Add complexity part for algorithms
Still missing definition for Limit Monotonicity and an example. Add a sentence about Discount Monotonicity with other Budgeting Algorithms. Write a nice conclusion slide. Mention that he focus is on discrete and bounded PB and that Approval-Based Voting is a mechanism for this type of problem. Add a short history of PB with a reference to Porto Alegre in Brazil to the Introduction.
This commit is contained in:
parent
1f37be0668
commit
04c8f74578
@ -8,7 +8,6 @@
|
||||
\usepackage{graphicx}
|
||||
\usepackage{tikz}
|
||||
\usepackage{dsfont}
|
||||
\usepackage{comment}
|
||||
|
||||
\usetikzlibrary{arrows}
|
||||
|
||||
@ -81,13 +80,13 @@
|
||||
$c(p):P\rightarrow\mathbb{R}$
|
||||
\item Projects are either divisible or indivisible (discrete)
|
||||
\end{itemize}
|
||||
\item Select a set $P'\subseteq P$ as \emph{winning projects} not
|
||||
\item Select a set $A\subseteq P$ as \emph{winning projects} not
|
||||
exceeding total budget $B$
|
||||
\begin{itemize}
|
||||
\setlength{\itemsep}{.7\baselineskip}
|
||||
\item Discrete case: $\sum_{p\in P'}c(p)\leq B$
|
||||
\item Discrete case: $\sum_{p\in A}c(p)\leq B$
|
||||
\item Divisible case: $\mu(p): P\rightarrow [0,1]$ with
|
||||
$\sum_{p\in P'}c(\mu(p))\leq B$
|
||||
$\sum_{p\in A}c(\mu(p))\leq B$
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
@ -98,9 +97,9 @@
|
||||
\setlength{\itemsep}{1\baselineskip}
|
||||
\item Voters $V=\{v_1,\dots,v_n\}$
|
||||
\begin{itemize}
|
||||
\setlength{\itemsep}{.5\baselineskip}
|
||||
\setlength{\itemsep}{.4\baselineskip}
|
||||
\item Express preferences over individual projects in $P$ or
|
||||
over subsets in $\mathcal{P}(P) := \{P'\,|\,P'\subseteq P\}$
|
||||
over subsets in $\mathcal{P}(P) := \{P_v\,|\,P_v\subseteq P\}$
|
||||
\item Preference elicitation is dependent on the input method
|
||||
(approval-based, ranked orders)
|
||||
\end{itemize}
|
||||
@ -231,7 +230,81 @@
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{}
|
||||
\frametitle{Complexity of budgeting algorithms}
|
||||
\begin{itemize}
|
||||
\setlength{\itemsep}{1\baselineskip}
|
||||
\item Computing winners using greedy rules ($\mathcal{R}^g_{sat}$) can
|
||||
be done in polynomial time:
|
||||
\begin{itemize}
|
||||
\setlength{\itemsep}{.4\baselineskip}
|
||||
\item these rules are defined through efficient iterative
|
||||
processes
|
||||
\item however: making a series of locally optimal choices does
|
||||
not always lead to a globally optimal choice
|
||||
\item $\mathcal{R}^g_{|A_v|}$ is similar to $k$-Approval and
|
||||
knapsack voting
|
||||
\end{itemize}
|
||||
\item Max rules ($\mathcal{R}^m_{sat}$) are generally NP-hard
|
||||
\begin{itemize}
|
||||
\setlength{\itemsep}{.4\baselineskip}
|
||||
\item $\mathcal{R}^m_{|A_v|}$ can be solved in polynomial time
|
||||
because one dimension is fixed
|
||||
\item $\mathcal{R}^m_{sat_{0/1}}$: finding a bundle with at least a
|
||||
given total satisfaction is NP-hard
|
||||
\item satisfaction functions can be modeled as integer linear
|
||||
programs
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Complexity of budgeting algorithms ctd.}
|
||||
{\large Dealing with \emph{intractability}:}
|
||||
\vspace{.3cm}
|
||||
\begin{itemize}
|
||||
\setlength{\itemsep}{1\baselineskip}
|
||||
\item Provide an approximation algorithm, sacrificing exactness
|
||||
\begin{itemize}
|
||||
\setlength{\itemsep}{0.4\baselineskip}
|
||||
\item No algorithm with approx. ratio better than $1-1/\epsilon$
|
||||
exists for $\mathcal{R}^m_{sat_{0/1}}$
|
||||
\end{itemize}
|
||||
\item Fixed-parameter tractability: fix one parameter to solve problem
|
||||
in reasonable amount of time
|
||||
\begin{itemize}
|
||||
\setlength{\itemsep}{0.4\baselineskip}
|
||||
\item Fix parameter $m$ (the number of items)
|
||||
\item Fix parameter $n$ (the number of voters)
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Comparing budgeting algorithms}
|
||||
By defining desirable axioms, different budgeting algorithms can
|
||||
be compared:
|
||||
\begin{block}{Discount Monotonicity}
|
||||
Suppose a budgeting algorithm $\mathcal{R}$ outputs a winning set of
|
||||
projects $A$. The cost of project $p\in A$ is lowered (discounted)
|
||||
compared to the previous cost. $\mathcal{R}$ should output another
|
||||
winning set $A'$ where project $p$ is not implemented to a lesser
|
||||
degree.
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Axiom Examples}
|
||||
\begin{block}{A budgeting scenario}
|
||||
Items $P = \{p_2,p_3,p_4,p_5,p_6\}$ and their associated cost $p_i$
|
||||
where $p_i$ costs $i$. Budget limit $B=10$ and 5 voters vote
|
||||
$v_1=\{p_2,p_5,p_6\}$, $v_2=\{p_2,p_3,p_4,p_5\}$, $v_3=\{p_3,p_4,p_5\}$,
|
||||
$v_4=\{p_4,p_5\}$ and $v_5=\{p_6\}$.
|
||||
\end{block}
|
||||
\begin{exampleblock}{Discount Monotonicity Example}
|
||||
Under $\mathcal{R}^m_{|A_v|}$ the winning bundle is $\{p_2,p_3,p_5\}$.
|
||||
After discounting $p_2$ to $p_1$, we still get $\{p_1,p_3,p_5\}$. The
|
||||
total cost is one unit less but the total satisfaction remains the same.
|
||||
\end{exampleblock}
|
||||
\end{frame}
|
||||
|
||||
\section{Future Directions}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user