130 lines
2.8 KiB
TeX

\documentclass{beamer}
\usetheme{Boadilla}
\usecolortheme{dolphin}
\usepackage{graphicx}
\begin{document}
\title[Participatory Budgeting]{Participatory Budgeting}
\subtitle{Algorithms and Complexity}
\author{Tobias Eidelpes}
\begin{frame}
\maketitle
\end{frame}
\begin{frame}
\frametitle{Table of Contents}
\tableofcontents
\end{frame}
\section{Introduction}
\begin{frame}
\frametitle{What is Participatory Budgeting?}
\begin{quote}
Participatory Budgeting (PB) is a democratic process in which
community members decide how to spend part of a public budget.
\end{quote}
\end{frame}
\begin{frame}
\frametitle{How does it work?}
\begin{itemize}
\item Designing the Process
\item Collecting Ideas
\item Developing Proposals
\item Voting
\item Funding Winners
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Benefits of Participatory Budgeting}
\begin{itemize}
\item More efficient spending
\item Diverse participants
\item Higher voter satisfaction
\item Democratic and citizenship learning
\item Institutional and political change
\end{itemize}
\end{frame}
\section{Computational Aspects}
\begin{frame}
\frametitle{Computational Aspects of PB}
\begin{itemize}
\item Discrete or continuous projects?
\item How do we adequately capture voter's preferences?
\item How do we model these preferences?
\item How do we aggregate votes?
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Decision Space}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{taxonomy.png}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Bounded Divisible PB}
\begin{itemize}
\item Projects are divisible
\item A cap for each project is defined
\item Fractional funding
\end{itemize}
\begin{block}{Bounded Divisible PB}
Each project has a cap $q_p = 1$ and $x_p = [0,1]$ denotes the
fraction of project $p\in P$ that is completed. The set of
feasible budget allocations under a budget $B = 1$ is therefore defined as
\[ \{ \vec{x} : \sum_{p\in P}{x_p}\leq 1 \}. \]
\end{block}
\begin{exampleblock}{Example}
A project that seeks to donate a bounded amount of money to a
charity.
\end{exampleblock}
\end{frame}
\begin{frame}
\frametitle{Unbounded Divisible PB}
\begin{itemize}
\item Projects are divisible
\item No caps for projects
\item Generalizable to \emph{Portioning}
\item In practice still bounded by total budget
\end{itemize}
\begin{block}{Unbounded Divisible PB}
\end{block}
\end{frame}
\section{Preference Elicitation}
\section{Preference Modeling}
\section{Vote Aggregation}
\begin{frame}
\frametitle{Algorithm Axioms}
\begin{itemize}
\item Pareto Optimality
\item Monotonicity
\item Truthfulness
\item Fairness
\end{itemize}
\end{frame}
\section{Algorithms}
\section{Comparison}
\section{Practicality}
\end{document}