101 lines
3.9 KiB
Python

import pandas as pd
import numpy as np
import argparse
from datetime import datetime
def remove_otc(df):
return df[df["Exchange"] != "OTC"]
def reorder_cols(df):
return df[
[
"Company Name",
"Ticker",
"Exchange",
"Sector",
"Industry",
"Month of Fiscal Yr End",
"Market Cap (mil)",
"Last Close",
"F0 Consensus Est.",
"F1 Consensus Est.",
"F2 Consensus Est.",
]
]
def rename_cols(df):
return df.rename(
columns={
"F0 Consensus Est.": "EPS0",
"F1 Consensus Est.": "EPS1",
"F2 Consensus Est.": "EPS2",
}
)
def add_cols(df):
df['EG1'] = ((df['EPS1'] - df['EPS0']) / abs(df['EPS1'])).round(4)
df['EG2'] = ((df['EPS2'] - df['EPS1']) / abs(df['EPS2'])).round(4)
df['PE0'] = (df['Last Close'] / df['EPS0']).round(2)
df['PE1'] = (df['Last Close'] / df['EPS1']).round(2)
df['PE2'] = (df['Last Close'] / df['EPS2']).round(2)
df['PEG1'] = (df['PE1'] / (df['EG1'] * 100)).round(2)
df['PEG2'] = (df['PE2'] / (df['EG2'] * 100)).round(2)
df['EG1 Mean'] = df.groupby('Industry')['EG1'].transform('mean').round(4)
df['EG2 Mean'] = df.groupby('Industry')['EG2'].transform('mean').round(4)
df['PE0 Mean'] = df.groupby('Industry')['PE0'].transform('mean').round(2)
df['PE1 Mean'] = df.groupby('Industry')['PE1'].transform('mean').round(2)
df['PE2 Mean'] = df.groupby('Industry')['PE2'].transform('mean').round(2)
# Long Profile 1
mask = ((df['EG1'] > df['EG1 Mean']) & (df['EG2'] > df['EG2 Mean']) & (df['EG2'] > df['EG1']) & (df['EG2 Mean'] > df['EG1 Mean']))
long_1 = np.where(mask, 'Long EG 1', '')
df['Profile'] = long_1
# Long Profile 2
mask = ((df['EG1'] > df['EG1 Mean']) & (df['EG2'] > df['EG2 Mean']) & (df['EG2'] > df['EG1']) & (df['EG2 Mean'] == df['EG1 Mean']))
long_2 = np.where(mask, 'Long EG 2', df['Profile'])
df['Profile'] = long_2
# Long Profile 3
mask = ((df['EG1'] > df['EG1 Mean']) & (df['EG2'] > df['EG2 Mean']) & (df['EG2'] > df['EG1']) & (df['EG2 Mean'] < df['EG1 Mean']))
long_3 = np.where(mask, 'Long EG 3', df['Profile'])
df['Profile'] = long_3
# Short Profile 1
mask = ((df['EG1'] < df['EG1 Mean']) & (df['EG2'] < df['EG2 Mean']) & (df['EG2'] < df['EG1']) & (df['EG2 Mean'] > df['EG1 Mean']) & (df['EG1'] < 0) & (df['EG2'] < 0) & (df['EG1 Mean'] > 0) & (df['EG2 Mean'] > 0))
short_1 = np.where(mask, 'Short EG 1', df['Profile'])
df['Profile'] = short_1
# Short Profile 2
mask = ((df['EG1'] < df['EG1 Mean']) & (df['EG2'] < df['EG2 Mean']) & (df['EG2'] > df['EG1']) & (df['EG2 Mean'] > df['EG1 Mean']) & (df['EG1'] < 0) & (df['EG2'] < 0) & (df['EG1 Mean'] > 0) & (df['EG2 Mean'] > 0))
short_2 = np.where(mask, 'Short EG 2', df['Profile'])
df['Profile'] = short_2
# Short Profile 3
mask = ((df['EG1'] < df['EG1 Mean']) & (df['EG2'] < df['EG2 Mean']) & (df['EG2'] < df['EG1']) & (df['EG2 Mean'] > df['EG1 Mean']) & (df['EG1'] > 0) & (df['EG2'] < 0) & (df['EG1 Mean'] > 0) & (df['EG2 Mean'] > 0))
short_3 = np.where(mask, 'Short EG 3', df['Profile'])
df['Profile'] = short_3
return df
if __name__ == "__main__":
today = datetime.today()
iso_date = today.strftime("%Y-%m-%d")
parser = argparse.ArgumentParser(
"zacks-screen", description="Create cleaned CSV file from zacks screen"
)
parser.add_argument(
"filename",
help="Path to zacks screen CSV file",
)
parser.add_argument(
"--dest",
default=f"zacks-screen-{iso_date}.csv",
help="Location to save parsed CSV to",
)
args = parser.parse_args()
df = pd.read_csv(args.filename)
df = remove_otc(df)
df = reorder_cols(df)
df = rename_cols(df)
df = add_cols(df)
df.to_csv(args.dest, index=False)
print(df)