2020-04-27 15:33:55 +02:00

222 lines
6.8 KiB
TeX

\documentclass{beamer}
\usetheme{Boadilla}
\usecolortheme{dolphin}
\usepackage{graphicx}
\usepackage{tikz}
\usetikzlibrary{arrows}
\begin{document}
\title[Participatory Budgeting]{Participatory Budgeting}
\subtitle{Algorithms and Complexity}
\author{Tobias Eidelpes}
\begin{frame}
\maketitle
\end{frame}
\begin{frame}
\frametitle{Table of Contents}
\tableofcontents
\end{frame}
\section{Introduction}
\begin{frame}
\frametitle{What is Participatory Budgeting?}
\begin{quote}
Participatory Budgeting (PB) is a democratic process in which
community members decide how to spend part of a public budget.
\end{quote}
\vspace{1cm}
\begin{itemize}
\setlength{\itemsep}{1.1\baselineskip}
\item Participatory part: community members propose projects
\item Budgeting part: each project requires a fixed amount of money
\item Goal: Fund the \emph{best} projects without exceeding the budget
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{How does it work?}
\tikzstyle{blue} = [rectangle,rounded
corners=3pt,draw=blue!50,fill=blue!20,node distance=1cm]
\tikzstyle{red} = [rectangle,rounded corners=3pt,draw=red!50,fill=red!20]
\tikzstyle{arrow} = [line width=1pt,->,>=triangle 60,draw=black!70]
\begin{center}
\begin{tikzpicture}[shorten >= 2pt,level distance=1.3cm]
\node[blue](design){Design the process}
child { node [blue](collect){Collect ideas}
child { node [blue](develop){Develop feasible projects}
child { node [red](vote){Vote on projects}
child { node [red](aggregate){Aggregate votes \& fund winners}
}
}
}
}
;
\draw [arrow] (design) to (collect);
\draw [arrow] (collect) to (develop);
\draw [arrow] (develop) to (vote);
\draw [arrow] (vote) to (aggregate);
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}
\frametitle{A formal model for PB}
\begin{itemize}
\setlength{\itemsep}{1\baselineskip}
\item Projects can be bounded or unbounded
\item Projects can be divisible or indivisible (discrete)
\item Each project has an associated cost
\item Voters approve a subset of all projects (\emph{input method})
\item The total cost is limited by the available budget
\item An \emph{aggregation method} provides a list of projects to fund
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Input and aggregation methods}
\begin{itemize}
\item Approval voting
\item Ranked voting
\item Knapsack voting
\end{itemize}
\begin{block}{An approval-based budgeting scenario}
A budgeting scenario is a tuple $E = (A,V,c,l)$ where $A =
\{a_1,\dots,a_m\}$ is a set of items (projects), $V$ is a set of voters,
$c : A\rightarrow\mathbb{N}$ is a cost function associating each project
$a\in A$ with its cost $c(a)$ and $l\in\mathbb{N}$ is a budget limit. A
voter $v\in V$ specifies $A_v\subseteq A$, containing all approved
items.
\end{block}
\end{frame}
\begin{frame}
\frametitle{Preference elicitation}
\begin{block}{Range voting}
Voters rate projects based on their utility for each project.
\end{block}
\begin{block}{$k$-Approval}
Voters approve the $k$ projects they like the most.
\end{block}
\begin{block}{Approval voting}
Voters approve all projects that they like.
\end{block}
\begin{block}{Threshold approval voting}
Voters approve projects where their utility is above a specified
threshold.
\end{block}
\begin{block}{Knapsack voting}
Voters provide ideal allocation based on their preferences.
\end{block}
\end{frame}
\section{Vote Aggregation}
\begin{frame}
\frametitle{Vote Aggregation}
\begin{itemize}
\item Voters' preferences are aggregated to determine which
projects to fund
\item Main interest for research
\item Three different approaches:
\begin{itemize}
\item Welfare Maximization
\item Use of Axioms
\item Notions of Fairness
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Welfare Maximization}
\begin{block}{Utilitarian Welfare}
The utilitarian welfare of an allocation is the sum of utilities it gives to
residents:
\[ UW(\vec{x}) =
\sum_{i\in N}{u_i(\vec{x})}\text{ for }\vec{x}\in A \]
\end{block}
\begin{block}{Egalitarian Welfare}
The egalitarian welfare of an allocation is the minimum utility
it gives to any resident:
\[ EW(\vec{x}) =
\mathsf{min}_{i\in N}{u_i(\vec{x})}\text{ for
}\vec{x}\in A \]
\end{block}
\begin{block}{Nash Welfare}
The Nash welfare of an allocation is the product of utilities it gives to
residents:
\[ NW(\vec{x}) =
\prod_{i\in N}{u_i(\vec{x})}\text{ for }\vec{x}\in A \]
\end{block}
\end{frame}
\begin{frame}
\frametitle{Use of Axioms}
\begin{block}{Exhaustiveness}
A feasible allocation $\vec{x}$ is called exhaustive if an
outcome $\vec{y}$ is not feasible whenever $y_p\geq x_p$ for all
projects $p$ and a strict inequality holds for at least one
project.
\end{block}
\begin{block}{Discount Monotonicity}
Project $p$'s cost function $c_p$ is revised to $c_p'(x_p)\leq
c_p(x_p)$ after a vote aggregation rule outputs allocation
$\vec{x}$. For the resulting allocation $\vec{y}$, $y_p\geq
x_p$ holds.
\end{block}
\begin{block}{Pareto Optimality}
An allocation $\vec{x}\in A$ Pareto dominates another allocation
$\vec{y}\in A$ if $u_i(\vec{x})\geq u_i(\vec{y})$ for all $i\in
N$ and $u_i(\vec{x}) > u_i(\vec{y})$ for some $i\in N$. An
allocation $\vec{z}\in A$ is optimal if no allocation dominates
it.
\end{block}
\end{frame}
\begin{frame}
\frametitle{Notion of Fairness}
\begin{block}{The Core of PB}
An allocation $\vec{x} \in A$ is a core solution if there is no
subset $S$ of voters who, given a budget of $(|S|/n)B$, could
compute an allocation $\vec{y}\in A$ such that every voter in
$S$ receives strictly more utility in $\vec{y}$ than in
$\vec{x}$.
\end{block}
\begin{block}{Proportionality}
An allocation $\vec{x}$ should be proportionally reflected by
the division of voters. A majority of voters should have a
majority of the budget under their control but a minority should
have a minority of the budget under their control.
\end{block}
\end{frame}
\section{Future Directions}
\begin{frame}
\frametitle{Future Areas of Interest}
\begin{itemize}
\item Multi-dimensional constraints
\item Hybrid models
\item Complex resident preferences
\item Market-based approaches
\item The role of information
\item Research spanning the entire PB process
\end{itemize}
\end{frame}
\begin{frame}
\centering
\Large
Thank you for your attention! \\
Questions \& Answers
\end{frame}
\end{document}