259 lines
9.0 KiB
TeX
259 lines
9.0 KiB
TeX
\documentclass{beamer}
|
|
|
|
\beamertemplatenavigationsymbolsempty
|
|
|
|
\usetheme{Boadilla}
|
|
\usecolortheme{dolphin}
|
|
|
|
\usepackage{graphicx}
|
|
\usepackage{tikz}
|
|
\usepackage{dsfont}
|
|
\usepackage{comment}
|
|
|
|
\usetikzlibrary{arrows}
|
|
|
|
\begin{document}
|
|
|
|
\title[Participatory Budgeting]{Participatory Budgeting}
|
|
\subtitle{Algorithms and Complexity}
|
|
\author{Tobias Eidelpes}
|
|
|
|
\begin{frame}
|
|
\maketitle
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Table of Contents}
|
|
\tableofcontents
|
|
\end{frame}
|
|
|
|
\section{Introduction}
|
|
|
|
\begin{frame}
|
|
\frametitle{What is Participatory Budgeting?}
|
|
\begin{quote}
|
|
Participatory Budgeting (PB) is a democratic process in which
|
|
community members decide how to spend part of a public budget.
|
|
\end{quote}
|
|
\vspace{1cm}
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{1.1\baselineskip}
|
|
\item Participatory part: community members propose projects
|
|
\item Budgeting part: each project requires a fixed amount of money
|
|
\item Goal: Fund the \emph{best} projects without exceeding the budget
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{How does it work?}
|
|
\tikzstyle{blue} = [rectangle,rounded
|
|
corners=3pt,draw=blue!50,fill=blue!20,node distance=1cm]
|
|
\tikzstyle{red} = [rectangle,rounded corners=3pt,draw=red!50,fill=red!20]
|
|
\tikzstyle{arrow} = [line width=1pt,->,>=triangle 60,draw=black!70]
|
|
\begin{center}
|
|
\begin{tikzpicture}[shorten >= 2pt,level distance=1.3cm]
|
|
\node[blue](design){Design the process}
|
|
child { node [blue](collect){Collect ideas}
|
|
child { node [blue](develop){Develop feasible projects}
|
|
child { node [red](vote){Vote on projects}
|
|
child { node [red](aggregate){Aggregate votes \& fund winners}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
;
|
|
\draw [arrow] (design) to (collect);
|
|
\draw [arrow] (collect) to (develop);
|
|
\draw [arrow] (develop) to (vote);
|
|
\draw [arrow] (vote) to (aggregate);
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{A general framework for PB}
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{1\baselineskip}
|
|
\item Projects $P=\{p_1,\dots,p_m\}$
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{.7\baselineskip}
|
|
\item Each project $p\in P$ has associated cost
|
|
$c(p):P\rightarrow\mathbb{R}$
|
|
\item Projects are either divisible or indivisible (discrete)
|
|
\end{itemize}
|
|
\item Select a set $P'\subseteq P$ as \emph{winning projects} not
|
|
exceeding total budget $B$
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{.7\baselineskip}
|
|
\item Discrete case: $\sum_{p\in P'}c(p)\leq B$
|
|
\item Divisible case: $\mu(p): P\rightarrow [0,1]$ with
|
|
$\sum_{p\in P'}c(\mu(p))\leq B$
|
|
\end{itemize}
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{A general framework for PB ctd.}
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{1\baselineskip}
|
|
\item Voters $V=\{v_1,\dots,v_n\}$
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{.5\baselineskip}
|
|
\item Express preferences over individual projects in $P$ or
|
|
over subsets in $\mathcal{P}(P) := \{P'\,|\,P'\subseteq P\}$
|
|
\item Preference elicitation is dependent on the input method
|
|
(approval-based, ranked orders)
|
|
\end{itemize}
|
|
\item Aggregation methods
|
|
\begin{itemize}
|
|
\item Aggregation methods combine votes to determine a set
|
|
of winning projects
|
|
\item Are usually tied to the input method
|
|
\item Rules are used to select projects w.r.t. desired
|
|
properties of the outcome (fairness, welfare)
|
|
\end{itemize}
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Input and aggregation methods}
|
|
Example input methods:
|
|
\begin{itemize}
|
|
\item Approval preferences
|
|
\item Ranked orders
|
|
\item Utility-based preferences
|
|
\end{itemize}
|
|
\vspace{0.2cm}
|
|
Example aggregation methods:
|
|
\begin{itemize}
|
|
\item Maximizing social welfare
|
|
\item Greedy selection
|
|
\item Fairness-based selection
|
|
\end{itemize}
|
|
\vspace{0.2cm}
|
|
Aggregation methods depend on how voters elicit their preferences.
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Approval-based budgeting methods}
|
|
\begin{itemize}
|
|
\item Voters approve a subset of projects
|
|
\item Voter preferences are assumed to be \emph{dichotomous}
|
|
\item A \emph{satisfaction function} provides a metric for voter
|
|
satisfaction
|
|
\end{itemize}
|
|
\begin{block}{An approval-based budgeting scenario}
|
|
A budgeting scenario is a tuple $E = (P,V,c,B)$ where $P =
|
|
\{p_1,\dots,p_m\}$ is a set of projects, $V$ is a set of voters, $c :
|
|
P\rightarrow\mathbb{N}$ is a cost function associating each project
|
|
$p\in P$ with its cost $c(p)$ and $B\in\mathbb{N}$ is a budget limit. A
|
|
voter $v\in V$ specifies $P_v\subseteq P$, containing all approved
|
|
items.
|
|
\end{block}
|
|
\begin{block}{Budgeting method $\mathcal{R}$}
|
|
A budgeting method $\mathcal{R}$ takes a budgeting scenario $E$ and
|
|
returns a bundle $A\subseteq P$ where the total cost of the items in
|
|
$A$ does not exceed the budget limit $B$.
|
|
\end{block}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Satisfaction functions}
|
|
\begin{block}{Satisfaction function}
|
|
A satisfaction function $sat : 2^P\times 2^P\rightarrow\mathbb{R}$ with
|
|
a set $P$ of items, a voter $v$ and her approval set $P_v$ and a bundle
|
|
$A\subseteq P$ provides the satisfaction $sat(P_v,A)$ of $v$ from the
|
|
bundle $A$. The set of approved items by $v$ that end up in the winning
|
|
bundle is denoted by $A_v = P_v\cap A$.
|
|
\end{block}
|
|
\begin{exampleblock}{$sat_\#(P_v,A)$}
|
|
$sat_\#(P_v,A) = |A_v|$: The satisfaction of voter $v$ is the number of
|
|
funded items that are approved.
|
|
\end{exampleblock}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Satisfaction functions ctd.}
|
|
\begin{exampleblock}{$sat_\$(P_v,A)$}
|
|
$sat_{\$}(P_v,A) = \sum_{p\in A_v}{c(p) = c(A_v)}$: The satisfaction of voter
|
|
$v$ is the total cost of her approved and funded items.
|
|
\end{exampleblock}
|
|
\begin{exampleblock}{$sat_{0/1}(P_v,A)$}
|
|
\[ sat_{0/1}(P_v,A) =
|
|
\begin{cases}
|
|
1 & \text{if } |A_v|>0 \\
|
|
0 & \text{otherwise}
|
|
\end{cases}
|
|
\]
|
|
A voter $v$ has satisfaction 1 if at least one of her approved items is
|
|
funded and 0 otherwise.
|
|
\end{exampleblock}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Rules for selecting a winning bundle}
|
|
{\Large Let $sat$ be a satisfaction function:}
|
|
\begin{block}{Max rules}
|
|
The rule $\mathcal{R}_{sat}^m$ selects a bundle which maximizes the sum
|
|
of voters' satisfaction: $\mathsf{max}_{A\subseteq P}\sum_{v\in
|
|
V}{sat(P_v,A)}$
|
|
\end{block}
|
|
\begin{block}{Greedy rules}
|
|
The rule $\mathcal{R}_{sat}^g$ iteratively adds an item $p\in P$ to $A$,
|
|
seeking to maximize $\sum_{v\in V}{sat(P_v,A\cup\{p\})}$.
|
|
\end{block}
|
|
\begin{block}{Proportional greedy rules}
|
|
The rule $\mathcal{R}_{sat}^p$ iteratively adds an item $p\in P$ to $A$
|
|
seeking to maximize the sum of satisfaction per unit of cost.
|
|
\end{block}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Example budgeting scenarios}
|
|
\begin{block}{A budgeting scenario}
|
|
Items $P = \{p_2,p_3,p_4,p_5,p_6\}$ and their associated cost $p_i$
|
|
where $p_i$ costs $i$. Budget limit $B=10$ and 5 voters vote
|
|
$v_1=\{p_2,p_5,p_6\}$, $v_2=\{p_2,p_3,p_4,p_5\}$, $v_3=\{p_3,p_4,p_5\}$,
|
|
$v_4=\{p_4,p_5\}$ and $v_5=\{p_6\}$.
|
|
\end{block}
|
|
\begin{exampleblock}{Combining max rule with $sat_\#$}
|
|
Under $\mathcal{R}_{|A_v|}^m$ the winning bundle is $\{p_2,p_3,p_5\}$.
|
|
The total satisfaction is 8.
|
|
\end{exampleblock}
|
|
\begin{exampleblock}{Combining greedy rule with $sat_\#$}
|
|
Under $\mathcal{R}_{|A_v|}^g$ the winning bundle is $\{p_4,p_5\}$ (first
|
|
selecting $p_5$). The total satisfaction is 7.
|
|
\end{exampleblock}
|
|
\begin{exampleblock}{Combining max rule with $sat_{0/1}$}
|
|
Under $\mathcal{R}^m_{sat_{0/1}}$ the winning bundle is $\{p_4,p_6\}$,
|
|
achieving max satisfaction.
|
|
\end{exampleblock}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{}
|
|
\end{frame}
|
|
|
|
\section{Future Directions}
|
|
|
|
\begin{frame}
|
|
\frametitle{Future Areas of Interest}
|
|
\begin{itemize}
|
|
\item Multi-dimensional constraints
|
|
\item Hybrid models
|
|
\item Complex resident preferences
|
|
\item Market-based approaches
|
|
\item The role of information
|
|
\item Research spanning the entire PB process
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\centering
|
|
\Large
|
|
Thank you for your attention! \\
|
|
Questions \& Answers
|
|
\end{frame}
|
|
|
|
\end{document}
|