\documentclass{beamer} \usetheme{Boadilla} \usecolortheme{dolphin} \usepackage{graphicx} \begin{document} \title[Participatory Budgeting]{Participatory Budgeting} \subtitle{Algorithms and Complexity} \author{Tobias Eidelpes} \begin{frame} \maketitle \end{frame} \begin{frame} \frametitle{Table of Contents} \tableofcontents \end{frame} \section{Introduction} \begin{frame} \frametitle{What is Participatory Budgeting?} \begin{quote} Participatory Budgeting (PB) is a democratic process in which community members decide how to spend part of a public budget. \end{quote} \end{frame} \begin{frame} \frametitle{How does it work?} \begin{itemize} \item Designing the Process \item Collecting Ideas \item Developing Proposals \item Voting \item Funding Winners \end{itemize} \end{frame} \begin{frame} \frametitle{Benefits of Participatory Budgeting} \begin{itemize} \item More efficient spending \item Diverse participants \item Higher voter satisfaction \item Democratic and citizenship learning \item Institutional and political change \end{itemize} \end{frame} \section{Computational Aspects} \begin{frame} \frametitle{Computational Aspects of PB} \begin{itemize} \item Discrete or continuous projects? \item How do we adequately capture voter's preferences? \item How do we model these preferences? \item How do we aggregate votes? \end{itemize} \end{frame} \begin{frame} \frametitle{Decision Space} \begin{figure} \centering \includegraphics[width=\textwidth]{taxonomy.png} \end{figure} \end{frame} \begin{frame} \frametitle{Bounded Divisible PB} \begin{itemize} \item Projects are divisible \item A cap for each project is defined \item Fractional funding \end{itemize} \begin{block}{Bounded Divisible PB} Each project has a cap $q_p = 1$ and $x_p = [0,1]$ denotes the fraction of project $p\in P$ that is completed. The set of feasible budget allocations under a budget $B = 1$ is therefore defined as \[ \{ \vec{x} : \sum_{p\in P}{x_p}\leq 1 \}. \] \end{block} \begin{exampleblock}{Example} A project that seeks to donate a bounded amount of money to a charity. \end{exampleblock} \end{frame} \begin{frame} \frametitle{Unbounded Divisible PB} \begin{itemize} \item Projects are divisible \item No caps for projects \item Generalizable to \emph{Portioning} \item In practice still bounded by total budget \end{itemize} \begin{block}{Unbounded Divisible PB} \end{block} \end{frame} \section{Preference Elicitation} \section{Preference Modeling} \section{Vote Aggregation} \begin{frame} \frametitle{Algorithm Axioms} \begin{itemize} \item Pareto Optimality \item Monotonicity \item Truthfulness \item Fairness \end{itemize} \end{frame} \section{Algorithms} \section{Comparison} \section{Practicality} \end{document}