\documentclass{beamer} \usetheme{Boadilla} \usecolortheme{dolphin} \usepackage{graphicx} \usepackage{tikz} \usetikzlibrary{arrows} \begin{document} \title[Participatory Budgeting]{Participatory Budgeting} \subtitle{Algorithms and Complexity} \author{Tobias Eidelpes} \begin{frame} \maketitle \end{frame} \begin{frame} \frametitle{Table of Contents} \tableofcontents \end{frame} \section{Introduction} \begin{frame} \frametitle{What is Participatory Budgeting?} \begin{quote} Participatory Budgeting (PB) is a democratic process in which community members decide how to spend part of a public budget. \end{quote} \vspace{1cm} \begin{itemize} \setlength{\itemsep}{1.1\baselineskip} \item Participatory part: community members propose projects \item Budgeting part: each project requires a fixed amount of money \item Goal: Fund the \emph{best} projects without exceeding the budget \end{itemize} \end{frame} \begin{frame} \frametitle{How does it work?} \tikzstyle{blue} = [rectangle,rounded corners=3pt,draw=blue!50,fill=blue!20,node distance=1cm] \tikzstyle{red} = [rectangle,rounded corners=3pt,draw=red!50,fill=red!20] \tikzstyle{arrow} = [line width=1pt,->,>=triangle 60,draw=black!70] \begin{center} \begin{tikzpicture}[shorten >= 2pt,level distance=1.3cm] \node[blue](design){Design the process} child { node [blue](collect){Collect ideas} child { node [blue](develop){Develop feasible projects} child { node [red](vote){Vote on projects} child { node [red](aggregate){Aggregate votes \& fund winners} } } } } ; \draw [arrow] (design) to (collect); \draw [arrow] (collect) to (develop); \draw [arrow] (develop) to (vote); \draw [arrow] (vote) to (aggregate); \end{tikzpicture} \end{center} \end{frame} \begin{frame} \frametitle{A formal model for PB} \begin{itemize} \setlength{\itemsep}{1\baselineskip} \item Projects can be bounded or unbounded \item Projects can be divisible or indivisible (discrete) \item Each project has an associated cost \item Voters approve a subset of all projects (\emph{input method}) \item The total cost is limited by the available budget \item An \emph{aggregation method} provides a list of projects to fund \end{itemize} \end{frame} \begin{frame} \frametitle{Input and aggregation methods} \begin{itemize} \item Approval voting \item Ranked voting \item Knapsack voting \end{itemize} \begin{block}{An approval-based budgeting scenario} A budgeting scenario is a tuple $E = (A,V,c,l)$ where $A = \{a_1,\dots,a_m\}$ is a set of items (projects), $V$ is a set of voters, $c : A\rightarrow\mathbb{N}$ is a cost function associating each project $a\in A$ with its cost $c(a)$ and $l\in\mathbb{N}$ is a budget limit. A voter $v\in V$ specifies $A_v\subseteq A$, containing all approved items. \end{block} \end{frame} \begin{frame} \frametitle{Preference elicitation} \begin{block}{Range voting} Voters rate projects based on their utility for each project. \end{block} \begin{block}{$k$-Approval} Voters approve the $k$ projects they like the most. \end{block} \begin{block}{Approval voting} Voters approve all projects that they like. \end{block} \begin{block}{Threshold approval voting} Voters approve projects where their utility is above a specified threshold. \end{block} \begin{block}{Knapsack voting} Voters provide ideal allocation based on their preferences. \end{block} \end{frame} \section{Vote Aggregation} \begin{frame} \frametitle{Vote Aggregation} \begin{itemize} \item Voters' preferences are aggregated to determine which projects to fund \item Main interest for research \item Three different approaches: \begin{itemize} \item Welfare Maximization \item Use of Axioms \item Notions of Fairness \end{itemize} \end{itemize} \end{frame} \begin{frame} \frametitle{Welfare Maximization} \begin{block}{Utilitarian Welfare} The utilitarian welfare of an allocation is the sum of utilities it gives to residents: \[ UW(\vec{x}) = \sum_{i\in N}{u_i(\vec{x})}\text{ for }\vec{x}\in A \] \end{block} \begin{block}{Egalitarian Welfare} The egalitarian welfare of an allocation is the minimum utility it gives to any resident: \[ EW(\vec{x}) = \mathsf{min}_{i\in N}{u_i(\vec{x})}\text{ for }\vec{x}\in A \] \end{block} \begin{block}{Nash Welfare} The Nash welfare of an allocation is the product of utilities it gives to residents: \[ NW(\vec{x}) = \prod_{i\in N}{u_i(\vec{x})}\text{ for }\vec{x}\in A \] \end{block} \end{frame} \begin{frame} \frametitle{Use of Axioms} \begin{block}{Exhaustiveness} A feasible allocation $\vec{x}$ is called exhaustive if an outcome $\vec{y}$ is not feasible whenever $y_p\geq x_p$ for all projects $p$ and a strict inequality holds for at least one project. \end{block} \begin{block}{Discount Monotonicity} Project $p$'s cost function $c_p$ is revised to $c_p'(x_p)\leq c_p(x_p)$ after a vote aggregation rule outputs allocation $\vec{x}$. For the resulting allocation $\vec{y}$, $y_p\geq x_p$ holds. \end{block} \begin{block}{Pareto Optimality} An allocation $\vec{x}\in A$ Pareto dominates another allocation $\vec{y}\in A$ if $u_i(\vec{x})\geq u_i(\vec{y})$ for all $i\in N$ and $u_i(\vec{x}) > u_i(\vec{y})$ for some $i\in N$. An allocation $\vec{z}\in A$ is optimal if no allocation dominates it. \end{block} \end{frame} \begin{frame} \frametitle{Notion of Fairness} \begin{block}{The Core of PB} An allocation $\vec{x} \in A$ is a core solution if there is no subset $S$ of voters who, given a budget of $(|S|/n)B$, could compute an allocation $\vec{y}\in A$ such that every voter in $S$ receives strictly more utility in $\vec{y}$ than in $\vec{x}$. \end{block} \begin{block}{Proportionality} An allocation $\vec{x}$ should be proportionally reflected by the division of voters. A majority of voters should have a majority of the budget under their control but a minority should have a minority of the budget under their control. \end{block} \end{frame} \section{Future Directions} \begin{frame} \frametitle{Future Areas of Interest} \begin{itemize} \item Multi-dimensional constraints \item Hybrid models \item Complex resident preferences \item Market-based approaches \item The role of information \item Research spanning the entire PB process \end{itemize} \end{frame} \begin{frame} \centering \Large Thank you for your attention! \\ Questions \& Answers \end{frame} \end{document}