Add outline and taxonomy of PB

This commit is contained in:
Tobias Eidelpes 2020-04-22 23:22:13 +02:00
parent 6b99543aab
commit b3d76a9b4c
2 changed files with 85 additions and 9 deletions

View File

@ -1,11 +1,20 @@
\documentclass{beamer}
\usetheme{Boadilla}
\usecolortheme{dolphin}
\usepackage{graphicx}
\begin{document}
\title[Participatory Budgeting]{Participatory Budgeting}
\subtitle{Algorithms and Complexity}
\author{Tobias Eidelpes}
\begin{frame}
\maketitle
\end{frame}
\begin{frame}
\frametitle{Table of Contents}
\tableofcontents
@ -15,31 +24,98 @@
\begin{frame}
\frametitle{What is Participatory Budgeting?}
\begin{quote}
Participatory Budgeting (PB) is a democratic process in which
community members decide how to spend part of a public budget.
\end{quote}
\end{frame}
\begin{frame}
\frametitle{How does it work?}
\begin{itemize}
\item Designing the Process \pause
\item Collecting Ideas \pause
\item Developing Proposals \pause
\item Voting \pause
\item Designing the Process
\item Collecting Ideas
\item Developing Proposals
\item Voting
\item Funding Winners
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Differences to traditional Election}
\frametitle{Benefits of Participatory Budgeting}
\begin{itemize}
\item More efficient spending
\item Diverse participants
\item Higher voter satisfaction
\item Democratic and citizenship learning
\item Institutional and political change
\end{itemize}
\end{frame}
\section{Properties of Algorithms}
\section{Computational Aspects}
\begin{frame}
\frametitle{Computational Aspects of PB}
\begin{itemize}
\item Discrete or continuous projects?
\item How do we adequately capture voter's preferences?
\item How do we model these preferences?
\item How do we aggregate votes?
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Decision Space}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{taxonomy.png}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Bounded Divisible PB}
\begin{itemize}
\item Projects are divisible
\item A cap for each project is defined
\item Fractional funding
\end{itemize}
\begin{block}{Bounded Divisible PB}
Each project has a cap $q_p = 1$ and $x_p = [0,1]$ denotes the
fraction of project $p\in P$ that is completed. The set of
feasible budget allocations under a budget $B = 1$ is therefore defined as
\[ \{ \vec{x} : \sum_{p\in P}{x_p}\leq 1 \}. \]
\end{block}
\begin{exampleblock}{Example}
A project that seeks to donate a bounded amount of money to a
charity.
\end{exampleblock}
\end{frame}
\begin{frame}
\frametitle{Unbounded Divisible PB}
\begin{itemize}
\item Projects are divisible
\item No caps for projects
\item Generalizable to \emph{Portioning}
\item In practice still bounded by total budget
\end{itemize}
\begin{block}{Unbounded Divisible PB}
\end{block}
\end{frame}
\section{Preference Elicitation}
\section{Preference Modeling}
\section{Vote Aggregation}
\begin{frame}
\frametitle{Algorithm Axioms}
\begin{itemize}
\item Pareto Optimality \pause
\item Monotonicity \pause
\item Truthfulness \pause
\item Pareto Optimality
\item Monotonicity
\item Truthfulness
\item Fairness
\end{itemize}
\end{frame}

BIN
talk/taxonomy.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.7 KiB