130 lines
2.8 KiB
TeX
130 lines
2.8 KiB
TeX
\documentclass{beamer}
|
|
|
|
\usetheme{Boadilla}
|
|
\usecolortheme{dolphin}
|
|
|
|
\usepackage{graphicx}
|
|
|
|
\begin{document}
|
|
|
|
\title[Participatory Budgeting]{Participatory Budgeting}
|
|
\subtitle{Algorithms and Complexity}
|
|
\author{Tobias Eidelpes}
|
|
|
|
\begin{frame}
|
|
\maketitle
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Table of Contents}
|
|
\tableofcontents
|
|
\end{frame}
|
|
|
|
\section{Introduction}
|
|
|
|
\begin{frame}
|
|
\frametitle{What is Participatory Budgeting?}
|
|
\begin{quote}
|
|
Participatory Budgeting (PB) is a democratic process in which
|
|
community members decide how to spend part of a public budget.
|
|
\end{quote}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{How does it work?}
|
|
\begin{itemize}
|
|
\item Designing the Process
|
|
\item Collecting Ideas
|
|
\item Developing Proposals
|
|
\item Voting
|
|
\item Funding Winners
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Benefits of Participatory Budgeting}
|
|
\begin{itemize}
|
|
\item More efficient spending
|
|
\item Diverse participants
|
|
\item Higher voter satisfaction
|
|
\item Democratic and citizenship learning
|
|
\item Institutional and political change
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\section{Computational Aspects}
|
|
|
|
\begin{frame}
|
|
\frametitle{Computational Aspects of PB}
|
|
\begin{itemize}
|
|
\item Discrete or continuous projects?
|
|
\item How do we adequately capture voter's preferences?
|
|
\item How do we model these preferences?
|
|
\item How do we aggregate votes?
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Decision Space}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=\textwidth]{taxonomy.png}
|
|
\end{figure}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Bounded Divisible PB}
|
|
\begin{itemize}
|
|
\item Projects are divisible
|
|
\item A cap for each project is defined
|
|
\item Fractional funding
|
|
\end{itemize}
|
|
\begin{block}{Bounded Divisible PB}
|
|
Each project has a cap $q_p = 1$ and $x_p = [0,1]$ denotes the
|
|
fraction of project $p\in P$ that is completed. The set of
|
|
feasible budget allocations under a budget $B = 1$ is therefore defined as
|
|
\[ \{ \vec{x} : \sum_{p\in P}{x_p}\leq 1 \}. \]
|
|
\end{block}
|
|
\begin{exampleblock}{Example}
|
|
A project that seeks to donate a bounded amount of money to a
|
|
charity.
|
|
\end{exampleblock}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Unbounded Divisible PB}
|
|
\begin{itemize}
|
|
\item Projects are divisible
|
|
\item No caps for projects
|
|
\item Generalizable to \emph{Portioning}
|
|
\item In practice still bounded by total budget
|
|
\end{itemize}
|
|
\begin{block}{Unbounded Divisible PB}
|
|
|
|
\end{block}
|
|
\end{frame}
|
|
|
|
\section{Preference Elicitation}
|
|
|
|
\section{Preference Modeling}
|
|
|
|
\section{Vote Aggregation}
|
|
|
|
\begin{frame}
|
|
\frametitle{Algorithm Axioms}
|
|
\begin{itemize}
|
|
\item Pareto Optimality
|
|
\item Monotonicity
|
|
\item Truthfulness
|
|
\item Fairness
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\section{Algorithms}
|
|
|
|
\section{Comparison}
|
|
|
|
\section{Practicality}
|
|
|
|
\end{document}
|