\documentclass{beamer} \beamertemplatenavigationsymbolsempty \usetheme{Boadilla} \usecolortheme{dolphin} \usepackage{graphicx} \usepackage{tikz} \usepackage{dsfont} \usetikzlibrary{arrows} \begin{document} \title[Participatory Budgeting]{Participatory Budgeting} \subtitle{Algorithms and Complexity} \author{Tobias Eidelpes} \begin{frame} \maketitle \end{frame} \begin{frame} \frametitle{Table of Contents} \tableofcontents \end{frame} \section{Introduction} \begin{frame} \frametitle{What is Participatory Budgeting?} \begin{quote} Participatory Budgeting (PB) is a democratic process in which community members decide how to spend part of a public budget. \end{quote} \vspace{1cm} \begin{itemize} \setlength{\itemsep}{1.1\baselineskip} \item Participatory part: community members propose projects \item Budgeting part: each project requires a fixed amount of money \item Goal: Fund the \emph{best} projects without exceeding the budget \end{itemize} \end{frame} \begin{frame} \frametitle{How does it work?} \tikzstyle{blue} = [rectangle,rounded corners=3pt,draw=blue!50,fill=blue!20,node distance=1cm] \tikzstyle{red} = [rectangle,rounded corners=3pt,draw=red!50,fill=red!20] \tikzstyle{arrow} = [line width=1pt,->,>=triangle 60,draw=black!70] \begin{center} \begin{tikzpicture}[shorten >= 2pt,level distance=1.3cm] \node[blue](design){Design the process} child { node [blue](collect){Collect ideas} child { node [blue](develop){Develop feasible projects} child { node [red](vote){Vote on projects} child { node [red](aggregate){Aggregate votes \& fund winners} } } } } ; \draw [arrow] (design) to (collect); \draw [arrow] (collect) to (develop); \draw [arrow] (develop) to (vote); \draw [arrow] (vote) to (aggregate); \end{tikzpicture} \end{center} \end{frame} \begin{frame} \frametitle{A general framework for PB} \begin{itemize} \setlength{\itemsep}{1\baselineskip} \item Projects $P=\{p_1,\dots,p_m\}$ \begin{itemize} \setlength{\itemsep}{.7\baselineskip} \item Each project $p\in P$ has associated cost $c(p):P\rightarrow\mathbb{R}$ \item Projects are either divisible or indivisible (discrete) \end{itemize} \item Select a set $A\subseteq P$ as \emph{winning projects} not exceeding total budget $B$ \begin{itemize} \setlength{\itemsep}{.7\baselineskip} \item Discrete case: $\sum_{p\in A}c(p)\leq B$ \item Divisible case: $\mu(p): P\rightarrow [0,1]$ with $\sum_{p\in A}c(\mu(p))\leq B$ \end{itemize} \end{itemize} \end{frame} \begin{frame} \frametitle{A general framework for PB ctd.} \begin{itemize} \setlength{\itemsep}{1\baselineskip} \item Voters $V=\{v_1,\dots,v_n\}$ \begin{itemize} \setlength{\itemsep}{.4\baselineskip} \item Express preferences over individual projects in $P$ or over subsets in $\mathcal{P}(P) := \{P_v\,|\,P_v\subseteq P\}$ \item Preference elicitation is dependent on the input method (approval-based, ranked orders) \end{itemize} \item Aggregation methods \begin{itemize} \item Aggregation methods combine votes to determine a set of winning projects \item Are usually tied to the input method \item Rules are used to select projects w.r.t. desired properties of the outcome (fairness, welfare) \end{itemize} \end{itemize} \end{frame} \begin{frame} \frametitle{Input and aggregation methods} Example input methods: \begin{itemize} \item Approval preferences \item Ranked orders \item Utility-based preferences \end{itemize} \vspace{0.2cm} Example aggregation methods: \begin{itemize} \item Maximizing social welfare \item Greedy selection \item Fairness-based selection \end{itemize} \vspace{0.2cm} Aggregation methods depend on how voters elicit their preferences. \end{frame} \begin{frame} \frametitle{Approval-based budgeting methods} \begin{itemize} \item Voters approve a subset of projects \item Voter preferences are assumed to be \emph{dichotomous} \item A \emph{satisfaction function} provides a metric for voter satisfaction \end{itemize} \begin{block}{An approval-based budgeting scenario} A budgeting scenario is a tuple $E = (P,V,c,B)$ where $P = \{p_1,\dots,p_m\}$ is a set of projects, $V$ is a set of voters, $c : P\rightarrow\mathbb{N}$ is a cost function associating each project $p\in P$ with its cost $c(p)$ and $B\in\mathbb{N}$ is a budget limit. A voter $v\in V$ specifies $P_v\subseteq P$, containing all approved items. \end{block} \begin{block}{Budgeting method $\mathcal{R}$} A budgeting method $\mathcal{R}$ takes a budgeting scenario $E$ and returns a bundle $A\subseteq P$ where the total cost of the items in $A$ does not exceed the budget limit $B$. \end{block} \end{frame} \begin{frame} \frametitle{Satisfaction functions} \begin{block}{Satisfaction function} A satisfaction function $sat : 2^P\times 2^P\rightarrow\mathbb{R}$ with a set $P$ of items, a voter $v$ and her approval set $P_v$ and a bundle $A\subseteq P$ provides the satisfaction $sat(P_v,A)$ of $v$ from the bundle $A$. The set of approved items by $v$ that end up in the winning bundle is denoted by $A_v = P_v\cap A$. \end{block} \begin{exampleblock}{$sat_\#(P_v,A)$} $sat_\#(P_v,A) = |A_v|$: The satisfaction of voter $v$ is the number of funded items that are approved. \end{exampleblock} \end{frame} \begin{frame} \frametitle{Satisfaction functions ctd.} \begin{exampleblock}{$sat_\$(P_v,A)$} $sat_{\$}(P_v,A) = \sum_{p\in A_v}{c(p) = c(A_v)}$: The satisfaction of voter $v$ is the total cost of her approved and funded items. \end{exampleblock} \begin{exampleblock}{$sat_{0/1}(P_v,A)$} \[ sat_{0/1}(P_v,A) = \begin{cases} 1 & \text{if } |A_v|>0 \\ 0 & \text{otherwise} \end{cases} \] A voter $v$ has satisfaction 1 if at least one of her approved items is funded and 0 otherwise. \end{exampleblock} \end{frame} \begin{frame} \frametitle{Rules for selecting a winning bundle} {\Large Let $sat$ be a satisfaction function:} \begin{block}{Max rules} The rule $\mathcal{R}_{sat}^m$ selects a bundle which maximizes the sum of voters' satisfaction: $\mathsf{max}_{A\subseteq P}\sum_{v\in V}{sat(P_v,A)}$ \end{block} \begin{block}{Greedy rules} The rule $\mathcal{R}_{sat}^g$ iteratively adds an item $p\in P$ to $A$, seeking to maximize $\sum_{v\in V}{sat(P_v,A\cup\{p\})}$. \end{block} \begin{block}{Proportional greedy rules} The rule $\mathcal{R}_{sat}^p$ iteratively adds an item $p\in P$ to $A$ seeking to maximize the sum of satisfaction per unit of cost. \end{block} \end{frame} \begin{frame} \frametitle{Example budgeting scenarios} \begin{block}{A budgeting scenario} Items $P = \{p_2,p_3,p_4,p_5,p_6\}$ and their associated cost $p_i$ where $p_i$ costs $i$. Budget limit $B=10$ and 5 voters vote $v_1=\{p_2,p_5,p_6\}$, $v_2=\{p_2,p_3,p_4,p_5\}$, $v_3=\{p_3,p_4,p_5\}$, $v_4=\{p_4,p_5\}$ and $v_5=\{p_6\}$. \end{block} \begin{exampleblock}{Combining max rule with $sat_\#$} Under $\mathcal{R}_{|A_v|}^m$ the winning bundle is $\{p_2,p_3,p_5\}$. The total satisfaction is 8. \end{exampleblock} \begin{exampleblock}{Combining greedy rule with $sat_\#$} Under $\mathcal{R}_{|A_v|}^g$ the winning bundle is $\{p_4,p_5\}$ (first selecting $p_5$). The total satisfaction is 7. \end{exampleblock} \begin{exampleblock}{Combining max rule with $sat_{0/1}$} Under $\mathcal{R}^m_{sat_{0/1}}$ the winning bundle is $\{p_4,p_6\}$, achieving max satisfaction. \end{exampleblock} \end{frame} \begin{frame} \frametitle{Complexity of budgeting algorithms} \begin{itemize} \setlength{\itemsep}{1\baselineskip} \item Computing winners using greedy rules ($\mathcal{R}^g_{sat}$) can be done in polynomial time: \begin{itemize} \setlength{\itemsep}{.4\baselineskip} \item these rules are defined through efficient iterative processes \item however: making a series of locally optimal choices does not always lead to a globally optimal choice \item $\mathcal{R}^g_{|A_v|}$ is similar to $k$-Approval and knapsack voting \end{itemize} \item Max rules ($\mathcal{R}^m_{sat}$) are generally NP-hard \begin{itemize} \setlength{\itemsep}{.4\baselineskip} \item $\mathcal{R}^m_{|A_v|}$ can be solved in polynomial time because one dimension is fixed \item $\mathcal{R}^m_{sat_{0/1}}$: finding a bundle with at least a given total satisfaction is NP-hard \item satisfaction functions can be modeled as integer linear programs \end{itemize} \end{itemize} \end{frame} \begin{frame} \frametitle{Complexity of budgeting algorithms ctd.} {\large Dealing with \emph{intractability}:} \vspace{.3cm} \begin{itemize} \setlength{\itemsep}{1\baselineskip} \item Provide an approximation algorithm, sacrificing exactness \begin{itemize} \setlength{\itemsep}{0.4\baselineskip} \item No algorithm with approx. ratio better than $1-1/\epsilon$ exists for $\mathcal{R}^m_{sat_{0/1}}$ \end{itemize} \item Fixed-parameter tractability: fix one parameter to solve problem in reasonable amount of time \begin{itemize} \setlength{\itemsep}{0.4\baselineskip} \item Fix parameter $m$ (the number of items) \item Fix parameter $n$ (the number of voters) \end{itemize} \end{itemize} \end{frame} \begin{frame} \frametitle{Comparing budgeting algorithms} By defining desirable axioms, different budgeting algorithms can be compared: \begin{block}{Discount Monotonicity} Suppose a budgeting algorithm $\mathcal{R}$ outputs a winning set of projects $A$. The cost of project $p\in A$ is lowered (discounted) compared to the previous cost. $\mathcal{R}$ should output another winning set $A'$ where project $p$ is not implemented to a lesser degree. \end{block} \end{frame} \begin{frame} \frametitle{Axiom Examples} \begin{block}{A budgeting scenario} Items $P = \{p_2,p_3,p_4,p_5,p_6\}$ and their associated cost $p_i$ where $p_i$ costs $i$. Budget limit $B=10$ and 5 voters vote $v_1=\{p_2,p_5,p_6\}$, $v_2=\{p_2,p_3,p_4,p_5\}$, $v_3=\{p_3,p_4,p_5\}$, $v_4=\{p_4,p_5\}$ and $v_5=\{p_6\}$. \end{block} \begin{exampleblock}{Discount Monotonicity Example} Under $\mathcal{R}^m_{|A_v|}$ the winning bundle is $\{p_2,p_3,p_5\}$. After discounting $p_2$ to $p_1$, we still get $\{p_1,p_3,p_5\}$. The total cost is one unit less but the total satisfaction remains the same. \end{exampleblock} \end{frame} \section{Future Directions} \begin{frame} \frametitle{Future Areas of Interest} \begin{itemize} \item Multi-dimensional constraints \item Hybrid models \item Complex resident preferences \item Market-based approaches \item The role of information \item Research spanning the entire PB process \end{itemize} \end{frame} \begin{frame} \centering \Large Thank you for your attention! \\ Questions \& Answers \end{frame} \end{document}