Add reference to COCO evaluation metrics
This commit is contained in:
parent
c2cd7ee4d2
commit
70df977434
@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b1e57c8a",
|
||||
"id": "8afbd5e3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Table of contents\n",
|
||||
@ -26,7 +26,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "12921db4",
|
||||
"id": "a6143564",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction <a name=\"introduction\"></a>\n",
|
||||
@ -49,7 +49,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d46bd91d",
|
||||
"id": "bafcbf96",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Aggregate Model Evaluation <a name=\"modelevaluation\"></a>\n",
|
||||
@ -102,7 +102,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8bd95ca9",
|
||||
"id": "073ce554",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If the dataset already exists because it had been saved under the same name before, load the dataset from fiftyone's folder."
|
||||
@ -111,7 +111,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "d9c393d6",
|
||||
"id": "8681fc92",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@ -121,7 +121,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5dd071ae",
|
||||
"id": "ab97bece",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Perform detections <a name=\"modeldetect\"></a>\n",
|
||||
@ -169,7 +169,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a9294bf2",
|
||||
"id": "39ce167e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Save detections <a name=\"modeldetectionssave\"></a>\n",
|
||||
@ -190,7 +190,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f75ef7aa",
|
||||
"id": "0c9f9304",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Evaluate detections against ground truth <a name=\"modeldetectionseval\"></a>\n",
|
||||
@ -226,12 +226,12 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d1e5e4b9",
|
||||
"id": "9e403f93",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Calculate results and plot them <a name=\"modelshowresults\"></a>\n",
|
||||
"\n",
|
||||
"Now we have the performance of the model saved in the `results` variable and can extract various metrics from that. Here we print a simple report of all classes and their precision and recall values as well as the mAP with the metric employed by COCO. Next, a confusion matrix is plotted for each class (in our case only one). Finally, we can show the precision vs. recall curve for a specified threshold value."
|
||||
"Now we have the performance of the model saved in the `results` variable and can extract various metrics from that. Here we print a simple report of all classes and their precision and recall values as well as the mAP with the metric employed by [COCO](https://cocodataset.org/#detection-eval). Next, a confusion matrix is plotted for each class (in our case only one). Finally, we can show the precision vs. recall curve for a specified threshold value."
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -505,7 +505,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9997cd3f",
|
||||
"id": "2d48bb3f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### View dataset in fiftyone <a name=\"modelfiftyonesession\"></a>\n",
|
||||
@ -574,7 +574,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "64e89754",
|
||||
"id": "22561d30",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## YOLO Model Evaluation <a name=\"yoloevaluation\"></a>\n",
|
||||
@ -584,7 +584,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5782d392",
|
||||
"id": "6f389582",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load OIDv6 <a name=\"yololoadoid\"></a>\n",
|
||||
@ -625,7 +625,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9bfbf8a4",
|
||||
"id": "1b509862",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Export dataset for conversion <a name=\"yoloexportoid\"></a>\n",
|
||||
@ -666,7 +666,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "065e0dca",
|
||||
"id": "4cbee814",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Merge labels into one <a name=\"yolomergelabels\"></a>\n",
|
||||
@ -683,7 +683,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "030e4550",
|
||||
"id": "7edb13a2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load YOLOv5 dataset <a name=\"yololoadv5\"></a>\n",
|
||||
@ -722,7 +722,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a9ea9ba1",
|
||||
"id": "3ab2c225",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In case the yolo dataset already exists because it had been saved earlier, we can simply load the dataset from fiftyone's database."
|
||||
@ -731,7 +731,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"id": "42b72a2d",
|
||||
"id": "0b86639e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@ -752,7 +752,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2ebffbda",
|
||||
"id": "9eb7bb84",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Perform detections <a name=\"yoloperformdetections\"></a>\n",
|
||||
@ -801,7 +801,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d0789cc2",
|
||||
"id": "24df56d9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Evaluate detections against ground truth <a name=\"yolodetectionseval\"></a>\n",
|
||||
@ -812,7 +812,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"id": "b6b35ed4",
|
||||
"id": "4aaa4577",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@ -832,12 +832,12 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "124d92a4",
|
||||
"id": "b0df052d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Calculate results and plot them <a name=\"yoloshowresults\"></a>\n",
|
||||
"\n",
|
||||
"Now we have the performance of the model saved in the `results` variable and can extract various metrics from that. Here we print a simple report of all classes and their precision and recall values as well as the mAP with the metric employed by COCO. Next, a confusion matrix is plotted for each class (in our case only one). Finally, we can show the precision vs. recall curve for a specified threshold value."
|
||||
"Now we have the performance of the model saved in the `results` variable and can extract various metrics from that. Here we print a simple report of all classes and their precision and recall values as well as the mAP with the metric employed by [COCO](https://cocodataset.org/#detection-eval). Next, a confusion matrix is plotted for each class (in our case only one). Finally, we can show the precision vs. recall curve for a specified threshold value."
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -1064,7 +1064,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cfff898d",
|
||||
"id": "def95455",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### View dataset in fiftyone <a name=\"yolofiftyonesession\"></a>\n",
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user