Add `\pause` for individual bullet points, add conclusion slide and finish axioms.
413 lines
16 KiB
TeX
413 lines
16 KiB
TeX
\documentclass{beamer}
|
|
|
|
\beamertemplatenavigationsymbolsempty
|
|
|
|
\usetheme{Boadilla}
|
|
\usecolortheme{dolphin}
|
|
|
|
\usepackage{graphicx}
|
|
\usepackage{caption}
|
|
\usepackage{tikz}
|
|
\usepackage{dsfont}
|
|
|
|
\usetikzlibrary{arrows}
|
|
|
|
\begin{document}
|
|
|
|
\title[Participatory Budgeting]{Participatory Budgeting}
|
|
\subtitle{Algorithms and Complexity}
|
|
\author{Tobias Eidelpes}
|
|
|
|
\begin{frame}
|
|
\maketitle
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Table of Contents}
|
|
\tableofcontents
|
|
\end{frame}
|
|
|
|
\section{Introduction}
|
|
|
|
\begin{frame}
|
|
\frametitle{What is Participatory Budgeting?} \pause
|
|
\begin{quote}
|
|
Participatory Budgeting (PB) is a democratic process in which
|
|
community members decide how to spend part of a public budget.
|
|
\end{quote} \pause
|
|
\vspace{1cm}
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{1.1\baselineskip}
|
|
\item Participatory part: community members propose projects \pause
|
|
\item Budgeting part: each project requires a fixed amount of money
|
|
\pause
|
|
\item Goal: Fund the \emph{best} projects without exceeding the budget
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{A bit of background information} \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{1\baselineskip}
|
|
\item PB originated in Porto Alegre in 1990s \pause
|
|
\item Rapid expansion and influx of immigrants increased inequality
|
|
\pause
|
|
\item PB as a tool to combat inequality \pause
|
|
\item PB spread to Europe and North America \pause
|
|
\item Today \$300M allocated
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{How does it work?} \pause
|
|
\tikzstyle{blue} = [rectangle,rounded
|
|
corners=3pt,draw=blue!50,fill=blue!20]
|
|
\tikzstyle{red} = [rectangle,rounded corners=3pt,draw=red!50,fill=red!20]
|
|
\tikzstyle{arrow} = [line width=1pt,->,>=triangle 60,draw=black!70]
|
|
\begin{center}
|
|
\begin{tikzpicture}[shorten >= 2pt,node distance=1.3cm]
|
|
\node [blue] (design) {Design the process}; \pause
|
|
\node [blue] (collect) [below of=design] {Collect ideas};
|
|
\draw [arrow] (design) to (collect); \pause
|
|
\node [blue] (develop) [below of=collect] {Develop feasible
|
|
projects};
|
|
\draw [arrow] (collect) to (develop); \pause
|
|
\node [red] (vote) [below of=develop] {Vote on projects};
|
|
\draw [arrow] (develop) to (vote); \pause
|
|
\node [red] (aggregate) [below of=vote] {Aggregate votes \& fund
|
|
winners};
|
|
\draw [arrow] (vote) to (aggregate);
|
|
\onslide<1->
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\section{Modeling a PB scenario}
|
|
|
|
\begin{frame}
|
|
\frametitle{A general framework for PB} \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{1\baselineskip}
|
|
\item Projects $P=\{p_1,\dots,p_m\}$ \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{.7\baselineskip}
|
|
\item Each project $p\in P$ has associated cost \pause
|
|
$c(p):P\rightarrow\mathbb{R}$
|
|
\item Projects are either divisible or indivisible (discrete)
|
|
\pause
|
|
\end{itemize}
|
|
\item Select a set $A\subseteq P$ as \emph{winning projects} not
|
|
exceeding total budget $B$ \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{.7\baselineskip}
|
|
\item Discrete case: $\sum_{p\in A}c(p)\leq B$ \pause
|
|
\item Divisible case: $\mu(p): P\rightarrow [0,1]$ with
|
|
$\sum_{p\in A}c(\mu(p))\leq B$
|
|
\end{itemize}
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{A general framework for PB ctd.}
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{1\baselineskip}
|
|
\item Voters $V=\{v_1,\dots,v_n\}$ \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{.4\baselineskip}
|
|
\item Express preferences over individual projects in $P$ or
|
|
over subsets in $\mathcal{P}(P) := \{P_v\,|\,P_v\subseteq
|
|
P\}$ \pause
|
|
\item Preference elicitation is dependent on the input method
|
|
(approval-based, ranked orders) \pause
|
|
\end{itemize}
|
|
\item Aggregation methods \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{.4\baselineskip}
|
|
\item Aggregation methods combine votes to determine a set
|
|
of winning projects \pause
|
|
\item Are usually tied to the input method \pause
|
|
\item Rules are used to select projects w.r.t. desired
|
|
properties of the outcome (fairness, welfare)
|
|
\end{itemize}
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\section{Algorithms for PB}
|
|
|
|
\begin{frame}
|
|
\frametitle{Input and aggregation methods}
|
|
Example input methods: \pause
|
|
\begin{itemize}
|
|
\item Approval preferences \pause
|
|
\item Ranked orders \pause
|
|
\item Utility-based preferences \pause
|
|
\end{itemize}
|
|
\vspace{0.2cm}
|
|
Example aggregation methods: \pause
|
|
\begin{itemize}
|
|
\item Maximizing social welfare \pause
|
|
\item Greedy selection \pause
|
|
\item Fairness-based selection \pause
|
|
\end{itemize}
|
|
\vspace{0.2cm}
|
|
Aggregation methods depend on how voters elicit their preferences.
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Approval-based budgeting methods} \pause
|
|
\begin{itemize}
|
|
\item Suitable for discrete PB \pause
|
|
\item Voters approve a subset of projects \pause
|
|
\item Voter preferences are assumed to be \emph{dichotomous} \pause
|
|
\item A \emph{satisfaction function} provides a metric for voter
|
|
satisfaction \pause
|
|
\end{itemize}
|
|
\begin{block}{An approval-based budgeting scenario}
|
|
A budgeting scenario is a tuple $E = (P,V,c,B)$ where $P =
|
|
\{p_1,\dots,p_m\}$ is a set of projects, $V$ is a set of voters, $c :
|
|
P\rightarrow\mathbb{N}$ is a cost function associating each project
|
|
$p\in P$ with its cost $c(p)$ and $B\in\mathbb{N}$ is a budget limit. A
|
|
voter $v\in V$ specifies $P_v\subseteq P$, containing all approved
|
|
items.
|
|
\end{block} \pause
|
|
\begin{block}{Budgeting method $\mathcal{R}$}
|
|
A budgeting method $\mathcal{R}$ takes a budgeting scenario $E$ and
|
|
returns a bundle $A\subseteq P$ where the total cost of the items in
|
|
$A$ does not exceed the budget limit $B$.
|
|
\end{block}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Satisfaction functions} \pause
|
|
\begin{block}{Satisfaction function}
|
|
A satisfaction function $sat : 2^P\times 2^P\rightarrow\mathbb{R}$ with
|
|
a set $P$ of items, a voter $v$ and her approval set $P_v$ and a bundle
|
|
$A\subseteq P$ provides the satisfaction $sat(P_v,A)$ of $v$ from the
|
|
bundle $A$. The set of approved items by $v$ that end up in the winning
|
|
bundle is denoted by $A_v = P_v\cap A$.
|
|
\end{block} \pause
|
|
\begin{exampleblock}{$sat_\#(P_v,A)$}
|
|
$sat_\#(P_v,A) = |A_v|$: The satisfaction of voter $v$ is the number of
|
|
funded items that are approved.
|
|
\end{exampleblock} \pause
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Satisfaction functions ctd.}
|
|
\begin{exampleblock}{$sat_\$(P_v,A)$}
|
|
$sat_{\$}(P_v,A) = \sum_{p\in A_v}{c(p) = c(A_v)}$: The satisfaction of voter
|
|
$v$ is the total cost of her approved and funded items.
|
|
\end{exampleblock} \pause
|
|
\begin{exampleblock}{$sat_{0/1}(P_v,A)$}
|
|
\[ sat_{0/1}(P_v,A) =
|
|
\begin{cases}
|
|
1 & \text{if } |A_v|>0 \\
|
|
0 & \text{otherwise}
|
|
\end{cases}
|
|
\]
|
|
A voter $v$ has satisfaction 1 if at least one of her approved items is
|
|
funded and 0 otherwise.
|
|
\end{exampleblock}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Rules for selecting a winning bundle} \pause
|
|
{\Large Let $sat$ be a satisfaction function:} \pause
|
|
\begin{block}{Max rules}
|
|
The rule $\mathcal{R}_{sat}^m$ selects a bundle which maximizes the sum
|
|
of voters' satisfaction: $\mathsf{max}_{A\subseteq P}\sum_{v\in
|
|
V}{sat(P_v,A)}$
|
|
\end{block} \pause
|
|
\begin{block}{Greedy rules}
|
|
The rule $\mathcal{R}_{sat}^g$ iteratively adds an item $p\in P$ to $A$,
|
|
seeking to maximize $\sum_{v\in V}{sat(P_v,A\cup\{p\})}$.
|
|
\end{block} \pause
|
|
\begin{block}{Proportional greedy rules}
|
|
The rule $\mathcal{R}_{sat}^p$ iteratively adds an item $p\in P$ to $A$
|
|
seeking to maximize the sum of satisfaction per unit of cost.
|
|
\end{block}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Example budgeting scenarios} \pause
|
|
\begin{block}{A budgeting scenario}
|
|
Items $P = \{p_2,p_3,p_4,p_5,p_6\}$ and their associated cost $p_i$
|
|
where $p_i$ costs $i$. Budget limit $B=10$ and 5 voters vote
|
|
$v_1=\{p_2,p_5,p_6\}$, $v_2=\{p_2,p_3,p_4,p_5\}$, $v_3=\{p_3,p_4,p_5\}$,
|
|
$v_4=\{p_4,p_5\}$ and $v_5=\{p_6\}$.
|
|
\end{block} \pause
|
|
\begin{exampleblock}{Combining max rule with $sat_\#$}
|
|
Under $\mathcal{R}_{|A_v|}^m$ the winning bundle is $\{p_2,p_3,p_5\}$.
|
|
The total satisfaction is 8.
|
|
\end{exampleblock} \pause
|
|
\begin{exampleblock}{Combining greedy rule with $sat_\#$}
|
|
Under $\mathcal{R}_{|A_v|}^g$ the winning bundle is $\{p_4,p_5\}$ (first
|
|
selecting $p_5$). The total satisfaction is 7.
|
|
\end{exampleblock} \pause
|
|
\begin{exampleblock}{Combining max rule with $sat_{0/1}$}
|
|
Under $\mathcal{R}^m_{sat_{0/1}}$ the winning bundle is $\{p_4,p_6\}$,
|
|
achieving max satisfaction.
|
|
\end{exampleblock}
|
|
\end{frame}
|
|
|
|
\section{Complexity of PB algorithms}
|
|
|
|
\begin{frame}
|
|
\frametitle{Complexity of algorithms} \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{1\baselineskip}
|
|
\item Computing winners using greedy rules ($\mathcal{R}^g_{sat}$) can
|
|
be done in polynomial time: \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{.4\baselineskip}
|
|
\item these rules are defined through efficient iterative
|
|
processes \pause
|
|
\item however: making a series of locally optimal choices does
|
|
not always lead to a globally optimal choice \pause
|
|
\item $\mathcal{R}^g_{|A_v|}$ is similar to $k$-Approval and
|
|
knapsack voting \pause
|
|
\end{itemize}
|
|
\item Max rules ($\mathcal{R}^m_{sat}$) are generally NP-hard \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{.4\baselineskip}
|
|
\item $\mathcal{R}^m_{|A_v|}$ can be solved in polynomial time
|
|
because one dimension is fixed \pause
|
|
\item $\mathcal{R}^m_{sat_{0/1}}$: finding a bundle with at least a
|
|
given total satisfaction is NP-hard \pause
|
|
\item satisfaction functions can be modeled as integer linear
|
|
programs
|
|
\end{itemize}
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Complexity of algorithms ctd.}
|
|
{\large Dealing with \emph{intractability}:} \pause
|
|
\vspace{.3cm}
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{1\baselineskip}
|
|
\item Provide an approximation algorithm, sacrificing exactness \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{0.4\baselineskip}
|
|
\item No algorithm with approx. ratio better than $1-1/\epsilon$
|
|
exists for $\mathcal{R}^m_{sat_{0/1}}$ \pause
|
|
\end{itemize}
|
|
\item Fixed-parameter tractability: fix one parameter to solve problem
|
|
in reasonable amount of time \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{0.4\baselineskip}
|
|
\item Fix parameter $m$ (the number of items) \pause
|
|
\item Fix parameter $n$ (the number of voters)
|
|
\end{itemize}
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\section{Axioms for PB algorithms}
|
|
|
|
\begin{frame}
|
|
\frametitle{Comparing algorithms} \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{.9\baselineskip}
|
|
\item Compare algorithms by using axioms \pause
|
|
\item Axioms provide \emph{guidelines} for choosing an algorithm \pause
|
|
\item Some might be desirable, others are not a drawback, if not
|
|
satisfied \pause
|
|
\item Desirable properties: \emph{fairness}, \emph{strategyproofness}
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Comparing algorithms—Discount Monotonicity} \pause
|
|
\begin{block}{Discount Monotonicity}
|
|
Suppose a budgeting algorithm $\mathcal{R}$ outputs a winning set of
|
|
projects $A$. The cost of project $p\in A$ is lowered (discounted)
|
|
compared to the previous cost. $\mathcal{R}$ should output another
|
|
winning set $A'$ where project $p$ is not implemented to a lesser
|
|
degree.
|
|
\end{block} \pause
|
|
\begin{block}{A budgeting scenario}
|
|
Items $P = \{p_2,p_3,p_4,p_5,p_6\}$ and their associated cost $p_i$
|
|
where $p_i$ costs $i$. Budget limit $B=10$ and 5 voters vote
|
|
$v_1=\{p_2,p_5,p_6\}$, $v_2=\{p_2,p_3,p_4,p_5\}$, $v_3=\{p_3,p_4,p_5\}$,
|
|
$v_4=\{p_4,p_5\}$ and $v_5=\{p_6\}$.
|
|
\end{block} \pause
|
|
\begin{exampleblock}{Discount Monotonicity Example}
|
|
Under $\mathcal{R}^m_{|A_v|}$ the winning bundle is $\{p_2,p_3,p_5\}$.
|
|
After discounting $p_2$ to $p_1$, we still get $\{p_1,p_3,p_5\}$.
|
|
\end{exampleblock}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Comparing algorithms—Limit Monotonicity} \pause
|
|
\begin{block}{Limit Monotonicity}
|
|
A budgeting method $\mathcal{R}$ satisfies Limit Monotonicity if for a
|
|
pair of budgeting scenarios $E=(P,V,c,B)$, $E'=(P,V,c,B+1)$ and with no
|
|
project that costs exactly $B+1$, for each project $p\in P$
|
|
$p\in\mathcal{R}(E)\implies p\in\mathcal{R}(E')$ holds.
|
|
\end{block} \pause
|
|
\begin{block}{A budgeting scenario}
|
|
Items $P=\{a_1,b_1,c_1\}$ (all with unit cost), budget limit $B=1$ and 4
|
|
voters vote $v_1=\{a_1\}$, $v_2=\{a_1,b_1\}$, $v_3=\{b_1,c_1\}$ and
|
|
$v_4=\{c_1\}$.
|
|
\end{block} \pause
|
|
\begin{exampleblock}{Limit Monotonicity Example}
|
|
Under $\mathcal{R}^m_{sat_{0/1}}$ a winning bundle might be $\{b_1\}$.
|
|
Increasing the budget limit to 2 results in $\{a_1,c_1\}$.
|
|
\end{exampleblock}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Applying the two axioms to the example algorithms} \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{1\baselineskip}
|
|
\item Discount Monotonicity: \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{.4\baselineskip}
|
|
\item All 3 algorithms ($\mathcal{R}^m_{|A_v|}$,
|
|
$\mathcal{R}^g_{|A_v|}$, $\mathcal{R}^m_{sat_{0/1}}$)
|
|
satisfy discount monotonicity \pause
|
|
\item Decreasing the cost increases the attractiveness of an
|
|
item \pause
|
|
\item Not true for algorithms that measure satisfaction by
|
|
maximizing the cost of winning projects \pause
|
|
\end{itemize}
|
|
\item Limit Monotonicity: \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{.4\baselineskip}
|
|
\item No discussed algorithm satisfies limit monotonicity \pause
|
|
\item Greedy heuristics fail when a project fits into the new
|
|
budget, providing higher satisfaction \pause
|
|
\item Increasing the budget might lead to projects being dropped
|
|
\end{itemize}
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\section{Conclusion}
|
|
|
|
\begin{frame}
|
|
\frametitle{Conclusion} \pause
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{1\baselineskip}
|
|
\item PB: What is it? \pause
|
|
\item Computational aspects \pause
|
|
\item Aggregation algorithms \pause
|
|
\item Complexity of algorithms \pause
|
|
\item Comparison of algorithms using axioms
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\centering
|
|
\Large
|
|
Thank you for your attention! \\
|
|
Questions \& Answers
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=.5\textwidth]{voting_referendum.png}
|
|
\captionsetup{labelformat=empty}
|
|
\caption{\tiny [\url{https://xkcd.com/2225}]}
|
|
\end{figure}
|
|
\end{frame}
|
|
|
|
\end{document}
|