Restructure talk
This commit is contained in:
parent
a611e0cc19
commit
691008a62d
229
talk/talk.tex
229
talk/talk.tex
@ -4,6 +4,9 @@
|
|||||||
\usecolortheme{dolphin}
|
\usecolortheme{dolphin}
|
||||||
|
|
||||||
\usepackage{graphicx}
|
\usepackage{graphicx}
|
||||||
|
\usepackage{tikz}
|
||||||
|
|
||||||
|
\usetikzlibrary{arrows}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
@ -28,194 +31,70 @@
|
|||||||
Participatory Budgeting (PB) is a democratic process in which
|
Participatory Budgeting (PB) is a democratic process in which
|
||||||
community members decide how to spend part of a public budget.
|
community members decide how to spend part of a public budget.
|
||||||
\end{quote}
|
\end{quote}
|
||||||
|
\vspace{1cm}
|
||||||
|
\begin{itemize}
|
||||||
|
\setlength{\itemsep}{1.1\baselineskip}
|
||||||
|
\item Participatory part: community members propose projects
|
||||||
|
\item Budgeting part: each project requires a fixed amount of money
|
||||||
|
\item Goal: Fund the \emph{best} projects without exceeding the budget
|
||||||
|
\end{itemize}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
\frametitle{How does it work?}
|
\frametitle{How does it work?}
|
||||||
|
\tikzstyle{blue} = [rectangle,rounded
|
||||||
|
corners=3pt,draw=blue!50,fill=blue!20,node distance=1cm]
|
||||||
|
\tikzstyle{red} = [rectangle,rounded corners=3pt,draw=red!50,fill=red!20]
|
||||||
|
\tikzstyle{arrow} = [line width=1pt,->,>=triangle 60,draw=black!70]
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}[shorten >= 2pt,level distance=1.3cm]
|
||||||
|
\node[blue](design){Design the process}
|
||||||
|
child { node [blue](collect){Collect ideas}
|
||||||
|
child { node [blue](develop){Develop feasible projects}
|
||||||
|
child { node [red](vote){Vote on projects}
|
||||||
|
child { node [red](aggregate){Aggregate votes \& fund winners}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
;
|
||||||
|
\draw [arrow] (design) to (collect);
|
||||||
|
\draw [arrow] (collect) to (develop);
|
||||||
|
\draw [arrow] (develop) to (vote);
|
||||||
|
\draw [arrow] (vote) to (aggregate);
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}
|
||||||
|
\frametitle{A formal model for PB}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Designing the Process
|
\setlength{\itemsep}{1\baselineskip}
|
||||||
\item Collecting Ideas
|
\item Projects can be bounded or unbounded
|
||||||
\item Developing Proposals
|
\item Projects can be divisible or indivisible (discrete)
|
||||||
\item Voting
|
\item Each project has an associated cost
|
||||||
\item Funding Winners
|
\item Voters approve a subset of all projects (\emph{input method})
|
||||||
|
\item The total cost is limited by the available budget
|
||||||
|
\item An \emph{aggregation method} provides a list of projects to fund
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
\frametitle{Benefits of Participatory Budgeting}
|
\frametitle{Input and aggregation methods}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item More efficient spending
|
\item Approval voting
|
||||||
\item Diverse participants
|
\item Ranked voting
|
||||||
\item Higher voter satisfaction
|
\item Knapsack voting
|
||||||
\item Democratic and citizenship learning
|
|
||||||
\item Institutional and political change
|
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\section{Computational Aspects}
|
\begin{block}{An approval-based budgeting scenario}
|
||||||
|
A budgeting scenario is a tuple $E = (A,V,c,l)$ where $A =
|
||||||
\begin{frame}
|
\{a_1,\dots,a_m\}$ is a set of items (projects), $V$ is a set of voters,
|
||||||
\frametitle{Computational Aspects of PB}
|
$c : A\rightarrow\mathbb{N}$ is a cost function associating each project
|
||||||
\begin{itemize}
|
$a\in A$ with its cost $c(a)$ and $l\in\mathbb{N}$ is a budget limit. A
|
||||||
\item Discrete or continuous projects?
|
voter $v\in V$ specifies $A_v\subseteq A$, containing all approved
|
||||||
\item How do we model preferences mathematically?
|
items.
|
||||||
\item How do we adequately capture voter's preferences?
|
|
||||||
\item How do we aggregate votes?
|
|
||||||
\end{itemize}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}
|
|
||||||
\frametitle{Decision Space}
|
|
||||||
\begin{figure}
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=\textwidth]{taxonomy.png}
|
|
||||||
\end{figure}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}
|
|
||||||
\frametitle{Bounded Divisible PB}
|
|
||||||
\begin{itemize}
|
|
||||||
\item Projects are divisible
|
|
||||||
\item A cap for each project is defined
|
|
||||||
\item Fractional funding
|
|
||||||
\end{itemize}
|
|
||||||
\begin{exampleblock}{Example}
|
|
||||||
A project that seeks to donate a bounded amount of money to a
|
|
||||||
charity.
|
|
||||||
\end{exampleblock}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}
|
|
||||||
\frametitle{Unbounded Divisible PB}
|
|
||||||
\begin{itemize}
|
|
||||||
\item Projects are divisible
|
|
||||||
\item No caps for projects
|
|
||||||
\item Generalizable to \emph{Portioning}
|
|
||||||
\end{itemize}
|
|
||||||
\begin{block}{Unbounded Divisible PB} $x_p = [0,1]$ denotes the
|
|
||||||
fraction of project $p\in P$ that is completed and $c_p(x_p) =
|
|
||||||
x_p$ is the cost function of project $p$. The set of feasible
|
|
||||||
budget allocations under a budget $B = 1$ is therefore defined
|
|
||||||
as \[ \{ \vec{x} : \sum_{p\in P}{x_p}\leq 1 \}. \]
|
|
||||||
\end{block}
|
\end{block}
|
||||||
\begin{exampleblock}{Example}
|
|
||||||
A project that seeks to donate an unbounded amount of money to a
|
|
||||||
charity. Every additional amount can be used effectively.
|
|
||||||
\end{exampleblock}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}
|
|
||||||
\frametitle{Bounded Discrete PB}
|
|
||||||
\begin{itemize}
|
|
||||||
\item Projects are either fully implemented or not at all
|
|
||||||
\item Degree of completion has a cap
|
|
||||||
\item Budget is defined as subset of projects which can be
|
|
||||||
implemented subject to budget constraints
|
|
||||||
\end{itemize}
|
|
||||||
\begin{exampleblock}{Example}
|
|
||||||
A project for building a new school.
|
|
||||||
\end{exampleblock}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}
|
|
||||||
\frametitle{Unbounded Discrete PB}
|
|
||||||
\begin{itemize}
|
|
||||||
\item Multiple degrees of completion
|
|
||||||
\item Substages of projects (milestones) can be defined
|
|
||||||
\item Still bounded by total available budget
|
|
||||||
\end{itemize}
|
|
||||||
\begin{exampleblock}{Example}
|
|
||||||
A project for building public toilets. The degree of completion
|
|
||||||
is the number of toilets that have already been built.
|
|
||||||
\end{exampleblock}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\section{Preference Modeling}
|
|
||||||
|
|
||||||
\begin{frame}
|
|
||||||
\frametitle{Preference Modeling}
|
|
||||||
Model preferences as a cardinal utility function or an ordinal
|
|
||||||
preference relation:
|
|
||||||
\begin{block}{Cardinal utility function}
|
|
||||||
Each resident $i$ has a cardinal utility function $u_i :
|
|
||||||
A\rightarrow \mathbb{R}$, where $A$ is the set of feasible
|
|
||||||
allocations.
|
|
||||||
\end{block}
|
|
||||||
\begin{block}{Ordinal preference relation}
|
|
||||||
$\succ_i$ over $A$
|
|
||||||
\end{block}
|
|
||||||
\begin{alertblock}{Problem}
|
|
||||||
This does not adequately reflect any structural properties of
|
|
||||||
residents' preferences.
|
|
||||||
\end{alertblock}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}
|
|
||||||
\frametitle{Preference Modeling}
|
|
||||||
\begin{itemize}
|
|
||||||
\item Impose a structural assumption on the utility function:
|
|
||||||
\[ u_i : 2^P\rightarrow\mathbb{R} \]
|
|
||||||
and $u_i$ satisfies subadditivity or superadditivity.
|
|
||||||
\item Use spatial models where preferences are situated in a
|
|
||||||
metric space and the distance between them models a
|
|
||||||
resident's utility for another allocation.
|
|
||||||
\item Take preferences over projects and use a rule to extend
|
|
||||||
them to allocations.
|
|
||||||
\end{itemize}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}
|
|
||||||
\frametitle{Cardinal extensions}
|
|
||||||
\begin{block}{Scalar separable utility function}
|
|
||||||
A resident $i$ derives utility $u_{i,p}\cdot f_p(x_p)$ from each
|
|
||||||
project. A resident's utility for an allocation $\vec{x}$ is
|
|
||||||
additive across projects:
|
|
||||||
\[ u_i(\vec{x}) = \sum_{p\in P}{u_{i,p}\cdot f_p(x_p)} \]
|
|
||||||
\end{block}
|
|
||||||
\begin{block}{Dichotomous preferences}
|
|
||||||
Assuming $x_p\in\{0,1\}$ and $u_{i,p}\in\{0,1\}$, residents
|
|
||||||
either approve or disapprove a project and care only about the
|
|
||||||
number of projects implemented.
|
|
||||||
\end{block}
|
|
||||||
\begin{block}{Max set extension}
|
|
||||||
Utility of an allocation is defined as the utility for a
|
|
||||||
resident's most favorite project: $u_i(S) = \mathsf{max}_{p\in
|
|
||||||
S}u_{i,p}$ for each $S\subseteq P$.
|
|
||||||
\end{block}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}
|
|
||||||
\frametitle{Ordinal extensions}
|
|
||||||
\begin{block}{Stochastic dominance extension}
|
|
||||||
For two allocations $\vec{x},\vec{y}\in A$ and
|
|
||||||
$E_i^1,\dots,E_i^{k_i}$ being the equivalence classes of the
|
|
||||||
relation $\succ_i$ in decreasing order of preferences: \[
|
|
||||||
\vec{x}\succ_{i}^{SD}\vec{y} \text{ iff }
|
|
||||||
\sum_{j=1}^{l}{\sum_{p\in E_i^j}{x_p}}\geq\sum_{j=1}^{l}{\sum_{p\in
|
|
||||||
E_i^j}{y_p}}\quad\text{for all } l\in\{1,\dots,k_i\}\]
|
|
||||||
\end{block}
|
|
||||||
\begin{block}{Lexicographic extension $\succ_i^{lex}$}
|
|
||||||
A resident $i$ cares significantly more about project $p$ than
|
|
||||||
about $p'$ whenever $p\succ_i p'$.
|
|
||||||
\end{block}
|
|
||||||
\begin{block}{Scoring rules}
|
|
||||||
Convert ordinal to cardinal preferences by taking a ranking
|
|
||||||
$\succ_i$ over projects and determining the utility as $u_{i,p}
|
|
||||||
= s_k$ where $k$ is the rank in a scoring vector $\vec{s} =
|
|
||||||
(s_1,\dots,s_m)$ and $s_1\geq\dots\geq s_m\geq 0$.
|
|
||||||
\end{block}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\section{Preference Elicitation}
|
|
||||||
|
|
||||||
\begin{frame}
|
|
||||||
\frametitle{Preference elicitation}
|
|
||||||
\begin{itemize}
|
|
||||||
\item Also known as \emph{Ballot Design}
|
|
||||||
\item Communicating full preferences over sometimes
|
|
||||||
exponentially many allocations is difficult
|
|
||||||
\item Cognitive burden can lead to lower turnout rates
|
|
||||||
\end{itemize}
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user