Add example for greedy selection rules
This commit is contained in:
parent
48715fd160
commit
31065aba3c
@ -27,6 +27,11 @@
|
|||||||
\email{e1527193@student.tuwien.ac.at}
|
\email{e1527193@student.tuwien.ac.at}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
% Numbered example environment
|
||||||
|
\newcounter{example}[section]
|
||||||
|
\newenvironment{example}[1][]{\refstepcounter{example}\par\medskip
|
||||||
|
\noindent \textbf{Example~\theexample. #1} \rmfamily}{\medskip}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
\maketitle
|
\maketitle
|
||||||
@ -210,10 +215,10 @@ of this property.
|
|||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
The third satisfaction function assumes that voters are content as long as there
|
The third satisfaction function assumes that voters are content as long as there
|
||||||
is at least one of the projects they have approved is selected to be in the
|
is at least one of the projects they have approved selected to be in the winning
|
||||||
winning set. Therefore, a voter achieves satisfaction 1 when at least one
|
set. Therefore, a voter achieves satisfaction 1 when at least one approved
|
||||||
approved project ends up in the winning bundle, i.e. if $|A_v| > 0$ and 0
|
project ends up in the winning bundle, i.e. if $|A_v| > 0$ and 0 satisfaction
|
||||||
satisfaction otherwise (see equation~\ref{eq:5}).
|
otherwise (see equation~\ref{eq:5}).
|
||||||
\begin{equation}\label{eq:5}
|
\begin{equation}\label{eq:5}
|
||||||
sat_{0/1}(P_v,A) =
|
sat_{0/1}(P_v,A) =
|
||||||
\begin{cases}
|
\begin{cases}
|
||||||
@ -221,6 +226,26 @@ satisfaction otherwise (see equation~\ref{eq:5}).
|
|||||||
0 & \mathsf{otherwise}
|
0 & \mathsf{otherwise}
|
||||||
\end{cases}
|
\end{cases}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
The satisfaction functions from equations~\ref{eq:4} and \ref{eq:5} can also be
|
||||||
|
combined with the greedy rule, potentially giving slightly different outcomes
|
||||||
|
than $\mathcal{R}_{sat_\#}^g$.
|
||||||
|
|
||||||
|
\begin{example}
|
||||||
|
A set of projects $P = \{ p_2,p_3,p_4,p_5,p_6 \}$ and their associated cost
|
||||||
|
$p_i$ where project $p_i$ costs $i$ and a budget limit $B = 10$ is given.
|
||||||
|
Futhermore, five voters vote $v_1 = \{ p_2,p_5,p_6 \}$, $v_2 = \{ p_2,
|
||||||
|
p_3,p_4,p_5 \}$, $v_3 = \{ p_3,p_4,p_5 \}$, $v_4 = \{ p_4,p_5 \}$ and $v_5 =
|
||||||
|
\{ p_6 \}$. Under $\mathcal{R}_{sat_\#}^g$ the winning bundle is $\{ p_4,p_5
|
||||||
|
\}$, $\mathcal{R}_{sat_\$}^g$ gives $\{ p_4,p_5 \}$ and
|
||||||
|
$\mathcal{R}_{sat_{0/1}}^g$ $\{ p_2,p_3,p_5 \}$.
|
||||||
|
\end{example}
|
||||||
|
|
||||||
|
These three satisfaction functions cannot only be combined with a greedy
|
||||||
|
selection process. A different possibility is to always select a winning set of
|
||||||
|
projects that maximizes the sum of the voters' satisfaction:
|
||||||
|
\begin{equation}\label{eq:6}
|
||||||
|
\max_{A\subseteq P}\sum_{v\in V}sat(P_v,A)
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
\printbibliography
|
\printbibliography
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user