Add binding solution for 5d
This commit is contained in:
parent
8f1bcd7bbe
commit
fec5fb2773
@ -300,7 +300,11 @@
|
|||||||
$\mathcal{G}_{\mathsf{ch}}$ isomorphic to $\mathcal{G}$ as input and
|
$\mathcal{G}_{\mathsf{ch}}$ isomorphic to $\mathcal{G}$ as input and
|
||||||
outputs $\top$ if the result matches $\mathcal{G}'$ and $\bot$ otherwise.
|
outputs $\top$ if the result matches $\mathcal{G}'$ and $\bot$ otherwise.
|
||||||
|
|
||||||
\item \TODO
|
\item Computational binding: Suppose $\mathsf{Comm}(\psi,\mathcal{G}_0) =
|
||||||
|
\mathsf{Comm}(\psi,\mathcal{G}_1)$. This means that $\psi(\mathcal{G}_0) =
|
||||||
|
\psi(\mathcal{G}_1)$ and the adversary has found an isomorphism which maps
|
||||||
|
two different graphs to the same output which corresponds to solving the
|
||||||
|
CGI problem.
|
||||||
|
|
||||||
\item If $G_{ch}=\phi_{ch}(G)$ and $G'=\psi(G)$, it follows that
|
\item If $G_{ch}=\phi_{ch}(G)$ and $G'=\psi(G)$, it follows that
|
||||||
$G=\phi_{ch}^{-1}(G_{ch})$ and therefore $G'=\psi(\phi_{ch}^{-1}(G_{ch}))$
|
$G=\phi_{ch}^{-1}(G_{ch})$ and therefore $G'=\psi(\phi_{ch}^{-1}(G_{ch}))$
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user