fairness
|
||||
\item Voters' preferences are aggregated to determine which
|
||||
projects to fund
|
||||
\item Main interest for research
|
||||
\item Three different approaches:
|
||||
\begin{itemize}
|
||||
\item Welfare Maximization
|
||||
\item Use of Axioms
|
||||
\item Notions of Fairness
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\section{Algorithms}
|
||||
\begin{frame}
|
||||
\frametitle{Welfare Maximization}
|
||||
\begin{block}{Utilitarian Welfare}
|
||||
The utilitarian welfare of an allocation is the sum of utilities it gives to
|
||||
residents:
|
||||
\[ UW(\vec{x}) =
|
||||
\sum_{i\in N}{u_i(\vec{x})}\text{ for }\vec{x}\in A \]
|
||||
\end{block}
|
||||
\begin{block}{Egalitarian Welfare}
|
||||
The egalitarian welfare of an allocation is the minimum utility
|
||||
it gives to any resident:
|
||||
\[ EW(\vec{x}) =
|
||||
\mathsf{min}_{i\in N}{u_i(\vec{x})}\text{ for
|
||||
}\vec{x}\in A \]
|
||||
\end{block}
|
||||
\begin{block}{Nash Welfare}
|
||||
The Nash welfare of an allocation is the product of utilities it gives to
|
||||
residents:
|
||||
\[ NW(\vec{x}) =
|
||||
\prod_{i\in N}{u_i(\vec{x})}\text{ for }\vec{x}\in A \]
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
\section{Comparison}
|
||||
\begin{frame}
|
||||
\frametitle{Use of Axioms}
|
||||
\begin{block}{Exhaustiveness}
|
||||
A feasible allocation $\vec{x}$ is called exhaustive if an
|
||||
outcome $\vec{y}$ is not feasible whenever $y_p\geq x_p$ for all
|
||||
projects $p$ and a strict inequality holds for at least one
|
||||
project.
|
||||
\end{block}
|
||||
\begin{block}{Discount Monotonicity}
|
||||
Project $p$'s cost function $c_p$ is revised to $c_p'(x_p)\leq
|
||||
c_p(x_p)$ after a vote aggregation rule outputs allocation
|
||||
$\vec{x}$. For the resulting allocation $\vec{y}$, $y_p\geq
|
||||
x_p$ holds.
|
||||
\end{block}
|
||||
\begin{block}{Pareto Optimality}
|
||||
An allocation $\vec{x}\in A$ Pareto dominates another allocation
|
||||
$\vec{y}\in A$ if $u_i(\vec{x})\geq u_i(\vec{y})$ for all $i\in
|
||||
N$ and $u_i(\vec{x}) > u_i(\vec{y})$ for some $i\in N$. An
|
||||
allocation $\vec{z}\in A$ is optimal if no allocation dominates
|
||||
it.
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
\section{Practicality}
|
||||
\begin{frame}
|
||||
\frametitle{Notion of Fairness}
|
||||
\begin{block}{The Core of PB}
|
||||
An allocation $\vec{x} \in A$ is a core solution if there is no
|
||||
subset $S$ of voters who, given a budget of $(|S|/n)B$, could
|
||||
compute an allocation $\vec{y}\in A$ such that every voter in
|
||||
$S$ receives strictly more utility in $\vec{y}$ than in
|
||||
$\vec{x}$.
|
||||
\end{block}
|
||||
\begin{block}{Proportionality}
|
||||
An allocation $\vec{x}$ should be proportionally reflected by
|
||||
the division of voters. A majority of voters should have a
|
||||
majority of the budget under their control but a minority should
|
||||
have a minority of the budget under their control.
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
\section{Future Directions}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Future Areas of Interest}
|
||||
\begin{itemize}
|
||||
\item Multi-dimensional constraints
|
||||
\item Hybrid models
|
||||
\item Complex resident preferences
|
||||
\item Market-based approaches
|
||||
\item The role of information
|
||||
\item Research spanning the entire PB process
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\centering
|
||||
\Large
|
||||
Thank you for your attention! \\
|
||||
Questions \& Answers
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 9.7 KiB After Width: | Height: | Size: 9.8 KiB |
Loading…
x
Reference in New Issue
Block a user