Add solution for 5f
This commit is contained in:
parent
3101a95827
commit
ce0c4ca996
@ -276,7 +276,14 @@
|
|||||||
$G=\phi_{ch}^{-1}(G_{ch})$ and therefore $G'=\psi(\phi_{ch}^{-1}(G_{ch}))$
|
$G=\phi_{ch}^{-1}(G_{ch})$ and therefore $G'=\psi(\phi_{ch}^{-1}(G_{ch}))$
|
||||||
so the verifier will always accept.
|
so the verifier will always accept.
|
||||||
|
|
||||||
\item \TODO
|
\item Suppose $G_{ch}$ is not isomorphic to $G$. $\mathcal{P}$ prepares in
|
||||||
|
advance for a challenge $ch^*$ and so
|
||||||
|
$G'=\psi(\phi_{ch^*}^{-1}(G_{ch^*}))$. $\mathcal{P}$ commits to $G'$. If
|
||||||
|
the challenge by $V$ is $ch^*$ (so $ch=ch^*$), $\mathcal{V}$ accepts,
|
||||||
|
otherwise it rejects. Because $ch\in\{0,\dots,2^{130}-1\}$, the
|
||||||
|
probability that $\mathcal{P}$ convinces $\mathcal{V}$ is
|
||||||
|
$\frac{1}{2^{130}}$ (soundness error).
|
||||||
|
|
||||||
|
|
||||||
\item \TODO
|
\item \TODO
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user